1
|
Famta P, Shah S, Dey B, Kumar KC, Bagasariya D, Vambhurkar G, Pandey G, Sharma A, Srinivasarao DA, Kumar R, Guru SK, Raghuvanshi RS, Srivastava S. Despicable role of epithelial-mesenchymal transition in breast cancer metastasis: Exhibiting de novo restorative regimens. CANCER PATHOGENESIS AND THERAPY 2025; 3:30-47. [PMID: 39872366 PMCID: PMC11764040 DOI: 10.1016/j.cpt.2024.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/03/2024] [Accepted: 01/10/2024] [Indexed: 01/30/2025]
Abstract
Breast cancer (BC) is the most prevalent cancer in women globally. Anti-cancer advancements have enabled the killing of BC cells through various therapies; however, cancer relapse is still a major limitation and decreases patient survival and quality of life. Epithelial-to-mesenchymal transition (EMT) is responsible for tumor relapse in several cancers. This highly regulated event causes phenotypic, genetic, and epigenetic changes in the tumor microenvironment (TME). This review summarizes the recent advancements regarding EMT using de-differentiation and partial EMT theories. We extensively review the mechanistic pathways, TME components, and various anti-cancer adjuvant and neo-adjuvant therapies responsible for triggering EMT in BC tumors. Information regarding essential clinical studies and trials is also discussed. Furthermore, we also highlight the recent strategies targeting various EMT pathways. This review provides a holistic picture of BC biology, molecular pathways, and recent advances in therapeutic strategies.
Collapse
Affiliation(s)
- Paras Famta
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Saurabh Shah
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Biswajit Dey
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Kondasingh Charan Kumar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Deepkumar Bagasariya
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Ganesh Vambhurkar
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Anamika Sharma
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Dadi A. Srinivasarao
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| | - Rahul Kumar
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500037, India
| | | | - Saurabh Srivastava
- Pharmaceutical Innovation and Translational Research Lab (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana, 500037, India
| |
Collapse
|
2
|
Matsumoto S, Tanaka S. Wnt signaling activation confers a syncytiotrophoblast progenitor state on trophoblast stem cells of cynomolgus monkey†. Biol Reprod 2024; 111:1262-1281. [PMID: 39223948 PMCID: PMC11647102 DOI: 10.1093/biolre/ioae131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 06/08/2024] [Accepted: 09/03/2024] [Indexed: 09/04/2024] Open
Abstract
Trophoblast stem cells, derived from the trophectoderm of the blastocyst, are used as an in vitro model to reveal the mechanisms underlying placentation in mammals. In humans, suitable culture conditions for trophoblast stem cell derivation have recently been established. The established human trophoblast stem cells differentiate efficiently toward two trophoblast subtypes: syncytiotrophoblasts and extravillous trophoblasts. However, the efficiency of differentiation is lower in macaque trophoblast stem cells than in human trophoblast stem cells. Here, we demonstrate that the activation of Wnt signaling downregulated the expression of inhibitory G protein and induced trophoblastic lineage switching to the syncytiotrophoblast progenitor state. The treatment of macaque trophoblast stem cells with a GSK-3 inhibitor, CHIR99021, upregulated syncytiotrophoblast progenitor markers and enhanced proliferation. Under the Wnt signaling-activated conditions, macaque trophoblast stem cells effectively differentiated to syncytiotrophoblasts upon dibutyryl cyclic AMP (dbcAMP) and forskolin treatment. RNA-seq analyses revealed the downregulation of inhibitory G protein, which may make macaque trophoblast stem cells responsive to forskolin. Interestingly, this lineage switching appeared to be reversible as the macaque trophoblast stem cells lost responsiveness to forskolin upon the removal of CHIR99021. The ability to regulate the direction of macaque trophoblast stem cell differentiation would be advantageous in elucidating the mechanisms underlying placentation in non-human primates.
