1
|
Madjer N, Shaju R, Vipond C, MacDougall A, Murty P. Heidenhain Variant of Creutzfeldt-Jakob Disease: A Case Report. Cureus 2024; 16:e67848. [PMID: 39328602 PMCID: PMC11424390 DOI: 10.7759/cureus.67848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Creutzfeldt-Jakob disease (CJD) is a rare, rapidly progressive, fatal neurodegenerative disorder caused by an accumulation of protein-containing particles called prions in the central nervous system. The Heidenhain variant (HvCJD) is a rare subtype of CJD that presents with predominantly visual symptoms at onset. The patient presented in this case had several weeks of visual symptoms prior to hospital admission. Due to the rare nature of this disease, this patient underwent a substantial and invasive workup of her symptoms that eventually led to her being diagnosed with an incurable disease. The aim of this report is to highlight the clinical presentation and diagnostic evaluation of a patient suffering from HvCJD, with a focus on the initial presentation of progressive vision loss prior to the onset of cognitive impairment.
Collapse
Affiliation(s)
- Nikolina Madjer
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | - Rahul Shaju
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | - Colin Vipond
- Internal Medicine, Advocate Lutheran General Hospital, Park Ridge, USA
| | | | - Pavan Murty
- Neurology, Advocate Lutheran General Hospital, Park Ridge, USA
| |
Collapse
|
2
|
Bashir S, Aiman A, Shahid M, Chaudhary AA, Sami N, Basir SF, Hassan I, Islam A. Amyloid-induced neurodegeneration: A comprehensive review through aggregomics perception of proteins in health and pathology. Ageing Res Rev 2024; 96:102276. [PMID: 38499161 DOI: 10.1016/j.arr.2024.102276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 03/20/2024]
Abstract
Amyloidosis of protein caused by fibrillation and aggregation are some of the most exciting new edges not only in protein sciences but also in molecular medicines. The present review discusses recent advancements in the field of neurodegenerative diseases and therapeutic applications with ongoing clinical trials, featuring new areas of protein misfolding resulting in aggregation. The endogenous accretion of protein fibrils having fibrillar morphology symbolizes the beginning of neuro-disorders. Prognostic amyloidosis is prominent in numerous degenerative infections such as Alzheimer's and Parkinson's disease, Amyotrophic lateral sclerosis (ALS), etc. However, the molecular basis determining the intracellular or extracellular evidence of aggregates, playing a significant role as a causative factor in neurodegeneration is still unclear. Structural conversions and protein self-assembly resulting in the formation of amyloid oligomers and fibrils are important events in the pathophysiology of the disease. This comprehensive review sheds light on the evolving landscape of potential treatment modalities, highlighting the ongoing clinical trials and the potential socio-economic impact of novel therapeutic interventions in the realm of neurodegenerative diseases. Furthermore, many drugs are undergoing different levels of clinical trials that would certainly help in treating these disorders and will surely improve the socio-impact of human life.
Collapse
Affiliation(s)
- Sania Bashir
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Ayesha Aiman
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India; Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Mohammad Shahid
- Department of Basic Medical Sciences, College of Medicine, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Anis Ahmad Chaudhary
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University, Riyadh, Saudi Arabia.
| | - Neha Sami
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Seemi Farhat Basir
- Department of Biosciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Imtaiyaz Hassan
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India.
| |
Collapse
|
3
|
Wang F, Pritzkow S, Soto C. PMCA for ultrasensitive detection of prions and to study disease biology. Cell Tissue Res 2023; 392:307-321. [PMID: 36567368 PMCID: PMC9790818 DOI: 10.1007/s00441-022-03727-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/08/2022] [Indexed: 12/27/2022]
Abstract
The emergence of a novel class of infectious agent composed exclusively of a misfolded protein (termed prions) has been a challenge in modern biomedicine. Despite similarities on the behavior of prions with respect to conventional pathogens, the many uncertainties regarding the biology and virulence of prions make them a worrisome paradigm. Since prions do not contain nucleic acids and rely on a very different way of replication and spreading, it was necessary to invent a novel technology to study them. In this article, we provide an overview of such a technology, termed protein misfolding cyclic amplification (PMCA), and summarize its many applications to detect prions and understand prion biology.
Collapse
Affiliation(s)
- Fei Wang
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Sandra Pritzkow
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, University of Texas McGovern Medical School, Houston, TX, 77030, USA.
| |
Collapse
|
4
|
Hussein O, Jordan Z, Abd Elazim A, Stino A. Pearls & Oy-sters: Rapid progression of prion disease associated with transverse myelitis. Neurology 2020; 94:e1670-e1672. [DOI: 10.1212/wnl.0000000000009257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
5
|
Dar KB, Bhat AH, Amin S, Reshi BA, Zargar MA, Masood A, Ganie SA. Elucidating Critical Proteinopathic Mechanisms and Potential Drug Targets in Neurodegeneration. Cell Mol Neurobiol 2020; 40:313-345. [PMID: 31584139 PMCID: PMC11449027 DOI: 10.1007/s10571-019-00741-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 08/06/2019] [Indexed: 12/18/2022]
Abstract
Neurodegeneration entails progressive loss of neuronal structure as well as function leading to cognitive failure, apathy, anxiety, irregular body movements, mood swing and ageing. Proteomic dysregulation is considered the key factor for neurodegeneration. Mechanisms involving deregulated processing of proteins such as amyloid beta (Aβ) oligomerization; tau hyperphosphorylation, prion misfolding; α-synuclein accumulation/lewy body formation, chaperone deregulation, acetylcholine depletion, adenosine 2A (A2A) receptor hyperactivation, secretase deregulation, leucine-rich repeat kinase 2 (LRRK2) mutation and mitochondrial proteinopathies have deeper implications in neurodegenerative disorders. Better understanding of such pathological mechanisms is pivotal for exploring crucial drug targets. Herein, we provide a comprehensive outlook about the diverse proteomic irregularities in Alzheimer's, Parkinson's and Creutzfeldt Jakob disease (CJD). We explicate the role of key neuroproteomic drug targets notably Aβ, tau, alpha synuclein, prions, secretases, acetylcholinesterase (AchE), LRRK2, molecular chaperones, A2A receptors, muscarinic acetylcholine receptors (mAchR), N-methyl-D-aspartate receptor (NMDAR), glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) and mitochondrial/oxidative stress-related proteins for combating neurodegeneration and associated cognitive and motor impairment. Cross talk between amyloidopathy, synucleinopathy, tauopathy and several other proteinopathies pinpoints the need to develop safe therapeutics with ability to strike multiple targets in the aetiology of the neurodegenerative disorders. Therapeutics like microtubule stabilisers, chaperones, kinase inhibitors, anti-aggregation agents and antibodies could serve promising regimens for treating neurodegeneration. However, drugs should be target specific, safe and able to penetrate blood-brain barrier.
