1
|
Hu SK, Smith AR, Anderson RE, Sylva SP, Setzer M, Steadmon M, Frank KL, Chan EW, Lim DSS, German CR, Breier JA, Lang SQ, Butterfield DA, Fortunato CS, Seewald JS, Huber JA. Globally-distributed microbial eukaryotes exhibit endemism at deep-sea hydrothermal vents. Mol Ecol 2023; 32:6580-6598. [PMID: 36302092 DOI: 10.1111/mec.16745] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/21/2022] [Accepted: 10/06/2022] [Indexed: 11/30/2022]
Abstract
Single-celled microbial eukaryotes inhabit deep-sea hydrothermal vent environments and play critical ecological roles in the vent-associated microbial food web. 18S rRNA amplicon sequencing of diffuse venting fluids from four geographically- and geochemically-distinct hydrothermal vent fields was applied to investigate community diversity patterns among protistan assemblages. The four vent fields include Axial Seamount at the Juan de Fuca Ridge, Sea Cliff and Apollo at the Gorda Ridge, all in the NE Pacific Ocean, and Piccard and Von Damm at the Mid-Cayman Rise in the Caribbean Sea. We describe species diversity patterns with respect to hydrothermal vent field and sample type, identify putative vent endemic microbial eukaryotes, and test how vent fluid geochemistry may influence microbial community diversity. At a semi-global scale, microbial eukaryotic communities at deep-sea vents were composed of similar proportions of dinoflagellates, ciliates, Rhizaria, and stramenopiles. Individual vent fields supported distinct and highly diverse assemblages of protists that included potentially endemic or novel vent-associated strains. These findings represent a census of deep-sea hydrothermal vent protistan communities. Protistan diversity, which is shaped by the hydrothermal vent environment at a local scale, ultimately influences the vent-associated microbial food web and the broader deep-sea carbon cycle.
Collapse
Affiliation(s)
- Sarah K Hu
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Amy R Smith
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Bard College at Simon's Rock, Great Barrington, Massachusetts, USA
| | - Rika E Anderson
- Biology Department, Carleton College, Northfield, Minnesota, USA
| | - Sean P Sylva
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Michaela Setzer
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Maria Steadmon
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
- Department of Oceanography, University of Hawaii at Mānoa, Honolulu, Hawai'i, USA
| | - Kiana L Frank
- Pacific Biosciences Research Center, Kewalo Marine Laboratory, University of Hawai'i at Mānoa, Honolulu, Hawai'i, USA
| | - Eric W Chan
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | | | - Christopher R German
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - John A Breier
- School of Earth, Environmental, and Marine Sciences, The University of Texas Rio Grande Valley, Edinburg, Texas, USA
| | - Susan Q Lang
- Department of Geology & Geophysics, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- School of the Earth, Ocean, and Environment, University of South Carolina, Columbia, South Carolina, USA
| | - David A Butterfield
- Cooperative Institute for Climate, Ocean, and Ecosystem Studies, University of Washington and NOAA/PMEL, Seattle, Washington, USA
| | | | - Jeffrey S Seewald
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Julie A Huber
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
2
|
Torruella G, Galindo LJ, Moreira D, Ciobanu M, Heiss AA, Yubuki N, Kim E, López-García P. Expanding the molecular and morphological diversity of Apusomonadida, a deep-branching group of gliding bacterivorous protists. J Eukaryot Microbiol 2023; 70:e12956. [PMID: 36453005 DOI: 10.1111/jeu.12956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 09/13/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022]
Abstract
Apusomonads are cosmopolitan bacterivorous biflagellate protists usually gliding on freshwater and marine sediment or wet soils. These nanoflagellates form a sister lineage to opisthokonts and may have retained ancestral features helpful to understanding the early evolution of this large supergroup. Although molecular environmental analyses indicate that apusomonads are genetically diverse, few species have been described. Here, we morphologically characterize 11 new apusomonad strains. Based on molecular phylogenetic analyses of the rRNA gene operon, we describe four new strains of the known species Multimonas media, Podomonas capensis, Apusomonas proboscidea, and Apusomonas australiensis, and rename Thecamonas oxoniensis as Mylnikovia oxoniensis n. gen., n. comb. Additionally, we describe four new genera and six new species: Catacumbia lutetiensis n. gen. n. sp., Cavaliersmithia chaoae n. gen. n. sp., Singekia montserratensis n. gen. n. sp., Singekia franciliensis n. gen. n. sp., Karpovia croatica n. gen. n. sp., and Chelonemonas dolani n. sp. Our comparative analysis suggests that apusomonad ancestor was a fusiform biflagellate with a dorsal pellicle, a plastic ventral surface, and a sleeve covering the anterior flagellum, that thrived in marine, possibly oxygen-poor, environments. It likely had a complex cell cycle with dormant and multiple fission stages, and sex. Our results extend known apusomonad diversity, allow updating their taxonomy, and provide elements to understand early eukaryotic evolution.
Collapse
Affiliation(s)
- Guifré Torruella
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France.,Barcelona Supercomputing Center (BSC-CNS), Barcelona, Spain.,Institute for Research in Biomedicine (IRB), Barcelona, Spain
| | - Luis Javier Galindo
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France.,Department of Zoology, University of Oxford, Oxford, UK
| | - David Moreira
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Maria Ciobanu
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France
| | - Aaron A Heiss
- Department of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA.,Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Naoji Yubuki
- Ecologie Systématique Evolution, CNRS, Université Paris-Saclay, AgroParisTech, Orsay, France.,Bioimaging Facility, University of British Columbia, Vancouver, BC, Canada
| | - Eunsoo Kim
- Department of Invertebrate Zoology, American Museum of Natural History, New York City, New York, USA.,Department of Life Science & Division of EcoScience, Ewha Womans University, Seoul, South Korea
| | | |
Collapse
|
3
|
Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 2021; 10:e61037. [PMID: 33448265 PMCID: PMC7895527 DOI: 10.7554/elife.61037] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 01/14/2021] [Indexed: 12/19/2022] Open
Abstract
Amoeboid cell types are fundamental to animal biology and broadly distributed across animal diversity, but their evolutionary origin is unclear. The closest living relatives of animals, the choanoflagellates, display a polarized cell architecture (with an apical flagellum encircled by microvilli) that resembles that of epithelial cells and suggests homology, but this architecture differs strikingly from the deformable phenotype of animal amoeboid cells, which instead evoke more distantly related eukaryotes, such as diverse amoebae. Here, we show that choanoflagellates subjected to confinement become amoeboid by retracting their flagella and activating myosin-based motility. This switch allows escape from confinement and is conserved across choanoflagellate diversity. The conservation of the amoeboid cell phenotype across animals and choanoflagellates, together with the conserved role of myosin, is consistent with homology of amoeboid motility in both lineages. We hypothesize that the differentiation between animal epithelial and crawling cells might have evolved from a stress-induced switch between flagellate and amoeboid forms in their single-celled ancestors.
Collapse
Affiliation(s)
- Thibaut Brunet
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Marvin Albert
- Department of Molecular Life Sciences, University of ZürichZurichSwitzerland
| | - William Roman
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBERNEDBarcelonaSpain
| | - Maxwell C Coyle
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Danielle C Spitzer
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| | - Nicole King
- Howard Hughes Medical InstituteChevy ChaseUnited States
- Department of Molecular and Cell Biology, University of California, BerkeleyBerkeleyUnited States
| |
Collapse
|
4
|
Liu Y, Wang N, Wei Y, Dang K, Li M, Li Y, Li Q, Mu R. Pilot study on the upgrading configuration of UASB-MBBR with two carriers: Treatment effect, sludge reduction and functional microbial identification. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
5
|
Abstract
Developing a detailed understanding of how all known forms of life are related to one another in the tree of life has been a major preoccupation of biology since the idea of tree-like evolution first took hold. Since most life is microbial, our intuitive use of morphological comparisons to infer relatedness only goes so far, and molecular sequence data, most recently from genomes and transcriptomes, has been the primary means to infer these relationships. For prokaryotes this presented new challenges, since the degree of horizontal gene transfer led some to question the tree-like depiction of evolution altogether. Most eukaryotes are also microbial, but in contrast to prokaryotic life, the application of large-scale molecular data to the tree of eukaryotes has largely been a constructive process, leading to a small number of very diverse lineages, or 'supergroups'. The tree is not completely resolved, and contentious problems remain, but many well-established supergroups now encompass much more diversity than the traditional kingdoms. Some of the most exciting recent developments come from the discovery of branches in the tree that we previously had no inkling even existed, many of which are of great ecological or evolutionary interest. These new branches highlight the need for more exploration, by high-throughput molecular surveys, but also more traditional means of observations and cultivation.
