1
|
Zhou L, Cheng A, Wang M, Wu Y, Yang Q, Tian B, Ou X, Sun D, Zhang S, Mao S, Zhao XX, Huang J, Gao Q, Zhu D, Jia R, Liu M, Chen S. Mechanism of herpesvirus protein kinase UL13 in immune escape and viral replication. Front Immunol 2022; 13:1088690. [PMID: 36531988 PMCID: PMC9749954 DOI: 10.3389/fimmu.2022.1088690] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 11/15/2022] [Indexed: 12/05/2022] Open
Abstract
Upon infection, the herpes viruses create a cellular environment suitable for survival, but innate immunity plays a vital role in cellular resistance to viral infection. The UL13 protein of herpesviruses is conserved among all herpesviruses and is a serine/threonine protein kinase, which plays a vital role in escaping innate immunity and promoting viral replication. On the one hand, it can target various immune signaling pathways in vivo, such as the cGAS-STING pathway and the NF-κB pathway. On the other hand, it phosphorylates regulatory many cellular and viral proteins for promoting the lytic cycle. This paper reviews the research progress of the conserved herpesvirus protein kinase UL13 in immune escape and viral replication to provide a basis for elucidating the pathogenic mechanism of herpesviruses, as well as providing insights into the potential means of immune escape and viral replication of other herpesviruses that have not yet resolved the function of it.
Collapse
Affiliation(s)
- Lin Zhou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Anchun Cheng
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mingshu Wang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,*Correspondence: Mingshu Wang,
| | - Ying Wu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiao Yang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Bin Tian
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xumin Ou
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Di Sun
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shaqiu Zhang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Sai Mao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xin-Xin Zhao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Juan Huang
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qun Gao
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Dekang Zhu
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Renyong Jia
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Mafeng Liu
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shun Chen
- Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China,Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Chengdu, Sichuan, China,Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Maquet C, Baiwir J, Loos P, Rodriguez-Rodriguez L, Javaux J, Sandor R, Perin F, Fallon PG, Mack M, Cataldo D, Gillet L, Machiels B. Ly6C
hi
monocytes balance regulatory and cytotoxic CD4 T cell responses to control virus-induced immunopathology. Sci Immunol 2022; 7:eabn3240. [DOI: 10.1126/sciimmunol.abn3240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Gammaherpesviruses (γHVs) have coevolved with their host, leading to a remarkably high infection prevalence and establishment of latency. The lifelong persistence of γHVs in hosts appears to broadly shape host immunity, and we show here that pulmonary infection with Murid herpesvirus 4 (MuHV-4), a mouse γHV, drives the recruitment of Ly6C
hi
monocytes (MOs) into the airway, thereby modulating the host immune response. The absence of Ly6C
hi
MOs is associated with severe virus-induced immunopathology and the systemic release of inflammatory mediators. Mechanistically, MuHV-4–imprinted MOs recruit CD4 T cells to the airways and trigger immunosuppressive signaling pathways through the PD-L1/PD-1 axis, thereby dampening the deleterious activation of cytotoxic CD4 T cells. These results uncover a role for Ly6C
hi
MOs in modulating CD4 T cell functions and reveal pathways that could be targeted therapeutically to reduce detrimental immunopathological responses associated with respiratory viral infections.
Collapse
Affiliation(s)
- Céline Maquet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Jérôme Baiwir
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Pauline Loos
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Lucia Rodriguez-Rodriguez
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Justine Javaux
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Rémy Sandor
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Fabienne Perin
- Laboratory of Biology of Tumor and Development, GIGA-Cancer ULiège and “Centre Hospitalier Universitaire de Liège (CHU)”, Liège 4000, Belgium
| | - Padraic G. Fallon
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Matthias Mack
- Department of Nephrology, University Hospital Regensburg, Regensburg, Germany
| | - Didier Cataldo
- Laboratory of Biology of Tumor and Development, GIGA-Cancer ULiège and “Centre Hospitalier Universitaire de Liège (CHU)”, Liège 4000, Belgium
| | - Laurent Gillet
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| | - Bénédicte Machiels
- Laboratory of Immunology and Vaccinology, Faculty of Veterinary Medicine, FARAH, ULiège, Liège 4000, Belgium
| |
Collapse
|
3
|
Li H, Monslow MA, Freed DC, Chang D, Li F, Gindy M, Wang D, Vora K, Espeseth AS, Petrovsky N, Fu TM. Novel adjuvants enhance immune responses elicited by a replication-defective human cytomegalovirus vaccine in nonhuman primates. Vaccine 2021; 39:7446-7456. [PMID: 34852943 DOI: 10.1016/j.vaccine.2021.10.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 10/13/2021] [Accepted: 10/27/2021] [Indexed: 12/13/2022]
Abstract
Adjuvants have long been explored to enhance vaccine efficacy. Current adjuvants approved for human vaccines are mostly studied for their ability to improve antibody responses. There remains a need for development of novel adjuvants, especially those able to enhance cell-mediated immunity (CMI). In this preclinical study we assessed the effect of two novel adjuvants, a delta inulin microparticle Advax formulated with or without a toll-like receptor 9 (TLR9) agonist CpG oligonucleotide, and a Merck & Co., Inc., Kenilworth, NJ, USA proprietary lipid nanoparticle (LNP), on immune responses elicited by V160, an experimental replication-defective human cytomegalovirus vaccine. Adult rhesus macaques were immunized with a low dose of V160 (10 units) either alone or in combination with the adjuvants as compared to those immunized with a high dose of V160 alone (100 units). While neither adjuvant conferred a significant benefit to vaccine-elicited humoral immune responses at the dose tested, both enhanced cellular immune responses to V160, where Advax promoted both CD4+ and CD8+ T cells and LNP predominantly impacted the CD4+ T cell response. Transcriptome analyses of peripheral blood samples demonstrated different modes of action for these adjuvants. One day post vaccination, LNP induced upregulation of a large number of genes involved in the innate immune response similar to those triggered by viral infection. In contrast, Advax did not activate any known inflammatory pathways and did not significantly impact gene expression pattern until day 7 post administration, suggesting a unique, non-inflammatory mechanism. These data warrant further exploration of Advax and LNP as adjuvants in clinical trials for vaccines desiring to elicit both humoral and T cell responses.
Collapse
Affiliation(s)
- Hualin Li
- Merck & Co., Inc., Kenilworth, NJ, USA.
| | | | | | - Dan Chang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Dai Wang
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | - Nikolai Petrovsky
- Vaxine Pty Ltd, Flinders University, Bedford Park SA 5042, Australia
| | | |
Collapse
|
4
|
Brar G, Farhat NA, Sukhina A, Lam AK, Kim YH, Hsu T, Tong L, Lin WW, Ware CF, Blackman MA, Sun R, Wu TT. Deletion of immune evasion genes provides an effective vaccine design for tumor-associated herpesviruses. NPJ Vaccines 2020; 5:102. [PMID: 33298958 PMCID: PMC7644650 DOI: 10.1038/s41541-020-00251-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/02/2020] [Indexed: 12/13/2022] Open
Abstract
Vaccines based on live attenuated viruses often induce broad, multifaceted immune responses. However, they also usually sacrifice immunogenicity for attenuation. It is particularly difficult to elicit an effective vaccine for herpesviruses due to an armament of immune evasion genes and a latent phase. Here, to overcome the limitation of attenuation, we developed a rational herpesvirus vaccine in which viral immune evasion genes were deleted to enhance immunogenicity while also attaining safety. To test this vaccine strategy, we utilized murine gammaherpesvirus-68 (MHV-68) as a proof-of-concept model for the cancer-associated human γ-herpesviruses, Epstein-Barr virus and Kaposi sarcoma-associated herpesvirus. We engineered a recombinant MHV-68 virus by targeted inactivation of viral antagonists of type I interferon (IFN-I) pathway and deletion of the latency locus responsible for persistent infection. This recombinant virus is highly attenuated with no measurable capacity for replication, latency, or persistence in immunocompetent hosts. It stimulates robust innate immunity, differentiates virus-specific memory T cells, and elicits neutralizing antibodies. A single vaccination affords durable protection that blocks the establishment of latency following challenge with the wild type MHV-68 for at least six months post-vaccination. These results provide a framework for effective vaccination against cancer-associated herpesviruses through the elimination of latency and key immune evasion mechanisms from the pathogen.
Collapse
Affiliation(s)
- Gurpreet Brar
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Nisar A Farhat
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alisa Sukhina
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Alex K Lam
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Yong Hoon Kim
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Tiffany Hsu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Leming Tong
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Wai Wai Lin
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Carl F Ware
- Laboratory of Molecular Immunology, Infectious and Inflammatory Diseases Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | | | - Ren Sun
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA
| | - Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Sakakibara S, Yasui T, Jinzai H, O'donnell K, Tsai CY, Minamitani T, Takeda K, Belz GT, Tarlinton DM, Kikutani H. Self-reactive and polyreactive B cells are generated and selected in the germinal center during γ-herpesvirus infection. Int Immunol 2020; 32:27-38. [PMID: 31504561 DOI: 10.1093/intimm/dxz057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 08/26/2019] [Indexed: 11/14/2022] Open
Abstract
Immune responses against certain viruses are accompanied by auto-antibody production although the origin of these infection-associated auto-antibodies is unclear. Here, we report that murine γ-herpesvirus 68 (MHV68)-induced auto-antibodies are derived from polyreactive B cells in the germinal center (GC) through the activity of short-lived plasmablasts. The analysis of recombinant antibodies from MHV68-infected mice revealed that about 40% of IgG+ GC B cells were self-reactive, with about half of them being polyreactive. On the other hand, virion-reactive clones accounted for only a minor proportion of IgG+ GC B cells, half of which also reacted with self-antigens. The self-reactivity of most polyreactive clones was dependent on somatic hypermutation (SHM), but this was dispensable for the reactivity of virus mono-specific clones. Furthermore, both virus-mono-specific and polyreactive clones were selected to differentiate to B220lo CD138+ plasma cells (PCs). However, the representation of GC-derived polyreactive clones was reduced and that of virus-mono-specific clones was markedly increased in terminally differentiated PCs as compared to transient plasmablasts. Collectively, our findings demonstrate that, during acute MHV68 infection, self-reactive B cells are generated through SHM and selected for further differentiation to short-lived plasmablasts but not terminally differentiated PCs.
