1
|
Wyer CAS, Trajanovikj V, Hollis B, Ponlawat A, Cator LJ. Evidence for Significant Skew and Low Heritability of Competitive Male Mating Success in the Yellow Fever Mosquito Aedes aegypti. Evol Appl 2024; 17:e70061. [PMID: 39735342 PMCID: PMC11671345 DOI: 10.1111/eva.70061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 12/31/2024] Open
Abstract
Aedes aegpyti mosquitoes are vectors of several viruses of major public health importance, and many new control strategies target mating behaviour. Mating in this species occurs in swarms characterised by male scramble competition and female choice. These mating swarms have a male-biased operational sex ratio, which is expected to generate intense competition among males for mating opportunities. However, it is not known what proportion of swarming males successfully mate with females, how many females each male is able to mate with, and to what extent any variation in the male mating success phenotype can be explained by genetic variation. Here, we describe a novel assay to quantify individual male mating success in the presence of operational sex ratios characteristic of Ae. aegypti. Our results demonstrate that male mating success is skewed. Most males do not mate despite multiple opportunities, and very few males mate with multiple females. We compared measures of male mating success between fathers and sons and between full siblings to estimate the heritability of the trait in the narrowh 2 and broadH 2 sense, respectively. We found significant broad sense heritability estimates but little evidence for additive genetic effects, suggesting a role for dominance or epistatic effects and/or larval rearing environment in male mating success. These findings enhance our understanding of sexual selection in this species and have important implications for mass-release programmes that rely on the release of competitive males.
Collapse
Affiliation(s)
| | | | - Brian Hollis
- Department of Biological SciencesUniversity of South CarolinaColumbiaSouth CarolinaUSA
| | - Alongkot Ponlawat
- Department of EntomologyArmed Forces Research Institute of Medical SciencesBangkokThailand
| | | |
Collapse
|
2
|
Gómez M, Macedo AT, Pedrosa MC, Hohana F, Barros V, Pires B, Barbosa L, Brito M, Garziera L, Argilés-Herrero R, Virginio JF, Carvalho DO. Exploring Conditions for Handling Packing and Shipping Aedes aegypti Males to Support an SIT Field Project in Brazil. INSECTS 2022; 13:871. [PMID: 36292819 PMCID: PMC9604236 DOI: 10.3390/insects13100871] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
The sterile insect technique (SIT) application, as an alternative tool for conventional mosquito control methods, has recently gained prominence. Nevertheless, some SIT components require further development, such as protocols under large-scale conditions, focusing on packing and shipping mosquitoes, and considering transporting time. Immobilization of Aedes aegypti males was tested at temperatures 4, 7, 10, and 14 °C, and each temperature was assessed for 60, 90, and 120 min. The recovery after 24 h was also studied. Chilled and control-reared males had comparable survival rates for all conditions, although 4 °C for 120 min impacted male survival. The male escape rate was affected after 60 min of exposure at 4 °C; this difference was not significant, with 24 h of recovery. First, we defined the successful immobilization at 4 °C for 60 min, thus enabling the evaluation of two transportation intervals: 6 and 24 h, with the assessment of different compaction densities of 100 and 150 mosquitoes/cm3 at 10 °C to optimize the shipment. Compaction during simulated mosquito shipments reduced survival rates significantly after 6 and 24 h. In the mating propensity and insemination experiments, the sterile males managed to inseminate 40 to 66% for all treatments in laboratory conditions. The male insemination propensity was affected only by the highest compaction condition concerning the control. The analysis of the densities (100 and 150 males/cm3) showed that a higher density combined with an extended shipment period (24 h) negatively impacted the percentage of inseminated females. The results are very helpful in developing and improving the SIT packing and shipment protocols. Further studies are required to evaluate all combined parameters' synergetic effects that can combine irradiation to assess sexual competitiveness when sterile males are released into the field.
