1
|
Burden SA, Libby T, Jayaram K, Sponberg S, Donelan JM. Why animals can outrun robots. Sci Robot 2024; 9:eadi9754. [PMID: 38657092 DOI: 10.1126/scirobotics.adi9754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024]
Abstract
Animals are much better at running than robots. The difference in performance arises in the important dimensions of agility, range, and robustness. To understand the underlying causes for this performance gap, we compare natural and artificial technologies in the five subsystems critical for running: power, frame, actuation, sensing, and control. With few exceptions, engineering technologies meet or exceed the performance of their biological counterparts. We conclude that biology's advantage over engineering arises from better integration of subsystems, and we identify four fundamental obstacles that roboticists must overcome. Toward this goal, we highlight promising research directions that have outsized potential to help future running robots achieve animal-level performance.
Collapse
Affiliation(s)
- Samuel A Burden
- Department of Electrical and Computer Engineering, University of Washington, Seattle, WA 98195, USA
| | - Thomas Libby
- Robotics Laboratory, SRI International, Menlo Park, CA 94025, USA
| | - Kaushik Jayaram
- Paul M. Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Simon Sponberg
- Schools of Physics and Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30317, USA
| | - J Maxwell Donelan
- Department of Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| |
Collapse
|
2
|
Badie N, Schmitt S. Enhancing stance robustness and jump height in bipedal muscle-actuated systems: a bioinspired morphological development approach. BIOINSPIRATION & BIOMIMETICS 2024; 19:036012. [PMID: 38507788 DOI: 10.1088/1748-3190/ad3602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
Recognizing humans' unmatched robustness, adaptability, and learning abilities across anthropomorphic movements compared to robots, we find inspiration in the simultaneous development of both morphology and cognition observed in humans. We utilize optimal control principles to train a muscle-actuated human model for both balance and squat jump tasks in simulation. Morphological development is introduced through abrupt transitions from a 4 year-old to a 12 year-old morphology, ultimately shifting to an adult morphology. We create two versions of the 4 year-old and 12 year-old models- one emulating human ontogenetic development and another uniformly scaling segment lengths and related parameters. Our results show that both morphological development strategies outperform the non-development path, showcasing enhanced robustness to perturbations in the balance task and increased jump height in the squat jump task. Our findings challenge existing research as they reveal that starting with initial robot designs that do not inherently facilitate learning and incorporating abrupt changes in their morphology can still lead to improved results, provided these morphological adaptations draw inspiration from biological principles.
Collapse
Affiliation(s)
- Nadine Badie
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Stuttgart Center of Simulation Science, Stuttgart, Germany
- Center for Bionic Intelligence Tübingen Stuttgart, Stuttgart, Germany
| |
Collapse
|
3
|
Wang K, Boonpratatong A, Chen W, Ren L, Wei G, Qian Z, Lu X, Zhao D. The Fundamental Property of Human Leg During Walking: Linearity and Nonlinearity. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4871-4881. [PMID: 38051625 DOI: 10.1109/tnsre.2023.3339801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Leg properties have been involved in the broad study of human walking from mechanical energy to motion prediction of robotics. However, the variable leg elasticities and their functions during gait have not been fully explored. This study presented that the fundamental leg properties during human walking comprise axial stiffness, rest leg length, tangential stiffness and force-free leg angles. We measured the axial force-leg length and tangential force-leg angle data in eight participants (mean ± s.d. age 24.6 ± 3.0 years, mass 68.2 ± 6.8 kg, height 177.5 ± 5.2 cm) at three self-selected walking speeds (slow: 1.25 ± 0.22, normal: 1.48 ± 0.28, fast: 1.75 ± 0.32 m/s) on two different contact conditions (fixed and moving). After obtaining these gait measurements, we extracted the linear and nonlinear leg elasticities during human walking by using a minimum root-mean-square fitting. We found that the axial stiffness of nonlinear elasticity (fixed condition: 7.1-8.0, moving condition: 21.3-22.6) is higher than that of the linear elasticity (fixed condition: 5.0-5.7, moving condition: 15.2-16.5). The tangential stiffness behaves different during four stance phases of gait, with the highest (linear: 2.52-3.72, nonlinear: 1.71-2.01, in moving condition) occurred at early stance and second highest at late stance, followed by two stiffnesses in mid-stance. For both linearity and nonlinearity, the axial stiffness and rest length are independent of walking speeds in both contact conditions, while the tangential stiffness and contact angles are independent of walking speeds only in moving condition. Regardless of walking speed, elasticity and contact condition, the force-free contact angle at mid-stance is maintained at average of 82.2 °. This paper first demonstrates the mechanical walking leg property from both axial and tangential aspects. The findings provide insight into the fundamental properties including linearity and nonlinearity of human leg during locomotion for stability analysis and precise motion prediction of robotics and rehabilitation exoskeletons.
Collapse
|
4
|
Araz M, Weidner S, Izzi F, Badri-Spröwitz A, Siebert T, Haeufle DFB. Muscle preflex response to perturbations in locomotion: In vitro experiments and simulations with realistic boundary conditions. Front Bioeng Biotechnol 2023; 11:1150170. [PMID: 37214305 PMCID: PMC10194126 DOI: 10.3389/fbioe.2023.1150170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 05/24/2023] Open
Abstract
Neuromuscular control loops feature substantial communication delays, but mammals run robustly even in the most adverse conditions. In vivo experiments and computer simulation results suggest that muscles' preflex-an immediate mechanical response to a perturbation-could be the critical contributor. Muscle preflexes act within a few milliseconds, an order of magnitude faster than neural reflexes. Their short-lasting action makes mechanical preflexes hard to quantify in vivo. Muscle models, on the other hand, require further improvement of their prediction accuracy during the non-standard conditions of perturbed locomotion. Our study aims to quantify the mechanical work done by muscles during the preflex phase (preflex work) and test their mechanical force modulation. We performed in vitro experiments with biological muscle fibers under physiological boundary conditions, which we determined in computer simulations of perturbed hopping. Our findings show that muscles initially resist impacts with a stereotypical stiffness response-identified as short-range stiffness-regardless of the exact perturbation condition. We then observe a velocity adaptation to the force related to the amount of perturbation similar to a damping response. The main contributor to the preflex work modulation is not the change in force due to a change in fiber stretch velocity (fiber damping characteristics) but the change in magnitude of the stretch due to the leg dynamics in the perturbed conditions. Our results confirm previous findings that muscle stiffness is activity-dependent and show that also damping characteristics are activity-dependent. These results indicate that neural control could tune the preflex properties of muscles in expectation of ground conditions leading to previously inexplicable neuromuscular adaptation speeds.
Collapse
Affiliation(s)
- Matthew Araz
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Sven Weidner
- Department of Motion and Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Fabio Izzi
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Dynamic Locomotion Group, Max Plank Institute for Intelligent Systems, Stuttgart, Germany
| | - Alexander Badri-Spröwitz
- Dynamic Locomotion Group, Max Plank Institute for Intelligent Systems, Stuttgart, Germany
- Department of Mechanical Engineering, KU Leuven, Leuven, Belgium
| | - Tobias Siebert
- Department of Motion and Exercise Science, Institute of Sport and Movement Science, University of Stuttgart, Stuttgart, Germany
| | - Daniel F. B. Haeufle
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
- Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| |
Collapse
|
5
|
Picardi G, Astolfi A, Chatzievangelou D, Aguzzi J, Calisti M. Underwater legged robotics: review and perspectives. BIOINSPIRATION & BIOMIMETICS 2023; 18. [PMID: 36863018 DOI: 10.1088/1748-3190/acc0bb] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
Nowadays, there is a growing awareness on the social and economic importance of the ocean. In this context, being able to carry out a diverse range of operations underwater is of paramount importance for many industrial sectors as well as for marine science and to enforce restoration and mitigation actions. Underwater robots allowed us to venture deeper and for longer time into the remote and hostile marine environment. However, traditional design concepts such as propeller driven remotely operated vehicles, autonomous underwater vehicles, or tracked benthic crawlers, present intrinsic limitations, especially when a close interaction with the environment is required. An increasing number of researchers are proposing legged robots as a bioinspired alternative to traditional designs, capable of yielding versatile multi-terrain locomotion, high stability, and low environmental disturbance. In this work, we aim at presenting the new field of underwater legged robotics in an organic way, discussing the prototypes in the state-of-the-art and highlighting technological and scientific challenges for the future. First, we will briefly recap the latest developments in traditional underwater robotics from which several technological solutions can be adapted, and on which the benchmarking of this new field should be set. Second, we will the retrace the evolution of terrestrial legged robotics, pinpointing the main achievements of the field. Third, we will report a complete state of the art on underwater legged robots focusing on the innovations with respect to the interaction with the environment, sensing and actuation, modelling and control, and autonomy and navigation. Finally, we will thoroughly discuss the reviewed literature by comparing traditional and legged underwater robots, highlighting interesting research opportunities, and presenting use case scenarios derived from marine science applications.
Collapse
Affiliation(s)
- G Picardi
- Instituto de Ciencias del Mar (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - A Astolfi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant'Anna, 56127 Pisa, Italy
| | - D Chatzievangelou
- Instituto de Ciencias del Mar (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - J Aguzzi
- Instituto de Ciencias del Mar (ICM)-Consejo Superior de Investigaciones Científicas (CSIC), 08003 Barcelona, Spain
| | - M Calisti
- Lincoln Institute for Agri-Food Technology, University of Lincoln, Lincoln LN6 7TS, United Kingdom
| |
Collapse
|
6
|
Shen KH, Borrelli J, Gray VL, Rogers MW, Hsiao HY. Lower Limb Vertical Stiffness and Frontal Plane Angular Impulse during Perturbation-Induced Single Limb Stance and Their Associations with Gait in Individuals Post-Stroke. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.10.536288. [PMID: 37090545 PMCID: PMC10120673 DOI: 10.1101/2023.04.10.536288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Background After stroke, deficits in paretic single limb stance (SLS) are commonly observed and affect walking performance. During SLS, the hip abductor musculature is critical in providing vertical support and regulating balance. Although disrupted paretic hip abduction torque production has been identified in individuals post-stroke, interpretation of previous results is limited due to the discrepancies in weight-bearing conditions. Objective To investigate whether deficits in hip abduction torque production, vertical body support, and balance regulation remain during SLS when controlling for weight-bearing using a perturbation-based assessment, and whether these measures are associated with gait performance. Methods We compared hip abduction torque, vertical stiffness, and frontal plane angular impulse between individuals post-stroke and healthy controls when SLS was induced by removing the support surface underneath one limb. We also tested for correlations between vertical stiffness and angular impulse during perturbation-induced SLS and gait parameters during overground walking. Results During the perturbation-induced SLS, lower hip abduction torque, less vertical stiffness, and increased frontal plane angular impulse were observed at the paretic limb compared to the non-paretic limb, while no differences were found between the paretic limb and healthy controls. Vertical stiffness during perturbation-induced SLS was positively correlated with single support duration during gait at the paretic limb and predicted self-selected and fast walking speeds in individuals post-stroke. Conclusions Reduced paretic hip abduction torque during SLS likely affects vertical support and balance control. Enhancing SLS hip abduction torque production could be an important rehabilitation target to improve walking function for individuals post-stroke.
