1
|
Corral MG, Leroux J, Stubbs KA, Mylne JS. Herbicidal properties of antimalarial drugs. Sci Rep 2017; 7:45871. [PMID: 28361906 PMCID: PMC5374466 DOI: 10.1038/srep45871] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/03/2017] [Indexed: 12/22/2022] Open
Abstract
The evolutionary relationship between plants and the malarial parasite Plasmodium falciparum is well established and underscored by the P. falciparum apicoplast, an essential chloroplast-like organelle. As a result of this relationship, studies have demonstrated that herbicides active against plants are also active against P. falciparum and thus could act as antimalarial drug leads. Here we show the converse is also true; many antimalarial compounds developed for human use are highly herbicidal. We found that human antimalarial drugs (e.g. sulfadiazine, sulfadoxine, pyrimethamine, cycloguanil) were lethal to the model plant Arabidopsis thaliana at similar concentrations to market herbicides glufosinate and glyphosate. Furthermore, the physicochemical properties of these herbicidal antimalarial compounds were similar to commercially used herbicides. The implications of this finding that many antimalarial compounds are herbicidal proffers two novel applications: (i) using the genetically tractable A. thaliana to reveal mode-of-action for understudied antimalarial drugs, and (ii) co-opting antimalarial compounds as a new source for much needed herbicide lead molecules.
Collapse
Affiliation(s)
- Maxime G Corral
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia.,The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Julie Leroux
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia.,The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Keith A Stubbs
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia
| | - Joshua S Mylne
- School of Molecular Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Perth 6009, Australia.,The ARC Centre of Excellence in Plant Energy Biology, 35 Stirling Highway, Crawley, Perth 6009, Australia
| |
Collapse
|
2
|
Comparative Analysis of Apicoplast-Targeted Protein Extension Lengths in Apicomplexan Parasites. BIOMED RESEARCH INTERNATIONAL 2015; 2015:452958. [PMID: 26114107 PMCID: PMC4465681 DOI: 10.1155/2015/452958] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 12/25/2014] [Indexed: 11/17/2022]
Abstract
In general, the mechanism of protein translocation through the apicoplast membrane requires a specific extension of a functionally important region of the apicoplast-targeted proteins. The corresponding signal peptides were detected in many apicomplexans but not in the majority of apicoplast-targeted proteins in Toxoplasma gondii. In T. gondii signal peptides are either much diverged or their extension region is processed, which in either case makes the situation different from other studied apicomplexans. We propose a statistic method to compare extensions of the functionally important regions of apicoplast-targeted proteins. More specifically, we provide a comparison of extension lengths of orthologous apicoplast-targeted proteins in apicomplexan parasites. We focus on results obtained for the model species T. gondii, Neospora caninum, and Plasmodium falciparum. With our method, cross species comparisons demonstrate that, in average, apicoplast-targeted protein extensions in T. gondii are 1.5-fold longer than in N. caninum and 2-fold longer than in P. falciparum. Extensions in P. falciparum less than 87 residues in size are longer than the corresponding extensions in N. caninum and, reversely, are shorter if they exceed 88 residues.
Collapse
|
3
|
Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 2015; 112:10231-8. [PMID: 26286985 DOI: 10.1073/pnas.1500012112] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Chloroplasts and mitochondria are subcellular bioenergetic organelles with their own genomes and genetic systems. DNA replication and transmission to daughter organelles produces cytoplasmic inheritance of characters associated with primary events in photosynthesis and respiration. The prokaryotic ancestors of chloroplasts and mitochondria were endosymbionts whose genes became copied to the genomes of their cellular hosts. These copies gave rise to nuclear chromosomal genes that encode cytosolic proteins and precursor proteins that are synthesized in the cytosol for import into the organelle into which the endosymbiont evolved. What accounts for the retention of genes for the complete synthesis within chloroplasts and mitochondria of a tiny minority of their protein subunits? One hypothesis is that expression of genes for protein subunits of energy-transducing enzymes must respond to physical environmental change by means of a direct and unconditional regulatory control--control exerted by change in the redox state of the corresponding gene product. This hypothesis proposes that, to preserve function, an entire redox regulatory system has to be retained within its original membrane-bound compartment. Colocation of gene and gene product for redox regulation of gene expression (CoRR) is a hypothesis in agreement with the results of a variety of experiments designed to test it and which seem to have no other satisfactory explanation. Here, I review evidence relating to CoRR and discuss its development, conclusions, and implications. This overview also identifies predictions concerning the results of experiments that may yet prove the hypothesis to be incorrect.