Collapse
Affiliation(s)
- Shoma Matsumoto
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Satoshi Tanaka
- Department of Animal Resource Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
3
|
Lung H, Wentworth KL, Moody T, Zamarioli A, Ram A, Ganesh G, Kang M, Ho S, Hsiao EC. Wnt pathway inhibition with the porcupine inhibitor LGK974 decreases trabecular bone but not fibrosis in a murine model with fibrotic bone. JBMR Plus 2024; 8:ziae011. [PMID: 38577521 PMCID: PMC10994528 DOI: 10.1093/jbmrpl/ziae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 04/06/2024] Open
Abstract
G protein-coupled receptors (GPCRs) mediate a wide spectrum of physiological functions, including the development, remodeling, and repair of the skeleton. Fibrous dysplasia (FD) of the bone is characterized by fibrotic, expansile bone lesions caused by activating mutations in GNAS. There are no effective therapies for FD. We previously showed that ColI(2.3)+/Rs1+ mice, in which Gs-GPCR signaling was hyper-activated in osteoblastic cell lineages using an engineered receptor strategy, developed a fibrotic bone phenotype with trabecularization that could be reversed by normalizing Gs-GPCR signaling, suggesting that targeting the Gs-GPCR or components of the downstream signaling pathway could serve as a promising therapeutic strategy for FD. The Wnt signaling pathway has been implicated in the pathogenesis of FD-like bone, but the specific Wnts and which cells produce them remain largely unknown. Single-cell RNA sequencing on long-bone stromal cells of 9-wk-old male ColI(2.3)+/Rs1+ mice and littermate controls showed that fibroblastic stromal cells in ColI(2.3)+/Rs1+ mice were expanded. Multiple Wnt ligands were up- or downregulated in different cellular populations, including in non-osteoblastic cells. Treatment with the porcupine inhibitor LGK974, which blocks Wnt signaling broadly, induced partial resorption of the trabecular bone in the femurs of ColI(2.3)+/Rs1+ mice, but no significant changes in the craniofacial skeleton. Bone fibrosis remained evident after treatment. Notably, LGK974 caused significant bone loss in control mice. These results provide new insights into the role of Wnt and Gs-signaling in fibrosis and bone formation in a mouse model of Gs-GPCR pathway overactivation.
Collapse
Affiliation(s)
- Hsuan Lung
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
- Department of Dentistry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
- School of Dentistry, Institute of Oral Medicine, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| | - Kelly L Wentworth
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California, Zuckerberg San Francisco General Hospital, San Francisco, CA 94143, United States
| | - Tania Moody
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Ariane Zamarioli
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Department of Orthopaedics and Anesthesiology, Ribeirao Preto Medical School, University of Sao Paulo, Sao Paulo (SP) 14049-900, Brazil
| | - Apsara Ram
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Gauri Ganesh
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
| | - Misun Kang
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Sunita Ho
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| | - Edward C Hsiao
- Department of Medicine, Division of Endocrinology and Metabolism, The Institute for Human Genetics, and the Eli and Edythe Broad Institute for Regeneration Medicine, University of California, San Francisco, CA 94143, United States
- Oral and Craniofacial Sciences Graduate Program, School of Dentistry, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
4
|
Anand AS, Verma K, Amitabh, Prasad DN, Kohli E. The interplay of calponin, wnt signaling, and cytoskeleton protein governs transgenerational phenotypic abnormalities in drosophila exposed to zinc oxide nanoparticles. Chem Biol Interact 2023; 369:110284. [PMID: 36462549 DOI: 10.1016/j.cbi.2022.110284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/10/2022] [Accepted: 11/22/2022] [Indexed: 12/05/2022]
Abstract
ZnO nanoparticles (ZnO NPs) are widely used engineered nanomaterials. Due to induced genotoxicity, increased oxidative stress, and teratogenicity, these NPs have been reported to be toxic. In the present study, we emphasise the role of vital proteins in regulating ZnO NP-induced abnormal phenotypes, particularly the deformed thorax and single wing in the Drosophila melanogaster progeny fed on 0.1-10 mM ZnO NPs. To understand how protein expression regulates this particular phenotype on ZnO NPs exposure, toxicoproteomics profile of control and abnormal phenotype flies was generated using LC/MS/MS. Gene ontology enrichment studies of proteomics data were carried out using CLUEGO and STRAP software. The bioinformatics tool STRING was used to generate a protein-protein interaction map of key proteins of enrichment analysis. Following ZnO NP exposure, the differential expression of key proteins of the Wnt pathway was prominent. Altered expression of various proteins of the Wnt pathway (CaMKII), cytoskeleton (Actin), and calponin resulted in developmental defects in drosophila progeny. In addition, immunohistology studies showed a significant deviation in the expression of wingless protein of ZnO NPs treated larvae in comparison to control. According to these findings, the interaction of the wnt pathway and cytoskeletal proteins with ZnO NPs caused developmental abnormalities in the subsequent generation of drosophila, highlighting the transgenerational toxic effects of these nanoparticles.
Collapse
Affiliation(s)
- Avnika Singh Anand
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Kalyani Verma
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Amitabh
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Dipti N Prasad
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India
| | - Ekta Kohli
- Defence Institute of Physiology and Allied Sciences, Defence Research and Development Organization, Ministry of Defence, Government of India, Lucknow Road, Timarpur, Delhi, India.