Collapse
Affiliation(s)
- Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver V6T 1Z4, British Columbia, Canada.
| | - Fabien Burki
- Department of Organismal Biology, Program in Systematic Biology, Uppsala University, Uppsala, Sweden; Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
6
|
Luo GZ, Hao Z, Luo L, Shen M, Sparvoli D, Zheng Y, Zhang Z, Weng X, Chen K, Cui Q, Turkewitz AP, He C. N 6-methyldeoxyadenosine directs nucleosome positioning in Tetrahymena DNA. Genome Biol 2018; 19:200. [PMID: 30454035 PMCID: PMC6245762 DOI: 10.1186/s13059-018-1573-3] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 10/22/2018] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND N6-methyldeoxyadenosine (6mA or m6dA) was shown more than 40 years ago in simple eukaryotes. Recent studies revealed the presence of 6mA in more prevalent eukaryotes, even in vertebrates. However, functional characterizations have been limited. RESULTS We use Tetrahymena thermophila as a model organism to examine the effects of 6mA on nucleosome positioning. Independent methods reveal the enrichment of 6mA near and after transcription start sites with a periodic pattern and anti-correlation relationship with the positions of nucleosomes. The distribution pattern can be recapitulated by in vitro nucleosome assembly on native Tetrahymena genomic DNA but not on DNA without 6mA. Model DNA containing artificially installed 6mA resists nucleosome assembling compared to unmodified DNA in vitro. Computational simulation indicates that 6mA increases dsDNA rigidity, which disfavors nucleosome wrapping. Knockout of a potential 6mA methyltransferase leads to a transcriptome-wide change of gene expression. CONCLUSIONS These findings uncover a mechanism by which DNA 6mA assists to shape the nucleosome positioning and potentially affects gene expression.
Collapse
Affiliation(s)
- Guan-Zheng Luo
- The State Key Laboratory of Biocontrol, MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510060, China.
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| | - Ziyang Hao
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Liangzhi Luo
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Mingren Shen
- Graduate Program in Biophysics, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 Univ. Ave., Madison, WI, 53706, USA
| | - Daniela Sparvoli
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Yuqing Zheng
- Graduate Program in Biophysics, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 Univ. Ave., Madison, WI, 53706, USA
| | - Zijie Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Xiaocheng Weng
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Kai Chen
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA
| | - Qiang Cui
- Graduate Program in Biophysics, Department of Chemistry and Theoretical Chemistry Institute, University of Wisconsin, Madison, 1101 Univ. Ave., Madison, WI, 53706, USA
| | - Aaron P Turkewitz
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL, 60637, USA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, and Institute for Biophysical Dynamics, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
- Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
| |
Collapse
|
7
|
Baluška F, Lyons S. Energide-cell body as smallest unit of eukaryotic life. ANNALS OF BOTANY 2018; 122:741-745. [PMID: 29474513 PMCID: PMC6215040 DOI: 10.1093/aob/mcy022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
Background The evolutionary origin of the eukaryotic nucleus is obscure and controversial. Currently preferred are autogenic concepts; ideas of a symbiotic origin are mostly discarded and forgotten. Here we briefly discuss these issues and propose a new version of the symbiotic and archaeal origin of the eukaryotic nucleus. Scope and Conclusions The nucleus of eukaryotic cells forms via its perinuclear microtubules, the primary eukaryotic unit known also as the Energide-cell body. As for all other endosymbiotic organelles, new Energides are generated only from other Energides. While the Energide cannot be generated de novo, it can use its secretory apparatus to generate de novo the cell periphery apparatus. We suggest that Virchow's tenet Omnis cellula e cellula should be updated as Omnis Energide e Energide to reflect the status of the Energide as the primary unit of the eukaryotic cell, and life. In addition, the plasma membrane provides feedback to the Energide and renders it protection via the plasma membrane-derived endosomal network. New discoveries suggest archaeal origins of both the Energide and its host cell.
Collapse
|
8
|
Tekle YI, Williams JR. Cytoskeletal architecture and its evolutionary significance in amoeboid eukaryotes and their mode of locomotion. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160283. [PMID: 27703691 PMCID: PMC5043310 DOI: 10.1098/rsos.160283] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 08/30/2016] [Indexed: 06/06/2023]
Abstract
The cytoskeleton is the hallmark of eukaryotic evolution. The molecular and architectural aspects of the cytoskeleton have been playing a prominent role in our understanding of the origin and evolution of eukaryotes. In this study, we seek to investigate the cytoskeleton architecture and its evolutionary significance in understudied amoeboid lineages belonging to Amoebozoa. These amoebae primarily use cytoplasmic extensions supported by the cytoskeleton to perform important cellular processes such as movement and feeding. Amoeboid structure has important taxonomic significance, but, owing to techniques used, its potential significance in understanding diversity of the group has been seriously compromised, leading to an under-appreciation of its value. Here, we used immunocytochemistry and confocal microscopy to study the architecture of microtubules (MTs) and F-actin in diverse groups of amoebae. Our results demonstrate that all Amoebozoa examined are characterized by a complex cytoskeletal array, unlike what has been previously thought to exist. Our results not only conclusively demonstrate that all amoebozoans possess complex cytoplasmic MTs, but also provide, for the first time, a potential synapomorphy for the molecularly defined Amoebozoa clade. Based on this evidence, the last common ancestor of amoebozoans is hypothesized to have had a complex interwoven MT architecture limited within the granular cell body. We also generate several cytoskeleton characters related to MT and F-actin, which are found to be robust for defining groups in deep and shallow nodes of Amoebozoa.
Collapse
|
9
|
Kisten K, Moodley R, Jonnalagadda SB. Elemental Analysis and Nutritional Value of Seaweed from the East Coast of KwaZulu-Natal, South Africa. ANAL LETT 2016. [DOI: 10.1080/00032719.2016.1182545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Kimona Kisten
- School of Chemistry and Physics, University of KwaZulu Natal, Durban, South Africa
| | - Roshila Moodley
- School of Chemistry and Physics, University of KwaZulu Natal, Durban, South Africa
| | | |
Collapse
|
10
|
Niculescu VF. The stem cell biology of the protist pathogen entamoeba invadens in the context of eukaryotic stem cell evolution. ACTA ACUST UNITED AC 2015. [DOI: 10.7243/2054-717x-2-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
11
|
Cavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R. Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa. Mol Phylogenet Evol 2014; 81:71-85. [DOI: 10.1016/j.ympev.2014.08.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/02/2014] [Accepted: 08/11/2014] [Indexed: 01/12/2023]
|
12
|
Burki F. The eukaryotic tree of life from a global phylogenomic perspective. Cold Spring Harb Perspect Biol 2014; 6:a016147. [PMID: 24789819 DOI: 10.1101/cshperspect.a016147] [Citation(s) in RCA: 212] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Molecular phylogenetics has revolutionized our knowledge of the eukaryotic tree of life. With the advent of genomics, a new discipline of phylogenetics has emerged: phylogenomics. This method uses large alignments of tens to hundreds of genes to reconstruct evolutionary histories. This approach has led to the resolution of ancient and contentious relationships, notably between the building blocks of the tree (the supergroups), and allowed to place in the tree enigmatic yet important protist lineages for understanding eukaryote evolution. Here, I discuss the pros and cons of phylogenomics and review the eukaryotic supergroups in light of earlier work that laid the foundation for the current view of the tree, including the position of the root. I conclude by presenting a picture of eukaryote evolution, summarizing the most recent progress in assembling the global tree.
Collapse
Affiliation(s)
- Fabien Burki
- Canadian Institute for Advanced Research, Department of Botany, University of British Columbia, Vancouver, British Columbia V6T 1Z4, Canada
| |
Collapse
|
13
|
Constenla M, Padrós F, Palenzuela O. Endolimax piscium sp. nov. (Amoebozoa), causative agent of systemic granulomatous disease of cultured sole, Solea senegalensis Kaup. JOURNAL OF FISH DISEASES 2014; 37:229-240. [PMID: 23496286 DOI: 10.1111/jfd.12097] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/21/2013] [Accepted: 01/29/2013] [Indexed: 06/01/2023]
Abstract
A new amoeba species pathogenic for Senegalese sole is described based on ultrastructural analysis and SSU rDNA phylogenetic inference. The parasite presents round to ovoid trophozoites (<5 μm) with a high degree of intracellular simplification. No mitochondria were observed, but mitosome-like organelles were present. No cysts could be detected. Phylogenetic analysis confirmed the Senegalese sole parasite as an amitochondriate Archamoeba related to Endolimax nana and Iodamoeba spp., and we tentatively describe it as a new species in the genus Endolimax, Endolimax piscium. However, the genetic distance with E. nana is quite large, with only 60% pairwise identity between both SSU rDNA genotypes. Although the overall topology of the Archamoebae cladograms containing E. piscium was consistent, the support for the branching of Endolimax spp. relative to its closest neighbours was variable, being higher with distance or parsimony-based inference methods than with ML or Bayesian trees. The use of stringent alignment sampling masks also caused instability and reduced support for some branches, including the monophyly of Endolimax spp. in the most conservative data sets. The characterization of other Archamoebae parasitizing fish could help to clarify the status of E. piscium and to interpret the large genetic distance observed between Endolimax species.
Collapse
Affiliation(s)
- M Constenla
- XRAq (Generalitat de Catalunya), Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Veterinària, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | | |
Collapse
|
14
|
Fiz-Palacios O, Romeralo M, Ahmadzadeh A, Weststrand S, Ahlberg PE, Baldauf S. Did terrestrial diversification of amoebas (amoebozoa) occur in synchrony with land plants? PLoS One 2013; 8:e74374. [PMID: 24040233 PMCID: PMC3770592 DOI: 10.1371/journal.pone.0074374] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2013] [Accepted: 07/31/2013] [Indexed: 12/04/2022] Open
Abstract
Evolution of lineage diversification through time is an active area of research where much progress has been made in the last decade. Contrary to the situation in animals and plants little is known about how diversification rates have evolved in most major groups of protist. This is mainly due to uncertainty about phylogenetic relationships, scarcity of the protist fossil record and the unknown diversity within these lineages. We have analyzed the evolutionary history of the supergroup Amoebozoa over the last 1000 million years using molecular dating and species number estimates. After an origin in the marine environment we have dated the colonization of terrestrial habitats by three distinct lineages of Amoebozoa: Dictyostelia, Myxogastria and Arcellinida. The common ancestor of the two sister taxa, Dictyostelia and Myxogastria, appears to have existed before the colonization of land by plants. In contrast Arcellinida seems to have diversify in synchrony with land plant radiation, and more specifically with that of mosses. Detection of acceleration of diversification rates in Myxogastria and Arcellinida points to a co-evolution within the terrestrial habitats, where land plants and the amoebozoans may have interacted during the evolution of these new ecosystems.