Collapse
|
4
|
Transcription regulation of plastid genes involved in sulfate transport in Viridiplantae. BIOMED RESEARCH INTERNATIONAL 2013; 2013:413450. [PMID: 24073405 PMCID: PMC3773388 DOI: 10.1155/2013/413450] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 06/12/2013] [Indexed: 12/14/2022]
Abstract
This study considers transcription regulation of plastid genes involved in sulfate transport in the parasites of invertebrate (Helicosporidium sp.) and other species of the Viridiplantae. A one-box conserved motif with the consensus TAAWATGATT is found near promoters upstream the cysT and cysA genes in many species. In certain cases, the motif is repeated two or three times.
Collapse
|
5
|
Wang N, Cui Y, Liu Y, Fan H, Du J, Huang Z, Yuan Y, Wu H, Ling HQ. Requirement and functional redundancy of Ib subgroup bHLH proteins for iron deficiency responses and uptake in Arabidopsis thaliana. MOLECULAR PLANT 2013; 6:503-13. [PMID: 22983953 DOI: 10.1093/mp/sss089] [Citation(s) in RCA: 244] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The Ib subgroup of the bHLH gene family in Arabidopsis contains four members (AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101). AtbHLH38 and AtbHLH39 were previously confirmed to interact with FER-like iron deficiency induced transcription factor (FIT), directly functioning in activation of the expression of ferric-chelate reductase FRO2 and high-affinity ferrous iron transporter IRT1. In this work, we characterized the functions of AtbHLH100 and AtbHLH101 in the regulation of the iron-deficiency responses and uptake. Yeast two-hybrid analysis and bimolecular fluorescence complementation assay demonstrated that both AtbHLH100 and AtbHLH101 could interact with FIT. Dual expression of either AtbHLH100 or AtbHLH101 with FIT in yeast cells activated the GUS expression driven by promoters of FRO2 and IRT1. The plants overexpressing FIT together with AtbHLH101 showed constitutive expression of FRO2 and IRT1 in roots, and accumulated more iron in shoots. Further, the single, double, and triple knockout mutants of AtbHLH38, AtbHLH39, AtbHLH100, and AtbHLH101 were generated and characterized. The FRO2 and IRT1 expression in roots and the iron content in shoots were more drastically decreased in the triple knockout mutant of AtbHLH39, AtbHLH100, and AtbHLH101 than that of the other available double and triple mutants of the four genes. Comparison of the physiological responses as well as the expression of FRO2 and IRT1 in the multiple knockout mutants under iron deficiency revealed that AtbHLH100, AtbHLH38, AtbHLH101, and AtbHLH39 played the gradually increased important role in the iron-deficiency responses and uptake. Taken all together, we conclude that the four Ib subgroup bHLH proteins are required and possess redundant functions with differential significance for activation of iron-deficiency responses and uptake in Arabidopsis.