Collapse
Affiliation(s)
- Keng-Hung Shen
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
| | - James Borrelli
- Department of Biomedical Engineering, Stevenson University, MD, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Vicki L. Gray
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Mark W. Rogers
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| | - Hao-Yuan Hsiao
- Department of Kinesiology and Health Education, The University of Texas at Austin, TX, USA
- Department of Physical Therapy and Rehabilitation Science, University of Maryland Baltimore, MD, USA
| |
Collapse
|
7
|
Driessen JJ, Laffranchi M, De Michieli L. A reduced-order closed-loop hybrid dynamic model for design and development of lower limb prostheses. WEARABLE TECHNOLOGIES 2023; 4:e10. [PMID: 38487762 PMCID: PMC10936358 DOI: 10.1017/wtc.2023.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 02/10/2023] [Indexed: 03/17/2024]
Abstract
This manuscript presents a simplified dynamic human-prosthesis model and simulation framework for the purpose of designing and developing lower limb prosthesis hardware and controllers. The objective was to provide an offline design tool to verify the closed-loop behavior of the prosthesis with the human, in order to avoid relying solely on limiting kinematic and kinetic reference trajectories of (able-bodied) subjects and associated static or inverse dynamic analyses, while not having to resort to complete neuromusculoskeletal models of the human that require extensive optimizations to run. The presented approach employs a reduced-order model that includes only the prosthetic limb and trunk in a multi-body dynamic model. External forces are applied to the trunk during stance phase of the intact leg to represent its presence. Walking is realized by employing the well-known spring-loaded inverted pendulum model, which is shown to generate realistic dynamics on the prosthesis while maintaining a stable and modifiable gait. This simple approach is inspired from the rationale that the human is adaptive, and from the desire to facilitate modifications or inclusions of additional user actions. The presented framework is validated with two use cases, featuring a commercial and research knee prosthesis in combination with a passive ankle prosthesis, performing a continuous sequence of standing still, walking at different velocities and stopping.
Collapse
Affiliation(s)
| | - Matteo Laffranchi
- Rehab Technologies Lab, Istituto Italiano di Tecnologia (IIT), Genoa, Italy
| | | |
Collapse
|
8
|
Bucklin MA, Brown G, Gordon KE. People adapt a consistent center-of-mass trajectory in a novel force field. J Neurophysiol 2023; 129:298-306. [PMID: 36542421 PMCID: PMC9886345 DOI: 10.1152/jn.00391.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
During human walking the whole body center-of-mass (COM) trajectory may be a control objective, a goal the central nervous system uses to plan and regulate movement. Our previous observation, that after practice walking in a novel laterally directed force field people adapt a COM trajectory similar to their normal trajectory, supports this idea. However, our prior work only presented data demonstrating changes in COM trajectory in response to a single force field. To evaluate whether this phenomena is robust, in the present study we present new data demonstrating that people adapt their COM trajectory in a similar manner when the direction of the external force field is changed resulting in drastically different lower limb joint dynamics. Specifically, we applied a continuous, left-directed force field (in the previous experiment the force field was applied to the right) to the COM as participants performed repeated trials of a discrete walking task. We again hypothesized that with practice walking in the force field people would adapt a COM trajectory that was similar to their baseline performance and exhibit aftereffects, deviation of their COM trajectory in the opposite direction of force field, when the field was unexpectedly removed. These hypotheses were supported and suggest that participants formed an internal model to control their COM trajectory. Collectively these findings demonstrate that people adapt their gait patterns to anticipate consistent aspects of the external environment. These findings suggest that this response is robust to force fields applied in multiple directions that may require substantially different neural control.NEW & NOTEWORTHY With experience people adapted a predictive internal model to control their whole body center-of-mass walking trajectory that anticipated the disruptive laterally directed forces of a novel and consistent external environment. Collectively these findings demonstrate that adaptation of gait to anticipate consistent aspects of the external environment is a response that is robust to force fields in multiple directions that require substantially different lower limb dynamics and neural control.
Collapse
Affiliation(s)
- Mary A Bucklin
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois
| | - Geoffrey Brown
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Keith E Gordon
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
- Research Service, Edward Hines, Jr. Department of Veterans Affairs Hospital, Hines, Illinois
| |
Collapse
|
9
|
Renjewski D, Lipfert S, Günther M. Foot function enabled by human walking dynamics. Phys Rev E 2022; 106:064405. [PMID: 36671109 DOI: 10.1103/physreve.106.064405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 10/23/2022] [Indexed: 06/17/2023]
Abstract
Bipedal walking, the habitual gait for man, is rather unique in nature and poses particular challenges for balance and propulsion. The characteristic double-humped ground reaction force profile has been widely observed but not put into functional context. We propose a mathematical model that captures the dynamics of the human foot in walking including the characteristic motion of the center of pressure. Using this model, we analyze the functional interplay of all essential biomechanical contributors to foot dynamics in walking. Our results demonstrate the intricate interplay of a self-stabilizing mechanism which allows extending a leg's stance phase while simultaneously powering rapid swing by condensing the essentials of foot dynamics into a reductionist, biomechanical model. A theory is presented which identifies the foot to be the key functional element and which explains the global dynamics of human walking. The provided insights will impact gait therapy and rehabilitation, the development of assistive devices, such as leg prostheses and exoskeletons, and provide guidelines for the design and control of versatile humanoid robots.
Collapse
Affiliation(s)
- Daniel Renjewski
- Chair of Applied Mechanics, Department of Mechanical Engineering, School of Engineering and Design, TU Munich, 85748 Garching, Germany
| | - Susanne Lipfert
- Section for Applied Sport Science, Department of Sport and Health Sciences, TU Munich, 80809 München, Germany
| | - Michael Günther
- Computational Biophysics and Biorobotics Group, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
10
|
Larsen RJ, Queen RM, Schmitt D. Adaptive locomotion: Foot strike pattern and limb mechanical stiffness while running over an obstacle. J Biomech 2022; 143:111283. [PMID: 36113387 DOI: 10.1016/j.jbiomech.2022.111283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/26/2022] [Accepted: 08/31/2022] [Indexed: 10/14/2022]
Abstract
Previous studies of level running suggest runners adjust foot strike to control leg stiffness. This study aimed to determine how runners adjusted mechanical stiffness and foot strike prior to, during, and after a drop in surface height. Ten healthy subjects (5 male, 5 female; 24.32 ± 5.0 years) were video recorded as they ran on an outdoor path with a single drop in surface height (12.5 cm). Foot strike was recorded, while subject velocity, duty factor (DF), normalized maximum ground reaction force (GRFbw), vertical hip displacement (Δy), leg compression (ΔL), vertical (Kvert) and leg stiffness (Kleg), touchdown (TD) and takeoff angle (TO), and flight (Tf) and contact time (Tc) were calculated. Compared to the step before the drop, Tf, GRFbw, Kvert, Kleg, and TO increased, while Tc, DF, Δy, ΔL, and TD decreased in the step after the drop. Across trials, runners had either consistent or variable foot strike patterns. Runners using a consistent pattern most often shifted from rear to fore-foot strike in the steps before and after the drop, while those with a variable pattern showed less dramatic shifts. All parameters, except TD, were significantly different (p < 0.04) based on foot strike pattern, and comparisons between steps before and after the drop (except TD) were significantly different (p < 0.004). Runners with a variable foot strike pattern experienced smaller shifts within mechanical parameters when traveling over the drop, suggesting these runners may be able to stabilize limb mechanics on interrupted surfaces.
Collapse
Affiliation(s)
- Roxanne J Larsen
- Department of Veterinary and Biomedical Sciences, College of Veterinary Medicine, University of Minnesota, Saint Paul, MN, USA.
| | - Robin M Queen
- Kevin P. Granata Biomechanics Lab, Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Daniel Schmitt
- Animal Locomotion Lab, Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
11
|
Andrada E, Mothes O, Stark H, Tresch MC, Denzler J, Fischer MS, Blickhan R. Limb, joint and pelvic kinematic control in the quail coping with steps upwards and downwards. Sci Rep 2022; 12:15901. [PMID: 36151454 PMCID: PMC9508109 DOI: 10.1038/s41598-022-20247-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 09/12/2022] [Indexed: 11/09/2022] Open
Abstract
Small cursorial birds display remarkable walking skills and can negotiate complex and unstructured terrains with ease. The neuromechanical control strategies necessary to adapt to these challenging terrains are still not well understood. Here, we analyzed the 2D- and 3D pelvic and leg kinematic strategies employed by the common quail to negotiate visible steps (upwards and downwards) of about 10%, and 50% of their leg length. We used biplanar fluoroscopy to accurately describe joint positions in three dimensions and performed semi-automatic landmark localization using deep learning. Quails negotiated the vertical obstacles without major problems and rapidly regained steady-state locomotion. When coping with step upwards, the quail mostly adapted the trailing limb to permit the leading leg to step on the elevated substrate similarly as it did during level locomotion. When negotiated steps downwards, both legs showed significant adaptations. For those small and moderate step heights that did not induce aerial running, the quail kept the kinematic pattern of the distal joints largely unchanged during uneven locomotion, and most changes occurred in proximal joints. The hip regulated leg length, while the distal joints maintained the spring-damped limb patterns. However, to negotiate the largest visible steps, more dramatic kinematic alterations were observed. There all joints contributed to leg lengthening/shortening in the trailing leg, and both the trailing and leading legs stepped more vertically and less abducted. In addition, locomotion speed was decreased. We hypothesize a shift from a dynamic walking program to more goal-directed motions that might be focused on maximizing safety.