Collapse
Affiliation(s)
- Khalid Bashir Dar
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Aashiq Hussain Bhat
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Shajrul Amin
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Bilal Ahmad Reshi
- Department of Biotechnology, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Mohammad Afzal Zargar
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Akbar Masood
- Department of Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India
| | - Showkat Ahmad Ganie
- Department of Clinical Biochemistry, Faculty of Biological Sciences, University of Kashmir, Srinagar, India.
| |
Collapse
|
6
|
Philiastides A, Ribes JM, Yip DCM, Schmidt C, Benilova I, Klöhn PC. A New Cell Model for Investigating Prion Strain Selection and Adaptation. Viruses 2019; 11:v11100888. [PMID: 31546723 PMCID: PMC6832381 DOI: 10.3390/v11100888] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 09/11/2019] [Indexed: 11/17/2022] Open
Abstract
Prion diseases are fatal neurodegenerative diseases that affect humans and animals. Prion strains, conformational variants of misfolded prion proteins, are associated with distinct clinical and pathological phenotypes. Host-strain interactions result in the selective damage of distinct brain areas and they are responsible for strain selection and/or adaptation, but the underlying molecular mechanisms are unknown. Prion strains can be distinguished by their cell tropism in vivo and in vitro, which suggests that susceptibility to distinct prion strains is determined by cellular factors. The neuroblastoma cell line PK1 is refractory to the prion strain Me7, but highly susceptible to RML. We challenged a large number of clonal PK1 lines with Me7 and successfully selected highly Me7-susceptible subclones (PME) to investigate whether the prion strain repertoire of PK1 can be expanded. Notably, the Me7-infected PME clones were more protease-resistant when compared to RML-infected PME clones, which suggested that cell-adapted Me7 and RML are distinct prion strains. Strikingly, Me7-refractory cells, including PK1 and astrocytes in cortico-hippocampal cultures, are highly susceptible to prions, being derived from homogenates of Me7-infected PME cells, suggesting that the passage of Me7 in PME cells leads to an extended host range. Thus, PME clones represent a compelling cell model for strain selection and adaptation.
Collapse
Affiliation(s)
- Alexandra Philiastides
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Juan Manuel Ribes
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Daniel Chun-Mun Yip
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Christian Schmidt
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Iryna Benilova
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| | - Peter-Christian Klöhn
- MRC Prion Unit at UCL, UCL Institute of Prion Diseases, 33 Cleveland Street, London W1W7FF, UK.
| |
Collapse
|
7
|
Sano K, Atarashi R, Nishida N. Structural conservation of prion strain specificities in recombinant prion protein fibrils in real-time quaking-induced conversion. Prion 2016; 9:237-43. [PMID: 26284507 PMCID: PMC4601500 DOI: 10.1080/19336896.2015.1062201] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
A major unsolved issue of prion biology is the existence of multiple strains with distinct phenotypes and this strain phenomenon is postulated to be associated with the conformational diversity of the abnormal prion protein (PrPSc). Real-time quaking-induced conversion (RT-QUIC) assay that uses Escherichia coli-derived recombinant prion protein (rPrP) for the sensitive detection of PrPSc results in the formation of rPrP-fibrils seeded with various strains. We demonstrated that there are differences in the secondary structures, especially in the β-sheets, and conformational stability between 2 rPrP-fibrils seeded with either Chandler or 22L strains in the first round of RT-QUIC. In particular, the differences in conformational properties of these 2 rPrP-fibrils were common to those of the original PrPSc. However, the strain specificities of rPrP-fibrils seen in the first round were lost in subsequent rounds. Instead, our findings suggest that nonspecific fibrils became the major species, probable owing to their selective growth advantage in the RT-QUIC. This study shows that at least some strain-specific conformational properties of the original PrPSc can be transmitted to rPrP-fibrils in vitro, but further conservation appears to require unknown cofactors or environmental conditions or both.
Collapse
Affiliation(s)
- Kazunori Sano
- a Department of Physiology and Pharmacology; Faculty of Pharmaceutical Sciences; Fukuoka University ; Fukuoka, Japan
| | | | | |
Collapse
|
8
|
Hathaway HJ, Sutton JM, Jenkins ATA. Study into the kinetic properties and surface attachment of a thermostable adenylate kinase. Biochem Biophys Rep 2015; 1:1-7. [PMID: 26339684 PMCID: PMC4547157 DOI: 10.1016/j.bbrep.2015.03.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 03/20/2015] [Accepted: 03/23/2015] [Indexed: 01/27/2023] Open
Abstract
A thermostable adenylate kinase (tAK) has been used as model protein contaminant on surfaces, so used because residual protein after high temperature wash steps can be detected at extremely low concentrations. This gives the potential for accurate, quantitative measurement of the effectiveness of different wash processes in removing protein contamination. Current methods utilise non-covalent (physisorbtion) of tAK to surfaces, but this can be relatively easily removed. In this study, the covalent binding of tAK to surfaces was studied to provide an alternative model for surface contamination. Kinetic analysis showed that the efficiency of the enzyme expressed as the catalytic rate over the Michaelis constant (kcat/KM) increased from 8.45±3.04 mM−1 s−1 in solution to 32.23±3.20 or 24.46±4.41 mM−1 s−1 when the enzyme was immobilised onto polypropylene or plasma activated polypropylene respectively. Maleic anhydride plasma activated polypropylene showed potential to provide a more robust challenge for washing processes as it retained significantly higher amounts of tAK enzyme than polypropylene in simple washing experiments. Inhibition of the coupled enzyme (luciferase/luciferin) system used for the detection of adenylate kinase activity, was observed for a secondary product of the reaction. This needs to be taken into consideration when using the assay to estimate cleaning efficacy. Evaluation of adenylate kinase based biosensor. Michaelis–Menten kinetic analysis. Surface coupling using plasma deposited maleic anhydride. Enzyme inhibition via luciferase coupled system.