Collapse
Affiliation(s)
- Shuhei Sakakibara
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Teruhito Yasui
- Laboratory of Infectious Diseases and Immunity, Ibaraki, Osaka, Japan.,Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan.,Department of Pharmaceutical Engineering, Graduate School of Engineering, Toyama Prefectural University, Imizu, Toyama, Japan , Suita, Osaka, Japan
| | - Hideyuki Jinzai
- Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Kristy O'donnell
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Chao-Yuan Tsai
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| | - Takeharu Minamitani
- Laboratory of Infectious Diseases and Immunity, Ibaraki, Osaka, Japan.,Laboratory of Immunobiologics Evaluation, Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka, Japan
| | - Kazuya Takeda
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan.,Graduate School of Medicine, Osaka University, Suita, Osaka, Japan
| | - Gabrielle T Belz
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - David M Tarlinton
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.,Department of Immunology and Pathology, Monash University, Melbourne, Victoria, Australia
| | - Hitoshi Kikutani
- Laboratory of Immune Regulation, Immunology Frontier Research Center, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
6
|
Van Skike ND, Minkah NK, Hogan CH, Wu G, Benziger PT, Oldenburg DG, Kara M, Kim-Holzapfel DM, White DW, Tibbetts SA, French JB, Krug LT. Viral FGARAT ORF75A promotes early events in lytic infection and gammaherpesvirus pathogenesis in mice. PLoS Pathog 2018; 14:e1006843. [PMID: 29390024 PMCID: PMC5811070 DOI: 10.1371/journal.ppat.1006843] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 02/13/2018] [Accepted: 12/27/2017] [Indexed: 12/19/2022] Open
Abstract
Gammaherpesviruses encode proteins with homology to the cellular purine metabolic enzyme formyl-glycinamide-phosphoribosyl-amidotransferase (FGARAT), but the role of these viral FGARATs (vFGARATs) in the pathogenesis of a natural host has not been investigated. We report a novel role for the ORF75A vFGARAT of murine gammaherpesvirus 68 (MHV68) in infectious virion production and colonization of mice. MHV68 mutants with premature stop codons in orf75A exhibited a log reduction in acute replication in the lungs after intranasal infection, which preceded a defect in colonization of multiple host reservoirs including the mediastinal lymph nodes, peripheral blood mononuclear cells, and the spleen. Intraperitoneal infection rescued splenic latency, but not reactivation. The 75A.stop virus also exhibited defective replication in primary fibroblast and macrophage cells. Viruses produced in the absence of ORF75A were characterized by an increase in the ratio of particles to PFU. In the next round of infection this led to the alteration of early events in lytic replication including the deposition of the ORF75C tegument protein, the accelerated kinetics of viral gene expression, and induction of TNFα release and cell death. Infecting cells to deliver equivalent genomes revealed that ORF75A was required for initiating early events in infection. In contrast with the numerous phenotypes observed in the absence of ORF75A, ORF75B was dispensable for replication and pathogenesis. These studies reveal that murine rhadinovirus vFGARAT family members ORF75A and ORF75C have evolved to perform divergent functions that promote replication and colonization of the host. Gammaherpesviruses are infectious agents that cause cancer. The study of viral genes unique to this subfamily may offer insight into the strategies that these viruses use to persist in the host and drive disease. The vFGARATs are a family of viral proteins found only in gammaherpesviruses, and are critical for replication in cell culture. Here we report that a rhadinovirus of rodents requires a previously uncharacterized vFGARAT family member, ORF75A, to support viral growth and persistence in mice. In addition, viruses lacking ORF75A are defective in the production of infectious viral particles. Thus, duplications and functional divergence of the various vFGARATs in the rhadinovirus lineage have likely been driven by selective pressures to disseminate within and colonize the host. Identification of the shared host processes that are targeted by the diverse family of vFGARATs may reveal novel targets for therapeutic agents to prevent life-long infections by these oncogenic viruses.
Collapse
Affiliation(s)
- Nick D. Van Skike
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nana K. Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Chad H. Hogan
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- Graduate Program of Genetics, Stony Brook University, Stony Brook, New York, United States of America
| | - Gary Wu
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | - Peter T. Benziger
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
| | | | - Mehmet Kara
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Deborah M. Kim-Holzapfel
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Douglas W. White
- Gundersen Health System, La Crosse, Wisconsin, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology and UF Shands Cancer Center, College of Medicine, University of Florida, Gainesville, Florida, United States of America
| | - Jarrod B. French
- Departments of Chemistry and of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Laurie T. Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
7
|
Alloimmunity But Not Viral Immunity Promotes Allograft Loss in a Mouse Model of Polyomavirus-Associated Allograft Injury. Transplant Direct 2017; 3:e161. [PMID: 28620645 PMCID: PMC5464780 DOI: 10.1097/txd.0000000000000677] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 03/15/2017] [Indexed: 11/30/2022] Open
Abstract
Background The interplay between viral infection and alloimmunity is known to influence the fate of transplanted organs. Clarifying how local virus-associated inflammation/injury and antiviral immunity can alter host alloimmune responses in transplantation remains a critical question. Methods We used a mouse model of polyomavirus (PyV) infection and kidney transplantation to investigate the roles of direct viral pathology, the antiviral immune response, and alloimmunity in the pathogenesis of PyV-associated allograft injury. We have previously shown that an effective primary T cell response is required in PyV-associated graft injury. Results Here we show that the transfer of primed antidonor, but not antiviral, T cells results in PyV-associated allograft injury. In further studies, we use a surrogate minor antigen model (ovalbumin) and show that only antidonor specific T cells and not antiviral specific T cells are sufficient to mediate injury. Lastly, we demonstrate that local but not systemic virus-mediated inflammation and injury within the graft itself are required. Conclusions These data suggest that in this mouse model, the predominant mechanism of allograft injury in PyV-associated injury is due to an augmented alloimmune T cell response driven by virus-induced inflammation/injury within the graft. These studies highlight the important interplay between viral infection and alloimmunity in a model system.
Collapse
|
8
|
Cieniewicz B, Santana AL, Minkah N, Krug LT. Interplay of Murine Gammaherpesvirus 68 with NF-kappaB Signaling of the Host. Front Microbiol 2016; 7:1202. [PMID: 27582728 PMCID: PMC4987367 DOI: 10.3389/fmicb.2016.01202] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 07/19/2016] [Indexed: 11/13/2022] Open
Abstract
Herpesviruses establish a chronic infection in the host characterized by intervals of lytic replication, quiescent latency, and reactivation from latency. Murine gammaherpesvirus 68 (MHV68) naturally infects small rodents and has genetic and biologic parallels with the human gammaherpesviruses (gHVs), Kaposi's sarcoma-associated herpesvirus and Epstein-Barr virus. The murine gammaherpesvirus model pathogen system provides a platform to apply cutting-edge approaches to dissect the interplay of gammaherpesvirus and host determinants that enable colonization of the host, and that shape the latent or lytic fate of an infected cell. This knowledge is critical for the development of novel therapeutic interventions against the oncogenic gHVs. The nuclear factor kappa B (NF-κB) signaling pathway is well-known for its role in the promotion of inflammation and many aspects of B cell biology. Here, we review key aspects of the virus lifecycle in the host, with an emphasis on the route that the virus takes to gain access to the B cell latency reservoir. We highlight how the murine gammaherpesvirus requires components of the NF-κB signaling pathway to promote replication, latency establishment, and maintenance of latency. These studies emphasize the complexity of gammaherpesvirus interactions with NF-κB signaling components that direct innate and adaptive immune responses of the host. Importantly, multiple facets of NF-κB signaling have been identified that might be targeted to reduce the burden of gammaherpesvirus-associated diseases.
Collapse
Affiliation(s)
- Brandon Cieniewicz
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Alexis L Santana
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Nana Minkah
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| | - Laurie T Krug
- Department of Molecular Genetics and Microbiology, Stony Brook University, Stony Brook NY, USA
| |
Collapse
|
9
|
Abstract
A challenging property of gammaherpesviruses is their ability to establish lifelong persistence. The establishment of latency in B cells is thought to involve active virus engagement of host signaling pathways. Pathogenic effects of these viruses during latency or following reactivation can be devastating to the host. Many cancers, including those associated with members of the gammaherpesvirus family, Kaposi’s sarcoma-associated herpesvirus and Epstein-Barr virus, express elevated levels of active host signal transducer and activator of transcription-3 (STAT3). STAT3 is activated by tyrosine phosphorylation in response to many cytokines and can orchestrate effector responses that include proliferation, inflammation, metastasis, and developmental programming. However, the contribution of STAT3 to gammaherpesvirus pathogenesis remains to be completely understood. This is the first study to have identified STAT3 as a critical host determinant of the ability of gammaherpesvirus to establish long-term latency in an animal model of disease. Following an acute infection, murine gammaherpesvirus 68 (MHV68) established latency in resident B cells, but establishment of latency was dramatically reduced in animals with a B cell-specific STAT3 deletion. The lack of STAT3 in B cells did not impair germinal center responses for immunoglobulin (Ig) class switching in the spleen and did not reduce either total or virus-specific IgG titers. Although ablation of STAT3 in B cells did not have a global effect on these assays of B cell function, it had long-term consequences for the viral load of the host, since virus latency was reduced at 6 to 8 weeks postinfection. Our findings establish host STAT3 as a mediator of gammaherpesvirus persistence. The insidious ability of gammaherpesviruses to establish latent infections can have detrimental consequences for the host. Identification of host factors that promote viral latency is essential for understanding latency mechanisms and for therapeutic interventions. We provide the first evidence that STAT3 expression is needed for murine gammaherpesvirus 68 to establish latency in primary B cells during an active immune response to infection. STAT3 deletion in B cells does not impair adaptive immune control of the virus, but loss of STAT3 in B cells has a long-lasting impact on viral persistence. These results indicate a potential therapeutic benefit of STAT3 inhibitors for combating gammaherpesvirus latency and, thereby, associated pathologies.
Collapse
|
10
|
Zhang J, Feng H, Zhao J, Feldman ER, Chen SY, Yuan W, Huang C, Akbari O, Tibbetts SA, Feng P. IκB Kinase ε Is an NFATc1 Kinase that Inhibits T Cell Immune Response. Cell Rep 2016; 16:405-418. [PMID: 27346349 DOI: 10.1016/j.celrep.2016.05.083] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Revised: 03/11/2016] [Accepted: 05/19/2016] [Indexed: 02/05/2023] Open
Abstract
Activation of nuclear factor of activated T cells (NFAT) is crucial for immune responses. IKKε is an IκB kinase (IKK)-related kinase, and the function of IKKε remains obscure in T cells, despite its abundant expression. We report that IKKε inhibits NFAT activation and T cell responses by promoting NFATc1 phosphorylation. During T cell activation, IKKε was transiently activated to phosphorylate NFATc1. Loss of IKKε elevated T cell antitumor and antiviral immunity and, therefore, reduced tumor development and persistent viral infection. IKKε was activated in CD8(+) T cells of mice bearing melanoma or persistently infected with a model herpesvirus. These results collectively show that IKKε promotes NFATc1 phosphorylation and inhibits T cell responses, identifying IKKε as a crucial negative regulator of T cell activation and a potential target for immunotherapy.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Hao Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA; Key Laboratory of Protein Chemistry and Developmental Biology of Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, P.R. China
| | - Jun Zhao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Emily R Feldman
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Si-Yi Chen
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Weiming Yuan
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, and Collaborative Innovation Center for Biotherapy, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Omid Akbari
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA
| | - Scott A Tibbetts
- Department of Molecular Genetics and Microbiology, College of Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, University of Southern California, 1441 Eastlake Avenue, Los Angeles, CA 90033, USA.
| |
Collapse
|
11
|
Bone marrow transplantation alters lung antigen-presenting cells to promote TH17 response and the development of pneumonitis and fibrosis following gammaherpesvirus infection. Mucosal Immunol 2016; 9:610-20. [PMID: 26376362 PMCID: PMC4794430 DOI: 10.1038/mi.2015.85] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 07/31/2015] [Indexed: 02/04/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) efficacy is limited by numerous pulmonary complications. We developed a model of syngeneic bone marrow transplantion (BMT) followed by infection with murine gamma herpesvirus-68 that results in pneumonitis and fibrosis and mimics human "noninfectious" HSCT complications. BMT mice experience increased early lytic replication, but establish viral latency by 21 days post infection. CD4 T cells in BMT mice are skewed toward interleukin (IL)-17A rather than interferon (IFN)-γ production. Transplantation of bone marrow from Il-17a(-/-) donors or treatment with anti-IL-17A neutralization antibodies at late stages attenuates pneumonitis and fibrosis in infected BMT mice, suggesting that hematopoietic-derived IL-17A is essential for development of pathology. IL-17A directly influences activation and extracellular matrix production by lung mesenchymal cells. Lung CD11c+ cells of BMT mice secrete more transforming growth factor beta-β1, and pro-TH17 mRNAs for IL-23 and IL-6, and less TH1-promoting cytokine mRNA for IFN-γ but slightly more IL-12 mRNA in response to viral infection. Adoptive transfer of non-BMT lung CD11c-enriched cells restores robust TH1 response and suppresses aberrant TH17 response in BMT mice to improve lung pathology. Our data suggest that "noninfectious" HSCT lung complications may reflect preceding viral infections and demonstrate that IL-17A neutralization may offer therapeutic advantage even after disease onset.