Collapse
Affiliation(s)
- Emanuel Andrada
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany.
| | - Oliver Mothes
- Computer Vision Group, Friedrich-Schiller-University Jena, Jena, Germany
| | - Heiko Stark
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Matthew C Tresch
- Department of Physiology, Northwestern University, Chicago, IL, USA
| | - Joachim Denzler
- Computer Vision Group, Friedrich-Schiller-University Jena, Jena, Germany
| | - Martin S Fischer
- Institute of Zoology and Evolutionary Research, Friedrich-Schiller-University Jena, Jena, Germany
| | - Reinhard Blickhan
- Science of Motion, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
12
|
Günzel Y, Schmitz J, Dürr V. Locomotor resilience through load-dependent modulation of muscle co-contraction. J Exp Biol 2022; 225:276888. [PMID: 36039914 DOI: 10.1242/jeb.244361] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/22/2022] [Indexed: 11/20/2022]
Abstract
Terrestrial locomotor behavior in variable environments requires resilience to sudden changes in substrate properties. For example, walking animals can adjust to substantial changes in slope and corresponding changes in load distribution among legs. In insects, slope-dependent adjustments have mainly been examined under steady-state conditions, whereas the transition dynamics have been largely neglected. In a previous study, we showed that steady-state adjustments of stick insects to ±45° slopes involve substantial changes in joint torques and muscle activity with only minor changes in leg kinematics. Here, we take a close look at the time course of these adjustments as stick insects compensate for various kinds of disturbances to load distribution. In particular, we test whether the transition from one steady state to another involves distinct transition steps or follows a graded process. To resolve this, we combined simultaneous recordings of whole-body kinematics and hind leg muscle activity to elucidate how freely walking Carausius morosus negotiated a step-change in substrate slope. Step-by-step adjustments reveal that muscle activity changed in a graded manner as a function of body pitch relative to gravity. We further show analogous transient adjustment of muscle activity in response to destabilizing lift-off events of neighboring legs and the disappearance of antagonist co-activation during crawling episodes. Given these three examples of load-dependent regulation of antagonist muscle co-contraction, we conclude that stick insects respond to both transient and sustained changes in load distribution by regulating joint stiffness rather than through distinct transition steps.
Collapse
Affiliation(s)
- Yannick Günzel
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany
| | - Josef Schmitz
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| | - Volker Dürr
- Department of Biological Cybernetics, Faculty of Biology, Bielefeld University, Bielefeld 33615, Germany.,Cognitive Interaction Technology Center of Excellence, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
13
|
Seyfarth A, Zhao G, Jörntell H. Whole Body Coordination for Self-Assistance in Locomotion. Front Neurorobot 2022; 16:883641. [PMID: 35747075 PMCID: PMC9211759 DOI: 10.3389/fnbot.2022.883641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/12/2022] [Indexed: 12/03/2022] Open
Abstract
The dynamics of the human body can be described by the accelerations and masses of the different body parts (e.g., legs, arm, trunk). These body parts can exhibit specific coordination patterns with each other. In human walking, we found that the swing leg cooperates with the upper body and the stance leg in different ways (e.g., in-phase and out-of-phase in vertical and horizontal directions, respectively). Such patterns of self-assistance found in human locomotion could be of advantage in robotics design, in the design of any assistive device for patients with movement impairments. It can also shed light on several unexplained infrastructural features of the CNS motor control. Self-assistance means that distributed parts of the body contribute to an overlay of functions that are required to solve the underlying motor task. To draw advantage of self-assisting effects, precise and balanced spatiotemporal patterns of muscle activation are necessary. We show that the necessary neural connectivity infrastructure to achieve such muscle control exists in abundance in the spinocerebellar circuitry. We discuss how these connectivity patterns of the spinal interneurons appear to be present already perinatally but also likely are learned. We also discuss the importance of these insights into whole body locomotion for the successful design of future assistive devices and the sense of control that they could ideally confer to the user.
Collapse
Affiliation(s)
- André Seyfarth
- Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technische Universität Darmstadt, Darmstadt, Germany
- *Correspondence: André Seyfarth
| | - Guoping Zhao
- Lauflabor Locomotion Laboratory, Institute of Sport Science and Centre for Cognitive Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - Henrik Jörntell
- Neural Basis of Sensorimotor Control, Department of Experimental Medical Science, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Abstract
Recapitulating avian locomotion opens the door for simple and economical control of legged robots without sensory feedback systems.
Collapse
Affiliation(s)
- Jonas Rubenson
- Biomechanics Laboratory, Department of Kinesiology, Pennsylvania State University, University Park, PA, USA
- Integrative and Biomedical Physiology Program, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Gregory S Sawicki
- School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, USA
| |
Collapse
|
15
|
Leg Configuration Analysis and Prototype Design of Biped Robot Based on Spring Mass Model. ACTUATORS 2022. [DOI: 10.3390/act11030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The leg structure with high dynamic stability can make the bionic biped robot have the inherent conditions to perform elastic and highly dynamic motion. Compared with the quadruped robot, the leg structure of the biped robot is more complex and has more degrees of freedom. This also complicates kinematic and dynamic modeling. In this paper, the kinematics model of a bionic biped robot is established. The leg configuration of the robot is a series parallel hybrid mechanism with five active joints and six passive joints. The mechanism is a spring mass model that interacts organically with the environment and mimics the characteristics of human walking well. By analyzing the topological configuration of leg mechanism, we use the screw theory to establish the forward and inverse kinematics models. Then, we build the prototype, and use a step gait to test the model and prototype. The research of this paper has obvious application significance for the design and iteration of biped robot prototype.
Collapse
|
16
|
Weihmann T. The Smooth Transition From Many-Legged to Bipedal Locomotion—Gradual Leg Force Reduction and its Impact on Total Ground Reaction Forces, Body Dynamics and Gait Transitions. Front Bioeng Biotechnol 2022; 9:769684. [PMID: 35186911 PMCID: PMC8855104 DOI: 10.3389/fbioe.2021.769684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 12/20/2021] [Indexed: 11/29/2022] Open
Abstract
Most terrestrial animals move with a specific number of propulsive legs, which differs between clades. The reasons for these differences are often unknown and rarely queried, despite the underlying mechanisms being indispensable for understanding the evolution of multilegged locomotor systems in the animal kingdom and the development of swiftly moving robots. Moreover, when speeding up, a range of species change their number of propulsive legs. The reasons for this behaviour have proven equally elusive. In animals and robots, the number of propulsive legs also has a decisive impact on the movement dynamics of the centre of mass. Here, I use the leg force interference model to elucidate these issues by introducing gradually declining ground reaction forces in locomotor apparatuses with varying numbers of leg pairs in a first numeric approach dealing with these measures’ impact on locomotion dynamics. The effects caused by the examined changes in ground reaction forces and timing thereof follow a continuum. However, the transition from quadrupedal to a bipedal locomotor system deviates from those between multilegged systems with different numbers of leg pairs. Only in quadrupeds do reduced ground reaction forces beneath one leg pair result in increased reliability of vertical body oscillations and therefore increased energy efficiency and dynamic stability of locomotion.
Collapse
|
17
|
A new bionic hydraulic actuator system for legged robots with impact buffering, impact energy absorption, impact energy storage, and force burst. ROBOTICA 2021. [DOI: 10.1017/s0263574721001752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
It is a big challenge for bionic legged robots to realize desired jumping heights and forward-running speeds, let alone achieve springbok-style jump-running. A key limitation is that there is no actuator system that can mimic the springbok’s muscle system to drive leg–foot system movements. In this paper, we analyze the movement process of springboks and summarize some key characteristics of actuator systems. Some key concepts are then identified based on these key characteristics. Next, we propose a new bionic hydraulic joint actuator system with impact buffering, impact energy absorption, impact energy storage, and force burst, which can be applied to various legged robots to achieve higher running speeds, higher jumping heights, longer endurance, heavier loads, and lighter mass.
Collapse
|
18
|
Chang H, Chang J, Clifton G, Gravish N. Anisotropic compliance of robot legs improves recovery from swing-phase collisions. BIOINSPIRATION & BIOMIMETICS 2021; 16:056001. [PMID: 34130262 DOI: 10.1088/1748-3190/ac0b99] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 06/15/2021] [Indexed: 06/12/2023]
Abstract
Uneven terrain in natural environments challenges legged locomotion by inducing instability and causing limb collisions. During the swing phase, the limb releases from the ground and arcs forward to target a secure next foothold. In natural environments leg-obstacle collisions may occur during the swing phase which can result in instability, and may require contact sensing and trajectory re-planning if a collision occurs. However, collision detection and response often requires computationally- and temporally-expensive control strategies. Inspired by low stiffness limbs that can pass past obstacles in small insects and running birds, we investigated a passive method for overcoming swing-collisions. We implemented virtual compliance control in a robot leg that allowed us to systematically vary the limb stiffness and ultimately its response to collisions with obstacles in the environment. In addition to applying a standard positional control during swing motion, we developed two virtual compliance methods: (1) an isotropic compliance for which perturbations in thexandydirections generated the same stiffness response, and (2) a vertical anisotropic compliance in which a decrease of the upwardyvertical limb stiffness enabled the leg to move upwards more freely. The virtual compliance methods slightly increased variability along the limb's planned pathway, but the anisotropic compliance control improved the successful negotiation of step obstacles by over 70% compared to isotropic compliance and positional control methods. We confirmed these findings in simulation and using a self-propelling bipedal robot walking along a linear rail over bumpy terrain. While the importance of limb compliance for stance interactions have been known, our results highlight how limb compliance in the swing-phase can enhance walking performance in naturalistic environments.