Collapse
Affiliation(s)
- H J Hathaway
- Department of Chemistry, University of Bath, Claverton Down, Bath and North East Somerset, BA2 7AY, UK
| | - J M Sutton
- Technology Development Group, Public Health England, Porton Down, Salisbury, Wiltshire, UK
| | - A T A Jenkins
- Department of Chemistry, University of Bath, Claverton Down, Bath and North East Somerset, BA2 7AY, UK
| |
Collapse
|
9
|
Conformational properties of prion strains can be transmitted to recombinant prion protein fibrils in real-time quaking-induced conversion. J Virol 2014; 88:11791-801. [PMID: 25078700 DOI: 10.1128/jvi.00585-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The phenomenon of prion strains with distinct biological characteristics has been hypothesized to be involved in the structural diversity of abnormal prion protein (PrP(Sc)). However, the molecular basis of the transmission of strain properties remains poorly understood. Real-time quaking-induced conversion (RT-QUIC) is a cell-free system that uses Escherichia coli-derived recombinant PrP (rPrP) for the sensitive detection of PrP(Sc). To investigate whether the properties of various prion strains can be transmitted to amyloid fibrils consisting of rPrP (rPrP fibrils) using RT-QUIC, we examined the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrP(Sc) derived from either the Chandler or the 22L strain. In the first round of the reaction, there were differences in the secondary structures, especially in bands attributed to β-sheets, as determined by infrared spectroscopy, and conformational stability between Chandler-seeded (1st-rPrP-fib(Ch)) and 22L-seeded (1st-rPrP-fib(22L)) rPrP fibrils. Of note, specific identifying characteristics of the two rPrP fibril types seen in the β-sheets resembled those of the original PrP(Sc). Furthermore, the conformational stability of 1st-rPrP-fib(Ch) was significantly higher than that of 1st-rPrP-fib(22L), as with Chandler and 22L PrP(Sc). The survival periods of mice inoculated with 1st-rPrP-fib(Ch) or 1st-rPrP-fib(22L) were significantly shorter than those of mice inoculated with mixtures from the mock 1st-round RT-QUIC procedure. In contrast, these biochemical characteristics were no longer evident in subsequent rounds, suggesting that nonspecific uninfected rPrP fibrils became predominant probably because of their high growth rate. Together, these findings show that at least some strain-specific conformational properties can be transmitted to rPrP fibrils and unknown cofactors or environmental conditions may be required for further conservation. Importance: The phenomenon of prion strains with distinct biological characteristics is assumed to result from the conformational variations in the abnormal prion protein (PrP(Sc)). However, important questions remain about the mechanistic relationship between the conformational differences and the strain diversity, including how strain-specific conformations are transmitted. In this study, we investigated whether the properties of diverse prion strains can be transmitted to amyloid fibrils consisting of E. coli-derived recombinant PrP (rPrP) generated by real-time quaking-induced conversion (RT-QUIC), a recently developed in vitro PrP(Sc) formation method. We demonstrate that at least some of the strain-specific conformational properties can be transmitted to rPrP fibrils in the first round of RT-QUIC by examining the secondary structure, conformational stability, and infectivity of rPrP fibrils seeded with PrP(Sc) derived from either the Chandler or the 22L prion strain. We believe that these findings will advance our understanding of the conformational basis underlying prion strain diversity.
Collapse
|
10
|
Davanipour Z, Sobel E, Ziogas A, Smoak C, Bohr T, Doram K, Liwnicz B. Dietary Risk Factors for Sporadic Creutzfeldt-Jakob Disease: A Confirmatory Case-Control Study. ACTA ACUST UNITED AC 2014; 4:2388-2417. [PMID: 24977122 PMCID: PMC4070593 DOI: 10.9734/bjmmr/2014/7209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Aims This study’s primary purpose was to determine whether earlier findings suggesting an association between sporadic Creutzfeldt-Jakob disease (sCJD), a transmissible spongiform encephalopathy of humans and specific dietary components could be replicated. The a priori hypotheses were that consumption of (i) foods likely to contain organ tissue and (ii) raw/rare meat are associated with increased sCJD risk. Study Design Population-based case-control study. Place and Duration of Study Department of Neurology, School of Medicine, Loma Linda University, Loma Linda, CA, USA; 4 years. Methodology An 11-state case-control study of pathologically confirmed, definite sCJD cases, matched controls, and a sample of control-surrogates was conducted. Ninety-six percent (106/110) of the case data was obtained in 1991-1993, prior to variant CJD publicity. Results Using control self-responses, consumption of hot dogs, sausage, pepperoni, kielbasa, “other” canned meat, poultry liver, any stomach/intestine, beef stomach/intestine, any organ tissue, and beef organ tissue was individually associated with increased sCJD risk; odds ratios (OR) ranged from 2.4 to 7.2 (0.003 <p<0.025). Rare/raw meat consumption was associated with sCJD (OR=2.0; p<0.05). Greater consumption of hot dogs, bologna, salami, sausage, pepperoni and kielbasa was associated with significantly higher risk. The OR for gizzard consumption was 7.6, p<0.04. Bologna, salami, any liver, beef liver and pork stomach/intestine were marginally associated with sCJD: ORs ranged from 1.7 to 3.7; 0.05 <p< 0.10. Brain consumption was not associated with an elevated risk. Analyses using control-surrogate data indicate that use of the control self-responses did not bias the results away from the null hypothesis. Conclusions The a priori hypotheses were supported. Consumption of various meat products may be one method of transmission of the infectious agent for sCJD.