Collapse
Affiliation(s)
- Maylen Gómez
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| | - Aline T. Macedo
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Michelle C. Pedrosa
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Fernanda Hohana
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Verenna Barros
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Bianca Pires
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Lucas Barbosa
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Miriam Brito
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Luiza Garziera
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Rafael Argilés-Herrero
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| | - Jair F. Virginio
- Biofábrica Moscamed Brasil, Quadra D-13, Lote 15, Distrito Industrial do São Francisco, Juazeiro 48909-733, Brazil
| | - Danilo O. Carvalho
- Insect Pest Control Subprogramme, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, P.O. Box 100 Vienna, Austria
| |
Collapse
|
3
|
Pimid M, Krishnan KT, Ahmad AH, Mohd Naim D, Chambers GK, Mohd Nor SA, Ab Majid AH. Parentage Assignment Using Microsatellites Reveals Multiple Mating in Aedes aegypti (Diptera: Culicidae): Implications for Mating Dynamics. JOURNAL OF MEDICAL ENTOMOLOGY 2022; 59:1525-1533. [PMID: 35733165 DOI: 10.1093/jme/tjac081] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Indexed: 06/15/2023]
Abstract
The mosquito Aedes aegypti is the primary vector of the dengue, yellow fever, and chikungunya viruses. Evidence shows that Ae. aegypti males are polyandrous whereas Ae. aegypti females are monandrous in mating. However, the degree to which Ae. aegypti males and females can mate with different partners has not been rigorously tested. Therefore, this study examined the rates of polyandry via parentage assignment in three sets of competitive mating experiments using wild-type male and female Ae. aegypti. Parentage assignment was monitored using nine microsatellite DNA markers. All Ae. aegypti offspring were successfully assigned to parents with 80% or 95% confidence using CERVUS software. The results showed that both male and female Ae. aegypti mated with up to 3-4 different partners. Adults contributed differentially to the emergent offspring, with reproductive outputs ranging from 1 to 25 viable progeny. This study demonstrates a new perspective on the capabilities of male and female Ae. aegypti in mating. These findings are significant because successful deployment of reproductive control methods using genetic modification or sterile Ae. aegypti must consider the following criteria regarding their mating fitness: 1) choosing Ae. aegypti males that can mate with many different females; 2) testing how transformed Ae. aegypti male perform with polyandrous females; and 3) prioritizing the selection of polyandrous males and/or females Ae. aegypti that have the most offspring.
Collapse
Affiliation(s)
- Marcela Pimid
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Kumara Thevan Krishnan
- Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli Campus, 17600 Kelantan, Malaysia
| | - Abu Hassan Ahmad
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Darlina Mohd Naim
- School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| | - Geoffrey K Chambers
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, 6140 Wellington, New Zealand
| | - Siti Azizah Mohd Nor
- Institute of Marine Biotechnology, Universiti Malaysia Terengganu, 21030 Terengganu, Malaysia
| | - Abdul Hafiz Ab Majid
- Household & Structural Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
4
|
Somers J, Georgiades M, Su MP, Bagi J, Andrés M, Alampounti A, Mills G, Ntabaliba W, Moore SJ, Spaccapelo R, Albert JT. Hitting the right note at the right time: Circadian control of audibility in Anopheles mosquito mating swarms is mediated by flight tones. SCIENCE ADVANCES 2022; 8:eabl4844. [PMID: 35020428 PMCID: PMC8754303 DOI: 10.1126/sciadv.abl4844] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 11/12/2021] [Indexed: 05/20/2023]
Abstract
Mating swarms of malaria mosquitoes form every day at sunset throughout the tropical world. They typically last less than 30 minutes. Activity must thus be highly synchronized between the sexes. Moreover, males must identify the few sporadically entering females by detecting the females’ faint flight tones. We show that the Anopheles circadian clock not only ensures a tight synchrony of male and female activity but also helps sharpen the males’ acoustic detection system: By raising their flight tones to 1.5 times the female flight tone, males enhance the audibility of females, specifically at swarm time. Previously reported “harmonic convergence” events are only a random by-product of the mosquitoes’ flight tone variance and not a signature of acoustic interaction between males and females. The flight tones of individual mosquitoes occupy narrow, partly non-overlapping frequency ranges, suggesting that the audibility of individual females varies across males.