Collapse
Affiliation(s)
- Omar Fiz-Palacios
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
- * E-mail:
| | - Maria Romeralo
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| | - Afsaneh Ahmadzadeh
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| | - Stina Weststrand
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| | - Per Erik Ahlberg
- Evolution and Development Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 A, Uppsala, Sweden
| | - Sandra Baldauf
- Systematic Biology Program, Department of Organismal Biology, Evolutionary Biology Centre, Norbyvägen 18 D, Uppsala, Sweden
| |
Collapse
|
15
|
Brown MW, Sharpe SC, Silberman JD, Heiss AA, Lang BF, Simpson AGB, Roger AJ. Phylogenomics demonstrates that breviate flagellates are related to opisthokonts and apusomonads. Proc Biol Sci 2013; 280:20131755. [PMID: 23986111 DOI: 10.1098/rspb.2013.1755] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Most eukaryotic lineages belong to one of a few major groups. However, several protistan lineages have not yet been robustly placed in any of these groups. Both the breviates and apusomonads are two such lineages that appear to be related to the Amoebozoa and Opisthokonta (i.e. the 'unikonts' or Amorphea); however, their precise phylogenetic positions remain unclear. Here, we describe a novel microaerophilic breviate, Pygsuia biforma gen. nov. sp. nov., isolated from a hypoxic estuarine sediment. Ultrastructurally, this species resembles the breviate genera Breviata and Subulatomonas but has two cell morphologies, adherent and swimming. Phylogenetic analyses of the small sub-unit rRNA gene show that Pygsuia is the sister to the other breviates. We constructed a 159-protein supermatrix, including orthologues identified in RNA-seq data from Pygsuia. Phylogenomic analyses of this dataset show that breviates, apusomonads and Opisthokonta form a strongly supported major eukaryotic grouping we name the Obazoa. Although some phylogenetic methods disagree, the balance of evidence suggests that the breviate lineage forms the deepest branch within Obazoa. We also found transcripts encoding a nearly complete integrin adhesome from Pygsuia, indicating that this protein complex involved in metazoan multicellularity may have evolved earlier in eukaryote evolution than previously thought.
Collapse
Affiliation(s)
- Matthew W Brown
- Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | | | | | | | | | | | | |
Collapse
|
16
|
Zhao S, Shalchian-Tabrizi K, Klaveness D. Sulcozoa revealed as a paraphyletic group in mitochondrial phylogenomics. Mol Phylogenet Evol 2013; 69:462-8. [PMID: 23973893 DOI: 10.1016/j.ympev.2013.08.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 08/01/2013] [Accepted: 08/09/2013] [Indexed: 12/18/2022]
Abstract
Recently, phylogenomic analyses have been used to assign the vast majority of eukaryotes into only a handful of supergroups. However, a few enigmatic lineages still do not fit into this simple picture. Such lineages may have originated early in the history of eukaryotes and are therefore of key importance in deduction of cellular evolution. In this study, we focus on two deeply diverging lineages, Diphyllatea and Thecamonadea. They are classified in the same phylum, Sulcozoa, but previous multigene phylogenetic analyses have included only one of these two lineages. It is therefore unclear whether they constitute one group or two distinct lineages. The study of rare genomic changes reveals that both have the fused dihydrofolate reductase (DHFR) and thymidylate synthase (TS) genes (i.e. DHFR-TS), which are separated in all other unikonts that have been investigated, indicating a possible close relationship. Their phylogenetic positions have implications for the classification of Sulcozoa and the early eukaryote evolution. Here we present a phylogenomic analysis of these species that include Illumina and 454 transcriptome data from two Collodictyon strains. A total of 42 mitochondrial proteins, which correspond to orthologs published from Thecamonas trahens (Thecamonadea), were used to reconstruct their phylogenies. In the resulting trees, Collodictyon appears as sister to Amoebozoa, whereas Thecamonas branches as the closest relative of Opisthokonta (i.e. the animal, fungi and unicellular Choanozoa). In contrast, the position of another early diverging eukaryote, Malawimonas, is unresolved. The separation of Collodictyon and Thecamonas in our studies suggests that the recently proposed Sulcozoa group is most likely paraphyletic. Furthermore, the data support the hypothesis that the two supergroups Opisthokonta and Amoebozoa, which comprise a great diversity of eukaryotes, have originated from a sulcozoan ancestor.
Collapse
Affiliation(s)
- Sen Zhao
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Norway
| | | | | |
Collapse
|
17
|
Heiss AA, Walker G, Simpson AG. The flagellar apparatus of Breviata anathema, a eukaryote without a clear supergroup affinity. Eur J Protistol 2013; 49:354-72. [DOI: 10.1016/j.ejop.2013.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Revised: 12/21/2012] [Accepted: 01/18/2013] [Indexed: 10/27/2022]
|
18
|
Claverie JM. Giant virus in the sea: Extending the realm of Megaviridae to Viridiplantae. Commun Integr Biol 2013; 6:e25685. [PMID: 24563700 PMCID: PMC3917960 DOI: 10.4161/cib.25685] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 07/09/2013] [Indexed: 12/02/2022] Open
Abstract
The viral nature of the first “giant virus,” Mimivirus, was realized in 2003, 10 y after its initial isolation from the water of a cooling tower in Bradford, UK. Soon after its genome was sequenced, the mining of the Global Ocean Sampling environmental sequence database revealed that the closest relatives of Mimivirus, only known to infect Acanthamoeba, were to be found in the sea. These predicted marine Mimivirus relatives remained elusive until 2010, with the first genomic characterization of a virus infecting a heterotrophic unicellular eukaryote, the microflagellate grazer Cafeteria roenbergensis. The genome analysis of a virus (PgV) infecting the common unicellular algae Phaeocystis globosa now shows that it is a bona fide member of the Mimivirus family (i.e., the Megaviridae), extending the realm of these giant viruses to abundant blooming phytoplankton species. Despite its smaller genome size (460 kb encoding 434 proteins), PgV exhibits the most intriguing feature of the previously characterized Megaviridae: an associated virophage. However, the 19-kb virophage genome, devoid of a capsid gene, is packaged in the PgV particle and propagated as a “viral plasmid,” the first ever described. The PgV genome also exhibits the duplication of “core genes,” normally present as single copies and a putative new type of mobile element. In a DNA polymerase phylogeny including representatives of the three cellular domains, PgV and the other Megaviridae cluster into their own clade deeply branching between domains Archaea and Eukarya domains, thus exhibiting the topology of a fourth domain in the Tree of Life.
Collapse
Affiliation(s)
- Jean-Michel Claverie
- Structural and Genomic Information Laboratory (IGS-UMR7256 and Mediterranean Institute of Microbiology (FR3479); Centre National de la Recherche Scientifique; Aix-Marseille University; Marseille, France
| |
Collapse
|
19
|
Yubuki N, Leander BS. Evolution of microtubule organizing centers across the tree of eukaryotes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:230-244. [PMID: 23398214 DOI: 10.1111/tpj.12145] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/04/2013] [Accepted: 02/05/2013] [Indexed: 05/28/2023]
Abstract
The architecture of eukaryotic cells is underpinned by complex arrrays of microtubules that stem from an organizing center, referred to as the MTOC. With few exceptions, MTOCs consist of two basal bodies that anchor flagellar axonemes and different configurations of microtubular roots. Variations in the structure of this cytoskeletal system, also referred to as the 'flagellar apparatus', reflect phylogenetic relationships and provide compelling evidence for inferring the overall tree of eukaryotes. However, reconstructions and subsequent comparisons of the flagellar apparatus are challenging, because these studies require sophisticated microscopy, spatial reasoning and detailed terminology. In an attempt to understand the unifying features of MTOCs and broad patterns of cytoskeletal homology across the tree of eukaryotes, we present a comprehensive overview of the eukaryotic flagellar apparatus within a modern molecular phylogenetic context. Specifically, we used the known cytoskeletal diversity within major groups of eukaryotes to infer the unifying features (ancestral states) for the flagellar apparatus in the Plantae, Opisthokonta, Amoebozoa, Stramenopiles, Alveolata, Rhizaria, Excavata, Cryptophyta, Haptophyta, Apusozoa, Breviata and Collodictyonidae. We then mapped these data onto the tree of eukaryotes in order to trace broad patterns of trait changes during the evolutionary history of the flagellar apparatus. This synthesis suggests that: (i) the most recent ancestor of all eukaryotes already had a complex flagellar apparatus, (ii) homologous traits associated with the flagellar apparatus have a punctate distribution across the tree of eukaryotes, and (iii) streamlining (trait losses) of the ancestral flagellar apparatus occurred several times independently in eukaryotes.