Collapse
|
12
|
Zhang J, Zhu L, Lu X, Feldman ER, Keyes LR, Wang Y, Fan H, Feng H, Xia Z, Sun J, Jiang T, Gao SJ, Tibbetts SA, Feng P. Recombinant Murine Gamma Herpesvirus 68 Carrying KSHV G Protein-Coupled Receptor Induces Angiogenic Lesions in Mice. PLoS Pathog 2015; 11:e1005001. [PMID: 26107716 PMCID: PMC4479558 DOI: 10.1371/journal.ppat.1005001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 06/03/2015] [Indexed: 12/22/2022] Open
Abstract
Human gamma herpesviruses, including Kaposi’s sarcoma-associated herpesvirus (KSHV) and Epstein-Barr virus (EBV), are capable of inducing tumors, particularly in in immune-compromised individuals. Due to the stringent host tropism, rodents are resistant to infection by human gamma herpesviruses, creating a significant barrier for the in vivo study of viral genes that contribute to tumorigenesis. The closely-related murine gamma herpesvirus 68 (γHV68) efficiently infects laboratory mouse strains and establishes robust persistent infection without causing apparent disease. Here, we report that a recombinant γHV68 carrying the KSHV G protein-coupled receptor (kGPCR) in place of its murine counterpart induces angiogenic tumors in infected mice. Although viral GPCRs are conserved in all gamma herpesviruses, kGPCR potently activated downstream signaling and induced tumor formation in nude mouse, whereas γHV68 GPCR failed to do so. Recombinant γHV68 carrying kGPCR demonstrated more robust lytic replication ex vivo than wild-type γHV68, although both viruses underwent similar acute and latent infection in vivo. Infection of immunosuppressed mice with γHV68 carrying kGPCR, but not wild-type γHV68, induced tumors in mice that exhibited angiogenic and inflammatory features shared with human Kaposi’s sarcoma. Immunohistochemistry staining identified abundant latently-infected cells and a small number of cells supporting lytic replication in tumor tissue. Thus, mouse infection with a recombinant γHV68 carrying kGPCR provides a useful small animal model for tumorigenesis induced by a human gamma herpesvirus gene in the setting of a natural course of infection. Human gamma herpesviruses, including Epstein-Barr virus (EBV) and Kaposi’s sarcoma-associated herpesvirus (KSHV), are causatively linked to a spectrum of human oncogenic malignancies. Due to the stringent host restriction, rodents are generally not amenable to infection by EBV and KSHV. Murine gamma herpesvirus 68 (γHV68) is closely related to KSHV and EBV, although infection in mouse does not manifest apparent diseases. Here we developed a recombinant γHV68 that carries the KSHV G protein-coupled receptor, an important signaling molecule implicated in KSHV pathogenesis. Intriguingly, laboratory mice infected with this recombinant γHV68 developed angiogenic lesions that resembled human Kaposi’s sarcoma. This mouse infection with recombinant γHV68 carrying KSHV GPCR represents a useful model to investigate viral oncogenesis induced by human gamma herpesvirus in the context of viral infection.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Lining Zhu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Xiaolu Lu
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Emily R. Feldman
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, Florida, United States of America
| | - Lisa R. Keyes
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, Florida, United States of America
| | - Yi Wang
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Hui Fan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Hao Feng
- College of Life Sciences, Hunan Normal University, Changsha, Hunan, China
| | - Zanxian Xia
- State Key Laboratory of Medical Genetics and School of Life Sciences, Central South University, Changsha, Hunan, China
| | - Jiya Sun
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Suzhou Institute of Systems Medicine, Suzhou, China
| | - Taijiao Jiang
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing; Suzhou Institute of Systems Medicine, Suzhou, China
- Key Laboratory of Protein and Peptide Pharmaceuticals, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Shou-jiang Gao
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
| | - Scott A. Tibbetts
- Department of Molecular Genetics and Microbiology, University of Florida, Gainsville, Florida, United States of America
| | - Pinghui Feng
- Department of Molecular Microbiology and Immunology, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
13
|
Leeming GH, Kipar A, Hughes DJ, Bingle L, Bennett E, Moyo NA, Tripp RA, Bigley AL, Bingle CD, Sample JT, Stewart JP. Gammaherpesvirus infection modulates the temporal and spatial expression of SCGB1A1 (CCSP) and BPIFA1 (SPLUNC1) in the respiratory tract. J Transl Med 2015; 95:610-24. [PMID: 25531566 PMCID: PMC4450743 DOI: 10.1038/labinvest.2014.162] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Revised: 10/23/2014] [Accepted: 11/11/2014] [Indexed: 11/09/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an established model of γ-herpesvirus infection. We have previously developed an alternative system using a natural host, the wood mouse (Apodemus sylvaticus), and shown that the MHV-68 M3 chemokine-binding protein contributes significantly to MHV-68 pathogenesis. Here we demonstrate in A. sylvaticus using high-density micro-arrays that M3 influences the expression of genes involved in the host response including Scgb1a1 and Bpifa1 that encode potential innate defense proteins secreted into the respiratory tract. Further analysis of MHV-68-infected animals showed that the levels of both protein and RNA for SCGB1A1 and BPIFA1 were decreased at day 7 post infection (p.i.) but increased at day 14 p.i. as compared with M3-deficient and mock-infected animals. The modulation of expression was most pronounced in bronchioles but was also present in the bronchi and trachea. Double staining using RNA in situ hybridization and immunohistology demonstrated that much of the BPIFA1 expression occurs in club cells along with SCGB1A1 and that BPIFA1 is stored within granules in these cells. The increase in SCGB1A1 and BPIFA1 expression at day 14 p.i. was associated with the differentiation of club cells into mucus-secreting cells. Our data highlight the role of club cells and the potential of SCGB1A1 and BPIFA1 as innate defense mediators during respiratory virus infection.
Collapse
Affiliation(s)
- Gail H Leeming
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK
| | - Anja Kipar
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Veterinary Pathology, School of Veterinary Science, University of Liverpool, Liverpool, UK,Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - David J Hughes
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Pathology, School of Clinical Dentistry, University of Sheffield, Sheffield, UK
| | - Elaine Bennett
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Nathifa A Moyo
- Department of Infection Biology, University of Liverpool, Liverpool, UK
| | - Ralph A Tripp
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Alison L Bigley
- Investigative and Translational Pathology, AstraZeneca, R&D Innovative Medicines, Global Safety Assessment, Macclesfield, UK
| | - Colin D Bingle
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, University of Sheffield, Sheffield, UK
| | - Jeffery T Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - James P Stewart
- Department of Infection Biology, University of Liverpool, Liverpool, UK,Department of Infection Biology, University of Liverpool, Liverpool Science Park IC2, 146 Brownlow Hill, Liverpool L3 5RF, UK. E-mail:
| |
Collapse
|
14
|
Hu Z, Blackman MA, Kaye KM, Usherwood EJ. Functional heterogeneity in the CD4+ T cell response to murine γ-herpesvirus 68. THE JOURNAL OF IMMUNOLOGY 2015; 194:2746-56. [PMID: 25662997 DOI: 10.4049/jimmunol.1401928] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
CD4(+) T cells are critical for the control of virus infections, T cell memory, and immune surveillance. We studied the differentiation and function of murine γ-herpesvirus 68 (MHV-68)-specific CD4(+) T cells using gp150-specific TCR-transgenic mice. This allowed a more detailed study of the characteristics of the CD4(+) T cell response than did previously available approaches for this virus. Most gp150-specific CD4(+) T cells expressed T-bet and produced IFN-γ, indicating that MHV-68 infection triggered differentiation of CD4(+) T cells largely into the Th1 subset, whereas some became follicular Th cells and Foxp3(+) regulatory T cells. These CD4(+) T cells were protective against MHV-68 infection in the absence of CD8(+) T cells and B cells, and protection depended on IFN-γ secretion. Marked heterogeneity was observed in the CD4(+) T cells, based on lymphocyte Ag 6C (Ly6C) expression. Ly6C expression positively correlated with IFN-γ, TNF-α, and granzyme B production; T-bet and KLRG1 expression; proliferation; and CD4(+) T cell-mediated cytotoxicity. Ly6C expression inversely correlated with survival, CCR7 expression, and secondary expansion potential. Ly6C(+) and Ly6C(-) gp150-specific CD4(+) T cells were able to interconvert in a bidirectional manner upon secondary Ag exposure in vivo. These results indicate that Ly6C expression is closely associated with antiviral activity in effector CD4(+) T cells but is inversely correlated with memory potential. Interconversion between Ly6C(+) and Ly6C(-) cells may maintain a balance between the two Ag-specific CD4(+) T cell populations during MHV-68 infection. These findings have significant implications for Ly6C as a surface marker to distinguish functionally distinct CD4(+) T cells during persistent virus infection.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756
| | | | - Kenneth M Kaye
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Edward J Usherwood
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH 03756;
| |
Collapse
|
15
|
Tellam JT, Zhong J, Lekieffre L, Bhat P, Martinez M, Croft NP, Kaplan W, Tellam RL, Khanna R. mRNA Structural constraints on EBNA1 synthesis impact on in vivo antigen presentation and early priming of CD8+ T cells. PLoS Pathog 2014; 10:e1004423. [PMID: 25299404 PMCID: PMC4192603 DOI: 10.1371/journal.ppat.1004423] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 08/26/2014] [Indexed: 11/18/2022] Open
Abstract
Recent studies have shown that virally encoded mRNA sequences of genome maintenance proteins from herpesviruses contain clusters of unusual structural elements, G-quadruplexes, which modulate viral protein synthesis. Destabilization of these G-quadruplexes can override the inhibitory effect on self-synthesis of these proteins. Here we show that the purine-rich repetitive mRNA sequence of Epstein-Barr virus encoded nuclear antigen 1 (EBNA1) comprising G-quadruplex structures, limits both the presentation of MHC class I-restricted CD8+ T cell epitopes by CD11c+ dendritic cells in draining lymph nodes and early priming of antigen-specific CD8+ T-cells. Destabilization of the G-quadruplex structures through codon-modification significantly enhanced in vivo antigen presentation and activation of virus-specific T cells. Ex vivo imaging of draining lymph nodes by confocal microscopy revealed enhanced antigen-specific T-cell trafficking and APC-CD8+ T-cell interactions in mice primed with viral vectors encoding a codon-modified EBNA1 protein. More importantly, these antigen-specific T cells displayed enhanced expression of the T-box transcription factor and superior polyfunctionality consistent with the qualitative impact of translation efficiency. These results provide an important insight into how viruses exploit mRNA structure to down regulate synthesis of their viral maintenance proteins and delay priming of antigen-specific T cells, thereby establishing a successful latent infection in vivo. Furthermore, targeting EBNA1 mRNA rather than protein by small molecules or antisense oligonucleotides will enhance EBNA1 synthesis and the early priming of effector T cells, to establish a more rapid immune response and prevent persistent infection. Maintenance proteins of viruses establishing latent infections regulate their synthesis to levels sufficient for maintaining persistent infection but below threshold levels for host immune detection. The Epstein-Barr virus maintenance protein, EBNA1, has recently been shown to contain unusual G-quadruplex structures within its repeat mRNA that reduces its translational efficiency. In this study we assess how modification of the EBNA1 mRNA repeat sequence to destabilize the native G-quadruplex structures and thereby increase translation, impacts on the activation of EBNA1-specific T cells in vivo. Mice primed with viral vectors encoding a more efficiently translated EBNA1 mRNA revealed increased trafficking of EBNA1-specific T cells, an enhanced functional profile and increased expression of transcription factors providing evidence for a potential link between mRNA translational efficiency and antigen presentation in vivo and the resultant impact on the functional programming of effector T cells. These findings suggest a novel approach to therapeutic development through the use of antisense strategies or small molecules targeting EBNA1 mRNA structure.