Collapse
Affiliation(s)
- Jason Somers
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marcos Georgiades
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Matthew P. Su
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Division of Biological Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
- Institute for Advanced Research, Nagoya University, Nagoya, Aichi 464-8601, Japan
| | - Judit Bagi
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marta Andrés
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Alexandros Alampounti
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Gordon Mills
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
| | - Watson Ntabaliba
- Vector Control Product Testing Unit, Ifakara Health Institute, Ifakara, Tanzania
| | - Sarah J. Moore
- Vector Control Product Testing Unit, Ifakara Health Institute, Ifakara, Tanzania
- Epidemiology and Public Health Department, Swiss Tropical and Public Health Institute, Socinstrasse 57, Basel 4051, Switzerland
| | - Roberta Spaccapelo
- Department of Medicine and Surgery, Centro Universitario di Ricerca sulla Genomica Funzionale (C.U.R.Ge.F), University of Perugia, Perugia, Italy
- Consorzio Interuniversitario Biotecnologie (CIB) Trieste, Italy
| | - Joerg T. Albert
- Ear Institute, University College London, 332 Grays Inn Road, London WC1X 8EE, UK
- Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
- Corresponding author.
| |
Collapse
|
5
|
League GP, Harrington LC, Pitcher SA, Geyer JK, Baxter LL, Montijo J, Rowland JG, Johnson LM, Murdock CC, Cator LJ. Sexual selection theory meets disease vector control: Testing harmonic convergence as a "good genes" signal in Aedes aegypti mosquitoes. PLoS Negl Trop Dis 2021; 15:e0009540. [PMID: 34214096 PMCID: PMC8282061 DOI: 10.1371/journal.pntd.0009540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 07/15/2021] [Accepted: 06/04/2021] [Indexed: 01/21/2023] Open
Abstract
Background The mosquito Aedes aegypti is a medically important, globally distributed vector of the viruses that cause dengue, yellow fever, chikungunya, and Zika. Although reproduction and mate choice are key components of vector population dynamics and control, our understanding of the mechanisms of sexual selection in mosquitoes remains poor. In “good genes” models of sexual selection, females use male cues as an indicator of both mate and offspring genetic quality. Recent studies in Ae. aegypti provide evidence that male wingbeats may signal aspects of offspring quality and performance during mate selection in a process known as harmonic convergence. However, the extent to which harmonic convergence may signal overall inherent quality of mates and their offspring remains unknown. Methodology/Principal findings To examine this, we measured the relationship between acoustic signaling and a broad panel of parent and offspring fitness traits in two generations of field-derived Ae. aegypti originating from dengue-endemic field sites in Thailand. Our data show that in this population of mosquitoes, harmonic convergence does not signal male fertility, female fecundity, or male flight performance traits, which despite displaying robust variability in both parents and their offspring were only weakly heritable. Conclusions/Significance Together, our findings suggest that vector reproductive control programs should treat harmonic convergence as an indicator of some, but not all aspects of inherent quality, and that sexual selection likely affects Ae. aegypti in a trait-, population-, and environment-dependent manner. Mosquitoes transmit numerous pathogens that disproportionately impact developing countries. The mosquito Aedes aegypti, studied here, transmits viruses that cause neglected tropical diseases such as dengue, yellow fever, chikungunya, and Zika. Disease prevention programs rely heavily upon mosquito vector control. To successfully interrupt disease transmission, several control methods depend upon the ability of laboratory-modified male mosquitoes to successfully mate with wild females to suppress or replace natural populations. However, our understanding of what determines mating success in mosquitoes is far from complete. Our study addresses the question of whether female Ae. aegypti mosquitoes use male acoustic signals to select higher quality mates and improve their offspring’s fitness. We find that acoustic signals do not serve as universal indicators of fitness. Further, the fitness metrics we measured were only weakly heritable, suggesting that females that mate with high quality males do not necessarily produce fitter offspring. Our study provides a nuanced understanding of mate choice, mating acoustic signals, and parent and offspring reproductive fitness in a key disease-transmitting mosquito species. These discoveries improve our grasp of sexual selection in mosquitoes and can be leveraged by the vector control community to improve vitally important disease prevention programs.