Collapse
Affiliation(s)
- Naoji Yubuki
- The Department of Botany, Beaty Biodiversity Research Centre and Museum, University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada.
| | | |
Collapse
|
20
|
Holmes DE, Giloteaux L, Williams KH, Wrighton KC, Wilkins MJ, Thompson CA, Roper TJ, Long PE, Lovley DR. Enrichment of specific protozoan populations during in situ bioremediation of uranium-contaminated groundwater. THE ISME JOURNAL 2013; 7:1286-98. [PMID: 23446832 PMCID: PMC3695288 DOI: 10.1038/ismej.2013.20] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Revised: 01/07/2013] [Accepted: 01/10/2013] [Indexed: 11/09/2022]
Abstract
The importance of bacteria in the anaerobic bioremediation of groundwater polluted with organic and/or metal contaminants is well recognized and in some instances so well understood that modeling of the in situ metabolic activity of the relevant subsurface microorganisms in response to changes in subsurface geochemistry is feasible. However, a potentially significant factor influencing bacterial growth and activity in the subsurface that has not been adequately addressed is protozoan predation of the microorganisms responsible for bioremediation. In field experiments at a uranium-contaminated aquifer located in Rifle, CO, USA, acetate amendments initially promoted the growth of metal-reducing Geobacter species, followed by the growth of sulfate reducers, as observed previously. Analysis of 18S rRNA gene sequences revealed a broad diversity of sequences closely related to known bacteriovorous protozoa in the groundwater before the addition of acetate. The bloom of Geobacter species was accompanied by a specific enrichment of sequences most closely related to the ameboid flagellate, Breviata anathema, which at their peak accounted for over 80% of the sequences recovered. The abundance of Geobacter species declined following the rapid emergence of B. anathema. The subsequent growth of sulfate-reducing Peptococcaceae was accompanied by another specific enrichment of protozoa, but with sequences most similar to diplomonadid flagellates from the family Hexamitidae, which accounted for up to 100% of the sequences recovered during this phase of the bioremediation. These results suggest a prey-predator response with specific protozoa responding to increased availability of preferred prey bacteria. Thus, quantifying the influence of protozoan predation on the growth, activity and composition of the subsurface bacterial community is essential for predictive modeling of in situ uranium bioremediation strategies.
Collapse
Affiliation(s)
- Dawn E Holmes
- Department of Microbiology, Morrill Science Center IVN, University of Massachusetts Amherst, Amherst, MA 01003, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Ptáčková E, Kostygov AY, Chistyakova LV, Falteisek L, Frolov AO, Patterson DJ, Walker G, Cepicka I. Evolution of Archamoebae: Morphological and Molecular Evidence for Pelobionts Including Rhizomastix, Entamoeba, Iodamoeba, and Endolimax. Protist 2013; 164:380-410. [DOI: 10.1016/j.protis.2012.11.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Revised: 11/13/2012] [Accepted: 11/27/2012] [Indexed: 10/27/2022]
|
22
|
Adl SM, Simpson AGB, Lane CE, Lukeš J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Le Gall L, Lynn DH, McManus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Shadwick L, Schoch CL, Smirnov A, Spiegel FW. The revised classification of eukaryotes. J Eukaryot Microbiol 2013; 59:429-93. [PMID: 23020233 DOI: 10.1111/j.1550-7408.2012.00644.x] [Citation(s) in RCA: 934] [Impact Index Per Article: 77.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This revision of the classification of eukaryotes, which updates that of Adl et al. [J. Eukaryot. Microbiol. 52 (2005) 399], retains an emphasis on the protists and incorporates changes since 2005 that have resolved nodes and branches in phylogenetic trees. Whereas the previous revision was successful in re-introducing name stability to the classification, this revision provides a classification for lineages that were then still unresolved. The supergroups have withstood phylogenetic hypothesis testing with some modifications, but despite some progress, problematic nodes at the base of the eukaryotic tree still remain to be statistically resolved. Looking forward, subsequent transformations to our understanding of the diversity of life will be from the discovery of novel lineages in previously under-sampled areas and from environmental genomic information.
Collapse
Affiliation(s)
- Sina M Adl
- Department of Soil Science, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
The Evolutionary Origin of Animals and Fungi. SOCIAL AND ECOLOGICAL INTERACTIONS IN THE GALAPAGOS ISLANDS 2013. [DOI: 10.1007/978-1-4614-6732-8_7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
24
|
Abstract
The model organism Dictyostelium discoideum is a member of the Amoebozoa, one of the six major -divisions of eukaryotes. Amoebozoa comprise a wide variety of amoeboid and flagellate organisms with single cells measuring from 5 μm to several meters across. They have adopted many different life styles and sexual behaviors and can live in all but the most extreme environments. This chapter provides an overview of Amoebozoan diversity and compares roads towards multicellularity within the Amoebozoa with inventions of multicellularity in other protist divisions. The chapter closes with a scenario for the evolution of Dictyostelid multicellularity from an Amoebozoan stress response.
Collapse
Affiliation(s)
| | - Pauline Schaap
- University of Dundee, College of Life Sciences, Dundee, UK
| |
Collapse
|
25
|
Orr RJS, Murray SA, Stüken A, Rhodes L, Jakobsen KS. When naked became armored: an eight-gene phylogeny reveals monophyletic origin of theca in dinoflagellates. PLoS One 2012. [PMID: 23185516 PMCID: PMC3501488 DOI: 10.1371/journal.pone.0050004] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The dinoflagellates are a diverse lineage of microbial eukaryotes. Dinoflagellate monophyly and their position within the group Alveolata are well established. However, phylogenetic relationships between dinoflagellate orders remain unresolved. To date, only a limited number of dinoflagellate studies have used a broad taxon sample with more than two concatenated markers. This lack of resolution makes it difficult to determine the evolution of major phenotypic characters such as morphological features or toxin production e.g. saxitoxin. Here we present an improved dinoflagellate phylogeny, based on eight genes, with the broadest taxon sampling to date. Fifty-five sequences for eight phylogenetic markers from nuclear and mitochondrial regions were amplified from 13 species, four orders, and concatenated phylogenetic inferences were conducted with orthologous sequences. Phylogenetic resolution is increased with addition of support for the deepest branches, though can be improved yet further. We show for the first time that the characteristic dinoflagellate thecal plates, cellulosic material that is present within the sub-cuticular alveoli, appears to have had a single origin. In addition, the monophyly of most dinoflagellate orders is confirmed: the Dinophysiales, the Gonyaulacales, the Prorocentrales, the Suessiales, and the Syndiniales. Our improved phylogeny, along with results of PCR to detect the sxtA gene in various lineages, allows us to suggest that this gene was probably acquired separately in Gymnodinium and the common ancestor of Alexandrium and Pyrodinium and subsequently lost in some descendent species of Alexandrium.
Collapse
Affiliation(s)
- Russell J. S. Orr
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Oslo, Norway
| | - Shauna A. Murray
- Ecology and Evolution Research Centre and School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Sydney Institute of Marine Sciences, Mosman, New South Wales, Australia
| | - Anke Stüken
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Oslo, Norway
| | | | - Kjetill S. Jakobsen
- Microbial Evolution Research Group (MERG), Department of Biology, University of Oslo, Oslo, Norway
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biology, University of Oslo, Oslo, Norway
- * E-mail:
| |
Collapse
|
26
|
Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa. Eur J Protistol 2012; 49:115-78. [PMID: 23085100 DOI: 10.1016/j.ejop.2012.06.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Revised: 06/21/2012] [Accepted: 06/26/2012] [Indexed: 11/21/2022]
Abstract
I discuss how different feeding modes and related cellular structures map onto the eukaryote evolutionary tree. Centrally important for understanding eukaryotic cell diversity are Loukozoa: ancestrally biciliate phagotrophic protozoa possessing a posterior cilium and ventral feeding groove into which ciliary currents direct prey. I revise their classification by including all anaerobic Metamonada as a subphylum and adding Tsukubamonas. Loukozoa, often with ciliary vanes, are probably ancestral to all protozoan phyla except Euglenozoa and Percolozoa and indirectly to kingdoms Animalia, Fungi, Plantae, and Chromista. I make a new protozoan phylum Sulcozoa comprising subphyla Apusozoa (Apusomonadida, Breviatea) and Varisulca (Diphyllatea; Planomonadida, Discocelida, Mantamonadida; Rigifilida). Understanding sulcozoan evolution clarifies the origins from them of opisthokonts (animals, fungi, Choanozoa) and Amoebozoa, and their evolutionary novelties; Sulcozoa and their descendants (collectively called podiates) arguably arose from Loukozoa by evolving posterior ciliary gliding and pseudopodia in their ventral groove. I explain subsequent independent cytoskeletal modifications, accompanying further shifts in feeding mode, that generated Amoebozoa, Choanozoa, and fungi. I revise classifications of Choanozoa, Conosa (Amoebozoa), and basal fungal phylum Archemycota. I use Choanozoa, Sulcozoa, Loukozoa, and Archemycota to emphasize the need for simply classifying ancestral (paraphyletic) groups and illustrate advantages of this for understanding step-wise phylogenetic advances.