Collapse
Affiliation(s)
- Henry Chang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | - Justin Chang
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| | - Glenna Clifton
- Department of Biology, University of Portland, 5000 N Willamette Blvd, Portland, OR 97203, United States of America
| | - Nick Gravish
- Department of Mechanical and Aerospace Engineering, University of California San Diego, 9500 Gilman Dr, La Jolla, CA 92093, United States of America
| |
Collapse
|
19
|
Ashtiani MS, Aghamaleki Sarvestani A, Badri-Spröwitz A. Hybrid Parallel Compliance Allows Robots to Operate With Sensorimotor Delays and Low Control Frequencies. Front Robot AI 2021; 8:645748. [PMID: 34312595 PMCID: PMC8302765 DOI: 10.3389/frobt.2021.645748] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 05/26/2021] [Indexed: 01/30/2023] Open
Abstract
Animals locomote robustly and agile, albeit significant sensorimotor delays of their nervous system and the harsh loading conditions resulting from repeated, high-frequent impacts. The engineered sensorimotor control in legged robots is implemented with high control frequencies, often in the kilohertz range. Consequently, robot sensors and actuators can be polled within a few milliseconds. However, especially at harsh impacts with unknown touch-down timing, controllers of legged robots can become unstable, while animals are seemingly not affected. We examine this discrepancy and suggest and implement a hybrid system consisting of a parallel compliant leg joint with varying amounts of passive stiffness and a virtual leg length controller. We present systematic experiments both in computer simulation and robot hardware. Our system shows previously unseen robustness, in the presence of sensorimotor delays up to 60 ms, or control frequencies as low as 20 Hz, for a drop landing task from 1.3 leg lengths high and with a compliance ratio (fraction of physical stiffness of the sum of virtual and physical stiffness) of 0.7. In computer simulations, we report successful drop-landings from 3.8 leg lengths (1.2 m) for a 2 kg quadruped robot with 100 Hz control frequency and a sensorimotor delay of 35 ms.
Collapse
Affiliation(s)
- Milad Shafiee Ashtiani
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | | | | |
Collapse
|
20
|
A Bio-Inspired Compliance Planning and Implementation Method for Hydraulically Actuated Quadruped Robots with Consideration of Ground Stiffness. SENSORS 2021; 21:s21082838. [PMID: 33920616 PMCID: PMC8072571 DOI: 10.3390/s21082838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 11/17/2022]
Abstract
There has been a rising interest in compliant legged locomotion to improve the adaptability and energy efficiency of robots. However, few approaches can be generalized to soft ground due to the lack of consideration of the ground surface. When a robot locomotes on soft ground, the elastic robot legs and compressible ground surface are connected in series. The combined compliance of the leg and surface determines the natural dynamics of the whole system and affects the stability and efficiency of the robot. This paper proposes a bio-inspired leg compliance planning and implementation method with consideration of the ground surface. The ground stiffness is estimated based on analysis of ground reaction forces in the frequency domain, and the leg compliance is actively regulated during locomotion, adapting them to achieve harmonic oscillation. The leg compliance is planned on the condition of resonant movement which agrees with natural dynamics and facilitates rhythmicity and efficiency. The proposed method has been implemented on a hydraulic quadruped robot. The simulations and experimental results verified the effectiveness of our method.
Collapse
|
21
|
George Thuruthel T, Picardi G, Iida F, Laschi C, Calisti M. Learning to stop: a unifying principle for legged locomotion in varying environments. ROYAL SOCIETY OPEN SCIENCE 2021; 8:210223. [PMID: 33996134 PMCID: PMC8059566 DOI: 10.1098/rsos.210223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/18/2021] [Indexed: 05/24/2023]
Abstract
Evolutionary studies have unequivocally proven the transition of living organisms from water to land. Consequently, it can be deduced that locomotion strategies must have evolved from one environment to the other. However, the mechanism by which this transition happened and its implications on bio-mechanical studies and robotics research have not been explored in detail. This paper presents a unifying control strategy for locomotion in varying environments based on the principle of 'learning to stop'. Using a common reinforcement learning framework, deep deterministic policy gradient, we show that our proposed learning strategy facilitates a fast and safe methodology for transferring learned controllers from the facile water environment to the harsh land environment. Our results not only propose a plausible mechanism for safe and quick transition of locomotion strategies from a water to land environment but also provide a novel alternative for safer and faster training of robots.
Collapse
Affiliation(s)
- Thomas George Thuruthel
- Bio-Inspired Robotics Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK
| | - G. Picardi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - F. Iida
- Bio-Inspired Robotics Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK
| | - C. Laschi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Mechanical Engineering, National University of Singapore, Singapore
| | - M. Calisti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics and AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Lincoln Institute for Agri-food Technology, University of Lincoln, Lincoln, UK
| |
Collapse
|
22
|
Haeufle DFB, Wochner I, Holzmüller D, Driess D, Günther M, Schmitt S. Muscles Reduce Neuronal Information Load: Quantification of Control Effort in Biological vs. Robotic Pointing and Walking. Front Robot AI 2021; 7:77. [PMID: 33501244 PMCID: PMC7805995 DOI: 10.3389/frobt.2020.00077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 05/07/2020] [Indexed: 12/17/2022] Open
Abstract
It is hypothesized that the nonlinear muscle characteristic of biomechanical systems simplify control in the sense that the information the nervous system has to process is reduced through off-loading computation to the morphological structure. It has been proposed to quantify the required information with an information-entropy based approach, which evaluates the minimally required information to control a desired movement, i.e., control effort. The key idea is to compare the same movement but generated by different actuators, e.g., muscles and torque actuators, and determine which of the two morphologies requires less information to generate the same movement. In this work, for the first time, we apply this measure to numerical simulations of more complex human movements: point-to-point arm movements and walking. These models consider up to 24 control signals rendering the brute force approach of the previous implementation to search for the minimally required information futile. We therefore propose a novel algorithm based on the pattern search approach specifically designed to solve this constraint optimization problem. We apply this algorithm to numerical models, which include Hill-type muscle-tendon actuation as well as ideal torque sources acting directly on the joints. The controller for the point-to-point movements was obtained by deep reinforcement learning for muscle and torque actuators. Walking was controlled by proprioceptive neural feedback in the muscular system and a PD controller in the torque model. Results show that the neuromuscular models consistently require less information to successfully generate the movement than the torque-driven counterparts. These findings were consistent for all investigated controllers in our experiments, implying that this is a system property, not a controller property. The proposed algorithm to determine the control effort is more efficient than other standard optimization techniques and provided as open source.
Collapse
Affiliation(s)
- Daniel F B Haeufle
- Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Center for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Isabell Wochner
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| | - David Holzmüller
- Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany.,Institute for Stochastics and Applications, University of Stuttgart, Stuttgart, Germany
| | - Danny Driess
- Machine Learning and Robotics Lab, University of Stuttgart, Stuttgart, Germany.,Max-Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Michael Günther
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Syn Schmitt
- Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany.,Stuttgart Center for Simulation Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
23
|
AminiAghdam S, Blickhan R, Karamanidis K. The influence of sagittal trunk lean on uneven running mechanics. J Exp Biol 2021; 224:jeb228288. [PMID: 33257431 DOI: 10.1242/jeb.228288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 11/19/2020] [Indexed: 11/20/2022]
Abstract
The role of trunk orientation during uneven running is not well understood. This study compared the running mechanics during the approach step to and the step down for a 10 cm expected drop, positioned halfway through a 15 m runway, with that of the level step in 12 participants at a speed of 3.5 m s-1 while maintaining self-selected (17.7±4.2 deg; mean±s.d.), posterior (1.8±7.4 deg) and anterior (26.6±5.6 deg) trunk leans from the vertical. Our findings reveal that the global (i.e. the spring-mass model dynamics and centre-of-mass height) and local (i.e. knee and ankle kinematics and kinetics) biomechanical adjustments during uneven running are specific to the step nature and trunk posture. Unlike the anterior-leaning posture, running with a posterior trunk lean is characterized by increases in leg angle, leg compression, knee flexion angle and moment, resulting in a stiffer knee and a more compliant spring-leg compared with the self-selected condition. In the approach step versus the level step, reductions in leg length and stiffness through the ankle stiffness yield lower leg force and centre-of-mass position. Contrariwise, significant increases in leg length, angle and force, and ankle moment, reflect in a higher centre-of-mass position during the step down. Plus, ankle stiffness significantly decreases, owing to a substantially increased leg compression. Overall, the step down appears to be dominated by centre-of-mass height changes, regardless of having a trunk lean. Observed adjustments during uneven running can be attributed to anticipation of changes to running posture and height. These findings highlight the role of trunk posture in human perturbed locomotion relevant for the design and development of exoskeleton or humanoid bipedal robots.
Collapse
Affiliation(s)
- Soran AminiAghdam
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| | - Reinhard Blickhan
- Department of Motion Science, Institute of Sport Sciences, Friedrich Schiller University Jena, Seidelstraße 20, 07740 Jena, Germany
| | - Kiros Karamanidis
- Sport and Exercise Science Research Centre, School of Applied Sciences, London South Bank University, London SE1 0AA, UK
| |
Collapse
|
24
|
Weihmann T. Survey of biomechanical aspects of arthropod terrestrialisation - Substrate bound legged locomotion. ARTHROPOD STRUCTURE & DEVELOPMENT 2020; 59:100983. [PMID: 33160205 DOI: 10.1016/j.asd.2020.100983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
Abstract
Arthropods are the most diverse clade on earth with regard to both species number and variability of body plans. Their general body plan is characterised by variable numbers of legs, and many-legged locomotion is an essential aspect of many aquatic and terrestrial arthropod species. Moreover, arthropods belong to the first groups of animals to colonise subaerial habitats, and they did so repeatedly and independently in a couple of clades. Those arthropod clades that colonised land habitats were equipped with highly variable body plans and locomotor apparatuses. Proceeding from their respective specific anatomies, they were challenged with strongly changing environmental conditions as well as altered physical and physiological constraints. This review explores the transitions from aquatic to terrestrial habitats across the different arthropod body plans and explains the major mechanisms and principles that constrain design and function of a range of locomotor apparatuses. Important aspects of movement physiology addressed here include the effects of different numbers of legs, different body sizes, miniaturisation and simplification of body plans and different ratios of inertial and damping forces. The article's focus is on continuous legged locomotion, but related ecological and behavioural aspects are also taken into account.