Collapse
Affiliation(s)
- Zoreh Davanipour
- Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Eugene Sobel
- Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA ; Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Argyrios Ziogas
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Carey Smoak
- Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Thomas Bohr
- Department of Neurology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Keith Doram
- Department of Internal Medicine, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | - Boleslaw Liwnicz
- Department of Pathology, Loma Linda University School of Medicine, Loma Linda, CA, USA
| |
Collapse
|
11
|
Jackson GS, Mead S, Collinge J. Developing early diagnostics for prion diseases. Neurodegener Dis Manag 2013. [DOI: 10.2217/nmt.12.76] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY The diagnosis of prion disease is typically made late in the clinical course, by which time patients are in an advanced state of neurological decline. This is despite the presence of pathology in many tissues, particularly those of the lymphoreticular and central nervous systems. The recent description of an effective blood assay for variant Creutzfeldt-Jakob disease clearly demonstrates the potential for routine pre-mortem diagnosis, although further progress is required for the detection of sporadic forms of the disease.
Collapse
Affiliation(s)
- Graham S Jackson
- MRC Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| | - Simon Mead
- MRC Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
- National Prion Clinic, National Hospital for Neurology & Neurosurgery, Queen Square, London, WC1N 3BG, UK
| | - John Collinge
- MRC Prion Unit, Department of Neurodegenerative Disease, University College London Institute of Neurology, Queen Square, London, WC1N 3BG, UK
| |
Collapse
|
12
|
PARK YANGGYU, JEONG JAEKYO, MOON MYUNGHEE, LEE JUHEE, LEE YOUJIN, SEOL JAEWON, KIM SHANGJIN, KANG SEOGJIN, PARK SANGYOUEL. Insulin-like growth factor-1 protects against prion peptide-induced cell death in neuronal cells via inhibition of Bax translocation. Int J Mol Med 2012; 30:1069-74. [DOI: 10.3892/ijmm.2012.1087] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Accepted: 06/28/2012] [Indexed: 11/05/2022] Open
|
13
|
Wagoner V, Cheon M, Chang I, Hall C. Computer simulation study of amyloid fibril formation by palindromic sequences in prion peptides. Proteins 2011; 79:2132-45. [PMID: 21557317 PMCID: PMC3448282 DOI: 10.1002/prot.23034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2010] [Revised: 01/26/2011] [Accepted: 02/11/2011] [Indexed: 11/11/2022]
Abstract
We simulate the aggregation of large systems containing palindromic peptides from the Syrian hamster prion protein SHaPrP 113-120 (AGAAAAGA) and the mouse prion protein MoPrP 111-120 (VAGAAAAGAV) and eight sequence variations: GAAAAAAG, (AG)(4) , A8, GAAAGAAA, A10, V10, GAVAAAAVAG, and VAVAAAAVAV The first two peptides are thought to act as the Velcro that holds the parent prion proteins together in amyloid structures and can form fibrils themselves. Kinetic events along the fibrillization pathway influence the types of structures that occur and variations in the sequence affect aggregation kinetics and fibrillar structure. Discontinuous molecular dynamics simulations using the PRIME20 force field are performed on systems containing 48 peptides starting from a random coil configuration. Depending on the sequence, fibrillar structures form spontaneously over a range of temperatures, below which amorphous aggregates form and above which no aggregation occurs. AGAAAAGA forms well organized fibrillar structures whereas VAGAAAAGAV forms less well organized structures that are partially fibrillar and partially amorphous. The degree of order in the fibrillar structure stems in part from the types of kinetic events leading up to its formation, with AGAAAAGA forming less amorphous structures early in the simulation than VAGAAAAGAV. The ability to form fibrils increases as the chain length and the length of the stretch of hydrophobic residues increase. However as the hydrophobicity of the sequence increases, the ability to form well-ordered structures decreases. Thus, longer hydrophobic sequences form slightly disordered aggregates that are partially fibrillar and partially amorphous. Subtle changes in sequence result in slightly different fibril structures.
Collapse
Affiliation(s)
- Victoria Wagoner
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mookyung Cheon
- Center for Proteome Biophysics, Department of Physics, Pusan National University, Busan, Korea
| | - Iksoo Chang
- Center for Proteome Biophysics, Department of Physics, Pusan National University, Busan, Korea
| | - Carol Hall
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, North Carolina
| |
Collapse
|
14
|
Zafar S, von Ahsen N, Oellerich M, Zerr I, Schulz-Schaeffer WJ, Armstrong VW, Asif AR. Proteomics Approach to Identify the Interacting Partners of Cellular Prion Protein and Characterization of Rab7a Interaction in Neuronal Cells. J Proteome Res 2011; 10:3123-35. [DOI: 10.1021/pr2001989] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Saima Zafar
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Nicolas von Ahsen
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Michael Oellerich
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Inga Zerr
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Walter J. Schulz-Schaeffer
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Victor W. Armstrong
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| | - Abdul R. Asif
- Department of Clinical Chemistry, ‡Department of Neurobiology, and §Department of Neuropathology, University Medical Center Goettingen (UMG), Robert-Koch-Strasse 40, 37075, Goettingen, Germany
| |
Collapse
|
15
|
Kovacs GG, Budka H. Molecular pathology of human prion diseases. Int J Mol Sci 2009; 10:976-99. [PMID: 19399233 PMCID: PMC2672014 DOI: 10.3390/ijms10030976] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Revised: 02/27/2009] [Accepted: 03/04/2009] [Indexed: 12/18/2022] Open
Abstract
Prion diseases are fatal neurodegenerative conditions in humans and animals. In this review, we summarize the molecular background of phenotypic variability, relation of prion protein (PrP) to other proteins associated with neurodegenerative diseases, and pathogenesis of neuronal vulnerability. PrP exists in different forms that may be present in both diseased and non-diseased brain, however, abundant disease-associated PrP together with tissue pathology characterizes prion diseases and associates with transmissibility. Prion diseases have different etiological background with distinct pathogenesis and phenotype. Mutations of the prion protein gene are associated with genetic forms. The codon 129 polymorphism in combination with the Western blot pattern of PrP after proteinase K digestion serves as a basis for molecular subtyping of sporadic Creutzfeldt-Jakob disease. Tissue damage may result from several parallel, interacting or subsequent pathways that involve cellular systems associated with synapses, protein processing, oxidative stress, autophagy, and apoptosis.