Collapse
|
27
|
Paps J, Medina-Chacón LA, Marshall W, Suga H, Ruiz-Trillo I. Molecular phylogeny of unikonts: new insights into the position of apusomonads and ancyromonads and the internal relationships of opisthokonts. Protist 2012; 164:2-12. [PMID: 23083534 DOI: 10.1016/j.protis.2012.09.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Revised: 09/10/2012] [Accepted: 09/10/2012] [Indexed: 01/27/2023]
Abstract
The eukaryotic supergroup Opisthokonta includes animals (Metazoa), fungi, and choanoflagellates, as well as the lesser known unicellular lineages Nucleariidae, Fonticula alba, Ichthyosporea, Filasterea and Corallochytrium limacisporum. Whereas the evolutionary positions of the well-known opisthokonts are mostly resolved, the phylogenetic relationships among the more obscure lineages are not. Within the Unikonta (Opisthokonta and Amoebozoa), it has not been determined whether the Apusozoa (apusomonads and ancyromonads) or the Amoebozoa form the sister group to opisthokonts, nor to which side of the hypothesized unikont/bikont divide the Apusozoa belong. Aiming at elucidating the evolutionary tree of the unikonts, we have assembled a dataset with a large sampling of both organisms and genes, including representatives from all known opisthokont lineages. In addition, we include new molecular data from an additional ichthyosporean (Creolimax fragrantissima) and choanoflagellate (Codosiga botrytis). Our analyses show the Apusozoa as a paraphyletic assemblage within the unikonts, with the Apusomonadida forming a sister group to the opisthokonts. Within the Holozoa, the Ichthyosporea diverge first, followed by C. limacisporum, the Filasterea, the Choanoflagellata, and the Metazoa. With our data-enriched tree, it is possible to pinpoint the origin and evolution of morphological characters. As an example, we discuss the evolution of the unikont kinetid.
Collapse
Affiliation(s)
- Jordi Paps
- Departament de Genètica, Universitat de Barcelona, Av. Diagonal, 645, 08028 Barcelona, Spain.
| | | | | | | | | |
Collapse
|
28
|
Yabuki A, Ishida KI, Cavalier-Smith T. Rigifila ramosa n. gen., n. sp., a filose apusozoan with a distinctive pellicle, is related to Micronuclearia. Protist 2012; 164:75-88. [PMID: 22682062 DOI: 10.1016/j.protis.2012.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 04/18/2012] [Accepted: 04/21/2012] [Indexed: 12/17/2022]
Abstract
We report the ultrastructure, 18S and 28S rDNA sequences, and phylogenetic position of a distinctive free-living heterotrophic filose protist, Rigifila ramosa n. gen., n. sp., from a freshwater paddyfield. Rigifila lacks cilia and has a semi-rigid, radially symmetric, well-rounded, partially microtubule-supported, dorsal pellicle, and flat mitochodrial cristae. From a central aperture in a ventral depression emerges a protoplasmic stem that branches into several branching filopodia that draw bacteria to it. Electron microscopy reveals a general cell structure similar to Micronuclearia, the only non-flagellate previously known in Apusozoa; the large basal vacuole is probably an unusual giant contractile vacuole. Phylogenetic analysis of concatenated rDNA sequences groups Rigifila and Micronuclearia as sisters with maximal statistical support. However, novel morphological differences unique to Rigifila, notably a double (not single) proteinaceous layer beneath the cell membrane, and cortical microtubules, lead us to place it in a new family Rigifilidae. Our morphological and molecular analyses show that Rigifila is the closest known relative of Micronuclearia. Therefore we group Micronucleariidae and Rigifilidae as a new order Rigifilida within the existing class Hilomonadea, which now excludes planomonads. Rigifilida groups weakly with Collodictyon (Diphyllatea). We discuss the possible relationships of Rigifilida to other Apusozoa and Diphyllatea.
Collapse
Affiliation(s)
- Akinori Yabuki
- Japan Agency for Marine-Earth and Technology (JAMSTEC), 2-15 Natsushima, Yokosuka, Kanagawa 237-0061, Japan
| | | | | |
Collapse
|
29
|
Hendriks AJ, Mulder C. Delayed logistic and Rosenzweig–MacArthur models with allometric parameter setting estimate population cycles at lower trophic levels well. ECOLOGICAL COMPLEXITY 2012. [DOI: 10.1016/j.ecocom.2011.12.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
30
|
Torruella G, Derelle R, Paps J, Lang BF, Roger AJ, Shalchian-Tabrizi K, Ruiz-Trillo I. Phylogenetic relationships within the Opisthokonta based on phylogenomic analyses of conserved single-copy protein domains. Mol Biol Evol 2012; 29:531-44. [PMID: 21771718 PMCID: PMC3350318 DOI: 10.1093/molbev/msr185] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Many of the eukaryotic phylogenomic analyses published to date were based on alignments of hundreds to thousands of genes. Frequently, in such analyses, the most realistic evolutionary models currently available are often used to minimize the impact of systematic error. However, controversy remains over whether or not idiosyncratic gene family dynamics (i.e., gene duplications and losses) and incorrect orthology assignments are always appropriately taken into account. In this paper, we present an innovative strategy for overcoming orthology assignment problems. Rather than identifying and eliminating genes with paralogy problems, we have constructed a data set comprised exclusively of conserved single-copy protein domains that, unlike most of the commonly used phylogenomic data sets, should be less confounded by orthology miss-assignments. To evaluate the power of this approach, we performed maximum likelihood and Bayesian analyses to infer the evolutionary relationships within the opisthokonts (which includes Metazoa, Fungi, and related unicellular lineages). We used this approach to test 1) whether Filasterea and Ichthyosporea form a clade, 2) the interrelationships of early-branching metazoans, and 3) the relationships among early-branching fungi. We also assessed the impact of some methods that are known to minimize systematic error, including reducing the distance between the outgroup and ingroup taxa or using the CAT evolutionary model. Overall, our analyses support the Filozoa hypothesis in which Ichthyosporea are the first holozoan lineage to emerge followed by Filasterea, Choanoflagellata, and Metazoa. Blastocladiomycota appears as a lineage separate from Chytridiomycota, although this result is not strongly supported. These results represent independent tests of previous phylogenetic hypotheses, highlighting the importance of sophisticated approaches for orthology assignment in phylogenomic analyses.
Collapse
Affiliation(s)
- Guifré Torruella
- Departament de Genètica and Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - Romain Derelle
- Departament de Genètica and Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
- Present address: Centre de regulació genòmica (CRG), Parc de recerca biomèdica de Barcelona (PRBB), Barcelona, Spain
| | - Jordi Paps
- Departament de Genètica and Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
- Present address: Department of Zoology, University of Oxford, Oxford, United Kingdom
| | - B. Franz Lang
- Département de Biochimie, Robert-Cedergren Centre for Bioinformatics and Genomics, Université de Montréal, Montreal, Quebec, Canada
| | - Andrew J. Roger
- Department of Biochemistry and Molecular Biology, Centre for Comparative Genomics and Evolutionary Bioinformatics, Faculty of Medicine, Dalhousie University, Halifax, Canada
| | | | - Iñaki Ruiz-Trillo
- Departament de Genètica and Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana per a la Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| |
Collapse
|
31
|
Zhao S, Burki F, Bråte J, Keeling PJ, Klaveness D, Shalchian-Tabrizi K. Collodictyon--an ancient lineage in the tree of eukaryotes. Mol Biol Evol 2012; 29:1557-68. [PMID: 22319147 PMCID: PMC3351787 DOI: 10.1093/molbev/mss001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The current consensus for the eukaryote tree of life consists of several large assemblages (supergroups) that are hypothesized to describe the existing diversity. Phylogenomic analyses have shed light on the evolutionary relationships within and between supergroups as well as placed newly sequenced enigmatic species close to known lineages. Yet, a few eukaryote species remain of unknown origin and could represent key evolutionary forms for inferring ancient genomic and cellular characteristics of eukaryotes. Here, we investigate the evolutionary origin of the poorly studied protist Collodictyon (subphylum Diphyllatia) by sequencing a cDNA library as well as the 18S and 28S ribosomal DNA (rDNA) genes. Phylogenomic trees inferred from 124 genes placed Collodictyon close to the bifurcation of the “unikont” and “bikont” groups, either alone or as sister to the potentially contentious excavate Malawimonas. Phylogenies based on rDNA genes confirmed that Collodictyon is closely related to another genus, Diphylleia, and revealed a very low diversity in environmental DNA samples. The early and distinct origin of Collodictyon suggests that it constitutes a new lineage in the global eukaryote phylogeny. Collodictyon shares cellular characteristics with Excavata and Amoebozoa, such as ventral feeding groove supported by microtubular structures and the ability to form thin and broad pseudopods. These may therefore be ancient morphological features among eukaryotes. Overall, this shows that Collodictyon is a key lineage to understand early eukaryote evolution.
Collapse
Affiliation(s)
- Sen Zhao
- Microbial Evolution Research Group, Department of Biology, University of Oslo, Oslo, Norway
| | | | | | | | | | | |
Collapse
|
32
|
Fenchel T. Anaerobic Eukaryotes. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-1896-8_1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
33
|
Shadwick JDL, Ruiz-Trillo I. A genomic survey shows that the haloarchaeal type tyrosyl tRNA synthetase is not a synapomorphy of opisthokonts. Eur J Protistol 2011; 48:89-93. [PMID: 22209425 DOI: 10.1016/j.ejop.2011.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 10/04/2011] [Accepted: 10/25/2011] [Indexed: 01/28/2023]
Abstract
The haloarchaeal-type tyrosyl tRNA synthetase (tyrRS) have previously been proposed to be a molecular synapomorphy of the opisthokonts. To re-evaluate this we have performed a taxon-wide genomic survey of tyrRS in eukaryotes and prokaryotes. Our phylogenetic trees group eukaryotes with archaea, with all opisthokonts sharing the haloarchaeal-type tyrRS. However, this type of tyrRS is not exclusive to opisthokonts, since it also encoded by two amoebozoans. Whether this is a consequence of lateral gene transfer or lineage sorting remains unsolved, but in any case haloarchaeal-type tyrRS is not a synapomorphy of opisthokonts. This demonstrates that molecular markers should be re-evaluated once a better taxon sampling becomes available.