Collapse
Affiliation(s)
- Judy T. Tellam
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (JTT); (RK)
| | - Jie Zhong
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Lea Lekieffre
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Purnima Bhat
- Medical School, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Michelle Martinez
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
| | - Nathan P. Croft
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria, Australia
| | - Warren Kaplan
- Peter Wills Bioinformatic Centre, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Ross L. Tellam
- CSIRO Agriculture Flagship, Commonwealth Scientific and Industrial Research Organization, Brisbane, Queensland, Australia
| | - Rajiv Khanna
- QIMR Centre for Immunotherapy and Vaccine Development and Tumour Immunology, QIMR Berghofer Medical Research Institute, Brisbane, Queensland, Australia
- * E-mail: (JTT); (RK)
| |
Collapse
|
16
|
Bartholdy C, Høgh-Petersen M, Storm P, Holst PJ, Orskov C, Christensen JP, Thomsen AR. IFNγ and perforin cooperate to control infection and prevent fatal pathology during persistent gammaherpesvirus infection in mice. Scand J Immunol 2014; 79:395-403. [PMID: 24684620 DOI: 10.1111/sji.12176] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Accepted: 03/27/2014] [Indexed: 11/27/2022]
Abstract
Infection with murine gammaherpesvirus 68 has become an accepted model for studying the virus/host interactions with regard to gammaherpesvirus infections. Previous studies using gene-deficient mice have revealed that neither IFNγ nor perforin is essential in controlling the outcome of infection or the virus load during chronic infection in C57BL/6 mice. However, pronounced multiorgan fibrosis and splenic atrophy are observed in mice lacking IFNγ or the IFNγ receptor. To study the interplay between perforin and IFNγ in controlling the virus-induced pathology and the viral load during chronic gammaherpesvirus infection, we infected IFNγ/perforin double-deficient C57BL/6 mice and followed the course of infection. While absence of perforin prevented the splenic atrophy in IFNγ-deficient mice, fibrosis did not disappear. Moreover, double-deficient mice developed extreme splenomegaly, were unable to control the viral load and displayed chronic immune activation. Thus, IFNγ and perforin act in concert to minimize pathology and control the viral load in mice chronically infected with MHV68. Furthermore, while certain aspect of the virus-induced pathology in IFNγ-deficient mice may be alleviated in double-deficient mice, other aspects are exaggerated, and the normal architecture of the spleen is completely destroyed. We believe that these findings add to the understanding of the virus/host interaction during chronic gammaherpes virus infection.
Collapse
Affiliation(s)
- C Bartholdy
- Institute of International Health, Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | | | | | | | | | | | | |
Collapse
|
17
|
Promotion of a subdominant CD8 T cell response during murine gammaherpesvirus 68 infection in the absence of CD4 T cell help. J Virol 2014; 88:7862-9. [PMID: 24789784 DOI: 10.1128/jvi.00690-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
CD8 and CD4 T cells are each critically important for immune control of murine gammaherpesvirus 68 (γHV68) infection. In immunocompetent mice, acute γHV68 infection results in lifelong latency, but in the absence of CD4 T cell help, mice succumb to viral recrudescence and disease. However, the requirements for CD4 T cell help in the generation and maintenance of antiviral CD8 T cell responses are incompletely understood, and it is unclear whether there are epitope-specific differences in the requirement of CD8 T cells for CD4 help. In this report, we characterized the CD8 T cell response to γHV68 in major histocompatibility complex (MHC) class II(-/-) mice, which lack CD4 T cells, or after antibody-mediated depletion of CD4 T cells. All antiviral CD8 T cells exhibited marked upregulation of surface expression of the inhibitory receptor programmed death-1 (PD-1), but surprisingly, while the immunodominant memory response appeared to be functionally impaired, helpless CD8 T cells of a subdominant specificity had increased numbers and enhanced functionality. Thus, we demonstrate differential requirements for CD4 help in the antiviral CD8 T cell response to a latent gammaherpesvirus. Importance: γHV68 is a mouse pathogen closely related to the oncogenic human γHVs, which infect a majority of the world's population. Reactivation of these viruses from latency can lead to complications, disease, and even death. CD4 T cells are required for complete immune control of long-term infection, in part by providing key signals to dendritic cells that in turn instruct optimal antiviral CD8 T cell responses. We have investigated multiple virus-specific CD8 T cell responses during infection and identified a subdominant CD8 T cell response that is numerically and functionally enhanced in the absence of CD4 T cell help. This occurs in spite of high surface expression of an inhibitory receptor and in contrast to the immunodominant response, which is impaired. Our data suggest that signals from CD4 T cells are important in maintaining the CD8 T cell hierarchy during γHV infections.
Collapse
|
18
|
Hu Z, Usherwood EJ. Immune escape of γ-herpesviruses from adaptive immunity. Rev Med Virol 2014; 24:365-78. [PMID: 24733560 DOI: 10.1002/rmv.1791] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 03/06/2014] [Accepted: 03/07/2014] [Indexed: 01/23/2023]
Abstract
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are two γ-herpesviruses identified in humans and are strongly associated with the development of malignancies. Murine γ-herpesvirus (MHV-68) is a naturally occurring rodent pathogen, representing a unique experimental model for dissecting γ-herpesvirus infection and the immune response. These γ-herpesviruses actively antagonize the innate and adaptive antiviral responses, thereby efficiently establishing latent or persistent infections and even promoting development of malignancies. In this review, we summarize immune evasion strategies of γ-herpesviruses. These include suppression of MHC-I-restricted and MHC-II-restricted antigen presentation, impairment of dendritic cell functions, downregulation of costimulatory molecules, activation of virus-specific regulatory T cells, and induction of inhibitory cytokines. There is a focus on how both γ-herpesvirus-derived and host-derived immunomodulators interfere with adaptive antiviral immunity. Understanding immune-evasive mechanisms is essential for developing future immunotherapies against EBV-driven and KSHV-driven tumors.
Collapse
Affiliation(s)
- Zhuting Hu
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | | |
Collapse
|
19
|
Murine gammaherpesvirus 68 encoding open reading frame 11 targets TANK binding kinase 1 to negatively regulate the host type I interferon response. J Virol 2014; 88:6832-46. [PMID: 24696485 DOI: 10.1128/jvi.03460-13] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
UNLABELLED Upon viral infection, type I interferons, such as alpha and beta interferon (IFN-α and IFN-β, respectively), are rapidly induced and activate multiple antiviral genes, thereby serving as the first line of host defense. Many DNA and RNA viruses counteract the host interferon system by modulating the production of IFNs. In this study, we report that murine gammaherpesvirus 68 (MHV-68), a double-stranded DNA virus, encodes open reading frame 11 (ORF11), a novel immune modulator, to block IFN-β production. ORF11-deficient recombinant viruses induced more IFN-β production in fibroblast and macrophage cells than the MHV-68 wild type or a marker rescue virus. MHV-68 ORF11 decreased IFN-β promoter activation by various factors, the signaling of which converges on TBK1-IRF3 activation. MHV-68 ORF11 directly interacted with both overexpressed and endogenous TBK1 but not with IRF3. Physical interactions between ORF11 and endogenous TBK1 were further confirmed during virus replication in fibroblasts using a recombinant virus expressing FLAG-ORF11. ORF11 efficiently reduced interaction between TBK1 and IRF3 and subsequently inhibited activation of IRF3, thereby negatively regulating IFN-β production. Our domain-mapping study showed that the central domain of ORF11 was responsible for both TBK1 binding and inhibition of IFN-β induction, while the kinase domain of TBK1 was sufficient for ORF11 binding. Taken together, these results suggest a mechanism underlying inhibition of IFN-β production by a gammaherpesvirus and highlight the importance of TBK1 in DNA virus replication. IMPORTANCE Gammaherpesviruses are important human pathogens, as they are associated with various kinds of tumors. Upon virus infection, the type I interferon pathway is activated by a series of signaling molecules and stimulates antiviral gene expression. To subvert such interferon antiviral responses, viruses are equipped with multiple factors that can inhibit its critical steps. In this study, we took an unbiased genomic approach using a mutant library of murine gammaherpesvirus 68 to screen a novel viral immune modulator that negatively regulates the type I interferon pathway and identified ORF11 as a strong candidate. ORF11-deficient virus infection produced more interferon than the wild type in both fibroblasts and macrophages. During virus replication, ORF11 directly bound to TBK1, a key regulatory protein in the interferon pathway, and inhibited TBK1-mediated interferon production. Our results highlight a crucial role of TBK1 in controlling DNA virus infection and a viral strategy to curtail host surveillance.
Collapse
|
20
|
A gammaherpesvirus Bcl-2 ortholog blocks B cell receptor-mediated apoptosis and promotes the survival of developing B cells in vivo. PLoS Pathog 2014; 10:e1003916. [PMID: 24516386 PMCID: PMC3916410 DOI: 10.1371/journal.ppat.1003916] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 12/23/2013] [Indexed: 11/19/2022] Open
Abstract
Gammaherpesviruses such as Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV, HHV-8) establish lifelong latency in their hosts and are associated with the development of several types of malignancies, including a subset of B cell lymphomas. These viruses are thought to co-opt the process of B cell differentiation to latently infect a fraction of circulating memory B cells, resulting in the establishment of a stable latency setpoint. However, little is known about how this infected memory B cell compartment is maintained throughout the life of the host. We have previously demonstrated that immature and transitional B cells are long-term latency reservoirs for murine gammaherpesvirus 68 (MHV68), suggesting that infection of developing B cells contributes to the maintenance of lifelong latency. During hematopoiesis, immature and transitional B cells are subject to B cell receptor (BCR)-mediated negative selection, which results in the clonal deletion of autoreactive B cells. Interestingly, numerous gammaherpesviruses encode homologs of the anti-apoptotic protein Bcl-2, suggesting that virus inhibition of apoptosis could subvert clonal deletion. To test this, we quantified latency establishment in mice inoculated with MHV68 vBcl-2 mutants. vBcl-2 mutant viruses displayed a marked decrease in the frequency of immature and transitional B cells harboring viral genome, but this attenuation could be rescued by increased host Bcl-2 expression. Conversely, vBcl-2 mutant virus latency in early B cells and mature B cells, which are not targets of negative selection, was remarkably similar to wild-type virus. Finally, in vivo depletion of developing B cells during chronic infection resulted in decreased mature B cell latency, demonstrating a key role for developing B cells in the maintenance of lifelong latency. Collectively, these findings support a model in which gammaherpesvirus latency in circulating mature B cells is sustained in part through the recurrent infection and vBcl-2-mediated survival of developing B cells.