Collapse
Affiliation(s)
- Ning Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Zverkov OA, Seliverstov AV, Lyubetsky VA. Plastid-encoded protein families specific for narrow taxonomic groups of algae and protozoa. Mol Biol 2012. [DOI: 10.1134/s0026893312050123] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Kumar B, Chaubey S, Shah P, Tanveer A, Charan M, Siddiqi MI, Habib S. Interaction between sulphur mobilisation proteins SufB and SufC: Evidence for an iron–sulphur cluster biogenesis pathway in the apicoplast of Plasmodium falciparum. Int J Parasitol 2011; 41:991-9. [DOI: 10.1016/j.ijpara.2011.05.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Revised: 05/16/2011] [Accepted: 05/20/2011] [Indexed: 10/18/2022]
|
8
|
Seeber F, Soldati-Favre D. Metabolic Pathways in the Apicoplast of Apicomplexa. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2010; 281:161-228. [DOI: 10.1016/s1937-6448(10)81005-6] [Citation(s) in RCA: 117] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Sadovskaya TA, Seliverstov AV. Analysis of the 5′-leader regions of several plastid genes in protozoa of the phylum apicomplexa and red algae. Mol Biol 2009. [DOI: 10.1134/s0026893309040037] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Petrovic A, Davis CT, Rangachari K, Clough B, Wilson RJMI, Eccleston JF. Hydrodynamic characterization of the SufBC and SufCD complexes and their interaction with fluorescent adenosine nucleotides. Protein Sci 2008; 17:1264-74. [PMID: 18413861 PMCID: PMC2441996 DOI: 10.1110/ps.034652.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Revised: 04/03/2008] [Accepted: 04/07/2008] [Indexed: 10/22/2022]
Abstract
Bacteria, as well as the plastid organelles of algae and higher plants, utilize proteins of the suf operon. These are involved in Fe-S cluster assembly, particularly under conditions of iron limitation or oxidative stress. Genetic experiments in some organisms found that the ATPase SufC is essential, though its role in Fe-S biogenesis remains unclear. To ascertain how interactions with other individual Suf proteins affect the activity of SufC we coexpressed it with either SufB or SufD from Thermotoga maritima and purified the resulting SufBC and SufCD complexes. Analytical ultracentrifuge and multiangle light-scattering measurements showed that the SufBC complex exists in solution as the tetrameric SufB(2)C(2) species, whereas SufCD exists as an equilibrium mixture of SufCD and SufC(2)D(2). Transient kinetic studies of the complexes were made using fluorescent 2'(3')-O-(N-methylanthraniloyl-(mant) analogues of ATP and ADP. Both SufBC and SufCD bound mantATP and mantADP much more tightly than does SufC alone. Compared to the cleavage step of the mantATPase of SufC alone, that of SufBC was accelerated 180-fold and that of SufCD only fivefold. Given that SufB and SufD have 20% sequence identity and similar predicted secondary structures, the different hydrodynamic properties and kinetic mechanisms of the two complexes are discussed.
Collapse
Affiliation(s)
- Arsen Petrovic
- MRC National Institute for Medical Research, London NW7 1AA, United Kingdom
| | | | | | | | | | | |
Collapse
|
11
|
Bajsa J, Singh K, Nanayakkara D, Duke SO, Rimando AM, Evidente A, Tekwani BL. A survey of synthetic and natural phytotoxic compounds and phytoalexins as potential antimalarial compounds. Biol Pharm Bull 2007; 30:1740-4. [PMID: 17827731 DOI: 10.1248/bpb.30.1740] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The apicomplexan parasites pathogens such as Plasmodium spp. possess an apicoplast, a plastid organelle similar to those of plants. The apicoplast has some essential plant-like metabolic pathways and processes, making these parasites susceptible to inhibitors of these functions. The main objective of this paper is to determine if phytotoxins with plastid target sites are more likely to be good antiplasmodial compounds than are those with other modes of action. The antiplasmodial activities of some compounds with established phytotoxic action were determined in vitro on a chloroquine (CQ) sensitive (D6, Sierra Leone) strain of Plasmodium falciparum. In this study, we provide in vitro activities of almost 50 such compounds, as well as a few phytoalexins against P. falciparum. Endothall, anisomycin, and cerulenin had sufficient antiplasmodial action to be considered as new lead antimalarial structures. Some derivatives of fusicoccin possessed markedly improved antiplasmodial action than the parent compound. Our results suggest that phytotoxins with plastid targets may not necessarily be better antiplasmodials than those that act at other molecular sites. The herbicides, phytotoxins and the phytoalexins reported here with significant antiplasmodial activity may be useful probes for identification of new antimalarial drug targets and may also be used as new lead structures for new antiplasmodial drug discovery.
Collapse
Affiliation(s)
- Joanna Bajsa
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, MS 38677, U.S.A.
| | | | | | | | | | | | | |
Collapse
|
12
|
Ali V, Nozaki T. Current therapeutics, their problems, and sulfur-containing-amino-acid metabolism as a novel target against infections by "amitochondriate" protozoan parasites. Clin Microbiol Rev 2007; 20:164-87. [PMID: 17223627 PMCID: PMC1797636 DOI: 10.1128/cmr.00019-06] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The "amitochondriate" protozoan parasites of humans Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis share many biochemical features, e.g., energy and amino acid metabolism, a spectrum of drugs for their treatment, and the occurrence of drug resistance. These parasites possess metabolic pathways that are divergent from those of their mammalian hosts and are often considered to be good targets for drug development. Sulfur-containing-amino-acid metabolism represents one such divergent metabolic pathway, namely, the cysteine biosynthetic pathway and methionine gamma-lyase-mediated catabolism of sulfur-containing amino acids, which are present in T. vaginalis and E. histolytica but absent in G. intestinalis. These pathways are potentially exploitable for development of drugs against amoebiasis and trichomoniasis. For instance, L-trifluoromethionine, which is catalyzed by methionine gamma-lyase and produces a toxic product, is effective against T. vaginalis and E. histolytica parasites in vitro and in vivo and may represent a good lead compound. In this review, we summarize the biology of these microaerophilic parasites, their clinical manifestation and epidemiology of disease, chemotherapeutics, the modes of action of representative drugs, and problems related to these drugs, including drug resistance. We further discuss our approach to exploit unique sulfur-containing-amino-acid metabolism, focusing on development of drugs against E. histolytica.