Collapse
Affiliation(s)
- Garrett P. League
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Laura C. Harrington
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Sylvie A. Pitcher
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Julie K. Geyer
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Lindsay L. Baxter
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Julian Montijo
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - John G. Rowland
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
| | - Lynn M. Johnson
- Cornell Statistical Consulting Unit, Cornell University, Ithaca, New York, United States of America
| | - Courtney C. Murdock
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Department of Infectious Diseases, University of Georgia, Athens, Georgia, United States of America
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America
| | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, United Kingdom
- * E-mail:
| |
Collapse
|
6
|
Muñoz-Muñoz F, Pagès N, Durao AF, England M, Werner D, Talavera S. Narrow versus broad: sexual dimorphism in the wing form of western European species of the subgenus Avaritia (Culicoides, Ceratopogonidae). Integr Zool 2021; 16:769-784. [PMID: 33433938 DOI: 10.1111/1749-4877.12516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
While wing form is known to differ between males and females of the genus Culicoides, detailed studies of sexual dimorphism are lacking. In this study, we analyze sex-specific differences in the wing form of 5 species of the subgenus Avaritia, using geometric morphometrics and comparative phylogenetic methods. Our results confirm the existence of marked sexual dimorphism in the wing form of the studied species and reveal for the first time that while there is a shared general pattern of sexual shape dimorphism within the subgenus, sexual size dimorphism, and particular features of sexual shape dimorphism differ among species. Sexual shape dimorphism was found to be poorly associated to size and the evolutionary history of the species. The tight association of sexual shape dimorphism with aspect ratio suggests that the shape of the wing is optimized for the type of flight of each sex, that is, dispersal flight in females versus aerobatic flight in males. Moreover, the fact that interspecific shape differences are greater and more strongly associated to aspect ratio in males than in females might be indicating that in males the selective pressures affecting flight performance characteristics are more heterogeneous and/or stronger than in females among the studied species.
Collapse
Affiliation(s)
- Francesc Muñoz-Muñoz
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nonito Pagès
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain.,CIRAD, UMR ASTRE, Guadeloupe, France.,ASTRE, CIRAD, INRAe, Université de Montpellier, Montpellier, France
| | - Ana F Durao
- Departament de Biologia Animal, de Biologia Vegetal i d'Ecologia, Facultat de Biociències, Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Doreen Werner
- Leibniz-Centre for Agricultural Landscape Research, Müncheberg, Germany
| | - Sandra Talavera
- Centre de Recerca en Sanitat Animal (CReSA), UAB-IRTA, Campus de la Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
7
|
Cator LJ, Wyer CAS, Harrington LC. Mosquito Sexual Selection and Reproductive Control Programs. Trends Parasitol 2021; 37:330-339. [PMID: 33422425 DOI: 10.1016/j.pt.2020.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/19/2020] [Accepted: 11/19/2020] [Indexed: 12/13/2022]
Abstract
The field of mosquito mating biology has experienced a considerable expansion in the past decade. Recent work has generated many key insights about specific aspects of mating behavior and physiology. Here, we synthesize these findings and classify swarming mosquito systems as polygynous. Male mating success is highly variable in swarms and evidence suggests that it is likely determined by both scramble competition between males and female choice. Incorporating this new understanding will improve both implementation and long-term stability of reproductive control tools.
Collapse
Affiliation(s)
- Lauren J Cator
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - Claudia A S Wyer
- Department of Life Sciences, Imperial College London, Ascot, UK; Science and Solutions for a Changing Planet DTP, Kensington, London SW7 2AZ, UK
| | - Laura C Harrington
- Department of Entomology, Cornell University, Ithaca, New York, NY, USA.
| |
Collapse
|
8
|
Leftwich PT, Spurgin LG, Harvey-Samuel T, Thomas CJE, Paladino LC, Edgington MP, Alphey L. Genetic pest management and the background genetics of release strains. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190805. [PMID: 33357053 DOI: 10.1098/rstb.2019.0805] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Genetic pest management (GPM) methods involve releasing modified versions of a pest species to mate with wild pests in the target area. Proposed for a wide range of applications in public health, agriculture and conservation, most progress has been made with pest insects. Offspring of the released modified insects and wild pests carry the modification-which might be transgenes, artificially introduced Wolbachia or genetic damage from radiation, for example-but they also carry a complete haploid genome from their laboratory-reared parent, as well as one from their wild parent. Unless these F1 hybrids are completely unable to reproduce, further mating will lead to introgression of DNA sequences from the release strain into the wild population. We discuss issues around strain selection and the potential consequences of such introgression. We conclude that such introgression is probably harmless in almost all circumstances, and could, in theory, provide specific additional benefits to the release programme. We outline population monitoring approaches that could be used, going forward, to determine how background genetics may affect GPM. This article is part of the theme issue 'Novel control strategies for mosquito-borne diseases'.