Collapse
|
21
|
Topham DJ, Chapman TJ, Richter M. Lymphoid and extralymphoid CD4 T cells that orchestrate the antiviral immune response. Expert Rev Clin Immunol 2014; 2:267-76. [DOI: 10.1586/1744666x.2.2.267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
22
|
Lebel MÈ, Daudelin JF, Chartrand K, Tarrab E, Kalinke U, Savard P, Labrecque N, Leclerc D, Lamarre A. Nanoparticle Adjuvant Sensing by TLR7 Enhances CD8+ T Cell–Mediated Protection from Listeria Monocytogenes Infection. THE JOURNAL OF IMMUNOLOGY 2013; 192:1071-8. [DOI: 10.4049/jimmunol.1302030] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Spelta CW, Axon JE, Begg A, Diallo ISI, Carrick JB, Russell CM, Collins NM. Equine multinodular pulmonary fibrosis in three horses in Australia. Aust Vet J 2013; 91:274-80. [DOI: 10.1111/avj.12072] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2012] [Indexed: 11/29/2022]
Affiliation(s)
- CW Spelta
- Townsville Vet Clinic; 32-34 Anne St; Aitkenvale; Queensland 4814; Australia
| | - JE Axon
- Scone Equine Hospital; Scone; New South Wales; Australia
| | - A Begg
- Vetnostics; Kotara; New South Wales; Australia
| | - ISI Diallo
- Biosecurity Sciences Laboratory, Biosecurity Queensland; Department of Employment, Economic Development and Innovation; Queensland Government, Health and Food Sciences Precinct; Coopers Plains; Queensland; Australia
| | - JB Carrick
- Equine Specialist Consulting; Scone; New South Wales; Australia
| | - CM Russell
- Scone Equine Hospital; Scone; New South Wales; Australia
| | - NM Collins
- Scone Equine Hospital; Scone; New South Wales; Australia
| |
Collapse
|
24
|
Freeman ML, Burkum CE, Lanzer KG, Roberts AD, Pinkevych M, Itakura A, Kummer LW, Szaba FM, Davenport MP, McCarty OJT, Woodland DL, Smiley ST, Blackman MA. Gammaherpesvirus latency induces antibody-associated thrombocytopenia in mice. J Autoimmun 2012; 42:71-9. [PMID: 23245703 DOI: 10.1016/j.jaut.2012.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 11/20/2012] [Accepted: 11/24/2012] [Indexed: 12/13/2022]
Abstract
Human herpesviruses establish lifelong latency. Viral recrudescence can lead to the development of cancers, immunoproliferative disorders, transplantation complications, and thrombocytopenia. Although platelet-specific autoantibodies have been reported in patients infected with the Epstein-Barr virus (EBV), the mechanisms by which thrombocytopenia is induced remain unclear, as do the relative contributions of lytic viral replication and latent viral gene expression. The human gammaherpesviruses are tightly restricted in their ability to infect other mammals, so they are difficult to study in live animal models. Here we show that infection of mice with murine gammaherpesvirus-68 (γHV68), a rodent-specific pathogen closely related to EBV, induces the production of platelet-binding antibodies and causes thrombocytopenia. Infection of antibody-deficient mice does not lead to thrombocytopenia, indicating the platelet decrease is mediated by antibody. Additionally, infection with a latency-null recombinant γHV68 does not induce thrombocytopenia, suggesting factors associated with viral latency drive the infection-induced antibody-mediated thrombocytopenia. These studies describe an important animal model of gammaherpesvirus-induced autoimmune thrombocytopenia and demonstrate that this pathology is mediated by antibody and dependent on viral latency. This model will allow studies of the underlying mechanisms of disease progression and the testing of therapeutic strategies for the alleviation of virus-induced thrombocytopenia.
Collapse
Affiliation(s)
- Michael L Freeman
- Trudeau Institute, 154 Algonquin Avenue, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Murine gammaherpesvirus 68 LANA acts on terminal repeat DNA to mediate episome persistence. J Virol 2012; 86:11863-76. [PMID: 22915819 DOI: 10.1128/jvi.01656-12] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV68) ORF73 (mLANA) has sequence homology to Kaposi's sarcoma-associated herpesvirus (KSHV) latency-associated nuclear antigen (LANA). LANA acts on the KSHV terminal repeat (TR) elements to mediate KSHV episome maintenance. Disruption of mLANA expression severely reduces the ability of MHV68 to establish latent infection in mice, consistent with the possibility that mLANA mediates episome persistence. Here we assess the roles of mLANA and MHV68 TR (mTR) elements in episome persistence. mTR-associated DNA persisted as an episome in latently MHV68-infected tumor cells, demonstrating that the mTR elements can serve as a cis-acting element for MHV68 episome maintenance. In some cases, both control vector and mTR-associated DNAs integrated into MHV68 episomal genomes. Therefore, we also assessed the roles of mTRs as well as mLANA in the absence of infection. DNA containing both mLANA and mTRs in cis persisted as an episome in murine A20 or MEF cells. In contrast, mTR DNA never persisted as an episome in the absence of mLANA. mLANA levels were increased when mLANA was expressed from its native promoters, and episome maintenance was more efficient with higher mLANA levels. Increased numbers of mTRs conferred more efficient episome maintenance, since DNA containing mLANA and eight mTR elements persisted more efficiently in A20 cells than did DNA with mLANA and two or four mTRs. Similar to KSHV LANA, mLANA broadly associated with mitotic chromosomes but relocalized to concentrated dots in the presence of episomes. Therefore, mLANA acts on mTR elements to mediate MHV68 episome persistence.
Collapse
|
26
|
Stevens HC, Cham KSW, Hughes DJ, Sun R, Sample JT, Bubb VJ, Stewart JP, Quinn JP. CTCF and Sp1 interact with the Murine gammaherpesvirus 68 internal repeat elements. Virus Genes 2012; 45:265-73. [DOI: 10.1007/s11262-012-0769-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/29/2012] [Indexed: 01/08/2023]
|
27
|
Freeman ML, Burkum CE, Woodland DL, Sun R, Wu TT, Blackman MA. Importance of antibody in virus infection and vaccine-mediated protection by a latency-deficient recombinant murine γ-herpesvirus-68. THE JOURNAL OF IMMUNOLOGY 2011; 188:1049-56. [PMID: 22198955 DOI: 10.4049/jimmunol.1102621] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The human γ-herpesviruses EBV and Kaposi's sarcoma-associated herpesvirus establish lifelong latent infections, can reactivate in immunocompromised individuals, and are associated with the development of malignancies. Murine γ-herpesvirus-68 (γHV68), a rodent pathogen related to EBV and Kaposi's sarcoma-associated herpesvirus, provides an important model to dissect mechanisms of immune control and investigate vaccine strategies. Infection of mice with γHV68 elicits robust antiviral immunity, and long-term protection from γHV68 reactivation requires both cellular and humoral immune responses. Vaccination of mice with AC-replication and transcription activator (RTA), a highly lytic latency-null recombinant γHV68, results in complete protection from wild-type γHV68 infection that lasts for at least 10 mo. In this report, we examine the immune correlates of AC-RTA-mediated protection and show that sterilizing immunity requires both T cells and Ab. Importantly, Ab was also critical for mitigating viral infection in the brain, and in the absence of Ab-mediated control, amplification of the AC-RTA virus in the brain resulted in fatality. Our results highlight important considerations in the development of vaccination strategies based on live-attenuated viruses.
Collapse
|
28
|
Coomes SM, Farmen S, Wilke CA, Laouar Y, Moore BB. Severe gammaherpesvirus-induced pneumonitis and fibrosis in syngeneic bone marrow transplant mice is related to effects of transforming growth factor-β. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:2382-96. [PMID: 21924228 DOI: 10.1016/j.ajpath.2011.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 06/29/2011] [Accepted: 08/01/2011] [Indexed: 11/17/2022]
Abstract
Pulmonary infections and pneumonitis occur frequently after hematopoietic stem cell transplantation. Using a syngeneic mouse model of bone marrow transplantation (BMT), we have previously demonstrated that BMT mice are more susceptible to acute gammaherpesvirus 68 (MHV-68) replication at day 7 after infection. By day 21, the virus is latent in lungs of BMT and control mice, and there is no difference in viral load. Despite similar latent viral load, BMT mice develop severe pneumonitis associated with reduced oxygen saturation, fibrosis, peripheral inflammation, hyaline membranes, and foamy alveolar macrophages, a phenotype that persists for 7 weeks after infection. BMT mice demonstrate increased bronchoalveolar lavage (BAL) cells, and this population is enriched in neutrophils and T cells. Alternatively, activated macrophages appear earlier than do classically activated macrophages. BAL fluid from BMT mice at day 21 after infection contains increased levels of hydrogen peroxide, nitrite, and transforming growth factor-β (TGF-β). Mice expressing the dominant-negative transgene dn-TGFβRII in multiple cell types were used as BMT donors. BMT mice with T-cell dnTGFβRII are largely protected from the pneumonitis phenotype, whereas mice with CD11c-dnTGFβRII BMT mice are only modestly protected from pneumonitis. Protection in BMT mice with T-cell dnTGFβRII is associated with decreased TGF-β derived from parenchymal cells in the BAL fluid, lower nitrite levels, and reduced apoptosis, whereas alternatively activated macrophage markers are unchanged.
Collapse
Affiliation(s)
- Stephanie M Coomes
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | |
Collapse
|
29
|
Makedonas G, Betts MR. Living in a house of cards: re-evaluating CD8+ T-cell immune correlates against HIV. Immunol Rev 2011; 239:109-24. [PMID: 21198668 DOI: 10.1111/j.1600-065x.2010.00968.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The Merck STEP and the Thai RV144 human immunodeficiency virus (HIV) vaccine trials confirmed that we still have a long way to go before developing a prophylactic HIV vaccine. The main issue at hand is that we have yet to identify an immunological correlate of protection against HIV. While many question the T-cell-based approach towards vaccine development, it is likely that T cells will be a necessary part of any vaccine strategy. CD8(+) T cells remain an attractive option because of their ability to specifically recognize and eliminate virally infected host cells. In this review, we recapitulate the evidence for CD8(+) T cells as an immunological correlate against HIV, but more importantly, we assess the means by which we evaluate their antiviral capacity. To achieve a breakthrough in the domain of T-cell-based HIV vaccine development, it has become abundantly clear that we must overhaul our system of immune monitoring and come up with a 'rational' tactic to evaluate the efficacy of HIV-specific CD8(+) T cells.
Collapse
|
30
|
Barton E, Mandal P, Speck SH. Pathogenesis and host control of gammaherpesviruses: lessons from the mouse. Annu Rev Immunol 2011; 29:351-97. [PMID: 21219186 DOI: 10.1146/annurev-immunol-072710-081639] [Citation(s) in RCA: 198] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Gammaherpesviruses are lymphotropic viruses that are associated with the development of lymphoproliferative diseases, lymphomas, as well as other nonlymphoid cancers. Most known gammaherpesviruses establish latency in B lymphocytes. Research on Epstein-Barr virus (EBV) and murine gammaherpesvirus 68 (MHV68/γHV68/MHV4) has revealed a complex relationship between virus latency and the stage of B cell differentiation. Available data support a model in which gammaherpesvirus infection drives B cell proliferation and differentiation. In general, the characterized gammaherpesviruses exhibit a very narrow host tropism, which has severely limited studies on the human gammaherpesviruses EBV and Kaposi's sarcoma-associated herpesvirus. As such, there has been significant interest in developing animal models in which the pathogenesis of gammaherpesviruses can be characterized. MHV68 represents a unique model to define the effects of chronic viral infection on the antiviral immune response.