Collapse
Affiliation(s)
- John D L Shadwick
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | | |
Collapse
|
34
|
Wojtkowska M, Jąkalski M, Pieńkowska JR, Stobienia O, Karachitos A, Przytycka TM, Weiner J, Kmita H, Makałowski W. Phylogenetic analysis of mitochondrial outer membrane β-barrel channels. Genome Biol Evol 2011; 4:110-25. [PMID: 22155732 PMCID: PMC3273162 DOI: 10.1093/gbe/evr130] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Transport of molecules across mitochondrial outer membrane is pivotal for a proper function of mitochondria. The transport pathways across the membrane are formed by ion channels that participate in metabolite exchange between mitochondria and cytoplasm (voltage-dependent anion-selective channel, VDAC) as well as in import of proteins encoded by nuclear genes (Tom40 and Sam50/Tob55). VDAC, Tom40, and Sam50/Tob55 are present in all eukaryotic organisms, encoded in the nuclear genome, and have β-barrel topology. We have compiled data sets of these protein sequences and studied their phylogenetic relationships with a special focus on the position of Amoebozoa. Additionally, we identified these protein-coding genes in Acanthamoeba castellanii and Dictyostelium discoideum to complement our data set and verify the phylogenetic position of these model organisms. Our analysis show that mitochondrial β-barrel channels from Archaeplastida (plants) and Opisthokonta (animals and fungi) experienced many duplication events that resulted in multiple paralogous isoforms and form well-defined monophyletic clades that match the current model of eukaryotic evolution. However, in representatives of Amoebozoa, Chromalveolata, and Excavata (former Protista), they do not form clearly distinguishable clades, although they locate basally to the plant and algae branches. In most cases, they do not posses paralogs and their sequences appear to have evolved quickly or degenerated. Consequently, the obtained phylogenies of mitochondrial outer membrane β-channels do not entirely reflect the recent eukaryotic classification system involving the six supergroups: Chromalveolata, Excavata, Archaeplastida, Rhizaria, Amoebozoa, and Opisthokonta.
Collapse
Affiliation(s)
- Małgorzata Wojtkowska
- Laboratory of Bioenergetics, Institute of Molecular Biology and Biotechnology, Adam Mickiewicz University, Poznań, Poland
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Blank CE. An expansion of age constraints for microbial clades that lack a conventional fossil record using phylogenomic dating. J Mol Evol 2011; 73:188-208. [PMID: 22105429 DOI: 10.1007/s00239-011-9467-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 10/24/2011] [Indexed: 01/22/2023]
Abstract
Most microbial taxa lack a conventional microfossil or biomarker record, and so we currently have little information regarding how old most microbial clades and their associated traits are. Building on the previously published oxygen age constraint, two new age constraints are proposed based on the ability of microbial clades to metabolize chitin and aromatic compounds derived from lignin. Using the archaeal domain of life as a test case, phylogenetic analyses, along with published metabolic and genetic data, showed that members of the Halobacteriales and Thermococcales are able to metabolize chitin. Ancestral state reconstruction combined with phylogenetic analysis of the genes underlying chitin degradation predicted that the ancestors of these two groups were also likely able to metabolize chitin or chitin-related compounds. These two clades were therefore assigned a maximum age of 1.0 Ga (when chitin likely first appeared). Similar analyses also predicted that the ancestor to the Sulfolobus solfataricus-Sulfolobus islandicus clade was able to metabolize phenol using catechol dioxygenase, so this clade was assigned a maximum age of 475 Ma. Inferred ages of archaeal clades using relaxed molecular clocks with the new age constraints were consistent with those inferred with the oxygen age constraints. This work expands our current toolkit to include Paleoproterozoic, Neoproterozoic, and Paleozoic age constraints, and should aid in our ability to phylogenetically reconstruct the antiquity of a wide array of microbial clades and their associated morphological and biogeochemical traits, spanning deep geologic time. Such hypotheses-although built upon evolutionary inferences-are fundamentally testable.
Collapse
Affiliation(s)
- Carrine E Blank
- Department of Geosciences, University of Montana, 32 Campus Drive #1296, Missoula, MT 59812-1296, USA.
| |
Collapse
|
36
|
Eme L, Trilles A, Moreira D, Brochier-Armanet C. The phylogenomic analysis of the anaphase promoting complex and its targets points to complex and modern-like control of the cell cycle in the last common ancestor of eukaryotes. BMC Evol Biol 2011; 11:265. [PMID: 21943402 PMCID: PMC3195147 DOI: 10.1186/1471-2148-11-265] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 09/23/2011] [Indexed: 11/10/2022] Open
Abstract
Background The Anaphase Promoting Complex or Cyclosome (APC/C) is the largest member of the ubiquitin ligase [E3] family. It plays a crucial role in the control of the cell cycle and cell proliferation by mediating the proteolysis of key components by the proteasome. APC/C is made of a dozen subunits that assemble into a large complex of ~1.5 MDa, which interacts with various cofactors and targets. Results Using comparative genomic and phylogenetic approaches, we showed that 24 out of 37 known APC/C subunits, adaptors/co-activators and main targets, were already present in the Last Eukaryotic Common Ancestor (LECA) and were well conserved to a few exceptions in all present-day eukaryotic lineages. The phylogenetic analysis of the 24 components inferred to be present in LECA showed that they contain a reliable phylogenetic signal to reconstruct the phylogeny of the domain Eucarya. Conclusions Taken together our analyses indicated that LECA had a complex and highly controlled modern-like cell cycle. Moreover, we showed that, despite what is generally assumed, proteins involved in housekeeping cellular functions may be a good complement to informational genes to study the phylogeny of eukaryotes.
Collapse
Affiliation(s)
- Laura Eme
- Aix-Marseille Université, Laboratoire de Chimie Bactérienne, UPR CNRS, Marseille, France
| | | | | | | |
Collapse
|
37
|
Gunbin KV, Suslov VV, Turnaev II, Afonnikov DA, Kolchanov NA. Molecular evolution of cyclin proteins in animals and fungi. BMC Evol Biol 2011; 11:224. [PMID: 21798004 PMCID: PMC3162929 DOI: 10.1186/1471-2148-11-224] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 07/28/2011] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND The passage through the cell cycle is controlled by complexes of cyclins, the regulatory units, with cyclin-dependent kinases, the catalytic units. It is also known that cyclins form several families, which differ considerably in primary structure from one eukaryotic organism to another. Despite these lines of evidence, the relationship between the evolution of cyclins and their function is an open issue. Here we present the results of our study on the molecular evolution of A-, B-, D-, E-type cyclin proteins in animals and fungi. RESULTS We constructed phylogenetic trees for these proteins, their ancestral sequences and analyzed patterns of amino acid replacements. The analysis of infrequently fixed atypical amino acid replacements in cyclins evidenced that accelerated evolution proceeded predominantly during paralog duplication or after it in animals and fungi and that it was related to aromorphic changes in animals. It was shown also that evolutionary flexibility of cyclin function may be provided by consequential reorganization of regions on protein surface remote from CDK binding sites in animal and fungal cyclins and by functional differentiation of paralogous cyclins formed in animal evolution. CONCLUSIONS The results suggested that changes in the number and/or nature of cyclin-binding proteins may underlie the evolutionary role of the alterations in the molecular structure of cyclins and their involvement in diverse molecular-genetic events.
Collapse
Affiliation(s)
- Konstantin V Gunbin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
| | - Valentin V Suslov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
| | - Igor I Turnaev
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
| | - Dmitry A Afonnikov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
- Novosibirsk state University, Pirogova, 2, Novosibirsk, Russia
| | - Nikolay A Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Lavrentyev ave., 10, Novosibirsk, Russia
- Novosibirsk state University, Pirogova, 2, Novosibirsk, Russia
| |
Collapse
|
38
|
Heiss AA, Walker G, Simpson AG. The Ultrastructure of Ancyromonas, a Eukaryote without Supergroup Affinities. Protist 2011; 162:373-93. [DOI: 10.1016/j.protis.2010.08.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2010] [Accepted: 07/03/2010] [Indexed: 11/29/2022]
|
39
|
Katz LA, Grant J, Parfrey LW, Gant A, O'Kelly CJ, Anderson OR, Molestina RE, Nerad T. Subulatomonas tetraspora nov. gen. nov. sp. is a member of a previously unrecognized major clade of eukaryotes. Protist 2011; 162:762-73. [PMID: 21723191 DOI: 10.1016/j.protis.2011.05.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Accepted: 04/18/2011] [Indexed: 11/18/2022]
Abstract
While a large number of aerobic free-living protists have been described within the last decade, the number of new anaerobic or microaerophilic microbial eukaryotic taxa has lagged behind. Here we describe a microaerophilic genus and species of amoeboflagellate isolated from a near-shore marine site off the coast at Plymouth, Massachusetts: Subulatomonas tetraspora nov. gen. nov. sp. This taxon is closely related to Breviata anathema based on both microscopical features and phylogenetic analyses of sequences of three genes: SSU-rDNA, actin, and alpha-tubulin. However, Subulatomonas tetraspora nov. gen. nov. sp. and B. anathema are morphologically distinctive, differ by 14.9% at their SSU-rDNA locus, and were isolated from marine and 'slightly brackish' environments, respectively. Phylogenetic analyses of these two taxa plus closely related sequences from environmental surveys provide support for a novel clade of eukaryotes that is distinct from the major clades including the Opisthokonta, Excavata, Amoebozoa and 'SAR' (Stramenopile, Alveolate, Rhizaria).