| |
Collapse
|
5
|
Zhou H, Zhao C, Wang P, Yang W, Zhu H, Zhang S. Regulators involved in trophoblast syncytialization in the placenta of intrauterine growth restriction. Front Endocrinol (Lausanne) 2023; 14:1107182. [PMID: 36798658 PMCID: PMC9927020 DOI: 10.3389/fendo.2023.1107182] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/20/2023] [Indexed: 02/04/2023] Open
Abstract
Placental dysfunction refers to the insufficiency of placental perfusion and chronic hypoxia during early pregnancy, which impairs placental function and causes inadequate supply of oxygen and nutrients to the fetus, affecting fetal development and health. Fetal intrauterine growth restriction, one of the most common outcomes of pregnancy-induced hypertensions, can be caused by placental dysfunction, resulting from deficient trophoblast syncytialization, inadequate trophoblast invasion and impaired vascular remodeling. During placental development, cytotrophoblasts fuse to form a multinucleated syncytia barrier, which supplies oxygen and nutrients to meet the metabolic demands for fetal growth. A reduction in the cell fusion index and the number of nuclei in the syncytiotrophoblast are found in the placentas of pregnancies complicated by IUGR, suggesting that the occurrence of IUGR may be related to inadequate trophoblast syncytialization. During the multiple processes of trophoblasts syncytialization, specific proteins and several signaling pathways are involved in coordinating these events and regulating placental function. In addition, epigenetic modifications, cell metabolism, senescence, and autophagy are also involved. Study findings have indicated several abnormally expressed syncytialization-related proteins and signaling pathways in the placentas of pregnancies complicated by IUGR, suggesting that these elements may play a crucial role in the occurrence of IUGR. In this review, we discuss the regulators of trophoblast syncytialization and their abnormal expression in the placentas of pregnancies complicated by IUGR.
Collapse
Affiliation(s)
- Hanjing Zhou
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Chenqiong Zhao
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Peixin Wang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Weijie Yang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
| | - Haiyan Zhu
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| | - Songying Zhang
- Assisted Reproduction Unit, Department of Obstetrics and Gynecology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Reproductive Dysfunction Management of Zhejiang Province, Hangzhou, China
- *Correspondence: Songying Zhang, ; Haiyan Zhu,
| |
Collapse
|
6
|
Critical illness and bone metabolism: where are we now and what is next? Eur J Med Res 2022; 27:177. [PMID: 36104724 PMCID: PMC9472372 DOI: 10.1186/s40001-022-00805-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 09/02/2022] [Indexed: 11/10/2022] Open
Abstract
AbstractCritical illness refers to the clinical signs of severe, variable and life-threatening critical conditions, often accompanied by insufficiency or failure of one or more organs. Bone health of critically ill patients is severely affected during and after ICU admission. Therefore, clinical work should focus on ICU-related bone loss, and early development and implementation of related prevention and treatment strategies: optimized and personalized nutritional support (high-quality protein, trace elements and intestinal prebiotics) and appropriate physiotherapy and muscle training should be implemented as early as possible after ICU admission and discharge. At the same time, the drug regulates excessive metabolism and resists osteoporosis.
Collapse
|
7
|
Giuraniuc CV, Zain S, Ghafoor S, Hoppler S. A mathematical modelling portrait of Wnt signalling in early vertebrate embryogenesis. J Theor Biol 2022; 551-552:111239. [DOI: 10.1016/j.jtbi.2022.111239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 06/30/2022] [Accepted: 07/29/2022] [Indexed: 11/28/2022]
|
8
|
Huang Y, Winklbauer R. Cell cortex regulation by the planar cell polarity protein Prickle1. J Cell Biol 2022; 221:e202008116. [PMID: 35512799 PMCID: PMC9082893 DOI: 10.1083/jcb.202008116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 01/18/2022] [Accepted: 04/09/2022] [Indexed: 01/07/2023] Open
Abstract
The planar cell polarity pathway regulates cell polarity, adhesion, and rearrangement. Its cytoplasmic core components Prickle (Pk) and Dishevelled (Dvl) often localize as dense puncta at cell membranes to form antagonizing complexes and establish cell asymmetry. In vertebrates, Pk and Dvl have been implicated in actomyosin cortex regulation, but the mechanism of how these proteins control cell mechanics is unclear. Here we demonstrate that in Xenopus prechordal mesoderm cells, diffusely distributed, cytoplasmic Pk1 up-regulates the F-actin content of the cortex. This counteracts cortex down-regulation by Dvl2. Both factors act upstream of casein kinase II to increase or decrease cortical tension. Thus, cortex modulation by Pk1 and Dvl2 is translated into mechanical force and affects cell migration and rearrangement during radial intercalation in the prechordal mesoderm. Pk1 also forms puncta and plaques, which are associated with localized depletion of cortical F-actin, suggesting opposite roles for diffuse and punctate Pk1.