Collapse
Affiliation(s)
- Philip T Leftwich
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | - Lewis G Spurgin
- School of Biological Sciences, University of East Anglia, Norwich, Norfolk NR4 7TJ, UK
| | | | | | | | | | - Luke Alphey
- Arthropod Genetics, The Pirbright Institute, Pirbright GU24 0NF, UK
| |
Collapse
|
9
|
Rojas-Araya D, Alto BW, Cummings DAT, Burkett-Cadena ND. Differentiation of Multiple Fluorescent Powders, Powder Transfer, and Effect on Mating in Aedes aegypti (Diptera: Culicidae). INSECTS 2020; 11:insects11110727. [PMID: 33114300 PMCID: PMC7690904 DOI: 10.3390/insects11110727] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/15/2020] [Accepted: 10/22/2020] [Indexed: 06/11/2023]
Abstract
Five different fluorescent powders (orange, yellow, green, blue, and violet) were tested on Aedes aegypti adults to evaluate the differentiation of multiple fluorescent powder colors applied externally in the same female mosquito, their effect on coupling time, copulation time, insemination success, mate choice, and the extent of transference of powders between marked and unmarked individuals, either during copulation or same-sex interactions. Marking with multiple powders was evaluated after applying different powders in the same female at different times and combinations. The comparative effect of powders on mating was explored using different cross-combinations of marked/unmarked couples. Transference of powders between marked/unmarked individuals after copulation was checked in mated individuals, and between same-sex interactions by allowing them to interact under crowded and uncrowded conditions. Identification of the colors included in multiple markings in the same individual was possible when exploring almost all combinations (exception: green-yellow). No important effect of powder marking between cross-combinations was found on coupling time (overall 95% CI (Confidence Interval) 37.6-49.6 min), copulation time (overall 95% CI 17-20 s), insemination success, nor their mate choice. Transferred powder after copulation activity, concentrated in genitalia, legs, and the tip of wings, occurred in >80% of females and 100% of males. Powder transference in legs and genitalia, between same-sex individuals, occurred only in males (ranged between 23-35%) under both density conditions. The lack of important effects of these powders on the studied aspects of Ae. aegypti provides information about their usefulness and limitations, which should be recognized for future applications and to avoid bias.
Collapse
Affiliation(s)
- Diana Rojas-Araya
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, IFAS, University of Florida, Vero Beach, FL 32962, USA; (B.W.A.); (N.D.B.-C.)
| | - Barry W. Alto
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, IFAS, University of Florida, Vero Beach, FL 32962, USA; (B.W.A.); (N.D.B.-C.)
| | - Derek A. T. Cummings
- Department of Biology and Emerging Pathogens Institute, University of Florida, Gainesville, FL 32610, USA;
| | - Nathan D. Burkett-Cadena
- Florida Medical Entomology Laboratory, Department of Entomology and Nematology, IFAS, University of Florida, Vero Beach, FL 32962, USA; (B.W.A.); (N.D.B.-C.)