Collapse
Affiliation(s)
- Laura A Katz
- Department of Biological Sciences, Smith College, 44 College Lane, Northampton, Massachusetts 01063, USA.
| | | | | | | | | | | | | | | |
Collapse
|
40
|
YABUKI AKINORI, NAKAYAMA TAKESHI, YUBUKI NAOJI, HASHIMOTO TETSUO, ISHIDA KENICHIRO, INAGAKI YUJI. Tsukubamonas globosa n. gen., n. sp., A Novel Excavate Flagellate Possibly Holding a Key for the Early Evolution in “Discoba”. J Eukaryot Microbiol 2011; 58:319-31. [DOI: 10.1111/j.1550-7408.2011.00552.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
41
|
Sebé-Pedrós A, de Mendoza A, Lang BF, Degnan BM, Ruiz-Trillo I. Unexpected repertoire of metazoan transcription factors in the unicellular holozoan Capsaspora owczarzaki. Mol Biol Evol 2011; 28:1241-1254. [PMID: 21087945 PMCID: PMC4342549 DOI: 10.1093/molbev/msq309] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
How animals (metazoans) originated from their single-celled ancestors remains a major question in biology. As transcriptional regulation is crucial to animal development, deciphering the early evolution of associated transcription factors (TFs) is critical to understanding metazoan origins. In this study, we uncovered the repertoire of 17 metazoan TFs in the amoeboid holozoan Capsaspora owczarzaki, a representative of a unicellular lineage that is closely related to choanoflagellates and metazoans. Phylogenetic and comparative genomic analyses with the broadest possible taxonomic sampling allowed us to formulate new hypotheses regarding the origin and evolution of developmental metazoan TFs. We show that the complexity of the TF repertoire in C. owczarzaki is strikingly high, pushing back further the origin of some TFs formerly thought to be metazoan specific, such as T-box or Runx. Nonetheless, TF families whose beginnings antedate the origin of the animal kingdom, such as homeodomain or basic helix-loop-helix, underwent significant expansion and diversification along metazoan and eumetazoan stems.
Collapse
Affiliation(s)
- Arnau Sebé-Pedrós
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - Alex de Mendoza
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
| | - B. Franz Lang
- Department of Biochemistry, Université de Montréal, H3C 3J7 Montréal, Canada
| | - Bernard M. Degnan
- School of Biological Sciences, The University of Queensland, Brisbane Queensland 4072, Australia
| | - Iñaki Ruiz-Trillo
- Departament de Genètica & Institut de Recerca en Biodiversitat (Irbio), Universitat de Barcelona, Barcelona, Spain
- Institució Catalana per a la Recerca i Estudis Avançats (ICREA); Passeig Lluís Companys, 23, 08010 Barcelona, Spain
| |
Collapse
|
42
|
Sucgang R, Kuo A, Tian X, Salerno W, Parikh A, Feasley CL, Dalin E, Tu H, Huang E, Barry K, Lindquist E, Shapiro H, Bruce D, Schmutz J, Salamov A, Fey P, Gaudet P, Anjard C, Babu MM, Basu S, Bushmanova Y, van der Wel H, Katoh-Kurasawa M, Dinh C, Coutinho PM, Saito T, Elias M, Schaap P, Kay RR, Henrissat B, Eichinger L, Rivero F, Putnam NH, West CM, Loomis WF, Chisholm RL, Shaulsky G, Strassmann JE, Queller DC, Kuspa A, Grigoriev IV. Comparative genomics of the social amoebae Dictyostelium discoideum and Dictyostelium purpureum. Genome Biol 2011; 12:R20. [PMID: 21356102 PMCID: PMC3188802 DOI: 10.1186/gb-2011-12-2-r20] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 12/09/2010] [Accepted: 02/28/2011] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The social amoebae (Dictyostelia) are a diverse group of Amoebozoa that achieve multicellularity by aggregation and undergo morphogenesis into fruiting bodies with terminally differentiated spores and stalk cells. There are four groups of dictyostelids, with the most derived being a group that contains the model species Dictyostelium discoideum. RESULTS We have produced a draft genome sequence of another group dictyostelid, Dictyostelium purpureum, and compare it to the D. discoideum genome. The assembly (8.41 × coverage) comprises 799 scaffolds totaling 33.0 Mb, comparable to the D. discoideum genome size. Sequence comparisons suggest that these two dictyostelids shared a common ancestor approximately 400 million years ago. In spite of this divergence, most orthologs reside in small clusters of conserved synteny. Comparative analyses revealed a core set of orthologous genes that illuminate dictyostelid physiology, as well as differences in gene family content. Interesting patterns of gene conservation and divergence are also evident, suggesting function differences; some protein families, such as the histidine kinases, have undergone little functional change, whereas others, such as the polyketide synthases, have undergone extensive diversification. The abundant amino acid homopolymers encoded in both genomes are generally not found in homologous positions within proteins, so they are unlikely to derive from ancestral DNA triplet repeats. Genes involved in the social stage evolved more rapidly than others, consistent with either relaxed selection or accelerated evolution due to social conflict. CONCLUSIONS The findings from this new genome sequence and comparative analysis shed light on the biology and evolution of the Dictyostelia.
Collapse
Affiliation(s)
- Richard Sucgang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Alan Kuo
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Xiangjun Tian
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - William Salerno
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Anup Parikh
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christa L Feasley
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 110 N. Lindsay, Oklahoma City, OK 73104, USA
| | - Eileen Dalin
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Hank Tu
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Eryong Huang
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Kerrie Barry
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Erika Lindquist
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Harris Shapiro
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - David Bruce
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Jeremy Schmutz
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Asaf Salamov
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| | - Petra Fey
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Pascale Gaudet
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Christophe Anjard
- Section of Cell and Developmental Biology, Division of Biology, University of California, 9500 Gilman Dr, San Diego, La Jolla, CA 92093, USA
| | - M Madan Babu
- Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | - Siddhartha Basu
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Yulia Bushmanova
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Hanke van der Wel
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 110 N. Lindsay, Oklahoma City, OK 73104, USA
| | - Mariko Katoh-Kurasawa
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Christopher Dinh
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Pedro M Coutinho
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universities of Aix-Marseille I & II, 13288 Marseille, France
| | - Tamao Saito
- Department of Materials and Life Sciences, Sophia University 7-1 Kioi-Cho, Chiyoda-Ku, Tokyo 102-8554, Japan
| | - Marek Elias
- Departments of Botany and Parasitology, Faculty of Science, Charles University in Prague, Albertov 6, Prague 128 43, Czech Republic
| | - Pauline Schaap
- College of Life Sciences, University of Dundee, Dow Street, Dundee, DD15EH, UK
| | - Robert R Kay
- Laboratory of Molecular Biology, MRC Centre, Hills Road, Cambridge CB2 2QH, UK
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules Biologiques, UMR6098, CNRS, Universities of Aix-Marseille I & II, 13288 Marseille, France
| | - Ludwig Eichinger
- Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Francisco Rivero
- Centre for Biomedical Research, The Hull York Medical School and Department of Biological Sciences, University of Hull, Hull, HU6 7RX, UK
| | - Nicholas H Putnam
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Christopher M West
- Department of Biochemistry and Molecular Biology, Oklahoma Center for Medical Glycobiology, University of Oklahoma Health Sciences Center, 110 N. Lindsay, Oklahoma City, OK 73104, USA
| | - William F Loomis
- Section of Cell and Developmental Biology, Division of Biology, University of California, 9500 Gilman Dr, San Diego, La Jolla, CA 92093, USA
| | - Rex L Chisholm
- dictyBase, Center for Genetic Medicine, Northwestern University, 750 N. Lake Shore Drive, Chicago, IL 60611, USA
| | - Gad Shaulsky
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Joan E Strassmann
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - David C Queller
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Adam Kuspa
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
- Department of Ecology and Evolutionary Biology, Rice University, 6100 Main Street, Houston, TX 77005, USA
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA 9458, USA
| |
Collapse
|
43
|
Abstract
SUMMARYSingle-celled parasites like Entamoeba, Trypanosoma, Phytophthora and Plasmodium wreak untold havoc on human habitat and health. Understanding the position of the various protistan pathogens in the larger context of eukaryotic diversity informs our study of how these parasites operate on a cellular level, as well as how they have evolved. Here, we review the literature that has brought our understanding of eukaryotic relationships from an idea of parasites as primitive cells to a crystallized view of diversity that encompasses 6 major divisions, or supergroups, of eukaryotes. We provide an updated taxonomic scheme (for 2011), based on extensive genomic, ultrastructural and phylogenetic evidence, with three differing levels of taxonomic detail for ease of referencing and accessibility (see supplementary material at Cambridge Journals On-line). Two of the most pressing issues in cellular evolution, the root of the eukaryotic tree and the evolution of photosynthesis in complex algae, are also discussed along with ideas about what the new generation of genome sequencing technologies may contribute to the field of eukaryotic systematics. We hope that, armed with this user's guide, cell biologists and parasitologists will be encouraged about taking an increasingly evolutionary point of view in the battle against parasites representing real dangers to our livelihoods and lives.
Collapse
|
44
|
Abstract
Dictyostelium discoideum belongs to a group of multicellular life forms that can also exist for long periods as single cells. This ability to shift between uni- and multicellularity makes the group ideal for studying the genetic changes that occurred at the crossroads between uni- and multicellular life. In this Primer, I discuss the mechanisms that control multicellular development in Dictyostelium discoideum and reconstruct how some of these mechanisms evolved from a stress response in the unicellular ancestor.