Collapse
Affiliation(s)
- Yunyun Huang
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| | - Rudolf Winklbauer
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
9
|
Yang N, Zhang X, Li L, Xu T, Li M, Zhao Q, Yu J, Wang J, Liu Z. Ginsenoside Rc Promotes Bone Formation in Ovariectomy-Induced Osteoporosis In Vivo and Osteogenic Differentiation In Vitro. Int J Mol Sci 2022; 23:ijms23116187. [PMID: 35682866 PMCID: PMC9181096 DOI: 10.3390/ijms23116187] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/13/2022] [Accepted: 05/27/2022] [Indexed: 11/16/2022] Open
Abstract
Ginsenoside Rc is one of the active components used in traditional Chinese medicine. We aim to explore how ginsenoside Rc can be used in the treatment of osteoporosis. Micro-CT demonstrated that the treatment of ovariectomized (OVX) mice with ginsenoside Rc significantly inhibited the decrease in bone mineral density, bone volumetric fraction, and trabecular number, and the increase in trabecular separation. Histological staining, qRT-PCR, and Western blot demonstrated that ginsenoside Rc enhances the microstructure of trabecular bone, and promotes the expression of bone formation-related genes. Alkaline phosphatase (ALP) staining, Alizarin Red staining, qRT-PCR, and Western blotting demonstrated that ginsenoside Rc dose-dependently promoted the osteogenic differentiation of MC3T3-E1 cells. A ginsenoside Rc-induced increase in the expression of β-catenin, p-GSK-3β, collagen-1, ALP, and RUNX-2 family transcription factor-2 was significantly attenuated upon 10 μM XAV-939 treatment, while the decrease in the expression of GSK-3β and p-β-catenin was significantly enhanced. Ginsenoside Rc promotes bone formation in ovariectomy-induced osteoporosis in vivo and promotes osteogenic differentiation in vitro via the Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Zhihui Liu
- Correspondence: ; Tel.: +86-431-8879-6018
| |
Collapse
|
10
|
Cao L, Wang J, Zhang Y, Tian F, Wang C. Osteoprotective effects of flavonoids: Evidence from in vivo and in vitro studies (Review). Mol Med Rep 2022; 25:200. [PMID: 35475514 DOI: 10.3892/mmr.2022.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/22/2022] [Indexed: 11/05/2022] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass and quality and bone micro‑architecture degradation. Its primary cause is disorder of bone metabolism: Over‑formation of osteoclasts, resulting in increased bone resorption and insufficient osteogenesis. Traditional herbal flavonoids can be used as alternative drugs to prevent and treat osteoporosis due to their wide range of sources, structural diversity and less adverse effects. The present paper reviewed six flavonoids, including quercetin, icariin, hesperitin, naringin, chrysin and pueraria, that promote bone formation and have been widely studied in the literature over the past five years, with the aim of providing novel ideas for the development of drugs for bone‑associated disease.
Collapse
Affiliation(s)
- Lili Cao
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Jiawei Wang
- School and Hospital of Stomatology, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Yujuan Zhang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Feng Tian
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China
| | - Chunfang Wang
- Experimental Animal Center, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| |
Collapse
|
11
|
Discrete Logic Modeling of Cell Signaling Pathways. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2488:159-181. [PMID: 35347689 DOI: 10.1007/978-1-0716-2277-3_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cell signaling pathways often crosstalk generating complex biological behaviors observed in different cellular contexts. Frequently, laboratory experiments focus on a few putative regulators, alone unable to predict the molecular mechanisms behind the observed phenotypes. Here, systems biology complements these approaches by giving a holistic picture to complex signaling crosstalk. In particular, Boolean network models are a meaningful tool to study large network behaviors and can cope with incomplete kinetic information. By introducing a model describing pathways involved in hematopoietic stem cell maintenance, we present a general approach on how to model cell signaling pathways with Boolean network models.
Collapse
|
12
|
Wang H, Zhang R, Wu X, Chen Y, Ji W, Wang J, Zhang Y, Xia Y, Tang Y, Yuan J. The Wnt Signaling Pathway in Diabetic Nephropathy. Front Cell Dev Biol 2022; 9:701547. [PMID: 35059392 PMCID: PMC8763969 DOI: 10.3389/fcell.2021.701547] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/06/2021] [Indexed: 12/17/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious kidney-related complication of both type 1 and type 2 diabetes mellitus (T1DM, T2DM) and the second major cause of end-stage kidney disease. DN can lead to hypertension, edema, and proteinuria. In some cases, DN can even progress to kidney failure, a life-threatening condition. The precise etiology and pathogenesis of DN remain unknown, although multiple factors are believed to be involved. The main pathological manifestations of DN include mesangial expansion, thickening of the glomerular basement membrane, and podocyte injury. Eventually, these pathological manifestations will lead to glomerulosclerosis, thus affecting renal function. There is an urgent need to develop new strategies for the prevention and treatment of DN. Existing evidence shows that the Wnt signaling cascade plays a key role in regulating the development of DN. Previous studies focused on the role of the Wnt canonical signaling pathway in DN. Subsequently, accumulated evidence on the mechanism of the Wnt non-canonical signaling indicated that Wnt/Ca2+ and Wnt/PCP also have essential roles in the progression of DN. In this review, we summarize the specific mechanisms of Wnt signaling in the occurrence and development of DN in podocyte injury, mesangial cell injury, and renal fibrosis. Also, to elucidate the significance of the Wnt canonical pathway in the process of DN, we uncovered evidence supporting that both Wnt/PCP and Wnt/Ca2+ signaling are critical for DN development.