Collapse
Affiliation(s)
- Vahab Ali
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma 371-8511, Japan
| | | |
Collapse
|
13
|
Eccleston JF, Petrovic A, Davis CT, Rangachari K, Wilson RJMI. The kinetic mechanism of the SufC ATPase: the cleavage step is accelerated by SufB. J Biol Chem 2006; 281:8371-8. [PMID: 16431905 DOI: 10.1074/jbc.m513455200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Protein products of the suf operon are involved in iron-sulfur metabolism. SufC is an ATPase that can interact with SufB in the absence of nucleotide. We have studied the transient kinetics of the SufC ATPase mechanism using the fluorescent ATP analogue, 2'(3')-O-N-methylanthraniloyl-ATP (mantATP). mantATP initially binds to SufC weakly. A conformational change of the SufC.mantATP complex then occurs followed by the very slow cleavage of mantATP to mantADP and the rapid release of Pi. In the presence of SufB, the cleavage step is accelerated and the release of mantADP is inhibited. Both of these effects promote the formation of a SufC.mantADP complex. In the absence and presence of SufB, mantADP remains more tightly bound to SufC than mantATP. These studies provide a basis for how the SufB and -C proteins interact in the processes involved in regulating iron-sulfur transfer.
Collapse
Affiliation(s)
- John F Eccleston
- Medical Research Council National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom.
| | | | | | | | | |
Collapse
|
14
|
Toler S. The plasmodial apicoplast was retained under evolutionary selective pressure to assuage blood stage oxidative stress. Med Hypotheses 2006; 65:683-90. [PMID: 15996831 DOI: 10.1016/j.mehy.2005.05.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2005] [Accepted: 05/04/2005] [Indexed: 11/19/2022]
Abstract
Malaria, the clinical disease resulting from infection with Plasmodium, has haunted mankind with illness and death for thousands of years. As Plasmodia's ancient ancestor evolved from a mixotroph to an intracellular parasite, subsiding on amino acids obtained from hemoglobin, it encountered increased oxidative stress. To compensate for this oxidative stress, Plasmodia reduced its own production of reactive oxygen species by becoming largely fermentative and adapted novel methods to assuage oxidative injury. One such method appears to have been accomplished through the acquisition, retention and exploitation of an ancient red algal endosymbiote, now denoted the apicoplast. The apicoplast, located in close proximity to mitochondria, appears to synthesize the potent antioxidant lipoic acid. Lipoic acid may be utilized by Plasmodium as an antioxidant, a shuttle for reducing potentials and as a mitochondrial cofactor. Inhibition or alteration of the apicoplast leads to a curious phenomena known as "delayed death", whereby parasites die not in the present generation but in the ensuing one. Apicoplast inhibition may produce lipoic acid "starvation", increasing oxidative stress/mitochondrial injury during the subsequent asexual reproductive cycle. Collectively, data available to date indicate that the apicoplast was retained as an obligate endosymbiote, under evolutionary selective pressure, to assuage oxidative stress and plays a critical role in maintaining parasite viability during the Plasmodial shizont blood stage.