Collapse
Affiliation(s)
- Tom Weihmann
- Dept. of Animal Physiology, Institute of Zoology, University of Cologne, Zülpicher Strasse 47b, 50674, Cologne, Germany.
| |
Collapse
|
25
|
Haeufle DFB, Stollenmaier K, Heinrich I, Schmitt S, Ghazi-Zahedi K. Morphological Computation Increases From Lower- to Higher-Level of Biological Motor Control Hierarchy. Front Robot AI 2020; 7:511265. [PMID: 33501299 PMCID: PMC7805613 DOI: 10.3389/frobt.2020.511265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 08/24/2020] [Indexed: 11/29/2022] Open
Abstract
Voluntary movements, like point-to-point or oscillatory human arm movements, are generated by the interaction of several structures. High-level neuronal circuits in the brain are responsible for planning and initiating a movement. Spinal circuits incorporate proprioceptive feedback to compensate for deviations from the desired movement. Muscle biochemistry and contraction dynamics generate movement driving forces and provide an immediate physical response to external forces, like a low-level decentralized controller. A simple central neuronal command like "initiate a movement" then recruits all these biological structures and processes leading to complex behavior, e.g., generate a stable oscillatory movement in resonance with an external spring-mass system. It has been discussed that the spinal feedback circuits, the biochemical processes, and the biomechanical muscle dynamics contribute to the movement generation, and, thus, take over some parts of the movement generation and stabilization which would otherwise have to be performed by the high-level controller. This contribution is termed morphological computation and can be quantified with information entropy-based approaches. However, it is unknown whether morphological computation actually differs between these different hierarchical levels of the control system. To investigate this, we simulated point-to-point and oscillatory human arm movements with a neuro-musculoskeletal model. We then quantify morphological computation on the different hierarchy levels. The results show that morphological computation is highest for the most central (highest) level of the modeled control hierarchy, where the movement initiation and timing are encoded. Furthermore, they show that the lowest neuronal control layer, the muscle stimulation input, exploits the morphological computation of the biochemical and biophysical muscle characteristics to generate smooth dynamic movements. This study provides evidence that the system's design in the mechanical as well as in the neurological structure can take over important contributions to control, which would otherwise need to be performed by the higher control levels.
Collapse
Affiliation(s)
- Daniel F. B. Haeufle
- Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Katrin Stollenmaier
- Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Isabelle Heinrich
- Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Syn Schmitt
- Stuttgart Center for Simulation Science, Institute for Modelling and Simulation of Biomechanical Systems, University of Stuttgart, Stuttgart, Germany
| | - Keyan Ghazi-Zahedi
- Information Theory of Cognitive Systems, Max-Planck Institute for Mathematics in the Sciences, Leipzig, Germany
| |
Collapse
|
26
|
Mo A, Izzi F, Haeufle DFB, Badri-Spröwitz A. Effective Viscous Damping Enables Morphological Computation in Legged Locomotion. Front Robot AI 2020; 7:110. [PMID: 33501277 PMCID: PMC7805837 DOI: 10.3389/frobt.2020.00110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 06/16/2020] [Indexed: 11/25/2022] Open
Abstract
Muscle models and animal observations suggest that physical damping is beneficial for stabilization. Still, only a few implementations of physical damping exist in compliant robotic legged locomotion. It remains unclear how physical damping can be exploited for locomotion tasks, while its advantages as sensor-free, adaptive force- and negative work-producing actuators are promising. In a simplified numerical leg model, we studied the energy dissipation from viscous and Coulomb damping during vertical drops with ground-level perturbations. A parallel spring- damper is engaged between touch-down and mid-stance, and its damper auto-decouples from mid-stance to takeoff. Our simulations indicate that an adjustable and viscous damper is desired. In hardware we explored effective viscous damping and adjustability, and quantified the dissipated energy. We tested two mechanical, leg-mounted damping mechanisms: a commercial hydraulic damper, and a custom-made pneumatic damper. The pneumatic damper exploits a rolling diaphragm with an adjustable orifice, minimizing Coulomb damping effects while permitting adjustable resistance. Experimental results show that the leg-mounted, hydraulic damper exhibits the most effective viscous damping. Adjusting the orifice setting did not result in substantial changes of dissipated energy per drop, unlike adjusting the damping parameters in the numerical model. Consequently, we also emphasize the importance of characterizing physical dampers during real legged impacts to evaluate their effectiveness for compliant legged locomotion.
Collapse
Affiliation(s)
- An Mo
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
| | - Fabio Izzi
- Dynamic Locomotion Group, Max Planck Institute for Intelligent Systems, Stuttgart, Germany.,Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| | - Daniel F B Haeufle
- Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany.,Centre for Integrative Neuroscience, University of Tübingen, Tübingen, Germany
| | - Alexander Badri-Spröwitz
- Multi-Level Modeling in Motor Control and Rehabilitation Robotics, Hertie-Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
| |
Collapse
|
27
|
Kim S, Park C, Park C. Change in telescoping leg strategy with varying walking speed to modulate force advantage. J Theor Biol 2020; 496:110249. [PMID: 32197958 DOI: 10.1016/j.jtbi.2020.110249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 10/24/2022]
Abstract
Human walking consists of two major sequential events (i.e., single- and double-support phases). Although there have been many studies relating to basic principles of the each stage, how the two distinct but continuous phases interact with each other remains to be clarified. We examined the change in walking strategy with varying walking speed on a local reference frame with telescoping and tangential axes; we expect that the telescoping directional dynamics at the end of a single-support phase change with walking speed to facilitate the modulation of the push-off work during a double-support phase. The telescoping directional force and power are calculated using two methods: model simulation and kinematic configuration. The empirical walking data for eight healthy young subjects and the corresponding model parameters obtained from a data-fit optimization were used to investigate the changing trend of each factor (i.e., force and power) with the increase in speed. The resulting force at the end of the single-support phase significantly increased with the walking speed for both methods, whereas the resulting power remained nearly unchanged and was close to zero for the entire range of walking speeds. This result implies that the positive amount of the telescoping directional force at the end of the single-support phase may be a certain type of preparation for the double-support phase, which can contribute to a larger push-off.
Collapse
Affiliation(s)
- Seyoung Kim
- Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 34103 156 Gajeongbuk-Ro Yuseong-Gu, Daejeon, Republic of Korea.
| | - Cheolhoon Park
- Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 34103 156 Gajeongbuk-Ro Yuseong-Gu, Daejeon, Republic of Korea.
| | - Chanhun Park
- Department of Robotics and Mechatronics, Korea Institute of Machinery & Materials, 34103 156 Gajeongbuk-Ro Yuseong-Gu, Daejeon, Republic of Korea.
| |
Collapse
|
28
|
Schiebel PE, Astley HC, Rieser JM, Agarwal S, Hubicki C, Hubbard AM, Diaz K, Mendelson III JR, Kamrin K, Goldman DI. Mitigating memory effects during undulatory locomotion on hysteretic materials. eLife 2020; 9:e51412. [PMID: 32578532 PMCID: PMC7314545 DOI: 10.7554/elife.51412] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 04/24/2020] [Indexed: 01/12/2023] Open
Abstract
While terrestrial locomotors often contend with permanently deformable substrates like sand, soil, and mud, principles of motion on such materials are lacking. We study the desert-specialist shovel-nosed snake traversing a model sand and find body inertia is negligible despite rapid transit and speed dependent granular reaction forces. New surface resistive force theory (RFT) calculation reveals how wave shape in these snakes minimizes material memory effects and optimizes escape performance given physiological power limitations. RFT explains the morphology and waveform-dependent performance of a diversity of non-sand-specialist snakes but overestimates the capability of those snakes which suffer high lateral slipping of the body. Robophysical experiments recapitulate aspects of these failure-prone snakes and elucidate how re-encountering previously deformed material hinders performance. This study reveals how memory effects stymied the locomotion of a diversity of snakes in our previous studies (Marvi et al., 2014) and indicates avenues to improve all-terrain robots.
Collapse
Affiliation(s)
- Perrin E Schiebel
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Henry C Astley
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
- Biology and the Department of Polymer Science, University of AkronAkronUnited States
| | - Jennifer M Rieser
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Shashank Agarwal
- Department of Mechanical Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Christian Hubicki
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
- Department of Mechanical Engineering, Florida A&M University-Florida State UniversityTallahasseeUnited States
| | - Alex M Hubbard
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Kelimar Diaz
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
| | - Joseph R Mendelson III
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaUnited States
- Zoo AtlantaAtlantaUnited States
| | - Ken Kamrin
- Department of Mechanical Engineering, Florida A&M University-Florida State UniversityTallahasseeUnited States
| | - Daniel I Goldman
- Department of Physics, Georgia Institute of TechnologyAtlantaUnited States
| |
Collapse
|
29
|
Picardi G, Chellapurath M, Iacoponi S, Stefanni S, Laschi C, Calisti M. Bioinspired underwater legged robot for seabed exploration with low environmental disturbance. Sci Robot 2020; 5:5/42/eaaz1012. [DOI: 10.1126/scirobotics.aaz1012] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 04/06/2020] [Indexed: 12/12/2022]
Abstract
Robots have the potential to assist and complement humans in the study and exploration of extreme and hostile environments. For example, valuable scientific data have been collected with the aid of propeller-driven autonomous and remotely operated vehicles in underwater operations. However, because of their nature as swimmers, such robots are limited when closer interaction with the environment is required. Here, we report a bioinspired underwater legged robot, called SILVER2, that implements locomotion modalities inspired by benthic animals (organisms that harness the interaction with the seabed to move; for example, octopi and crabs). Our robot can traverse irregular terrains, interact delicately with the environment, approach targets safely and precisely, and hold position passively and silently. The capabilities of our robot were validated through a series of field missions in real sea conditions in a depth range between 0.5 and 12 meters.