Collapse
Affiliation(s)
- Haiying Wang
- Department of Physiology, Jining Medical University, Jining, China
| | - Ran Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Xinjie Wu
- Basic Medical School, Jining Medical University, Jining, China
| | - Yafen Chen
- Basic Medical School, Jining Medical University, Jining, China
| | - Wei Ji
- Basic Medical School, Jining Medical University, Jining, China
| | - Jingsuo Wang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yawen Zhang
- Basic Medical School, Jining Medical University, Jining, China
| | - Yong Xia
- Key Laboratory of Precision Oncology of Shandong Higher Education, Institute of Precision Medicine, Jining Medical University, Jining, China
| | - Yiqun Tang
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jinxiang Yuan
- Collaborative Innovation Center, Jining Medical University, Jining, China
| |
Collapse
|
13
|
Wnt signaling and Hedgehog expression in basal cell carcinoma. EUROPEAN JOURNAL OF PLASTIC SURGERY 2021. [DOI: 10.1007/s00238-021-01920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Zhang B, Qin G, Qu L, Zhang Y, Li C, Cang C, Lin Q. Wnt8a is one of the candidate genes that play essential roles in the elongation of the seahorse prehensile tail. MARINE LIFE SCIENCE & TECHNOLOGY 2021; 3:416-426. [PMID: 37073259 PMCID: PMC10077196 DOI: 10.1007/s42995-021-00099-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Accepted: 01/08/2021] [Indexed: 05/03/2023]
Abstract
Seahorses are a hallmark of specialized morphological features due to their elongated prehensile tail. However, the underlying genomic grounds of seahorse tail development remain elusive. Herein, we evaluated the roles of essential genes from the Wnt gene family for the tail developmental process in the lined seahorse (Hippocampus erectus). Comparative genomic analysis revealed that the Wnt gene family is conserved in seahorses. The expression profiles and in situ hybridization suggested that Wnt5a, Wnt8a, and Wnt11 may participate in seahorse tail development. Like in other teleosts, Wnt5a and Wnt11 were found to regulate the development of the tail axial mesoderm and tail somitic mesoderm, respectively. However, a significantly extended expression period of Wnt8a during seahorse tail development was observed. Signaling pathway analysis further showed that Wnt8a up-regulated the expression of the tail axial mesoderm gene (Shh), while interaction analysis indicated that Wnt8a could promote the expression of Wnt11. In summary, our results indicate that the special extended expression period of Wnt8a might promote caudal tail axis formation, which contributes to the formation of the elongated tail of the seahorse. Supplementary Information The online version contains supplementary material available at 10.1007/s42995-021-00099-7.
Collapse
Affiliation(s)
- Bo Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Geng Qin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Lili Qu
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Yanhong Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Chunyan Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
| | - Chunlei Cang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026 China
| | - Qiang Lin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510275 China
- Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou, 510275 China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
15
|
WNT3 hypomethylation counteracts low activity of the Wnt signaling pathway in the placenta of preeclampsia. Cell Mol Life Sci 2021; 78:6995-7008. [PMID: 34608506 PMCID: PMC8558176 DOI: 10.1007/s00018-021-03941-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/17/2021] [Accepted: 09/13/2021] [Indexed: 01/12/2023]
Abstract
Preeclampsia is a hypertensive disorder of pregnancy. Many studies have shown that epigenetic mechanisms may play a role in preeclampsia. Moreover, our previous study indicated that the differentially methylated genes in preeclampsia were enriched in the Wnt/β-catenin signaling pathway. This study aimed to identify differentially methylated Wnt/β-catenin signaling pathway genes in the preeclamptic placenta and to study the roles of these genes in trophoblast cells in vitro. Using an Illumina Infinium HumanMethylation 850 K BeadChip, we found that the Wnt signaling pathway was globally hypermethylated in the preeclamptic group compared with the term birth group, but hypomethylated in the preeclamptic group compared with the preterm birth group. Among all Wnt/β-catenin signaling pathway factors, WNT3 was the most significantly differentially expressed gene and was hypomethylated in the preeclamptic group compared to the nonhypertensive groups, namely, the preterm birth group and term birth group. This result was confirmed by pyrosequencing. Through quantitative real-time PCR and western blot analysis, the WNT3 gene was found to be highly expressed in preeclamptic placental tissues, in contrast to other WNT factors, which were previously reported to be expressed at low levels in placental tissues. Additionally, in the HTR8/SVneo cell line, knockdown of WNT3 suppressed the Wnt/β-catenin signaling pathway, consistent with the findings for other WNT factors. These results prompted us to speculate that the WNT3 gene counteracts the low activation state of the Wnt signaling pathway in the preeclamptic placenta through methylation modification.