Collapse
Affiliation(s)
- Steven Toler
- Pfizer Inc, Clinical Pharmacology, 50 Pequot Avenue, B3227, New London, CT 06320, USA.
| |
Collapse
|
15
|
|
16
|
Balk J, Lobréaux S. Biogenesis of iron-sulfur proteins in plants. TRENDS IN PLANT SCIENCE 2005; 10:324-31. [PMID: 15951221 DOI: 10.1016/j.tplants.2005.05.002] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2005] [Revised: 04/07/2005] [Accepted: 05/26/2005] [Indexed: 05/02/2023]
Abstract
Iron-sulfur (Fe-S) clusters are ubiquitous prosthetic groups required to sustain fundamental life processes. The assembly of Fe-S clusters and insertion into polypeptides in vivo has recently become an area of intense research. Many of the genes involved are conserved in bacteria, fungi, animals and plants. Plant cells can carry out both photosynthesis and respiration - two processes that require significant amounts of Fe-S proteins. Recent findings now suggest that both plastids and mitochondria are capable of assembling Fe-S proteins using assembly machineries that differ in biochemical properties, genetic make-up and evolutionary origin.
Collapse
Affiliation(s)
- Janneke Balk
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge, UK CB2 3EA.
| | | |
Collapse
|
17
|
Abstract
Protein maturation in eukaryotic organelles requires the type I chaperonin system; this comprises chaperonin 60 (Cpn60) and its cochaperonin. We have re-examined and revised the sequence of the nuclear genes specifying organellar cochaperonins in Plasmodium falciparum (Pf). One gene encodes a typical cochaperonin (PfCpn10) whereas the other (encoding PfCpn20) specifies two Cpn10 domains arranged in tandem as in plant chloroplasts. Transfection experiments using fluorescent reporters showed specific localization of PfCpn10 to the mitochondrion and PfCpn20 to the plastid. As P. falciparum also has two Cpn60s, one of which is targeted specifically to the mitochondrion and the other exclusively to the plastid, each organelle has a distinct type I chaperonin system. Comparative sequence analysis extended these findings to several other apicomplexan parasites that have both a mitochondrion and a plastid. Phylogenetic analysis suggests the Cpn10s and Cpn20s of apicomplexans are independently monophyletic. The apicomplexan Cpn10 is phylogenetically related to other mitochondrial versions but a significant relationship between apicomplexan Cpn20s and other cochaperonins was not established.
Collapse
Affiliation(s)
- Shigeharu Sato
- Division of Parasitology, National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, UK.
| | | |
Collapse
|
18
|
Köhler S. Multi-membrane-bound structures of Apicomplexa: I. the architecture of the Toxoplasma gondii apicoplast. Parasitol Res 2005; 96:258-72. [PMID: 15895255 DOI: 10.1007/s00436-005-1338-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Accepted: 03/08/2005] [Indexed: 10/25/2022]
Abstract
Apicomplexan parasites carry a plastid-like organelle termed apicoplast. The previous documentation of four membranes bordering the Toxoplasma gondii apicoplast suggested a secondary endosymbiotic ancestry of this organelle. However, a four-membraned apicoplast wall could not be confirmed for all Apicomplexa including the malarial agents. The latter reportedly possesses a mostly tri-laminar plastid wall but also displays two multi-laminar wall partitions. Since these sectors apparently evolved from regional wall membrane infoldings, the malarial plastid could have lost one secondary wall membrane in the course of evolution. Such wall construction was however not unambiguously resolved. To examine whether the wall of the T. gondii apicoplast is comparably complex, serial ultra-thin sections of tachyzoites were analyzed. This investigation revealed a single pocket-like invagination within a four-laminar wall segment but also disclosed that four individual membranes do not surround the entire T. gondii apicoplast. Instead, this organelle possesses an extensive sector that is bordered by two membranes. Such heterogeneous wall construction could be explained if the inner two membranes of a formerly four-membraned endosymbiont are partially lost. However, our findings are more consistent with an essentially dual-membraned organelle that creates four-laminar wall sectors by expansive infoldings of its interior border. Given this architecture, the T. gondii apicoplast depicts a residual primary plastid not a secondary one as presently proposed.