Collapse
Affiliation(s)
- Erik Barton
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907, USA
| | | | | |
Collapse
|
31
|
Olivadoti MD, Weinberg JB, Toth LA, Opp MR. Sleep and fatigue in mice infected with murine gammaherpesvirus 68. Brain Behav Immun 2011; 25:696-705. [PMID: 21272632 PMCID: PMC4831721 DOI: 10.1016/j.bbi.2011.01.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 01/14/2011] [Accepted: 01/19/2011] [Indexed: 11/19/2022] Open
Abstract
Fatigue, a common symptom of many acute and chronic medical conditions, reduces both quality of life and workplace productivity and can be disabling. However, the pathophysiologic mechanisms that underlie fatigue can be difficult to study in human populations due to the patient heterogeneity, the variety of underlying causes and potential triggering events, and an inability to collect samples that may be essential to elucidation of mechanisms (e.g., brain). Although the etiology of chronic fatigue syndrome (CFS) remains elusive, some studies have implicated viral infections, including Epstein-Barr virus (EBV), a human gammaherpesvirus, as a potential factor in the pathogenesis of CFS. Murine gammaherpesvirus 68 (γHV68) is a mouse pathogen that shares many similarities with human γHVs, including EBV. In this study, we use γHV68-infected C57BL/6J mice as a model system for studying the impact of chronic viral infection on sleep-wake behavior, activity patterns, and body temperature profiles. Our data show that γHV68 alters sleep, activity, and temperature in a manner suggestive of fatigue. In mice infected with the highest dose used in this study (40,000plaque forming units), food intake, body weight, wheel running, body temperature, and sleep were normal until approximately 7days after infection. These parameters were significantly altered during days 7 through 11, returned to baseline levels at day 12 after infection, and remained within the normal range for the remainder of the 30-day period after inoculation. At that time, both infected and uninfected mice were injected with lipopolysaccharide (LPS), and their responses monitored. Uninfected mice given LPS developed a modest and transient febrile response during the initial light phase (hours 12 through 24) after injection. In contrast, infected mice developed changes in core body temperatures that persisted for at least 5days. Infected mice showed an initial hypothermia that lasted for approximately 12h, followed by a modest fever that persisted for several hours. For the remainder of the 5-day recording period, they showed mild hypothermia during the dark phase. Running wheel activity of infected mice was reduced for at least 5days after injection of LPS, but for only 12h in uninfected mice. Collectively, these observations indicate that (1) physiologic and behavioral processes in mice are altered and recover during an early phase of infection, and (2) mice with latent γHV68 infection have an exacerbated response to challenge with LPS. These findings indicate that laboratory mice with γHV68 infections may provide a useful model for the study of fatigue and other physiologic and behavioral perturbations that may occur during acute and chronic infection with gammaherpesviruses.
Collapse
Affiliation(s)
| | - Jason B. Weinberg
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School
- Department of Microbiology & Immunology, University of Michigan Medical School
| | - Linda A. Toth
- Department of Pharmacology, Southern Illinois University School of Medicine
| | - Mark R. Opp
- Neuroscience Graduate Program, University of Michigan
- Department of Anesthesiology, University of Michigan Medical School
- Department of Molecular & Integrative Physiology, University of Michigan Medical School
| |
Collapse
|
32
|
Abstract
Infectious complications are a serious cause of morbidity and mortality following hematopoietic stem cell transplantation (HSCT), and the lung is a particular target organ post-transplant. Our laboratory has used a murine bone marrow transplant model to study alterations in immunity that occur as a result of transplantation. Our studies focus on immune responses that occur following immune cell reconstitution in the absence of immunosuppressive drug therapy or graft-versus-host disease. We have found that impaired clearance of both bacterial and viral pulmonary infections is related to specific alterations in immune cell function and cytokine production. Our data offer insight into mechanisms that contribute to opportunistic infections in HSCT recipients.
Collapse
Affiliation(s)
- Stephanie M. Coomes
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Leah L. N. Hubbard
- Graduate Program in Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Bethany B. Moore
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, 4053 BSRB, 109 Zina Pitcher Pl., Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
33
|
Naik PK, Moore BB. Viral infection and aging as cofactors for the development of pulmonary fibrosis. Expert Rev Respir Med 2011; 4:759-71. [PMID: 21128751 DOI: 10.1586/ers.10.73] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a disease of unknown origin and progression that primarily affects older adults. Accumulating clinical and experimental evidence suggests that viral infections may play a role, either as agents that predispose the lung to fibrosis or exacerbate existing fibrosis. In particular, herpesviruses have been linked with IPF. This article summarizes the evidence for and against viral cofactors in IPF pathogenesis. In addition, we review mechanistic studies in animal models that highlight the fibrotic potential of viral infection, and explore the different mechanisms that might be responsible. We also review early evidence to suggest that the aged lung may be particularly susceptible to viral-induced fibrosis and make recommendations for future research directions.
Collapse
Affiliation(s)
- Payal K Naik
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | |
Collapse
|
34
|
Hughes DJ, Kipar A, Leeming GH, Bennett E, Howarth D, Cummerson JA, Papoula-Pereira R, Flanagan BF, Sample JT, Stewart JP. Chemokine binding protein M3 of murine gammaherpesvirus 68 modulates the host response to infection in a natural host. PLoS Pathog 2011; 7:e1001321. [PMID: 21445235 PMCID: PMC3060169 DOI: 10.1371/journal.ppat.1001321] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Accepted: 02/16/2011] [Indexed: 12/15/2022] Open
Abstract
Murine γ-herpesvirus 68 (MHV-68) infection of Mus musculus-derived strains of mice is an attractive model of γ-herpesvirus infection. Surprisingly, however, ablation of expression of MHV-68 M3, a secreted protein with broad chemokine-binding properties in vitro, has no discernable effect during experimental infection via the respiratory tract. Here we demonstrate that M3 indeed contributes significantly to MHV-68 infection, but only in the context of a natural host, the wood mouse (Apodemus sylvaticus). Specifically, M3 was essential for two features unique to the wood mouse: virus-dependent inducible bronchus-associated lymphoid tissue (iBALT) in the lung and highly organized secondary follicles in the spleen, both predominant sites of latency in these organs. Consequently, lack of M3 resulted in substantially reduced latency in the spleen and lung. In the absence of M3, splenic germinal centers appeared as previously described for MHV-68-infected laboratory strains of mice, further evidence that M3 is not fully functional in the established model host. Finally, analyses of M3's influence on chemokine and cytokine levels within the lungs of infected wood mice were consistent with the known chemokine-binding profile of M3, and revealed additional influences that provide further insight into its role in MHV-68 biology. Infection of inbred strains of laboratory mice (Mus musculus) with the rodent γ-herpesvirus MHV-68 continues to be developed as an attractive experimental model of γ-herpesvirus infection. In this regard, the MHV-68 protein M3 has been shown to selectively bind and inhibit chemokines involved in the antiviral immune response, a property expected to contribute significantly to virus infection and host colonization. However, inactivation of the M3 gene has no discernable consequence on infection in this animal host. Prompted by recent evidence that natural hosts of MHV-68 are members of the genus Apodemus, and that MHV-68 infection in laboratory-bred wood mice (Apodemus sylvaticus) differs significantly from that which has been described in standard strains of laboratory mice, we addressed whether M3 functions in a host-specific manner. Indeed, we find that M3 is responsible for host-specific differences observed for MHV-68 infection, that its influence on infection within wood mice is consistent with its chemokine-binding properties, and that in its absence, persistent latent infection - a hallmark of herpesvirus infections - is attenuated. This highlights the importance of host selection when investigating specific roles of pathogenesis-related viral genes, and advances our understanding of this model and its potential application to human γ-herpesvirus infections.
Collapse
Affiliation(s)
- David J. Hughes
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - Anja Kipar
- Veterinary Pathology, School of Veterinary Science, The University of Liverpool, Liverpool, United Kingdom
| | - Gail H. Leeming
- Veterinary Pathology, School of Veterinary Science, The University of Liverpool, Liverpool, United Kingdom
| | - Elaine Bennett
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Deborah Howarth
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Joanne A. Cummerson
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Rita Papoula-Pereira
- Veterinary Pathology, School of Veterinary Science, The University of Liverpool, Liverpool, United Kingdom
| | - Brian F. Flanagan
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
| | - Jeffery T. Sample
- Department of Microbiology and Immunology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, United States of America
| | - James P. Stewart
- School of Infection and Host Defence, The University of Liverpool, Liverpool, United Kingdom
- * E-mail:
| |
Collapse
|
35
|
Abstract
Due to the oncogenic potential associated with persistent infection of human gamma-herpesviruses, including Epstein-Barr virus (EBV or HHV-4) and Kaposi's sarcoma-associated herpesvirus (KSHV or HHV-8), vaccine development has focused on subunit vaccines. However, the results using an animal model of mouse infection with a related rodent virus, murine gamma-herpesvirus 68 (MHV-68, γHV-68, or MuHV-4), have shown that the only effective vaccination strategy is based on live attenuated viruses, including viruses engineered to be incapable of establishing persistence. Vaccination with a virus lacking persistence would eliminate many potential complications. Progress in understanding persistent infections of EBV and KSHV raises the possibility of engineering a live attenuated virus without persistence. Therefore, we should keep the option open for developing a live EBV or KSHV vaccine.
Collapse
Affiliation(s)
- Ting-Ting Wu
- Department of Molecular and Medical Pharmacology, School of Medicine, University of California at Los Angeles, CA 90095, USA.
| | | | | |
Collapse
|
36
|
Identification and analysis of expression of novel microRNAs of murine gammaherpesvirus 68. J Virol 2010; 84:10266-75. [PMID: 20668074 DOI: 10.1128/jvi.01119-10] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) and provides a small-animal model with which to study the pathogenesis of gammaherpesvirus (gammaHV) infections. To completely explore the potential of the MHV-68 system for the investigation of gammaHV microRNAs (miRNAs), it would be desirable to know the number and expression patterns of all miRNAs encoded by MHV-68. By deep sequencing of small RNAs, we systematically investigated the expression profiles of MHV-68 miRNAs in both lytically and persistently infected cells. In addition to the nine known MHV-68 miRNAs, we identified six novel MHV-68 miRNA genes and analyzed the expression levels of all MHV-68 miRNAs. Furthermore, we also characterized the cellular miRNA expression signatures in MHV-68-infected versus noninfected NIH 3T3 fibroblasts and in 12-O-tetradecanoyl-phorbol-13-acetate (TPA)-treated versus nontreated S11 cells. We found that mmu-mir-15b and mmu-mir-16 are highly upregulated upon MHV-68 infection of NIH 3T3 cells, indicating a potential role for cellular miRNAs during MHV-68 infection. Our data will aid in the full exploration of the functions of gammaHV miRNAs.
Collapse
|
37
|
Dendritic cells loaded with tumor B cells elicit broad immunity against murine gammaherpesvirus 68 but fail to prevent long-term latency. J Virol 2010; 84:8975-9. [PMID: 20592077 DOI: 10.1128/jvi.00571-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
It is still unknown whether a noninfectious gammaherpesvirus vaccine is able to prevent or reduce virus persistence. This led us to use dendritic cells loaded with tumor B cells as a vaccine approach for the murine gammaherpesvirus 68 (gammaHV68) model of infection. Dendritic cells loaded with UV-irradiated latently infected tumor B cells induce broad, strong, and long-lasting immunity against gammaHV68. Dendritic cell vaccination prevents the enlargement of lymph nodes and severely limits acute infection and early latency but does not prevent gammaHV68 from establishing long-term latency. Our findings support the concept that attenuated viruses may be the best vaccine option for preventing gammaherpesvirus persistence.