Collapse
Affiliation(s)
| | - Herbert Budka
- Author to whom correspondence should be addressed; E-Mail:
; Tel. +43-1-40400-5500; Fax: +43-1-40400-5511
| |
Collapse
|
16
|
Abstract
Prions were originally defined as infectious agents of protein nature, which caused neurodegenerative diseases in animals and humans. The prion concept implies that the infectious agent is a protein in special conformation that can be transmitted to the normal molecules of the same protein through protein-protein interactions. Until the 1990s, the prion phenomenon was associated with the single protein named PrP. Discovery of prions in lower eukaryotes, the yeast Saccharomyces cerevisiae and fungus Podospora anserina, suggests that prions have wider significance. Prions of lower eukaryotes are not related to diseases; their propagation caused by aggregation of prion-like proteins underlies the inheritance of phenotypic traits and most likely has adaptive significance. This review covers prions of mammals and lower eukaryotes, mechanisms of their appearance de novo and maintenance, structure of prion particles, and prospects for the treatment of prion diseases. Recent data concerning the search for new prion-like proteins is included. The paper focuses on the [PSI+] prion of S. cerevisiae, since at present it is the most investigated one. The biological significance of prions is discussed.
Collapse
Affiliation(s)
- I S Shkundina
- Russian Cardiology Research-Industrial Center, 3-ya Cherepkovskaya ul. 15A, 121552 Moscow, Russia
| | | |
Collapse
|
17
|
De Luigi A, Colombo L, Diomede L, Capobianco R, Mangieri M, Miccolo C, Limido L, Forloni G, Tagliavini F, Salmona M. The efficacy of tetracyclines in peripheral and intracerebral prion infection. PLoS One 2008; 3:e1888. [PMID: 18365024 PMCID: PMC2268013 DOI: 10.1371/journal.pone.0001888] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2007] [Accepted: 02/23/2008] [Indexed: 11/18/2022] Open
Abstract
We have previously shown that tetracyclines interact with and reverse the protease resistance of pathological prion protein extracted from scrapie-infected animals and patients with all forms of Creutzfeldt-Jakob disease, lowering the prion titre and prolonging survival of cerebrally infected animals. To investigate the effectiveness of these drugs as anti-prion agents Syrian hamsters were inoculated intramuscularly or subcutaneously with 263K scrapie strain at a 10−4 dilution. Tetracyclines were injected intramuscularly or intraperitoneally at the dose of 10 mg/kg. A single intramuscular dose of doxycycline one hour after infection in the same site of inoculation prolonged median survival by 64%. Intraperitoneal doses of tetracyclines every two days for 40 or 44 days increased survival time by 25% (doxycycline), 32% (tetracycline); and 81% (minocycline) after intramuscular infection, and 35% (doxycycline) after subcutaneous infection. To extend the therapeutic potential of tetracyclines, we investigated the efficacy of direct infusion of tetracyclines in advanced infection. Since intracerebroventricular infusion of tetracycline solutions can cause overt acute toxicity in animals, we entrapped the drugs in liposomes. Animals were inoculated intracerebrally with a 10−4 dilution of the 263K scrapie strain. A single intracerebroventricular infusion of 25 µg/ 20 µl of doxycycline or minocycline entrapped in liposomes was administered 60 days after inoculation, when 50% of animals showed initial symptoms of the disease. Median survival increased of 8.1% with doxycycline and 10% with minocycline. These data suggest that tetracyclines might have therapeutic potential for humans.
Collapse
Affiliation(s)
- Ada De Luigi
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| | - Laura Colombo
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| | - Luisa Diomede
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| | | | - Michela Mangieri
- Fondazione I.R.C.C.S. Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Claudia Miccolo
- Fondazione I.R.C.C.S. Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Lucia Limido
- Fondazione I.R.C.C.S. Istituto Neurologico “Carlo Besta”, Milano, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
| | | | - Mario Salmona
- Department of Molecular Biochemistry and Pharmacology, Istituto di Ricerche Farmacologiche “Mario Negri”, Milano, Italy
- * E-mail:
| |
Collapse
|
18
|
Kovacs GG, Budka H. Prion diseases: from protein to cell pathology. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:555-65. [PMID: 18245809 DOI: 10.2353/ajpath.2008.070442] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prion diseases or transmissible spongiform encephalopathies are fatal neurodegenerative conditions in humans and animals that originate spontaneously, genetically or by infection. Conformational change of the normal (cellular) form of prion protein (PrP c) to a pathological, disease-associated form (PrP TSE) is considered central to pathogenesis and formation of the infectious agent or prion. Neuronal damage is central to clinical manifestation of prion diseases but poorly understood. In this review, we analyze the major pathogenetic pathways that lead to tissue pathology in different forms of disease. Neuropathogenesis of prion diseases evolves in complex ways on several front lines, most but not all of which exist also in other neurodegenerative as well as infectious diseases. Whereas intracellular accumulation of PrP forms might significantly impair cell function and lead to cytopathology, mere extracellular deposition of PrP TSE is questionable as a direct cytotoxic factor. Tissue damage may result from several parallel, interacting, or subsequent pathways. Future studies should clarify the trigger(s) and sequence of these processes and whether, and which, one is dominating or decisive.
Collapse
Affiliation(s)
- Gabor G Kovacs
- Institute of Neurology, Medical University of Vienna, AKH 4J, Waehringer Guertel 18-20, POB 48, 1097 Vienna, Austria
| | | |
Collapse
|
19
|
Kovács GG, Gelpi E, Ströbel T, Ricken G, Nyengaard JR, Bernheimer H, Budka H. Involvement of the endosomal-lysosomal system correlates with regional pathology in Creutzfeldt-Jakob disease. J Neuropathol Exp Neurol 2007; 66:628-36. [PMID: 17620988 DOI: 10.1097/nen.0b013e318093ecc7] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
The endosomal-lysosomal system (ELS) has been suggested to play a role in the pathogenesis of prion diseases. The purpose of this study was to examine how experimental observations can be translated to human neuropathology and whether alterations of the ELS relate to neuropathologic changes. Combined with stereologic techniques, we examined components of the ELS in human sporadic Creutzfeldt-Jakob disease brains. We immunostained for the early endosomal marker Rab5 and lysosomal enzymes cathepsin D and B. We determined neuron-specific changes in their expression and correlated these with the severity of neuropathologic changes. In regions with mild pathology and scant abnormal prion protein (PrP) deposition, neurons showed an increased volume of Rab5-immunopositive early endosomes. In contrast, neurons in regions with prominent pathology had an increased volume of cathepsin D- or B-immunoreactive lysosomes. The intraneuronal distribution of cathepsin D and B diverges between Purkinje cells and frontal cortical neurons in sporadic Creutzfeldt-Jakob disease brains. We demonstrated focal intra- and perineuronal colocalization of cathepsin D and PrP. Our results indicate that effects in the ELS correlate with regional pathology. Overloading of this system might impair the function of lysosomal enzymes and thus may mimic some features of lysosomal storage disorders.