Collapse
Affiliation(s)
- Sabine Köhler
- Institute for Zoomorphology, Cell Biology and Parasitology, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
19
|
Ralph SA, van Dooren GG, Waller RF, Crawford MJ, Fraunholz MJ, Foth BJ, Tonkin CJ, Roos DS, McFadden GI. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2005; 2:203-16. [PMID: 15083156 DOI: 10.1038/nrmicro843] [Citation(s) in RCA: 447] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stuart A Ralph
- Institut Pasteur, Biology of Host-Parasite Interactions, 25 Rue du Docteur Roux, 75724, Paris, Cedex 15, France
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
de Koning AP, Keeling PJ. Nucleus-encoded genes for plastid-targeted proteins in Helicosporidium: functional diversity of a cryptic plastid in a parasitic alga. EUKARYOTIC CELL 2005; 3:1198-205. [PMID: 15470248 PMCID: PMC522598 DOI: 10.1128/ec.3.5.1198-1205.2004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Plastids are the organelles of plants and algae that house photosynthesis and many other biochemical pathways. Plastids contain a small genome, but most of their proteins are encoded in the nucleus and posttranslationally targeted to the organelle. When plants and algae lose photosynthesis, they virtually always retain a highly reduced "cryptic" plastid. Cryptic plastids are known to exist in many organisms, although their metabolic functions are seldom understood. The best-studied example of a cryptic plastid is from the intracellular malaria parasite, Plasmodium, which has retained a plastid for the biosynthesis of fatty acids, isoprenoids, and heme by the use of plastid-targeted enzymes. To study a completely independent transformation of a photosynthetic plastid to a cryptic plastid in another alga-turned-parasite, we conducted an expressed sequence tag (EST) survey of Helicosporidium. This parasite has recently been recognized as a highly derived green alga. Based on phylogenetic relationships to other plastid homologues and the presence of N-terminal transit peptides, we have identified 20 putatively plastid-targeted enzymes that are involved in a wide variety of metabolic pathways. Overall, the metabolic diversity of the Helicosporidium cryptic plastid exceeds that of the Plasmodium plastid, as it includes representatives of most of the pathways known to operate in the Plasmodium plastid as well as many others. In particular, several amino acid biosynthetic pathways have been retained, including the leucine biosynthesis pathway, which was only recently recognized in plant plastids. These two parasites represent different evolutionary trajectories in plastid metabolic adaptation.
Collapse
|
21
|
Abstract
Considerable work still needs to be done to understand more fully the basic processes going on inside the non-photosynthetic plastid organelle of Plasmodium spp., the causative agent of malaria. Following an explosion of genomic and transcriptional information in recent years, research workers are still analysing these data looking for new material relevant to the plastid. Several metabolic and housekeeping functions based on bacterial biochemistry have been elucidated and this has given impetus to finding lead inhibitors based on established anti-microbials. Structural investigations of plastid-associated enzymes identified as potential targets have begun. This review gives a perspective on the research to date and hopes to emphasize that a practical outcome for the clinic should be an important focus of future efforts. Malaria parasites have become resistant to front-line anti-malarials that are widely used and were formerly dependable. This has become a worrying problem in many regions where malaria is endemic. The time lag between hunting for new inhibitors and their application as pharmaceuticals is so long and costly that a steady stream of new ventures has to be undertaken to give a reasonable chance of finding affordable and appropriate anti-malarials for the future. Attempts to find inhibitors of the plastid organelle of the malaria parasite should be intensified in such programmes.
Collapse
Affiliation(s)
- R J M Iain Wilson
- National Institute for Medical Research, Mill Hill, London, NW7 1AA, UK.
| |
Collapse
|
22
|
Nozaki T, Ali V, Tokoro M. Sulfur-Containing Amino Acid Metabolism in Parasitic Protozoa. ADVANCES IN PARASITOLOGY 2005; 60:1-99. [PMID: 16230102 DOI: 10.1016/s0065-308x(05)60001-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Sulfur-containing amino acids play indispensable roles in a wide variety of biological activities including protein synthesis, methylation, and biosynthesis of polyamines and glutathione. Biosynthesis and catabolism of these amino acids need to be carefully regulated to achieve the requirement of the above-mentioned activities and also to eliminate toxicity attributable to the amino acids. Genome-wide analyses of enzymes involved in the metabolic pathways of sulfur-containing amino acids, including transsulfuration, sulfur assimilatory de novo cysteine biosynthesis, methionine cycle, and degradation, using genome databases available from a variety of parasitic protozoa, reveal remarkable diversity between protozoan parasites and their mammalian hosts. Thus, the sulfur-containing amino acid metabolic pathways are a rational target for the development of novel chemotherapeutic and prophylactic agents against diseases caused by protozoan parasites. These pathways also demonstrate notable heterogeneity among parasites, suggesting that the metabolism of sulfur-containing amino acids reflects the diversity of parasitism among parasite species, and probably influences their biology and pathophysiology such as virulence competence and stress defense.