| |
Collapse
|
10
|
Aldersley A, Pongsiri A, Bunmee K, Kijchalao U, Chittham W, Fansiri T, Pathawong N, Qureshi A, Harrington LC, Ponlawat A, Cator LJ. Too "sexy" for the field? Paired measures of laboratory and semi-field performance highlight variability in the apparent mating fitness of Aedes aegypti transgenic strains. Parasit Vectors 2019; 12:357. [PMID: 31324262 PMCID: PMC6642483 DOI: 10.1186/s13071-019-3617-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/13/2019] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Evaluating and improving mating success and competitive ability of laboratory-reared transgenic mosquito strains will enhance the effectiveness of proposed disease-control strategies that involve deployment of transgenic strains. Two components of the mosquito rearing process, larval diet quantity and aquatic environment - which are linked to physiological and behavioural differences in adults - are both relatively easy to manipulate. In mosquitoes, as for many other arthropod species, the quality of the juvenile habitat is strongly associated with adult fitness characteristics, such as longevity and fecundity. However, the influence of larval conditioning on mating performance is poorly understood. Here, we investigated the combined effects of larval diet amount and environmental water source on adult male mating success in a genetically modified strain of Aedes aegypti mosquitoes in competition with wild-type conspecifics. Importantly, this research was conducted in a field setting using low generation laboratory and wild-type lines. RESULTS By controlling larval diet (high and low) and rearing water source (field-collected and laboratory water), we generated four treatment lines of a genetically modified strain of Ae. aegypti tagged with fluorescent sperm. Laboratory reared mosquitoes were then competed against a low generation wild-type colony in a series of laboratory and semi-field mating experiments. While neither food quantity nor larval aquatic environment were found to affect male mating fitness, the transgenic lines consistently outperformed wild-types in laboratory competition assays, an advantage that was not conferred to semi-field tests. CONCLUSIONS Using a model transgenic system, our results indicate that differences in the experimental conditions of laboratory- and field-based measures of mating success can lead to variation in the perceived performance ability of modified strains if they are only tested in certain environments. While there are many potential sources of variation between laboratory and field lines, laboratory adaptation - which may occur over relatively few generations in this species - may directly impact mating ability depending on the context in which it is measured. We suggest that colony-hybridization with field material can potentially be used to mitigate these effects in a field setting. Release programs utilising mass-produced modified laboratory strains should incorporate comparative assessments of quality in candidate lines.
Collapse
Affiliation(s)
- Andrew Aldersley
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | - Arissara Pongsiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Kamonchanok Bunmee
- Department of Medical Entomology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Udom Kijchalao
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Wachiraphan Chittham
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Thanyalak Fansiri
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Nattaphol Pathawong
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Alima Qureshi
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| | | | - Alongkot Ponlawat
- Vector Biology and Control Section, Department of Entomology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Lauren J. Cator
- Department of Life Sciences, Imperial College London, Silwood Park, Ascot, UK
| |
Collapse
|
11
|
Qureshi A, Aldersley A, Hollis B, Ponlawat A, Cator LJ. Male competition and the evolution of mating and life-history traits in experimental populations of Aedes aegypti. Proc Biol Sci 2019; 286:20190591. [PMID: 31185872 PMCID: PMC6571471 DOI: 10.1098/rspb.2019.0591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Aedes aegypti is an important disease vector and a major target of reproductive control efforts. We manipulated the opportunity for sexual selection in populations of Ae. aegypti by controlling the number of males competing for a single female. Populations exposed to higher levels of male competition rapidly evolved higher male competitive mating success relative to populations evolved in the absence of competition, with an evolutionary response visible after only five generations. We also detected correlated evolution in other important mating and life-history traits, such as acoustic signalling, fecundity and body size. Our results indicate that there is ample segregating variation for determinants of male mating competitiveness in wild populations and that increased male mating success trades-off with other important life-history traits. The mating conditions imposed on laboratory-reared mosquitoes are likely a significant determinant of male mating success in populations destined for release.
Collapse
Affiliation(s)
- Alima Qureshi
- 1 Department of Life Sciences, Imperial College London , Silwood Park, Ascot SL5 7PY , UK
| | - Andrew Aldersley
- 1 Department of Life Sciences, Imperial College London , Silwood Park, Ascot SL5 7PY , UK
| | - Brian Hollis
- 2 School of Life Sciences, École Polytechnique Fédérale de Lausanne , Lausanne , Switzerland
| | - Alongkot Ponlawat
- 3 Department of Entomology, Armed Forces Research Institute of Medical Sciences , Bangkok 10400 , Thailand
| | - Lauren J Cator
- 1 Department of Life Sciences, Imperial College London , Silwood Park, Ascot SL5 7PY , UK
| |
Collapse
|