Collapse
Affiliation(s)
- Gábor G Kovács
- Institute of Neurology, Medical University of Vienna, and Austrian Reference Center for Human Prion Diseases, Vienna, Austria
| | | | | | | | | | | | | |
Collapse
|
20
|
Rainov NG, Tsuboi Y, Krolak-Salmon P, Vighetto A, Doh-Ura K. Experimental treatments for human transmissible spongiform encephalopathies: is there a role for pentosan polysulfate? Expert Opin Biol Ther 2007; 7:713-26. [PMID: 17477808 DOI: 10.1517/14712598.7.5.713] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Human transmissible spongiform encephalopathies (TSEs), also known as prion diseases, are caused by the accumulation of an abnormal isoform of the prion protein in the CNS. Creutzfeldt-Jakob disease in its sporadic form is the most frequent type of human TSE. At present, there is no proven specific or effective treatment available for any form of TSE. Pentosan polysulfate (PPS) has been shown to prolong the incubation period when administered to the cerebral ventricles in a rodent TSE model. Cerebroventricular administration of PPS has been carried out in 26 patients with TSEs and has been shown to be well tolerated in doses < or = 220 microg/kg/day. Proof of efficacy has been difficult because the specific and objective criteria for measurement of response have not been established yet. Preliminary clinical experience confirms extended survival in patients with variant Creutzfeldt-Jakob disease receiving intraventricular PPS; however, it is still not clear if this is due to PPS itself. Further prospective investigations of long-term intraventricular PPS administration are essential for the assessment of its effects.
Collapse
Affiliation(s)
- N G Rainov
- Klinikum Augsburg, Department of Neurosurgery, Stenglinstr. 2, D-86156 Augsburg, Germany.
| | | | | | | | | |
Collapse
|
21
|
Shamsir MS, Dalby AR. Beta-sheet containment by flanking prolines: molecular dynamic simulations of the inhibition of beta-sheet elongation by proline residues in human prion protein. Biophys J 2007; 92:2080-9. [PMID: 17172295 PMCID: PMC1861792 DOI: 10.1529/biophysj.106.092320] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Accepted: 11/16/2006] [Indexed: 12/30/2022] Open
Abstract
Previous molecular dynamic simulations have reported elongation of the existing beta-sheet in prion proteins. Detailed examination has shown that these elongations do not extend beyond the proline residues flanking these beta-sheets. In addition, proline has also been suggested to possess a possible structural role in preserving protein interaction sites by preventing invasion of neighboring secondary structures. In this work, we have studied the possible structural role of the flanking proline residues by simulating mutant structures with alternate substitution of the proline residues with valine. Simulations showed a directional inhibition of elongation, with the elongation progressing in the direction of valine including evident inhibition of elongation by existing proline residues. This suggests that the flanking proline residues in prion proteins may have a containment role and would confine the beta-sheet within a specific length.
Collapse
Affiliation(s)
- Mohd S Shamsir
- Biology Department, Faculty of Science, Universiti Teknologi Malaysia, 81310 Skudai, Johor
| | | |
Collapse
|
22
|
Uversky VN, Kabanov AV, Lyubchenko YL. Nanotools for megaproblems: probing protein misfolding diseases using nanomedicine modus operandi. J Proteome Res 2006; 5:2505-22. [PMID: 17022621 PMCID: PMC1880889 DOI: 10.1021/pr0603349] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Misfolding and self-assembly of proteins in nanoaggregates of different sizes and morphologies (nanoensembles, primary nanofilaments, nanorings, filaments, protofibrils, fibrils, etc.) is a common theme unifying a number of human pathologies termed protein misfolding diseases. Recent studies highlight increasing recognition of the public health importance of protein misfolding diseases, including various neurodegenerative disorders and amyloidoses. It is understood now that the first essential elements in the vast majority of neurodegenerative processes are misfolded and aggregated proteins. Altogether, the accumulation of abnormal protein nanoensembles exerts toxicity by disrupting intracellular transport, overwhelming protein degradation pathways, and/or disturbing vital cell functions. In addition, the formation of inclusion bodies is known to represent a major problem in the production of recombinant therapeutic proteins. Formulation of these therapeutic proteins into delivery systems and their in vivo delivery are often complicated by protein association. Thus, protein folding abnormalities and subsequent events underlie a multitude of human pathologies and difficulties with protein therapeutic applications. The field of medicine therefore can be greatly advanced by establishing a fundamental understanding of key factors leading to misfolding and self-assembly responsible for various protein folding pathologies. This article overviews protein misfolding diseases and outlines some novel and advanced nanotechnologies, including nanoimaging techniques, nanotoolboxes and nanocontainers, complemented by appropriate ensemble techniques, all focused on the ultimate goal to establish etiology and to diagnose, prevent, and cure these devastating disorders.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA.
| | | | | |
Collapse
|
23
|
Osváth S, Jäckel M, Agócs G, Závodszky P, Köhler G, Fidy J. Domain interactions direct misfolding and amyloid formation of yeast phosphoglycerate kinase. Proteins 2006; 62:909-17. [PMID: 16353200 DOI: 10.1002/prot.20823] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
There are proteins that are built of two structural domains and are deposited full-length in amyloid plaques formed in various diseases. In spite of the known differences in the mechanisms of folding of single- and multidomain proteins, no published studies can be found that address the role of the domain-domain interactions during misfolding and amyloid formation. By the discovery of the role of domain-domain interactions, here we provide important insight in the submolecular mechanism of amyloid formation. A model system based on yeast phosphoglycerate kinase was designed. This system includes the wild-type yeast phosphoglycerate kinase and single-tryptophan mutants of the individual N and C terminal domains and the complete protein. Electron microscopic measurements proved that amyloid fibrils grow from all mutants under identical conditions as for the wild-type protein. Misfolding and amyloid formation was followed in stopped-flow and manual mixing experiments on the 1 ms to 4 days timescale. Tryptophan fluorescence was used for selective detection of conformational changes accompanying the formation of the amyloidogenic intermediates and the growth of amyloid fibrils. The interactions between the polypeptide chains of the two domains direct the misfolding process from the early steps to the amyloid formation, and influence the final structure. The kinetics of misfolding is different for the individual domains, pointing to the significance of the amino acid sequence. Misfolding of the domains within the complete protein is synchronized indicating that domain-domain interactions direct the misfolding and amyloid formation mechanism.