Collapse
|
38
|
Coomes SM, Wilke CA, Moore TA, Moore BB. Induction of TGF-beta 1, not regulatory T cells, impairs antiviral immunity in the lung following bone marrow transplant. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:5130-40. [PMID: 20348421 PMCID: PMC3314499 DOI: 10.4049/jimmunol.0901871] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Patients receiving hematopoietic stem cell transplantation or bone marrow transplantation (BMT) as therapy for various malignancies or autoimmune diseases have an increased risk for infectious complications posttransplant, especially in the lung. We have used BMT in mice and murine gammaherpesvirus, gammaHV-68, to study the efficacy of adaptive immune responses post-BMT. Five weeks posttransplant, mice have fully reconstituted their hematopoietic lineages in both the lung and periphery. When challenged with virus, however, BMT mice have a reduced ability to clear lytic virus from the lung. Defective viral control in BMT mice is not related to impaired leukocyte recruitment or defective APC function. Rather, BMT mice are characterized by defective CD4 cell proliferation, skewing of effector CD4 T cells from a Th1 to a Th17 phenotype, and an immunosuppressive lung environment at the time of infection that includes overexpression of TGF-beta1 and PGE(2) and increased numbers of regulatory T cells. Neither indomethacin treatment to block PG synthesis nor anti-CD25 depletion of regulatory T cells improved antiviral host defense post-BMT. Transplanting mice with transgenic bone marrow expressing a dominant-negative TGF-betaRII under the permissive CD4 promoter created mice in which effector CD4 and CD8 cells were unresponsive to TGF-beta1. Mice with TGF-beta1-nonresponsive effector T cells had restored antiviral immunity and improved Th1 responses post-BMT. Thus, our results indicate that overexpression of TGF-beta1 following myeloablative conditioning post-BMT results in impaired effector T cell responses to viral infection.
Collapse
MESH Headings
- Animals
- Bone Marrow Transplantation/adverse effects
- Bone Marrow Transplantation/immunology
- Cell Differentiation/immunology
- Cell Proliferation
- Growth Inhibitors/adverse effects
- Growth Inhibitors/biosynthesis
- Growth Inhibitors/genetics
- Herpesviridae Infections/immunology
- Herpesviridae Infections/therapy
- Herpesviridae Infections/virology
- Interleukin-17/biosynthesis
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred C57BL
- Mice, Transgenic
- Pneumonia, Viral/immunology
- Pneumonia, Viral/therapy
- Pneumonia, Viral/virology
- Protein Serine-Threonine Kinases/administration & dosage
- Protein Serine-Threonine Kinases/therapeutic use
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/administration & dosage
- Receptors, Transforming Growth Factor beta/therapeutic use
- Rhadinovirus/immunology
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/pathology
- T-Lymphocytes, Regulatory/virology
- Th1 Cells/immunology
- Th1 Cells/pathology
- Th1 Cells/virology
- Transforming Growth Factor beta1/adverse effects
- Transforming Growth Factor beta1/biosynthesis
- Transforming Growth Factor beta1/genetics
- Transplantation Conditioning/methods
- Tumor Virus Infections/immunology
- Tumor Virus Infections/therapy
- Tumor Virus Infections/virology
Collapse
Affiliation(s)
| | - Carol A. Wilke
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Thomas A. Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
| | - Bethany B. Moore
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
39
|
Makedonas G, Hutnick N, Haney D, Amick AC, Gardner J, Cosma G, Hersperger AR, Dolfi D, Wherry EJ, Ferrari G, Betts MR. Perforin and IL-2 upregulation define qualitative differences among highly functional virus-specific human CD8 T cells. PLoS Pathog 2010; 6:e1000798. [PMID: 20221423 PMCID: PMC2832688 DOI: 10.1371/journal.ppat.1000798] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 01/28/2010] [Indexed: 01/12/2023] Open
Abstract
The prevailing paradigm of T lymphocyte control of viral replication is that the protective capacity of virus-specific CD8+ T cells is directly proportional to the number of functions they can perform, with IL-2 production capacity considered critical. Having recently defined rapid perforin upregulation as a novel effector function of antigen-specific CD8+ T cells, here we sought to determine whether new perforin production is a component of polyfunctional CD8+ T cell responses that contributes to the control of several human viral infections: cytomegalovirus (CMV), Epstein-Barr virus (EBV), influenza (flu), and adenovirus (Ad). We stimulated normal human donor PBMC with synthetic peptides whose amino acid sequences correspond to defined CTL epitopes in the aforementioned viruses, and then used polychromatic flow cytometry to measure the functional capacity and the phenotype of the responding CD8+ T cells. While EBV and flu-specific CD8+ T cells rarely upregulate perforin, CMV-specific cells often do and Ad stimulates an exceptionally strong perforin response. The differential propensity of CD8+ T cells to produce either IL-2 or perforin is in part related to levels of CD28 and the transcription factor T-bet, as CD8+ T cells that rapidly upregulate perforin harbor high levels of T-bet and those producing IL-2 express high amounts of CD28. Thus, “polyfunctional” profiling of antigen-specific CD8+ T cells must not be limited to simply the number of functions the cell can perform, or one particular memory phenotype, but should actually define which combinations of memory markers and functions are relevant in each pathogenic context. Although CD8+ T cells are thought to be largely responsible for the control of viral infections, exactly how they mediate protection is uncertain. One approach to assessing their protective capacity is to measure several of their functions simultaneously. Generally, it is believed the more functions a cell can perform, the better its potential to control viral replication. A multi-functional response including interleukin-2 (IL-2) production is currently valued as the key correlate of protection. We recently characterized a novel CD8+ T cell function: rapid perforin upregulation, which serves to contribute to and sustain the killing of virally infected host cells. In this study, we show that new perforin is abundant during adenovirus and cytomegalovirus infections, but scarcely detected in the context of influenza and Epstein-Barr virus. Importantly, perforin and IL-2 are rarely co-expressed. The significance of this relationship is that we can no longer assume the more functions a CD8+ T cell performs in response to a virus the better. Thus, when considering vaccine design, no single functional profile will likely be protective across all pathogens. Rather, vaccine-induced T cell responses may need to be “pathogen-specific”, as different T cell functional responses will be important for controlling different viral infections.
Collapse
Affiliation(s)
- George Makedonas
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Natalie Hutnick
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Danielle Haney
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexandra C. Amick
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jay Gardner
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Gabriela Cosma
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Adam R. Hersperger
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Douglas Dolfi
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - E. John Wherry
- The Wistar Institute, Philadelphia, Pennsylvania, United States of America
| | - Guido Ferrari
- Department of Surgical Sciences, Duke University Medical Center, Durham, North Carolina, United States of America
| | - Michael R. Betts
- Department of Microbiology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
40
|
Stuller KA, Cush SS, Flaño E. Persistent gamma-herpesvirus infection induces a CD4 T cell response containing functionally distinct effector populations. THE JOURNAL OF IMMUNOLOGY 2010; 184:3850-6. [PMID: 20208003 DOI: 10.4049/jimmunol.0902935] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The direct effector mechanisms of CD4 T cells during gamma-herpesvirus 68 (gammaHV68)-persistent infection are less well understood than those of their CD8 T cell counterparts, although there is substantial evidence that CD4 T cells are critical for the control of persistent gamma-herpesvirus infection. Our results show that in gammaHV68-persistently infected mice, CD4 T cells are not cytokine polyfunctional, but there is a division of labor in the CD4 T cell compartment in which CD4 T cells polarize toward two distinct populations with different effector functions: IFN-gamma producers and CD107(+) cytolytic effectors. These two CD4 T cell effector populations degranulate and produce IFN-gamma during steady state without need for exogenous antigenic restimulation, which is fundamentally different from that observed with gammaHV68-specific CD8 T cells. By using anti-IFN-gamma Ab depletions and IFN-gamma-deficient mice, we show that CD4 T cell-mediated cytotoxicity in vivo is not dependent on IFN-gamma activity. In addition, our data show that purified CD4 T cells isolated from gammaHV68-latently infected mice have the capacity to inhibit gammaHV68 reactivation from latency. Our results support the concept that CD4 T cells are critical effectors for the control of gamma-herpesvirus latent infection, and they mediate this effect by two independent mechanisms: IFN-gamma production and cytotoxicity.
Collapse
Affiliation(s)
- Kathleen A Stuller
- Center for Vaccines and Immunity, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | | | |
Collapse
|
41
|
Yager EJ, Kim IJ, Freeman ML, Lanzer KG, Burkum CE, Cookenham T, Woodland DL, Blackman MA. Differential impact of ageing on cellular and humoral immunity to a persistent murine gamma-herpesvirus. IMMUNITY & AGEING 2010; 7:3. [PMID: 20181071 PMCID: PMC2843645 DOI: 10.1186/1742-4933-7-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Accepted: 02/02/2010] [Indexed: 12/03/2022]
Abstract
Background Oncogenic γ-herpesviruses establish life-long infections in their hosts and control of these latent infections is dependent on continual immune surveillance. Immune function declines with age, raising the possibility that immune control of γ-herpesvirus infection becomes compromised with increasing age, allowing viral reactivation and/or increased latent load, both of which are associated with the development of malignancies. Results In this study, we use the experimental mouse γ-herpesvirus model, γHV68, to investigate viral immunity in aged mice. We found no evidence of viral recrudescence or increased latent load in aged latently-infected mice, suggesting that effective immune control of γ-herpesvirus infection remains intact with ageing. As both cellular and humoral immunity have been implicated in host control of γHV68 latency, we independently examined the impact of ageing on γHV68-specific CD8 T cell function and antibody responses. Virus-specific CD8 T cell numbers and cytolytic function were not profoundly diminished with age. In contrast, whereas ELISA titers of virus-specific IgG were maintained over time, there was a progressive decline in neutralizing activity. In addition, although aged mice were able to control de novo acute infection with only slightly delayed viral clearance, serum titers of neutralizing antibody were reduced in aged mice as compared to young mice. Conclusion Although there is no obvious loss of immune control of latent virus, these data indicate that ageing has differential impacts on anti-viral cellular and humoral immune protection during persistent γHV68 infection. This observation has potential relevance for understanding γ-herpesvirus immune control during disease-associated or therapeutic immunosuppression.
Collapse
Affiliation(s)
- Eric J Yager
- Trudeau Institute, 154 Algonquin Ave, Saranac Lake, NY 12983, USA
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Zhou F. Molecular mechanisms of viral immune evasion proteins to inhibit MHC class I antigen processing and presentation. Int Rev Immunol 2009; 28:376-93. [PMID: 19811316 DOI: 10.1080/08830180903013034] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Viral products inhibit MHC class I antigen processing and presentation via three major pathways: inhibition of major histocompatibility complex (MHC) class I expression on cells, blockade of peptide trafficking and loading on MHC class I molecules, and inhibition of peptide generation in host cells. Viral products also interfere with IFN-gamma -mediated JAK/STAT signal transduction in cells. These results imply that viral proteins probably inhibit the function of IFN-gamma in MHC class I antigen presentation via inactivation of JAK/STAT signal transduction in host cells. Mechanisms of viral products to inhibit IFN-gamma -mediated MHC class I antigen presentation were summarized in this literature review.