Collapse
Affiliation(s)
- G. Picardi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - M. Chellapurath
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - S. Iacoponi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - S. Stefanni
- Stazione Zoologica Anton Dohrn, Napoli, Italy
| | - C. Laschi
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
| | - M. Calisti
- The BioRobotics Institute, Scuola Superiore Sant’Anna, Pisa, Italy
- Department of Excellence in Robotics & AI, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
30
|
Jiang M, Zhou Z, Gravish N. Flexoskeleton Printing Enables Versatile Fabrication of Hybrid Soft and Rigid Robots. Soft Robot 2020; 7:770-778. [PMID: 32255734 DOI: 10.1089/soro.2019.0156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
One of the many secrets to the success and prevalence of insects is their versatile, robust, and complex exoskeleton morphology. A fundamental challenge in insect-inspired robotics has been the fabrication of robotic exoskeletons that can match the complexity of exoskeleton structural mechanics. Hybrid robots composed of rigid and soft elements have previously required access to expensive multi-material three-dimensional (3D) printers, multistep casting and machining processes, or limited material choice when using consumer-grade fabrication methods. In this study, we introduce a new design and fabrication process to rapidly construct flexible exoskeleton-inspired robots called "flexoskeleton printing." We modify a consumer-grade fused deposition modeling (FDM) 3D printer to deposit filament directly onto a heated thermoplastic base layer, which provides extremely strong bond strength between deposited material and the inextensible, flexible base layer. This process significantly improves the fatigue resistance of printed components and enables a new class of insect-inspired robot morphologies. We demonstrate these capabilities through design and testing of a wide library of canonical flexoskeleton elements; ultimately leading to the integration of elements into a flexoskeleton walking legged robot.
Collapse
Affiliation(s)
- Mingsong Jiang
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| | - Ziyi Zhou
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| | - Nicholas Gravish
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, USA
| |
Collapse
|
31
|
Schumacher C, Sharbafi M, Seyfarth A, Rode C. Biarticular muscles in light of template models, experiments and robotics: a review. J R Soc Interface 2020; 17:20180413. [PMID: 32093540 PMCID: PMC7061696 DOI: 10.1098/rsif.2018.0413] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 01/31/2020] [Indexed: 11/25/2022] Open
Abstract
Leg morphology is an important outcome of evolution. A remarkable morphological leg feature is the existence of biarticular muscles that span adjacent joints. Diverse studies from different fields of research suggest a less coherent understanding of the muscles' functionality in cyclic, sagittal plane locomotion. We structured this review of biarticular muscle function by reflecting biomechanical template models, human experiments and robotic system designs. Within these approaches, we surveyed the contribution of biarticular muscles to the locomotor subfunctions (stance, balance and swing). While mono- and biarticular muscles do not show physiological differences, the reviewed studies provide evidence for complementary and locomotor subfunction-specific contributions of mono- and biarticular muscles. In stance, biarticular muscles coordinate joint movements, improve economy (e.g. by transferring energy) and secure the zig-zag configuration of the leg against joint overextension. These commonly known functions are extended by an explicit role of biarticular muscles in controlling the angular momentum for balance and swing. Human-like leg arrangement and intrinsic (compliant) properties of biarticular structures improve the controllability and energy efficiency of legged robots and assistive devices. Future interdisciplinary research on biarticular muscles should address their role for sensing and control as well as non-cyclic and/or non-sagittal motions, and non-static moment arms.
Collapse
Affiliation(s)
- C. Schumacher
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - M. Sharbafi
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - A. Seyfarth
- Lauflabor Locomotion Laboratory, Centre for Cognitive Science, Institute of Sport Science, Technische Universität Darmstadt, Darmstadt, Germany
| | - C. Rode
- Motion and Exercise Science, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
32
|
Towards the Exploitation of Physical Compliance in Segmented and Electrically Actuated Robotic Legs: A Review Focused on Elastic Mechanisms. SENSORS 2019; 19:s19245351. [PMID: 31817236 PMCID: PMC6960854 DOI: 10.3390/s19245351] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/27/2019] [Accepted: 12/02/2019] [Indexed: 11/18/2022]
Abstract
Physical compliance has been increasingly used in robotic legs, due to its advantages in terms of the mechanical regulation of leg mechanics and energetics and the passive response to abrupt external disturbances during locomotion. This article presents a review of the exploitation of physical compliance in robotic legs. Particular attention has been paid to the segmented, electrically actuated robotic legs, such that a comparable analysis can be provided. The utilization of physical compliance is divided into three main categories, depending on the setting locations and configurations, namely, (1) joint series compliance, (2) joint parallel compliance, and (3) leg distal compliance. With an overview of the representative work related to each category, the corresponding working principles and implementation processes of various physical compliances are explained. After that, we analyze in detail some of the structural characteristics and performance influences of the existing designs, including the realization method, compliance profile, damping design, and quantitative changes in terms of mechanics and energetics. In parallel, the design challenges and possible future works associated with physical compliance in robotic legs are also identified and proposed. This article is expected to provide useful paradigmatic implementations and design guidance for physical compliance for researchers in the construction of novel physically compliant robotic legs.
Collapse
|
33
|
Cushion EJ, Warmenhoven J, North JS, Cleather DJ. Principal Component Analysis Reveals the Proximal to Distal Pattern in Vertical Jumping Is Governed by Two Functional Degrees of Freedom. Front Bioeng Biotechnol 2019; 7:193. [PMID: 31440505 PMCID: PMC6694595 DOI: 10.3389/fbioe.2019.00193] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/24/2019] [Indexed: 11/13/2022] Open
Abstract
The successful completion of motor tasks requires effective control of multiple degrees of freedom (DOF), with adaptations occurring as a function of varying performance constraints. In this study we sought to compare the emergent coordination strategies employed in vertical jumping under different task constraints [countermovement jump (CMJ) with arm swing-CMJas and no arm swing-CMJnas]. In order to achieve this, principal component analysis (PCA) was conducted on joint moment waveform data from the hip, knee and ankle. This statistical approach has the advantage of analyzing the whole movement within a time series and reduces multidimensional datasets to lower dimensions for analysis. Both individual and group analyses were conducted. For individual analysis, PCA was conducted on combined hip, knee, and ankle joint moment data for each individual across both CMJnas (thirty-eight participants), and CMJas (twenty-two participants) conditions. PCA was also performed comparing all data from each individual across CMJnas and CMJas conditions. The results revealed a maximum of three principal components (PC) explained over 90% of the variance in the data sets for both conditions and within individual and group analyses. For individual analysis, no more than 2PCs were required for both conditions. For group analysis, CMJas required 3PCs to explain over 90% of the variance within the dataset and CMJnas only required 2PCs. Reconstruction of the original NJM waveforms from the PCA output demonstrates a greater loading of hip and knee joint moments to PC1, with PC2 showing a greater loading to ankle joint moment. The reduction in dimensions of the original data shows the proximal to distal extension pattern in the sagittal plane, typical of vertical jumping tasks, is governed by only 2 functional DOF, at both a group, and individual level, rather than the typically reported 3 mechanical DOF in some forms of jumping.
Collapse
Affiliation(s)
- Emily J Cushion
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, United Kingdom
| | - John Warmenhoven
- Exercise and Sports Science, Faculty of Health Sciences, The University of Sydney, Lidcombe, NSW, Australia
| | - Jamie S North
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, United Kingdom
| | - Daniel J Cleather
- Faculty of Sport, Health and Applied Science, St Mary's University, Twickenham, United Kingdom
| |
Collapse
|
34
|
Van Oeveren B, De Ruiter C, Hoozemans M, Beek P, Van Dieën J. Inter-individual differences in stride frequencies during running obtained from wearable data. J Sports Sci 2019; 37:1996-2006. [DOI: 10.1080/02640414.2019.1614137] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- B.T. Van Oeveren
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - C.J. De Ruiter
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - M.J.M. Hoozemans
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - P.J. Beek
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| | - J.H. Van Dieën
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands
| |
Collapse
|
35
|
Kent JA, Takahashi KZ, Stergiou N. Uneven terrain exacerbates the deficits of a passive prosthesis in the regulation of whole body angular momentum in individuals with a unilateral transtibial amputation. J Neuroeng Rehabil 2019; 16:25. [PMID: 30717750 PMCID: PMC6360756 DOI: 10.1186/s12984-019-0497-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 01/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Uneven ground is a frequently encountered, yet little-studied challenge for individuals with amputation. The absence of control at the prosthetic ankle to facilitate correction for surface inconsistencies, and diminished sensory input from the extremity, add unpredictability to an already complex control problem, and leave limited means to produce appropriate corrective responses in a timely manner. Whole body angular momentum, L, and its variability across several strides may provide insight into the extent to which an individual can regulate their movement in such a context. The aim of this study was to explore L in individuals with a transtibial amputation, when challenged by an uneven surface. We hypothesized that, similar to previous studies, sagittal plane L would be asymmetrical on uneven terrain, and further, that uneven terrain would evoke a greater variability in L from stride to stride in individuals with amputation in comparison to unimpaired individuals, due to a limited ability to discern and correct for changing contours beneath the prosthetic foot. METHODS We examined sagittal plane L in ten individuals with a unilateral transtibial amputation and age- and gender- matched control participants walking on flat (FT) and uneven (UT) treadmills. The average range of L in the first 50% of the gait cycle (LR), the average L at foot contact (LC) and their standard deviations (vLR, vLC) were computed over 60 strides on each treadmill. RESULTS On both surfaces we observed a higher LR on the prosthetic side and a reduced LC on the sound side (p < 0.001) in the amputee cohort, consistent with previous findings. UT invoked an increase in LC (p = 0.006), but not LR (p = 0.491). vLR, and vLC were higher in individuals with amputation (p < 0.001, p = 0.002), and increased in both groups on UT (p < 0.001). CONCLUSIONS These findings support previous assertions that individuals with amputation regulate L less effectively, and suggest that the deficits of the prosthesis are exacerbated on uneven terrain, potentially to the detriment of balance. Further, the results indicate that a greater demand may be placed on the unaffected side to control movement.
Collapse
Affiliation(s)
- Jenny A Kent
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA
| | - Kota Z Takahashi
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA
| | - Nicholas Stergiou
- Department of Biomechanics and Center for Research in Human Movement Variability, College of Education, University of Nebraska at Omaha, 6160 University Drive South, Omaha, NE, 68182-0860, USA. .,College of Public Health, 984355 University of Nebraska Medical Center, Omaha, NE, 68198-4355, USA.
| |
Collapse
|
36
|
Running in highly cushioned shoes increases leg stiffness and amplifies impact loading. Sci Rep 2018; 8:17496. [PMID: 30504822 PMCID: PMC6269547 DOI: 10.1038/s41598-018-35980-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 11/09/2018] [Indexed: 11/08/2022] Open
Abstract
Running shoe cushioning has become a standard method for managing impact loading and consequent injuries due to running. However, despite decades of shoe technology developments and the fact that shoes have become increasingly cushioned, aimed to ease the impact on runners' legs, running injuries have not decreased. To better understand the shoe cushioning paradox, we examined impact loading and the spring-like mechanics of running in a conventional control running shoe and a highly cushioned maximalist shoe at two training speeds, 10 and 14.5 km/h. We found that highly cushioned maximalist shoes alter spring-like running mechanics and amplify rather than attenuate impact loading. This surprising outcome was more pronounced at fast running speed (14.5 km/h), where ground reaction force impact peak and loading rate were 10.7% and 12.3% greater, respectively, in the maximalist shoe compared to the conventional shoe, whereas only a slightly higher impact peak (6.4%) was found at the 10 km/h speed with the maximalist shoe. We attribute the greater impact loading with the maximalist shoes to stiffer leg during landing compared to that of running with the conventional shoes. These discoveries may explain why shoes with more cushioning do not protect against impact-related running injuries.