Collapse
Affiliation(s)
- Pauline Schaap
- College of Life Sciences, University of Dundee, Dundee, UK.
| |
Collapse
|
45
|
Kolisko M, Silberman JD, Cepicka I, Yubuki N, Takishita K, Yabuki A, Leander BS, Inouye I, Inagaki Y, Roger AJ, Simpson AGB. A wide diversity of previously undetected free-living relatives of diplomonads isolated from marine/saline habitats. Environ Microbiol 2011; 12:2700-10. [PMID: 20482740 DOI: 10.1111/j.1462-2920.2010.02239.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Over the last 15 years classical culturing and environmental PCR techniques have revealed a modest number of genuinely new major lineages of protists; however, some new groups have greatly influenced our understanding of eukaryote evolution. We used culturing techniques to examine the diversity of free-living protists that are relatives of diplomonads and retortamonads, a group of evolutionary and parasitological importance. Until recently, a single organism, Carpediemonas membranifera, was the only representative of this region of the tree. We report 18 new isolates of Carpediemonas-like organisms (CLOs) from anoxic marine sediments. Only one is a previously cultured species. Eleven isolates are conspecific and were classified within a new genus, Kipferlia n. gen. The remaining isolates include representatives of three other lineages that likely represent additional undescribed genera (at least). Small-subunit ribosomal RNA gene phylogenies show that CLOs form a cloud of six major clades basal to the diplomonad-retortamonad grouping (i.e. each of the six CLO clades is potentially as phylogenetically distinct as diplomonads and retortamonads). CLOs will be valuable for tracing the evolution of diplomonad cellular features, for example, their extremely reduced mitochondrial organelles. It is striking that the majority of CLO diversity was undetected by previous light microscopy surveys and environmental PCR studies, even though they inhabit a commonly sampled environment. There is no reason to assume this is a unique situation - it is likely that undersampling at the level of major lineages is still widespread for protists.
Collapse
Affiliation(s)
- Martin Kolisko
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Herman EK, Walker G, van der Giezen M, Dacks JB. Multivesicular bodies in the enigmatic amoeboflagellate Breviata anathema and the evolution of ESCRT 0. J Cell Sci 2011; 124:613-21. [PMID: 21266469 DOI: 10.1242/jcs.078436] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Endosomal sorting complexes required for transport (ESCRTs) are heteromeric protein complexes required for multivesicular body (MVB) morphogenesis. ESCRTs I, II, III and III-associated are ubiquitous in eukaryotes and presumably ancient in origin. ESCRT 0 recruits cargo to the MVB and appears to be opisthokont-specific, bringing into question aspects of the current model of ESCRT mechanism. One caveat to the restricted distribution of ESCRT 0 was the previous limited availability of amoebozoan genomes, the supergroup closest to opisthokonts. Here, we significantly expand the sampling of ESCRTs in Amoebozoa. Our electron micrographic and bioinformatics evidence confirm the presence of MVBs in the amoeboflagellate Breviata anathema. Searches of genomic databases of amoebozoans confirm the ubiquitous nature of ESCRTs I-III-associated and the restriction of ESCRT 0 to opisthokonts. Recently, an alternate ESCRT 0 complex, centering on Tom1 proteins, has been proposed. We determine the distribution of Tom1 family proteins across eukaryotes and show that the Tom1, Tom1L1 and Tom1L2 proteins are a vertebrate-specific expansion of the single Tom1 family ancestor, which has indeed been identified in at least one member of each of the major eukaryotic supergroups. This implies a more widely conserved and ancient role for the Tom1 family in endocytosis than previously suspected.
Collapse
Affiliation(s)
- Emily K Herman
- Department of Cell Biology, School of Molecular and Systems Medicine, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | | | |
Collapse
|
47
|
Rhizomastix biflagellata sp. nov., a new amoeboflagellate of uncertain phylogenetic position isolated from frogs. Eur J Protistol 2011; 47:10-5. [DOI: 10.1016/j.ejop.2010.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 08/25/2010] [Accepted: 08/27/2010] [Indexed: 11/22/2022]
|
48
|
Burki F, Kudryavtsev A, Matz MV, Aglyamova GV, Bulman S, Fiers M, Keeling PJ, Pawlowski J. Evolution of Rhizaria: new insights from phylogenomic analysis of uncultivated protists. BMC Evol Biol 2010; 10:377. [PMID: 21126361 PMCID: PMC3014934 DOI: 10.1186/1471-2148-10-377] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Accepted: 12/02/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Recent phylogenomic analyses have revolutionized our view of eukaryote evolution by revealing unexpected relationships between and within the eukaryotic supergroups. However, for several groups of uncultivable protists, only the ribosomal RNA genes and a handful of proteins are available, often leading to unresolved evolutionary relationships. A striking example concerns the supergroup Rhizaria, which comprises several groups of uncultivable free-living protists such as radiolarians, foraminiferans and gromiids, as well as the parasitic plasmodiophorids and haplosporids. Thus far, the relationships within this supergroup have been inferred almost exclusively from rRNA, actin, and polyubiquitin genes, and remain poorly resolved. To address this, we have generated large Expressed Sequence Tag (EST) datasets for 5 species of Rhizaria belonging to 3 important groups: Acantharea (Astrolonche sp., Phyllostaurus sp.), Phytomyxea (Spongospora subterranea, Plasmodiophora brassicae) and Gromiida (Gromia sphaerica). RESULTS 167 genes were selected for phylogenetic analyses based on the representation of at least one rhizarian species for each gene. Concatenation of these genes produced a supermatrix composed of 36,735 amino acid positions, including 10 rhizarians, 9 stramenopiles, and 9 alveolates. Phylogenomic analyses of this large dataset revealed a strongly supported clade grouping Foraminifera and Acantharea. The position of this clade within Rhizaria was sensitive to the method employed and the taxon sampling: Maximum Likelihood (ML) and Bayesian analyses using empirical model of evolution favoured an early divergence, whereas the CAT model and ML analyses with fast-evolving sites or the foraminiferan species Reticulomyxa filosa removed suggested a derived position, closely related to Gromia and Phytomyxea. In contrast to what has been previously reported, our analyses also uncovered the presence of the rhizarian-specific polyubiquitin insertion in Acantharea. Finally, this work reveals another possible rhizarian signature in the 60S ribosomal protein L10a. CONCLUSIONS Our study provides new insights into the evolution of Rhizaria based on phylogenomic analyses of ESTs from three groups of previously under-sampled protists. It was enabled through the application of a recently developed method of transcriptome analysis, requiring very small amount of starting material. Our study illustrates the potential of this method to elucidate the early evolution of eukaryotes by providing large amount of data for uncultivable free-living and parasitic protists.
Collapse
Affiliation(s)
- Fabien Burki
- Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Neumann N, Lundin D, Poole AM. Comparative genomic evidence for a complete nuclear pore complex in the last eukaryotic common ancestor. PLoS One 2010; 5:e13241. [PMID: 20949036 PMCID: PMC2951903 DOI: 10.1371/journal.pone.0013241] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 09/15/2010] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND The Nuclear Pore Complex (NPC) facilitates molecular trafficking between nucleus and cytoplasm and is an integral feature of the eukaryote cell. It exhibits eight-fold rotational symmetry and is comprised of approximately 30 nucleoporins (Nups) in different stoichiometries. Nups are broadly conserved between yeast, vertebrates and plants, but few have been identified among other major eukaryotic groups. METHODOLOGY/PRINCIPAL FINDINGS We screened for Nups across 60 eukaryote genomes and report that 19 Nups (spanning all major protein subcomplexes) are found in all eukaryote supergroups represented in our study (Opisthokonts, Amoebozoa, Viridiplantae, Chromalveolates and Excavates). Based on parsimony, between 23 and 26 of 31 Nups can be placed in LECA. Notably, they include central components of the anchoring system (Ndc1 and Gp210) indicating that the anchoring system did not evolve by convergence, as has previously been suggested. These results significantly extend earlier results and, importantly, unambiguously place a fully-fledged NPC in LECA. We also test the proposal that transmembrane Pom proteins in vertebrates and yeasts may account for their variant forms of mitosis (open mitoses in vertebrates, closed among yeasts). The distribution of homologues of vertebrate Pom121 and yeast Pom152 is not consistent with this suggestion, but the distribution of fungal Pom34 fits a scenario wherein it was integral to the evolution of closed mitosis in ascomycetes. We also report an updated screen for vesicle coating complexes, which share a common evolutionary origin with Nups, and can be traced back to LECA. Surprisingly, we find only three supergroup-level differences (one gain and two losses) between the constituents of COPI, COPII and Clathrin complexes. CONCLUSIONS/SIGNIFICANCE Our results indicate that all major protein subcomplexes in the Nuclear Pore Complex are traceable to the Last Eukaryotic Common Ancestor (LECA). In contrast to previous screens, we demonstrate that our conclusions hold regardless of the position of the root of the eukaryote tree.
Collapse
Affiliation(s)
- Nadja Neumann
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Daniel Lundin
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
| | - Anthony M. Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, Stockholm, Sweden
- School of Biological Sciences and Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand
| |
Collapse
|
50
|
Palpitomonas bilix gen. et sp. nov.: A Novel Deep-branching Heterotroph Possibly Related to Archaeplastida or Hacrobia. Protist 2010; 161:523-38. [DOI: 10.1016/j.protis.2010.03.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 01/31/2010] [Indexed: 11/19/2022]
|