Collapse
Affiliation(s)
- Tomoyoshi Nozaki
- Department of Parasitology, Gunma University Graduate School of Medicine, 3-39-22 Showa-machi, Maebashi, Gunma, 371-8511, Japan
| | | | | |
Collapse
|
23
|
Garcia O, Bouige P, Forestier C, Dassa E. Inventory and Comparative Analysis of Rice and Arabidopsis ATP-binding Cassette (ABC) Systems. J Mol Biol 2004; 343:249-65. [PMID: 15381434 DOI: 10.1016/j.jmb.2004.07.093] [Citation(s) in RCA: 120] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/23/2004] [Accepted: 07/27/2004] [Indexed: 10/26/2022]
Abstract
ATP-binding cassette (ABC) proteins constitute a large superfamily found in all kingdoms of living organisms. The recent completion of two draft sequences of the rice (Oryza sativa) genome allowed us to analyze and classify its ABC proteins and to compare to those in Arabidopsis thaliana. We identified a similar number of ABC proteins in rice and Arabidopsis (121 versus 120), despite the rice genome being more than three times the size of Arabidopsis. Both Arabidopsis and rice have representative members in all seven major subfamilies of ABC ATPases (A to G) commonly found in eukaryotes. This comparative analysis allowed the detection of 29 potential orthologous sequences in Arabidopsis and rice. However, plant share with prokaryotes a specific set of ABC systems that is not detected in animals. These ABC systems might be inherited from the cyanobacterial ancestor of chloroplasts. The present work provides the first complete inventory of rice ABC proteins and an updated inventory of those proteins in Arabidopsis.
Collapse
Affiliation(s)
- Olivier Garcia
- Unité des Membranes Bactériennes CNRS URA2172, Département de Microbiologie Fondamentale et Médicale, Site Fernbach, Institut Pasteur 25, Rue du Docteur Roux, 75724 Paris Cedex 15 France
| | | | | | | |
Collapse
|
24
|
Bungard RA. Photosynthetic evolution in parasitic plants: insight from the chloroplast genome. Bioessays 2004; 26:235-47. [PMID: 14988925 DOI: 10.1002/bies.10405] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the enormous diversity in plant form, structure and growth environment across the seed-bearing plants (angiosperms and gymnosperms), the chloroplast genome has, with few exceptions, remained remarkably conserved. This conservation suggests the existence of universal evolutionary selection pressures associated with photosynthesis-the primary function of chloroplasts. The stark exceptions to this conservation occur in parasitic angiosperms, which have escaped the dominant model by evolving the capacity to obtain some or all of their carbon (and nutrients) from their plant hosts. The consequence of this evolution to parasitism is a relaxation of the evolutionary constraints associated with the need to maintain photosynthetic function, the very function that drove early stages of the ancient symbiotic relationship that produced the contemporary chloroplast. Extreme examples of reductionism among parasitic angiosperms reveals major alterations in chloroplast function with the loss of photosynthetic capacity and, with that, massive alterations in chloroplast genome content. This review highlights emerging patterns in reported gene loss and gene retention in the chloroplast genomes of parasitic plants. Some gene losses appear to occur in the early stages of parasitic evolution, even before the loss of photosynthetic capacity, like the chlororespiratory (ndh) genes. This contrasts with unexpected gene retentions, like that of the rbcL gene responsible for photosynthetic carbon dioxide fixation, and belies current understanding of gene function. The review relates gene retention to current knowledge of protein function and gene processing that has implications to broader aspects of genome conservation in organelles.
Collapse
Affiliation(s)
- Ralph A Bungard
- School of Biological Science and New Zealand Institute of Gene Ecology, University of Canterbury, Private Bag 4800, Christchurch 8020, New Zealand.
| |
Collapse
|
25
|
Lister DL, Bateman JM, Purton S, Howe CJ. DNA transfer from chloroplast to nucleus is much rarer in Chlamydomonas than in tobacco. Gene 2003; 316:33-8. [PMID: 14563549 DOI: 10.1016/s0378-1119(03)00754-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
By transforming chloroplasts with an antibiotic-resistance gene under the control of a nuclear-specific promoter, we employed a selection scheme to detect the transfer of DNA from the chloroplast to the nucleus in the green alga Chlamydomonas reinhardtii. Among several billion homoplasmic cells tested, we were unable to detect any stable nuclear integration of chloroplast DNA under normal growth conditions or under stress conditions. This contrasts with results reported for the transfer of DNA from chloroplast to nucleus in higher plants and from mitochondrion to nucleus in Saccharomyces cerevisiae. Furthermore, we were unable to detect chloroplast DNA-derived sequences among nuclear genome data for C. reinhardtii, which also contrasts with the situation in higher plants. Taken together, these findings suggest that there is presently little, if any, movement of DNA from chloroplast to nucleus in C. reinhardtii, which may reflect the ultrastructure of the C. reinhardtii cell.