Collapse
|
16
|
Abstract
Liver metastasis, originating either from a primary liver or other cancer types, represent a large cancer-related burden. Therefore, studies that add to better understanding of its molecular basis are needed. Herein, the role of the Wnt signaling pathway in liver metastasis is outlined. Its role in hepatocellular carcinoma (HCC) epithelial-mesenchymal transition (EMT), motility, migration, metastasis formation, and other steps of the metastatic cascade are presented. Additionally, the roles of the Wnt signaling pathway in the liver metastasis formation of colorectal, breast, gastric, lung, melanoma, pancreatic, and prostate cancer are explored. The special emphasis is given to the role of the Wnt signaling pathway in the communication between the many of the components of the primary and secondary cancer microenvironment that contribute to the metastatic outgrowth in the liver. The data presented herein are a review of the most recent publications and advances in the field that add to the idea that the Wnt pathway is among the drivers of liver metastasis and that its targeting could potentially relieve liver metastasis–related complications.
Collapse
|
17
|
Ka C, Gautam S, Marshall SR, Tice LP, Martinez-Bartolome M, Fenner JL, Range RC. Receptor Tyrosine Kinases ror1/2 and ryk Are Co-expressed with Multiple Wnt Signaling Components During Early Development of Sea Urchin Embryos. THE BIOLOGICAL BULLETIN 2021; 241:140-157. [PMID: 34706206 PMCID: PMC11257382 DOI: 10.1086/715237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
AbstractA combination of receptors, co-receptors, and secreted Wnt modulators form protein complexes at the cell surface that activate one or more of the three different Wnt signaling pathways (Wnt/β-catenin, Wnt/JNK, and Wnt/Ca2+). Two or more of these pathways are often active in the same cellular territories, forming Wnt signaling networks; however, the molecular mechanisms necessary to integrate information from these pathways in these situations are unclear in any in vivo model system. Recent studies have implicated two Wnt binding receptor tyrosine kinases, receptor tyrosine kinase-like orphan receptor (Ror) and related-to-receptor tyrosine kinase (Ryk), in the regulation of canonical and non-canonical Wnt signaling pathways, depending on the context; however, the spatiotemporal expression of these genes in relation to Wnt signaling components has not been well characterized in most deuterostome model systems. Here we use a combination of phylogenetic and spatiotemporal gene expression analyses to characterize Ror and Ryk orthologs in sea urchin embryos. Our phylogenetic analysis indicates that both ror1/2 and ryk originated as single genes from the metazoan ancestor. Expression analyses indicate that ror1/2 and ryk are expressed in the same domains of many Wnt ligands and Frizzled receptors essential for the specification and patterning of germ layers along the early anterior-posterior axis. In addition, both genes are co-expressed with Wnt signaling components in the gut, ventral ectoderm, and anterior neuroectoderm territories later in development. Together, our results indicate that Ror and Ryk have a complex evolutionary history and that their spatiotemporal expression suggests that they could contribute to the complexity of Wnt signaling in early sea urchin embryogenesis.
Collapse
Affiliation(s)
- C Ka
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - S Gautam
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - SR Marshall
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | - LP Tice
- Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762
| | | | - JL Fenner
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| | - RC Range
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849
| |
Collapse
|
18
|
Fa J, Zhang X, Zhang X, Qi M, Zhang X, Fu Q, Xu Z, Gao Y, Wang B. Long Noncoding RNA lnc-TSSK2-8 Activates Canonical Wnt/β-Catenin Signaling Through Small Heat Shock Proteins HSPA6 and CRYAB. Front Cell Dev Biol 2021; 9:660576. [PMID: 34041241 PMCID: PMC8141806 DOI: 10.3389/fcell.2021.660576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022] Open
Abstract
Congenital heart defects (CHDs) are the most common birth defects worldwide. 22q11.2 deletion syndrome is the most common microdeletion disorder that has been frequently associated with conotruncal malformations. By now, the dosage-sensitive gene TBX1 has been adopted as the major pathogenic gene responsible for 22q11.2 deletion, which is regulated by canonical Wnt/β-catenin signaling pathway in heart outflow tract development. Here, we report the long noncoding RNA (lncRNA) lnc-TSSK2-8, which is encompassed in the 22q11.2 region, that can activate canonical Wnt/β-catenin signaling by protecting β-catenin from degradation, which could result from decreased ubiquitination. Such effects were mediated by two short heat shock proteins HSPA6 and α-β-crystallin (CRYAB), whose expression was regulated by lnc-TSSK2-8 through a competing endogenous RNA (ceRNA) mechanism. In clinical practice, the pathogenesis of copy number variation (CNV) was always attributed to haploinsufficiency of protein-coding genes. Here, we report that the 22q11.2 lncRNA lnc-TSSK2-8 significantly activated canonical Wnt/β-catenin signaling, which has major roles in cardiac outflow tract development and should act upstream of TBX1. Our results suggested that lncRNAs should contribute to the etiology of CNV-related CHD.