Collapse
Affiliation(s)
- Szabolcs Osváth
- Department of Biophysics and Radiation Biology, Semmelweis University, Budapest, Hungary.
| | | | | | | | | | | |
Collapse
|
24
|
Castilla J, Saá P, Morales R, Abid K, Maundrell K, Soto C. Protein misfolding cyclic amplification for diagnosis and prion propagation studies. Methods Enzymol 2006; 412:3-21. [PMID: 17046648 DOI: 10.1016/s0076-6879(06)12001-7] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Diverse human disorders are thought to arise from the misfolding and aggregation of an underlying protein. Among them, prion diseases are some of the most intriguing disorders that can be transmitted by an unprecedented infectious agent, termed prion, composed mainly (if not exclusively) of the misfolded prion protein. The hallmark event in the disease is the conversion of the native prion protein into the disease-associated misfolded protein. We have recently described a novel technology to mimic the prion conversion process in vitro. This procedure, named protein misfolding cyclic amplification (PMCA), conceptually analogous to DNA amplification by polymerase chain reaction (PCR), has important applications for research and diagnosis. In this chapter we describe the rational behind PMCA and some of the many potential applications of this novel technology. We also describe in detail the technical and methodological aspects of PMCA, as well as its application in automatic and serial modes that have been developed with a view to improving disease diagnosis.
Collapse
|
25
|
Zhu BT. Human and animal spongiform encephalopathies are autoimmune diseases: a novel theory and its supporting evidence. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 63:155-90. [PMID: 15797468 DOI: 10.1016/s0074-7742(05)63006-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Bao Ting Zhu
- Department of Basic Pharmaceutical Sciences, College of Pharmacy University of South Carolina, Columbia, South Carolina 29208, USA
| |
Collapse
|
26
|
Beringue V, Vilette D, Mallinson G, Archer F, Kaisar M, Tayebi M, Jackson GS, Clarke AR, Laude H, Collinge J, Hawke S. PrPSc binding antibodies are potent inhibitors of prion replication in cell lines. J Biol Chem 2004; 279:39671-6. [PMID: 15133046 DOI: 10.1074/jbc.m402270200] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Conversion of the cellular alpha-helical prion protein (PrP(C)) into a disease-associated isoform (PrP(Sc)) is central to the pathogenesis of prion diseases. Molecules targeting either normal or disease-associated isoforms may be of therapeutic interest, and the antibodies binding PrP(C) have been shown to inhibit prion accumulation in vitro. Here we investigate whether antibodies that additionally target disease-associated isoforms such as PrP(Sc) inhibit prion replication in ovine PrP-inducible scrapie-infected Rov cells. We conclude from these experiments that antibodies exclusively binding PrP(C) were relatively inefficient inhibitors of ScRov cell PrP(Sc) accumulation compared with antibodies that additionally targeted disease-associated PrP isoforms. Although the mechanism by which these monoclonal antibodies inhibit prion replication is unclear, some of the data suggest that antibodies might actively increase PrP(Sc) turnover. Thus antibodies that bind to both normal and disease-associated isoforms represent very promising anti-prion agents.
Collapse
Affiliation(s)
- Vincent Beringue
- Department of Neurogenetics, CNS Infection and Immunity Group, Faculty of Medicine, Imperial College, London W2 1PG, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Ertmer A, Gilch S, Yun SW, Flechsig E, Klebl B, Stein-Gerlach M, Klein MA, Schätzl HM. The tyrosine kinase inhibitor STI571 induces cellular clearance of PrPSc in prion-infected cells. J Biol Chem 2004; 279:41918-27. [PMID: 15247213 DOI: 10.1074/jbc.m405652200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conversion of the cellular prion protein (PrP(c)) into pathologic PrP(Sc) and the accumulation of aggregated PrP(Sc) are hallmarks of prion diseases. A variety of experimental approaches to interfere with prion conversion have been reported. Our interest was whether interference with intracellular signaling events has an impact on this conversion process. We screened approximately 50 prototype inhibitors of specific signaling pathways in prion-infected cells for their capacity to affect prion conversion. The tyrosine kinase inhibitor STI571 was highly effective against PrP(Sc) propagation, with an IC(50) of < or =1 microM. STI571 cleared prion-infected cells in a time- and dose-dependent manner from PrP(Sc) without influencing biogenesis, localization, or biochemical features of PrP(c). Interestingly, this compound did not interfere with the de novo formation of PrP(Sc) but activated the lysosomal degradation of pre-existing PrP(Sc), lowering the half-life of PrP(Sc) from > or =24 h to <9 h. Our data indicate that among the kinases known to be inhibited by STI571, c-Abl is likely responsible for the observed anti-prion effect. Taken together, we demonstrate that treatment with STI571 strongly activates the lysosomal degradation of PrP(Sc) and that substances specifically interfering with cellular signaling pathways might represent a novel class of anti-prion compounds.
Collapse
Affiliation(s)
- Alexa Ertmer
- Institute of Virology, Prion Research Group, Technical University of Munich, Biedersteiner Strasse 29, D-80802 Munich, Germany
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Gilch S, Schätzl HM. Promising developments bringing prion diseases closer to therapy and prophylaxis. Trends Mol Med 2003; 9:367-9. [PMID: 13129701 DOI: 10.1016/s1471-4914(03)00144-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Prion diseases are fatal, infectious, neurodegenerative disorders, and there are no available therapeutic or prophylactic regimens. The potential of immune system components in combating peripheral prion infection has long been underestimated, but recent studies have suggested that such molecules could be effective. For example, promising results have been reported from a passive vaccination study in prion-infected mice. In addition, elegant transgenic mouse studies have shown the inhibitory effect on prion propagation of a soluble immunoglobulin G (IgG)-like dimeric prion protein. This type of molecule might represent a new class of anti-prion compounds.