Collapse
Affiliation(s)
- Diane L Lister
- Centre for Molecular Recognition, Department of Biochemistry, University of Cambridge, Downing Site, Tennis Court Road, CB2 1QW Cambridge, UK
| | | | | | | |
Collapse
|
26
|
Berry S. Endosymbiosis and the design of eukaryotic electron transport. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2003; 1606:57-72. [PMID: 14507427 DOI: 10.1016/s0005-2728(03)00084-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The bioenergetic organelles of eukaryotic cells, mitochondria and chloroplasts, are derived from endosymbiotic bacteria. Their electron transport chains (ETCs) resemble those of free-living bacteria, but were tailored for energy transformation within the host cell. Parallel evolutionary processes in mitochondria and chloroplasts include reductive as well as expansive events: On one hand, bacterial complexes were lost in eukaryotes with a concomitant loss of metabolic flexibility. On the other hand, new subunits have been added to the remaining bacterial complexes, new complexes have been introduced, and elaborate folding patterns of the thylakoid and mitochondrial inner membranes have emerged. Some bacterial pathways were reinvented independently by eukaryotes, such as parallel routes for quinol oxidation or the use of various anaerobic electron acceptors. Multicellular organization and ontogenetic cycles in eukaryotes gave rise to further modifications of the bioenergetic organelles. Besides mitochondria and chloroplasts, eukaryotes have ETCs in other membranes, such as the plasma membrane (PM) redox system, or the cytochrome P450 (CYP) system. These systems have fewer complexes and simpler branching patterns than those in energy-transforming organelles, and they are often adapted to non-bioenergetic functions such as detoxification or cellular defense.
Collapse
Affiliation(s)
- Stephan Berry
- Plant Biochemistry, Faculty of Biology, Ruhr-University-Bochum, Universitätsstr. 150, D-44780 Bochum, Germany.
| |
Collapse
|
27
|
Gray JC, Sullivan JA, Wang JH, Jerome CA, MacLean D. Coordination of plastid and nuclear gene expression. Philos Trans R Soc Lond B Biol Sci 2003; 358:135-44; discussion 144-5. [PMID: 12594922 PMCID: PMC1693108 DOI: 10.1098/rstb.2002.1180] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The coordinated expression of genes distributed between the nuclear and plastid genomes is essential for the assembly of functional chloroplasts. Although the nucleus has a pre-eminent role in controlling chloroplast biogenesis, there is considerable evidence that the expression of nuclear genes encoding photosynthesis-related proteins is regulated by signals from plastids. Perturbation of several plastid-located processes, by inhibitors or in mutants, leads to decreased transcription of a set of nuclear photosynthesis-related genes. Characterization of arabidopsis gun (genomes uncoupled) mutants, which express nuclear genes in the presence of norflurazon or lincomycin, has provided evidence for two separate signalling pathways, one involving tetrapyrrole biosynthesis intermediates and the other requiring plastid protein synthesis. In addition, perturbation of photosynthetic electron transfer produces at least two different redox signals, as part of the acclimation to altered light conditions. The recognition of multiple plastid signals requires a reconsideration of the mechanisms of regulation of transcription of nuclear genes encoding photosynthesis-related proteins.
Collapse
Affiliation(s)
- John C Gray
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK.
| | | | | | | | | |
Collapse
|
28
|
Abstract
The complete genome sequences of cyanobacteria and of the higher plant Arabidopsis thaliana leave no doubt that the plant chloroplast originated, through endosymbiosis, from a cyanobacterium. But the genomic legacy of cyanobacterial ancestry extends far beyond the chloroplast itself, and persists in organisms that have lost chloroplasts completely.
Collapse
Affiliation(s)
- John A Raven
- Division of Environmental and Applied Biology, University of Dundee, Dundee DD1 4HN, UK.
| | | |
Collapse
|