Collapse
Affiliation(s)
- Jingjing Fa
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqing Zhang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoping Zhang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ming Qi
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Zhang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qihua Fu
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhuoming Xu
- Cardiac Intensive Care Unit, Department of Thoracic and Cardiovascular Surgery, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yunqian Gao
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Laboratory Medicine, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bo Wang
- Pediatric Translational Medicine Institute, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Faculty of Medical Science, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Wnt6 regulates the homeostasis of the stem cell niche via Rac1-and Cdc42-mediated noncanonical Wnt signalling pathways in Drosophila testis. Exp Cell Res 2021; 402:112511. [PMID: 33582096 DOI: 10.1016/j.yexcr.2021.112511] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/18/2021] [Accepted: 01/26/2021] [Indexed: 11/23/2022]
Abstract
The homeostasis of the stem cell niche is regulated by both intrinsic and extrinsic factors, and the complex and ordered molecular and cellular regulatory mechanisms need to be further explored. In Drosophila testis, germline stem cells (GSCs) rely on hub cells for self-renewal and physical attachment. GSCs are also in contact with somatic cyst stem cells (CySCs). Utilizing genetic manipulation in Drosophila, we investigated the role of Wnt6 in vivo and in vitro. In Drosophila testis, we found that Wnt6 is required for GSC differentiation and CySC self-renewal. In Schneider 2 (S2) cells, we found that Wnt6 regulates cell proliferation and apoptosis. Mechanistically, we demonstrated that Wnt6 can downregulate the expression levels of Arm, Rac1 and Cdc42 in S2 cells. Notably, Rac1 and Cdc42, which act downstream of the noncanonical Wnt signalling pathway, imitated the phenotypes of Wnt6 in Drosophila testis. Thus, the newly discovered Wnt6-Rac1/Cdc42 signal axis is required for the homeostasis of the stem cell niche in the Drosophila testis.
Collapse
|
20
|
Extrinsic Regulators of mRNA Translation in Developing Brain: Story of WNTs. Cells 2021; 10:cells10020253. [PMID: 33525513 PMCID: PMC7911671 DOI: 10.3390/cells10020253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/16/2021] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Extrinsic molecules such as morphogens can regulate timed mRNA translation events in developing neurons. In particular, Wingless-type MMTV integration site family, member 3 (Wnt3), was shown to regulate the translation of Foxp2 mRNA encoding a Forkhead transcription factor P2 in the neocortex. However, the Wnt receptor that possibly mediates these translation events remains unknown. Here, we report Frizzled member 7 (Fzd7) as the Wnt3 receptor that lays downstream in Wnt3-regulated mRNA translation. Fzd7 proteins co-localize with Wnt3 ligands in developing neocortices. In addition, the Fzd7 proteins overlap in layer-specific neuronal subpopulations expressing different transcription factors, Foxp1 and Foxp2. When Fzd7 was silenced, we found decreased Foxp2 protein expression and increased Foxp1 protein expression, respectively. The Fzd7 silencing also disrupted the migration of neocortical glutamatergic neurons. In contrast, Fzd7 overexpression reversed the pattern of migratory defects and Foxp protein expression that we found in the Fzd7 silencing. We further discovered that Fzd7 is required for Wnt3-induced Foxp2 mRNA translation. Surprisingly, we also determined that the Fzd7 suppression of Foxp1 protein expression is not Wnt3 dependent. In conclusion, it is exhibited that the interaction between Wnt3 and Fzd7 regulates neuronal identity and the Fzd7 receptor functions as a downstream factor in ligand Wnt3 signaling for mRNA translation. In particular, the Wnt3-Fzd7 signaling axis determines the deep layer Foxp2-expressing neurons of developing neocortices. Our findings also suggest that Fzd7 controls the balance of the expression for Foxp transcription factors in developing neocortical neurons. These discoveries are presented in our manuscript within a larger framework of this review on the role of extrinsic factors in regulating mRNA translation.
Collapse
|
21
|
Xie J, Huang L, Lu YG, Zheng DL. Roles of the Wnt Signaling Pathway in Head and Neck Squamous Cell Carcinoma. Front Mol Biosci 2021; 7:590912. [PMID: 33469547 PMCID: PMC7814318 DOI: 10.3389/fmolb.2020.590912] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 10/21/2020] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the most common type of head and neck tumor. It is a high incidence malignant tumor associated with a low survival rate and limited treatment options. Accumulating conclusions indicate that the Wnt signaling pathway plays a vital role in the pathobiological process of HNSCC. The canonical Wnt/β-catenin signaling pathway affects a variety of cellular progression, enabling tumor cells to maintain and further promote the immature stem-like phenotype, proliferate, prolong survival, and gain invasiveness. Genomic studies of head and neck tumors have shown that although β-catenin is not frequently mutated in HNSCC, its activity is not inhibited by mutations in upstream gene encoding β-catenin, NOTCH1, FAT1, and AJUBA. Genetic defects affect the components of the Wnt pathway in oral squamous cell carcinoma (OSCC) and the epigenetic mechanisms that regulate inhibitors of the Wnt pathway. This paper aims to summarize the groundbreaking discoveries and recent advances involving the Wnt signaling pathway and highlight the relevance of this pathway in head and neck squamous cell cancer, which will help provide new insights into improving the treatment of human HNSCC by interfering with the transcriptional signaling of Wnt.