Collapse
Affiliation(s)
- Sabine Gilch
- Institute of Virology/Prion Research Group, Technical University of Munich, Biedersteinerstrasse 29, 80802 Munich, Germany
| | | |
Collapse
|
29
|
Affiliation(s)
- C V Prowse
- Scottish National Blood Transfusion Service, Edinburgh, Scotland.
| | | |
Collapse
|
30
|
Gilch S, Winklhofer KF, Groschup MH, Nunziante M, Lucassen R, Spielhaupter C, Muranyi W, Riesner D, Tatzelt J, Schätzl HM. Intracellular re-routing of prion protein prevents propagation of PrP(Sc) and delays onset of prion disease. EMBO J 2001; 20:3957-66. [PMID: 11483499 PMCID: PMC149175 DOI: 10.1093/emboj/20.15.3957] [Citation(s) in RCA: 136] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Prion diseases are fatal and transmissible neurodegenerative disorders linked to an aberrant conformation of the cellular prion protein (PrP(c)). We show that the chemical compound Suramin induced aggregation of PrP in a post-ER/Golgi compartment and prevented further trafficking of PrP(c) to the outer leaflet of the plasma membrane. Instead, misfolded PrP was efficiently re-routed to acidic compartments for intracellular degradation. In contrast to PrP(Sc) in prion-infected cells, PrP aggregates formed in the presence of Suramin did not accumulate, were entirely sensitive to proteolytic digestion, had distinct biophysical properties, and were not infectious. The prophylactic potential of Suramin-induced intracellular re-routing was tested in mice. After intraperitoneal infection with scrapie prions, peripheral application of Suramin around the time of inoculation significantly delayed onset of prion disease. Our data reveal a novel quality control mechanism for misfolded PrP isoforms and introduce a new molecular mechanism for anti-prion compounds.
Collapse
Affiliation(s)
| | - Konstanze F. Winklhofer
- Gene Center Munich, Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich,
Max Planck-Institute for Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Federal Research Center for Virus Diseases of Animals, D-72001 Tübingen and Institute of Physical Biology, University of Düsseldorf, D-40225 Düsseldorf, Germany Corresponding author e-mail:
J.Tatzelt and H.M.Schätzl should be considered the senior authors of this work
| | - Martin H. Groschup
- Gene Center Munich, Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich,
Max Planck-Institute for Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Federal Research Center for Virus Diseases of Animals, D-72001 Tübingen and Institute of Physical Biology, University of Düsseldorf, D-40225 Düsseldorf, Germany Corresponding author e-mail:
J.Tatzelt and H.M.Schätzl should be considered the senior authors of this work
| | | | - Ralf Lucassen
- Gene Center Munich, Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich,
Max Planck-Institute for Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Federal Research Center for Virus Diseases of Animals, D-72001 Tübingen and Institute of Physical Biology, University of Düsseldorf, D-40225 Düsseldorf, Germany Corresponding author e-mail:
J.Tatzelt and H.M.Schätzl should be considered the senior authors of this work
| | | | | | - Detlev Riesner
- Gene Center Munich, Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich,
Max Planck-Institute for Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Federal Research Center for Virus Diseases of Animals, D-72001 Tübingen and Institute of Physical Biology, University of Düsseldorf, D-40225 Düsseldorf, Germany Corresponding author e-mail:
J.Tatzelt and H.M.Schätzl should be considered the senior authors of this work
| | - Jörg Tatzelt
- Gene Center Munich, Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich,
Max Planck-Institute for Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Federal Research Center for Virus Diseases of Animals, D-72001 Tübingen and Institute of Physical Biology, University of Düsseldorf, D-40225 Düsseldorf, Germany Corresponding author e-mail:
J.Tatzelt and H.M.Schätzl should be considered the senior authors of this work
| | - Hermann M. Schätzl
- Gene Center Munich, Max von Pettenkofer-Institute for Virology, Ludwig-Maximilians-University of Munich, Feodor-Lynen-Strasse 25, D-81377 Munich,
Max Planck-Institute for Biochemistry, Department of Cellular Biochemistry, Am Klopferspitz 18a, D-82152 Martinsried, Federal Research Center for Virus Diseases of Animals, D-72001 Tübingen and Institute of Physical Biology, University of Düsseldorf, D-40225 Düsseldorf, Germany Corresponding author e-mail:
J.Tatzelt and H.M.Schätzl should be considered the senior authors of this work
| |
Collapse
|
31
|
Ferreira ST, De Felice FG. PABMB Lecture. Protein dynamics, folding and misfolding: from basic physical chemistry to human conformational diseases. FEBS Lett 2001; 498:129-34. [PMID: 11412843 DOI: 10.1016/s0014-5793(01)02491-7] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Proteins exhibit a variety of motions ranging from amino acid side-chain rotations to the motions of large domains. Recognition of their conformational flexibility has led to the view that protein molecules undergo fast dynamic interconversion between different conformational substates. This proposal has received support from a wide variety of experimental techniques and from computer simulations of protein dynamics. More recently, studies of the subunit dissociation of oligomeric proteins induced by hydrostatic pressure have shown that the characteristic times for subunit exchange between oligomers and for interconversion between different conformations may be rather slow (hours or days). In such cases, proteins cannot be treated as an ensemble of rapidly interconverting conformational substates, but rather as a persistently heterogeneous population of different long-lived conformers. This is reminiscent of the deterministic behavior exhibited by macroscopic bodies, and may have important implications for our understanding of protein folding and biological functions. Here, we propose that the deterministic behavior of proteins may be closely related to the genesis of conformational diseases, a class of pathological conditions that includes transmissible spongiform encephalopathies, Alzheimer's disease and other amyloidosis.
Collapse
Affiliation(s)
- S T Ferreira
- Departamento de Bioquímica Médica, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, RJ 21944-590, Rio de Janeiro, Brazil.
| | | |
Collapse
|