Collapse
|
37
|
Buchler D, Calandra R, Scholkopf B, Peters J. Control of Musculoskeletal Systems Using Learned Dynamics Models. IEEE Robot Autom Lett 2018. [DOI: 10.1109/lra.2018.2849601] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
38
|
Sellers WI, Hirasaki E. Quadrupedal locomotor simulation: producing more realistic gaits using dual-objective optimization. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171836. [PMID: 29657790 PMCID: PMC5882714 DOI: 10.1098/rsos.171836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 02/01/2018] [Indexed: 06/08/2023]
Abstract
In evolutionary biomechanics it is often considered that gaits should evolve to minimize the energetic cost of travelling a given distance. In gait simulation this goal often leads to convincing gait generation. However, as the musculoskeletal models used get increasingly sophisticated, it becomes apparent that such a single goal can lead to extremely unrealistic gait patterns. In this paper, we explore the effects of requiring adequate lateral stability and show how this increases both energetic cost and the realism of the generated walking gait in a high biofidelity chimpanzee musculoskeletal model. We also explore the effects of changing the footfall sequences in the simulation so it mimics both the diagonal sequence walking gaits that primates typically use and also the lateral sequence walking gaits that are much more widespread among mammals. It is apparent that adding a lateral stability criterion has an important effect on the footfall phase relationship, suggesting that lateral stability may be one of the key drivers behind the observed footfall sequences in quadrupedal gaits. The observation that single optimization goals are no longer adequate for generating gait in current models has important implications for the use of biomimetic virtual robots to predict the locomotor patterns in fossil animals.
Collapse
Affiliation(s)
- William Irvin Sellers
- School of Earth and Environmental Sciences, The University of Manchester, Manchester, UK
| | - Eishi Hirasaki
- Primate Research Institute, Kyoto University, Inuyama, Japan
| |
Collapse
|
39
|
Calisti M, Laschi C. Morphological and control criteria for self-stable underwater hopping. BIOINSPIRATION & BIOMIMETICS 2017; 13:016001. [PMID: 28976367 DOI: 10.1088/1748-3190/aa90f6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This paper presents the self-stabilisation features of a hopping gait during underwater legged locomotion. We used a bio-inspired fundamental model of this gait, the underwater spring-loaded inverted pendulum model, to numerically derive quantitative (dimension of the basin of attraction, Floquet multipliers, mean horizontal speed) and qualitative (shape of the basin) features which characterise the self-stability of the system. Furthermore, we compared the results obtained with a terrestrial self-stable running model (i.e. the spring-loaded inverted pendulum with swing-leg retraction) to highlight the role of water-related components in relation to dynamic legged locomotion. The analysis revealed fundamental morphological and actuation parameters that could be used to design self-stabilising underwater hopping machines, as well as elucidating their role with respect to stability and speed. Underwater hopping is a simple and reliable locomotion, as it does not require complex control feedback to reject significant disturbances. Thanks to its high self-stabilising property, underwater hopping appears to be a reliable alternative locomotion for underwater robots.
Collapse
Affiliation(s)
- Marcello Calisti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio, 34, 56025-Pontedera (PI), Italy
| | | |
Collapse
|
40
|
Vujovic V, Rosendo A, Brodbeck L, Iida F. Evolutionary Developmental Robotics: Improving Morphology and Control of Physical Robots. ARTIFICIAL LIFE 2017; 23:169-185. [PMID: 28513207 DOI: 10.1162/artl_a_00228] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Evolutionary algorithms have previously been applied to the design of morphology and control of robots. The design space for such tasks can be very complex, which can prevent evolution from efficiently discovering fit solutions. In this article we introduce an evolutionary-developmental (evo-devo) experiment with real-world robots. It allows robots to grow their leg size to simulate ontogenetic morphological changes, and this is the first time that such an experiment has been performed in the physical world. To test diverse robot morphologies, robot legs of variable shapes were generated during the evolutionary process and autonomously built using additive fabrication. We present two cases with evo-devo experiments and one with evolution, and we hypothesize that the addition of a developmental stage can be used within robotics to improve performance. Moreover, our results show that a nonlinear system-environment interaction exists, which explains the nontrivial locomotion patterns observed. In the future, robots will be present in our daily lives, and this work introduces for the first time physical robots that evolve and grow while interacting with the environment.
Collapse
Affiliation(s)
- Vuk Vujovic
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Andre Rosendo
- Contact author
- Department of Engineering, Trumpington Street, The University of Cambridge, Cambridge, CB21PZ, UK. E-mail: (A.R.)
| | - Luzius Brodbeck
- Institute of Robotics and Intelligent Systems, ETH Zurich, Zurich, Switzerland
| | - Fumiya Iida
- Department of Engineering, Trumpington Street, The University of Cambridge, Cambridge, CB21PZ, UK. E-mail: (A.R.)
| |
Collapse
|
41
|
Calisti M, Picardi G, Laschi C. Fundamentals of soft robot locomotion. J R Soc Interface 2017; 14:20170101. [PMID: 28539483 PMCID: PMC5454300 DOI: 10.1098/rsif.2017.0101] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/27/2017] [Indexed: 11/12/2022] Open
Abstract
Soft robotics and its related technologies enable robot abilities in several robotics domains including, but not exclusively related to, manipulation, manufacturing, human-robot interaction and locomotion. Although field applications have emerged for soft manipulation and human-robot interaction, mobile soft robots appear to remain in the research stage, involving the somehow conflictual goals of having a deformable body and exerting forces on the environment to achieve locomotion. This paper aims to provide a reference guide for researchers approaching mobile soft robotics, to describe the underlying principles of soft robot locomotion with its pros and cons, and to envisage applications and further developments for mobile soft robotics.
Collapse
Affiliation(s)
- M Calisti
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - G Picardi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - C Laschi
- The BioRobotics Institute, Scuola Superiore Sant'Anna, Viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| |
Collapse
|
42
|
Müller VC, Hoffmann M. What Is Morphological Computation? On How the Body Contributes to Cognition and Control. ARTIFICIAL LIFE 2017; 23:1-24. [PMID: 28140632 DOI: 10.1162/artl_a_00219] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The contribution of the body to cognition and control in natural and artificial agents is increasingly described as "offloading computation from the brain to the body," where the body is said to perform "morphological computation." Our investigation of four characteristic cases of morphological computation in animals and robots shows that the "offloading" perspective is misleading. Actually, the contribution of body morphology to cognition and control is rarely computational, in any useful sense of the word. We thus distinguish (1) morphology that facilitates control, (2) morphology that facilitates perception, and the rare cases of (3) morphological computation proper, such as reservoir computing, where the body is actually used for computation. This result contributes to the understanding of the relation between embodiment and computation: The question for robot design and cognitive science is not whether computation is offloaded to the body, but to what extent the body facilitates cognition and control-how it contributes to the overall orchestration of intelligent behavior.
Collapse
Affiliation(s)
| | - Matej Hoffmann
- Istituto Italiano di Tecnologia Czech Technical University in Prague
| |
Collapse
|
43
|
Sainton P, Nicol C, Cabri J, Barthèlemy-Montfort J, Chavet P. Kinetics and Muscle Activity Patterns during Unweighting and Reloading Transition Phases in Running. PLoS One 2016; 11:e0168545. [PMID: 27992539 PMCID: PMC5167401 DOI: 10.1371/journal.pone.0168545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 12/02/2016] [Indexed: 11/23/2022] Open
Abstract
Amongst reduced gravity simulators, the lower body positive pressure (LBPP) treadmill is emerging as an innovative tool for both rehabilitation and fundamental research purposes as it allows running while experiencing reduced vertical ground reaction forces. The appropriate use of such a treadmill requires an improved understanding of the associated neuromechanical changes. This study concentrates on the runner’s adjustments to LBPP-induced unweighting and reloading during running. Nine healthy males performed two running series of nine minutes at natural speed. Each series comprised three sequences of three minutes at: 100% bodyweight (BW), 60 or 80% BW, and 100% BW. The progressive unweighting and reloading transitions lasted 10 to 15 s. The LBPP-induced unweighting level, vertical ground reaction force and center of mass accelerations were analyzed together with surface electromyographic activity from 6 major lower limb muscles. The analyses of stride-to-stride adjustments during each transition established highly linear relationships between the LBPP-induced progressive changes of BW and most mechanical parameters. However, the impact peak force and the loading rate systematically presented an initial 10% increase with unweighting which could result from a passive mechanism of leg retraction. Another major insight lies in the distinct neural adjustments found amongst the recorded lower-limb muscles during the pre- and post-contact phases. The preactivation phase was characterized by an overall EMG stability, the braking phase by decreased quadriceps and soleus muscle activities, and the push-off phase by decreased activities of the shank muscles. These neural changes were mirrored during reloading. These neural adjustments can be attributed in part to the lack of visual cues on the foot touchdown. These findings highlight both the rapidity and the complexity of the neuromechanical changes associated with LBPP-induced unweighting and reloading during running. This in turn emphasizes the need for further investigation of the evolution over time of these neuromechanical changes.