Collapse
Affiliation(s)
- Fang Zhou
- University of Queensland Diamantina Institute for Cancer Immunology and Metabolic Medicine, Princess Alexandra Hospital, Brisbane QLD 4102, Australia.
| |
Collapse
|
43
|
Hoegh-Petersen M, Thomsen AR, Christensen JP, Holst PJ. Mucosal immunization with recombinant adenoviral vectors expressing murine gammaherpesvirus-68 genes M2 and M3 can reduce latent viral load. Vaccine 2009; 27:6723-30. [DOI: 10.1016/j.vaccine.2009.08.104] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Revised: 07/13/2009] [Accepted: 08/26/2009] [Indexed: 12/22/2022]
|
44
|
The M10 locus of murine gammaherpesvirus 68 contributes to both the lytic and the latent phases of infection. J Virol 2009; 83:8163-72. [PMID: 19493995 DOI: 10.1128/jvi.00629-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Murine gammaherpesvirus 68 (MHV-68) is closely related to Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus (KSHV) and provides a small-animal model to study the pathogenesis of gammaherpesvirus (gammaHV) infections. According to the colinear organization of the gammaHV genomes, the M10 locus is situated at a position equivalent to the K12 locus of KSHV, which codes for proteins of the kaposin family. The M10 locus of MHV-68 has been predicted to code for three overlapping open reading frames (M10a, M10b, and M10c [M10a-c]) with unknown function. In addition, the M10 locus contains a lytic origin of replication (oriLyt). To elucidate the function of the M10 locus during lytic and latent infections, we investigated, both in vitro and in vivo, the following four recombinant viruses which were generated using MHV-68 cloned as a bacterial artificial chromosome: (i) a mutant virus with a deletion which affects both the coding region for M10a-c and the oriLyt; (ii) a revertant virus in which both the M10a-c coding region and the oriLyt were reverted to those of the wild type; (iii) a virus with an ectopic insertion of the oriLyt, which restores the function of the oriLyt but not the M10a-c coding region; and (iv) a mutant virus with a deletion in the oriLyt only. While the mutants were slightly attenuated with regard to lytic replication in cell culture, they showed severe growth defects in vivo. Both lytic replication and latency amplification were strongly reduced. In contrast, both the revertant virus and the virus with the ectopic oriLyt insertion grew very similarly to the parental wild-type virus both in vitro and in vivo. Thus, we provide genetic evidence that mutation of the oriLyt, and not of putative protein coding sequences within the M10a-c region, is responsible for the observed phenotype. We conclude that the oriLyt in the M10 locus plays an important role during infection of mice with MHV-68.
Collapse
|
45
|
Cush SS, Flaño E. Protective antigen-independent CD8 T cell memory is maintained during {gamma}-herpesvirus persistence. THE JOURNAL OF IMMUNOLOGY 2009; 182:3995-4004. [PMID: 19299697 DOI: 10.4049/jimmunol.0803625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Ag persistence during high-titer chronic viral infections induces CD8 T cell dysfunction and lack of Ag-independent CD8 T cell memory formation. However, we have a poor understanding of the generation and maintenance of CD8 T cell memory during asymptomatic persistent viral infections, particularly gamma-herpesvirus infections. In this study, we demonstrate that the continuous presence of cognate Ag in the host is not required for the maintenance of CD8 T cell memory during a persistent gamma-herpesvirus infection. Importantly, the Ag-independent CD8 T cell memory that is maintained during gamma-herpesvirus persistence has the capacity to survive long-term under homeostatic conditions and to mount a protective recall response to a secondary encounter with the pathogen. These data highlight the ability of the immune system to maintain a population of protective memory CD8 T cells with capacity for long-term Ag-independent survival in the presence of systemic virus persistence.
Collapse
Affiliation(s)
- Stephanie S Cush
- Center for Vaccines and Immunity, Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|
46
|
Yager EJ, Szaba FM, Kummer LW, Lanzer KG, Burkum CE, Smiley ST, Blackman MA. gamma-Herpesvirus-induced protection against bacterial infection is transient. Viral Immunol 2009; 22:67-72. [PMID: 19210230 DOI: 10.1089/vim.2008.0086] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Herpesviruses are widely disseminated in the population and establish lifelong latency, which is associated with a variety of pathological consequences. A recent report showed that mice latently infected with either murine gamma-herpesvirus-68 (gammaHV68) or murine cytomegalovirus (mCMV), mouse pathogens genetically similar to the human herpesviruses, Epstein-Barr virus, Kaposi's sarcoma-associated herpesvirus, and cytomegalovirus, had enhanced resistance to subsequent bacterial infection, suggesting protective as well as deleterious effects of latency. Here we confirm that latent gammaHV68 infection confers protection against subsequent infection with Listeria monocytogenes. However, the effect is transient, lasting only a few months.
Collapse
Affiliation(s)
- Eric J Yager
- Trudeau Institute, Saranac Lake, New York 12983, USA
| | | | | | | | | | | | | |
Collapse
|
47
|
NF-kappaB p50 plays distinct roles in the establishment and control of murine gammaherpesvirus 68 latency. J Virol 2009; 83:4732-48. [PMID: 19264770 DOI: 10.1128/jvi.00111-09] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
NF-kappaB signaling is critical to the survival and transformation of cells infected by the human gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus. Here we have examined how elimination of the NF-kappaB transcription factor p50 from mice affects the life cycle of murine gammaherpesvirus 68 (MHV68). Notably, mice lacking p50 in every cell type were unable to establish a sufficiently robust immune response to control MHV68 infection, leading to high levels of latently infected B cells detected in the spleen and persistent virus replication in the lungs. The latter correlated with very low levels of virus-specific immunoglobulin G (IgG) in the infected p50(-/-) mice at day 48 postinfection. Because the confounding impact of the loss of p50 on the host response to MHV68 infection prevented a direct analysis of the role of this NF-kappaB family member on MHV68 latency in B cells, we generated and infected mixed p50(+/+)/p50(-/-) bone marrow chimeric mice. We show that the chimeric mice were able to control acute virus replication and exhibited normal levels of virus-specific IgG at 3 months postinfection, indicating the induction of a normal host immune response to MHV68 infection. However, in p50(+/+)/p50(-/-) chimeric mice the p50(-/-) B cells exhibited a significant defect compared to p50(+/+) B cells in supporting MHV68 latency. In addition to identifying a role for p50 in the establishment of latency, we determined that the absence of p50 in a subset of the hematopoietic compartment led to persistent virus replication in the lungs of the chimeric mice, providing evidence that p50 is required for controlling virus reactivation. Taken together, these data demonstrate that p50 is required for immune control by the host and has distinct tissue-dependent roles in the regulation of murine gammaherpesvirus latency during chronic infection.
Collapse
|
48
|
Persistent gammaherpesvirus replication and dynamic interaction with the host in vivo. J Virol 2008; 82:12498-509. [PMID: 18842717 DOI: 10.1128/jvi.01152-08] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Gammaherpesviruses establish life-long persistency inside the host and cause various diseases during their persistent infection. However, the systemic interaction between the virus and host in vivo has not been studied in individual hosts continuously, although such information can be crucial to control the persistent infection of the gammaherpesviruses. For the noninvasive and continuous monitoring of the interaction between gammaherpesvirus and the host, a recombinant murine gammaherpesvirus 68 (MHV-68, a gammaherpesvirus 68) was constructed to express a firefly luciferase gene driven by the viral M3 promoter (M3FL). Real-time monitoring of M3FL infection revealed novel sites of viral replication, such as salivary glands, as well as acute replication in the nose and the lung and progression to the spleen. Continuous monitoring of M3FL infection in individual mice demonstrated the various kinetics of transition to different organs and local clearance, rather than systemically synchronized clearance. Moreover, in vivo spontaneous reactivation of M3FL from latency was detected after the initial clearance of acute infection and can be induced upon treatment with either a proteasome inhibitor Velcade or an immunosuppressant cyclosporine A. Taken together, our results demonstrate that the in vivo replication and reactivation of gammaherpesvirus are dynamically controlled by the locally defined interaction between the virus and the host immune system and that bioluminescence imaging can be successfully used for the real-time monitoring of this dynamic interaction of MHV-68 with its host in vivo.
Collapse
|
49
|
Endothelial cells support persistent gammaherpesvirus 68 infection. PLoS Pathog 2008; 4:e1000152. [PMID: 18787698 PMCID: PMC2526176 DOI: 10.1371/journal.ppat.1000152] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2007] [Accepted: 08/12/2008] [Indexed: 12/24/2022] Open
Abstract
A variety of human diseases are associated with gammaherpesviruses, including neoplasms of lymphocytes (e.g. Burkitt's lymphoma) and endothelial cells (e.g. Kaposi's sarcoma). Gammaherpesvirus infections usually result in either a productive lytic infection, characterized by expression of all viral genes and rapid cell lysis, or latent infection, characterized by limited viral gene expression and no cell lysis. Here, we report characterization of endothelial cell infection with murine gammaherpesvirus 68 (γHV68), a virus phylogenetically related and biologically similar to the human gammaherpesviruses. Endothelial cells supported γHV68 replication in vitro, but were unique in that a significant proportion of the cells escaped lysis, proliferated, and remained viable in culture for an extended time. Upon infection, endothelial cells became non-adherent and altered in size, complexity, and cell-surface protein expression. These cells were uniformly infected and expressed the lytic transcription program based on detection of abundant viral gene transcripts, GFP fluorescence from the viral genome, and viral surface protein expression. Additionally, endothelial cells continued to produce new infectious virions as late as 30 days post-infection. The outcome of this long-term infection was promoted by the γHV68 v-cyclin, because in the absence of the v-cyclin, viability was significantly reduced following infection. Importantly, infected primary endothelial cells also demonstrated increased viability relative to infected primary fibroblasts, and this increased viability was dependent on the v-cyclin. Finally, we provide evidence for infection of endothelial cells in vivo in immune-deficient mice. The extended viability and virus production of infected endothelial cells indicated that endothelial cells provided a source of prolonged virus production and identify a cell-type specific adaptation of gammaherpesvirus replication. While infected endothelial cells would likely be cleared in a healthy individual, persistently infected endothelial cells could provide a source of continued virus replication in immune-compromised individuals, a context in which gammaherpesvirus-associated pathology frequently occurs. Various human diseases are associated with gammaherpesvirus infections, including neoplasms of lymphocytes (e.g. Burkitt's lymphoma) and endothelial cells (e.g. Kaposi's sarcoma). Gammaherpesvirus infection of cells usually results in either productive infection that is characterized by new virus production and rapid destruction of the host cell, or latent infection that is characterized by long-term carriage of viral DNA in intact cells that do not produce virus. Here, we characterize endothelial cell infection using a small animal model of gammaherpesvirus infection and disease. While infection of endothelial cells resulted in virus production as most cells do, infection of this cell type was unique in that cells remained intact and continued to proliferate. These intact, infected endothelial cells were significantly altered in appearance and gene expression compared to uninfected cells, changes predicted to impact endothelial cell growth and function. Endothelial cells were unique in their ability to support this type of persistent infection. These data demonstrate an additional mechanism, beyond latency, by which gammaherpesviruses may achieve long-term propagation, particularly in conditions of immune suppression. Our results suggest persistently infected cells as a therapeutic target for prevention/treatment of chronic disease, and may provide a mouse model for future testing.
Collapse
|
50
|
May JS, Smith CM, Gill MB, Stevenson PG. An essential role for the proximal but not the distal cytoplasmic tail of glycoprotein M in murid herpesvirus 4 infection. PLoS One 2008; 3:e2131. [PMID: 18461133 PMCID: PMC2329910 DOI: 10.1371/journal.pone.0002131] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 03/31/2008] [Indexed: 01/08/2023] Open
Abstract
Murid herpesvirus-4 (MuHV-4) provides a tractable model with which to define common, conserved features of gamma-herpesvirus biology. The multi-membrane spanning glycoprotein M (gM) is one of only 4 glycoproteins that are essential for MuHV-4 lytic replication. gM binds to gN and is thought to function mainly secondary envelopment and virion egress, for which several predicted trafficking motifs in its C-terminal cytoplasmic tail could be important. We tested the contribution of the gM cytoplasmic tail to MuHV-4 lytic replication by making recombinant viruses with varying C-terminal deletions. Removing an acidic cluster and a distal YXXΦ motif altered the capsid distribution somewhat in infected cells but had little effect on virus replication, either in vitro or in vivo. In contrast, removing a proximal YXXΦ motif as well completely prevented productive replication. gM was still expressed, but unlike its longer forms showed only limited colocalization with co-transfected gN, and in the context of whole virus appeared to support gN expression less well. We conclude that some elements of the gM cytoplasmic tail are dispensible for MuHV-4 replication, but the tail as a whole is not.
Collapse
Affiliation(s)
- Janet S May
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | | | | | | |
Collapse
|