Collapse
Affiliation(s)
- Patrick Sainton
- Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
| | - Caroline Nicol
- Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
| | - Jan Cabri
- Department of Physical Performance, Norwegian School of Sport Sciences, Oslo, Norway.,LU:NEX-University, Faculty Health Sciences, Differdange, Luxembourg
| | | | - Pascale Chavet
- Aix-Marseille University, CNRS, ISM UMR 7287, Marseille, France
| |
Collapse
|
44
|
Aguilar J, Zhang T, Qian F, Kingsbury M, McInroe B, Mazouchova N, Li C, Maladen R, Gong C, Travers M, Hatton RL, Choset H, Umbanhowar PB, Goldman DI. A review on locomotion robophysics: the study of movement at the intersection of robotics, soft matter and dynamical systems. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:110001. [PMID: 27652614 DOI: 10.1088/0034-4885/79/11/110001] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Discovery of fundamental principles which govern and limit effective locomotion (self-propulsion) is of intellectual interest and practical importance. Human technology has created robotic moving systems that excel in movement on and within environments of societal interest: paved roads, open air and water. However, such devices cannot yet robustly and efficiently navigate (as animals do) the enormous diversity of natural environments which might be of future interest for autonomous robots; examples include vertical surfaces like trees and cliffs, heterogeneous ground like desert rubble and brush, turbulent flows found near seashores, and deformable/flowable substrates like sand, mud and soil. In this review we argue for the creation of a physics of moving systems-a 'locomotion robophysics'-which we define as the pursuit of principles of self-generated motion. Robophysics can provide an important intellectual complement to the discipline of robotics, largely the domain of researchers from engineering and computer science. The essential idea is that we must complement the study of complex robots in complex situations with systematic study of simplified robotic devices in controlled laboratory settings and in simplified theoretical models. We must thus use the methods of physics to examine both locomotor successes and failures using parameter space exploration, systematic control, and techniques from dynamical systems. Using examples from our and others' research, we will discuss how such robophysical studies have begun to aid engineers in the creation of devices that have begun to achieve life-like locomotor abilities on and within complex environments, have inspired interesting physics questions in low dimensional dynamical systems, geometric mechanics and soft matter physics, and have been useful to develop models for biological locomotion in complex terrain. The rapidly decreasing cost of constructing robot models with easy access to significant computational power bodes well for scientists and engineers to engage in a discipline which can readily integrate experiment, theory and computation.
Collapse
Affiliation(s)
- Jeffrey Aguilar
- School of Physics, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Müller R, Birn-Jeffery AV, Blum Y. Human and avian running on uneven ground: a model-based comparison. J R Soc Interface 2016; 13:rsif.2016.0529. [PMID: 27655670 DOI: 10.1098/rsif.2016.0529] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 08/25/2016] [Indexed: 01/01/2023] Open
Abstract
Birds and humans are successful bipedal runners, who have individually evolved bipedalism, but the extent of the similarities and differences of their bipedal locomotion is unknown. In turn, the anatomical differences of their locomotor systems complicate direct comparisons. However, a simplifying mechanical model, such as the conservative spring-mass model, can be used to describe both avian and human running and thus, provides a way to compare the locomotor strategies that birds and humans use when running on level and uneven ground. Although humans run with significantly steeper leg angles at touchdown and stiffer legs when compared with cursorial ground birds, swing-leg adaptations (leg angle and leg length kinematics) used by birds and humans while running appear similar across all types of uneven ground. Nevertheless, owing to morphological restrictions, the crouched avian leg has a greater range of leg angle and leg length adaptations when coping with drops and downward steps than the straight human leg. On the other hand, the straight human leg seems to use leg stiffness adaptation when coping with obstacles and upward steps unlike the crouched avian leg posture.
Collapse
Affiliation(s)
- R Müller
- Motionscience, Friedrich-Schiller-University Jena, Jena, Germany
| | - A V Birn-Jeffery
- Department of Zoology, University of Cambridge, Cambridge, UK Centre for Sports and Exercise Medicine, Queen Mary University of London, Mile End Hospital, Bancroft Road, London E1 4DG, UK
| | - Y Blum
- Motionscience, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
46
|
Larsen RJ, Jackson WH, Schmitt D. Mechanisms for regulating step length while running towards and over an obstacle. Hum Mov Sci 2016; 49:186-95. [PMID: 27423264 DOI: 10.1016/j.humov.2016.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/05/2016] [Accepted: 07/02/2016] [Indexed: 10/21/2022]
Abstract
The ability to run across uneven terrain with continuous stable movement is critical to the safety and efficiency of a runner. Successful step-to-step stabilization while running may be mediated by minor adjustments to a few key parameters (e.g., leg stiffness, step length, foot strike pattern). However, it is not known to what degree runners in relatively natural settings (e.g., trails, paved road, curbs) use the same strategies across multiple steps. This study investigates how three readily measurable running parameters - step length, foot placement, and foot strike pattern - are adjusted in response to encountering a typical urban obstacle - a sidewalk curb. Thirteen subjects were video-recorded as they ran at self-selected slow and fast paces. Runners targeted a specific distance before the curb for foot placement, and lengthened their step over the curb (p<0.0001) regardless of where the step over the curb was initiated. These strategies of adaptive locomotion disrupt step cycles temporarily, and may increase locomotor cost and muscle loading, but in the end assure dynamic stability and minimize the risk of injury over the duration of a run.
Collapse
Affiliation(s)
- Roxanne J Larsen
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA.
| | - William H Jackson
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| | - Daniel Schmitt
- Department of Evolutionary Anthropology, Duke University, Durham, NC, USA
| |
Collapse
|
47
|
Hyun DJ, Lee J, Park S, Kim S. Implementation of trot-to-gallop transition and subsequent gallop on the MIT Cheetah I. Int J Rob Res 2016. [DOI: 10.1177/0278364916640102] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This paper presents a demonstration of the trot-to-gallop transition and subsequent stable gallop in a robotic quadruped. The MIT Cheetah I, a planar quadruped platform for high-speed running, achieves these tasks with a speed of 3.2 m/s (Froude number of 2.1) on a treadmill. The controller benefits from clues from biological findings and it incorporates (1) a gait pattern modulation that imposes predefined gait patterns with a proprioceptive touchdown feedback, (2) tunable equilibrium-point foot-end trajectories for four limbs that intentionally modulate ground reaction forces, and (3) programmable leg compliance that provides instantaneous reflexes to leg–ground interaction. An inertial measurement unit sensor is integrated with the controller in order to regulate leg angles of attack at touchdown. We reduce the dimension of the control parameters which describe temporal/spatial characteristics of quadruped locomotion, and the values are tuned via dynamic simulation and then experiment. Given a pre-defined virtual leg compliance and a desired angle of attack of legs, the equilibrium-point foot-end trajectories and phase relationships between four legs for stable trot and gallop gaits are found independently. We propose a simple throw-and-catch gait transition strategy which connects two stable limit cycles, the trot and the gallop, by linearly varying control parameters during the transition period. Successful gait transition is achieved in both simulation and experiment. Comprehensive analysis on the characteristics of the MIT Cheetah I experimental trot-to-gallop transition is provided. The phase portraits imply that stable limit cycles are achieved with the proposed controller in both trot and gallop, which enables the trot-to-gallop gait transition at high speed.
Collapse
Affiliation(s)
- Dong Jin Hyun
- Department of Mechanical Engineering,
Massachusetts Institute of Technology, USA
| | - Jongwoo Lee
- Department of Mechanical Engineering,
Massachusetts Institute of Technology, USA
- Center for Robotics Research, Korea Institute
of Science and Technology, Republic of Korea
| | - SangIn Park
- Department of Mechanical Engineering,
Massachusetts Institute of Technology, USA
| | - Sangbae Kim
- Department of Mechanical Engineering,
Massachusetts Institute of Technology, USA
| |
Collapse
|
48
|
Heidlauf T, Klotz T, Rode C, Altan E, Bleiler C, Siebert T, Röhrle O. A multi-scale continuum model of skeletal muscle mechanics predicting force enhancement based on actin-titin interaction. Biomech Model Mechanobiol 2016; 15:1423-1437. [PMID: 26935301 DOI: 10.1007/s10237-016-0772-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/17/2016] [Indexed: 10/22/2022]
Abstract
Although recent research emphasises the possible role of titin in skeletal muscle force enhancement, this property is commonly ignored in current computational models. This work presents the first biophysically based continuum-mechanical model of skeletal muscle that considers, in addition to actin-myosin interactions, force enhancement based on actin-titin interactions. During activation, titin attaches to actin filaments, which results in a significant reduction in titin's free molecular spring length and therefore results in increased titin forces during a subsequent stretch. The mechanical behaviour of titin is included on the microscopic half-sarcomere level of a multi-scale chemo-electro-mechanical muscle model, which is based on the classic sliding-filament and cross-bridge theories. In addition to titin stress contributions in the muscle fibre direction, the continuum-mechanical constitutive relation accounts for geometrically motivated, titin-induced stresses acting in the muscle's cross-fibre directions. Representative simulations of active stretches under maximal and submaximal activation levels predict realistic magnitudes of force enhancement in fibre direction. For example, stretching the model by 20 % from optimal length increased the isometric force at the target length by about 30 %. Predicted titin-induced stresses in the muscle's cross-fibre directions are rather insignificant. Including the presented development in future continuum-mechanical models of muscle function in dynamic situations will lead to more accurate model predictions during and after lengthening contractions.
Collapse
Affiliation(s)
- Thomas Heidlauf
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany.
| | - Thomas Klotz
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Christian Rode
- Institute of Motion Science, Friedrich-Schiller-University, Seidelstr. 20, 07749, Jena, Germany
| | - Ekin Altan
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Christian Bleiler
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| | - Tobias Siebert
- Department of Sport and Motion Science, University of Stuttgart, Allmandring 28, 70569, Stuttgart, Germany
| | - Oliver Röhrle
- Institute of Applied Mechanics (CE), Pfaffenwaldring 7, 70569, Stuttgart, Germany
| |
Collapse
|
49
|
Hamlet C, Fauci LJ, Tytell ED. The effect of intrinsic muscular nonlinearities on the energetics of locomotion in a computational model of an anguilliform swimmer. J Theor Biol 2015; 385:119-29. [DOI: 10.1016/j.jtbi.2015.08.023] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 08/24/2015] [Accepted: 08/25/2015] [Indexed: 11/26/2022]
|
50
|
Renjewski D, Sprowitz A, Peekema A, Jones M, Hurst J. Exciting Engineered Passive Dynamics in a Bipedal Robot. IEEE T ROBOT 2015. [DOI: 10.1109/tro.2015.2473456] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|