Collapse
Affiliation(s)
- Jing Xie
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Li Huang
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Dentistry, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - You-Guang Lu
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China.,Department of Preventive Dentistry, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| | - Da-Li Zheng
- Fujian Key Laboratory of Oral Diseases, School and Hospital of Stomatology, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Cavallo JC, Scholpp S, Flegg MB. Delay-driven oscillations via Axin2 feedback in the Wnt/β-catenin signalling pathway. J Theor Biol 2020; 507:110458. [DOI: 10.1016/j.jtbi.2020.110458] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/19/2022]
|
23
|
Kuang Z, Bai J, Ni L, Hang K, Xu J, Ying L, Xue D, Pan Z. Withanolide B promotes osteogenic differentiation of human bone marrow mesenchymal stem cells via ERK1/2 and Wnt/β-catenin signaling pathways. Int Immunopharmacol 2020; 88:106960. [PMID: 32919219 DOI: 10.1016/j.intimp.2020.106960] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 08/26/2020] [Accepted: 08/28/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND The treatment of bone defects has always been a problem for clinicians. In recent years, research on human bone mesenchymal stem cells (hBMSCs) has found that promoting their osteogenic differentiation could be a useful therapeutic strategy for bone healing. Previous studies have been reported that Withania somnifera Dunal inhibits osteoclastogenesis by inhibiting the NF-κB signaling pathway. Withanolide B is an active component of W. somnifera Dunal, but its role in osteogenic differentiation of hBMSCs remains unknown. Here, we performed a preliminary study on the role of Withanolide B in promoting osteogenic differentiation and its possible mechanism. METHODS We investigated the effect of Withanolide B on osteogenic differentiation of hBMSCs in vitro and in vivo. The effect of Withanolide B on the activity of hBMSCs was verified by CCK-8 assay and quantitative Real-time polymerase chain reaction (qPCR) and Western blotting analysis were used to verify the effect of Withanolide B on osteogenic differentiation-specific genes and proteins. The effect of Withanolide B on ALP activity and mineral deposition was verified by ALP and ARS staining. We then used a rat tibial osteotomy model to observe the effect of Withanolide B on bone healing. RESULTS Withanolide B is noncytotoxic to hBMSCs and can effectively promote their osteogenic differentiation. Moreover, we found that Withanolide B can regulate the osteogenic differentiation of hBMSCs through the ERK1/2 and Wnt/β-catenin signaling pathways. When inhibitors of the ERK1/2 and Wnt/β-catenin signaling pathways were used, the enhancement of osteogenic differentiation induced by Withanolide B was attenuated. Withanolide B also effectively promoted bone healing in the rat tibial osteotomy model. CONCLUSIONS Our results suggest that Withanolide B can promote the osteogenic differentiation of hBMSCs through the ERK1/2 and Wnt/β-catenin signaling pathways and can effectively promote bone defect healing.
Collapse
Affiliation(s)
- Zhihui Kuang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jinwu Bai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Licheng Ni
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Kai Hang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Jianxiang Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Li Ying
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China
| | - Deting Xue
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China.
| | - Zhijun Pan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China; Orthopedics Research Institute of Zhejiang University, No. 88, Jiefang Road, Hangzhou 310009, China.
| |
Collapse
|
24
|
The Role of Wnt Signalling in Chronic Kidney Disease (CKD). Genes (Basel) 2020; 11:genes11050496. [PMID: 32365994 PMCID: PMC7290783 DOI: 10.3390/genes11050496] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/25/2020] [Accepted: 04/29/2020] [Indexed: 12/16/2022] Open
Abstract
Chronic kidney disease (CKD) encompasses a group of diverse diseases that are associated with accumulating kidney damage and a decline in glomerular filtration rate (GFR). These conditions can be of an acquired or genetic nature and, in many cases, interactions between genetics and the environment also play a role in disease manifestation and severity. In this review, we focus on genetically inherited chronic kidney diseases and dissect the links between canonical and non-canonical Wnt signalling, and this umbrella of conditions that result in kidney damage. Most of the current evidence on the role of Wnt signalling in CKD is gathered from studies in polycystic kidney disease (PKD) and nephronophthisis (NPHP) and reveals the involvement of β-catenin. Nevertheless, recent findings have also linked planar cell polarity (PCP) signalling to CKD, with further studies being required to fully understand the links and molecular mechanisms.
Collapse
|
25
|
Abuna RPF, Oliveira FS, Adolpho LF, Fernandes RR, Rosa AL, Beloti MM. Frizzled 6 disruption suppresses osteoblast differentiation induced by nanotopography through the canonical Wnt signaling pathway. J Cell Physiol 2020; 235:8293-8303. [PMID: 32239701 DOI: 10.1002/jcp.29674] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/08/2020] [Indexed: 02/05/2023]
Abstract
This study aimed to investigate if wingless-related integration site (Wnt) signaling participates in the high osteogenic potential of titanium with nanotopography (Ti-Nano). We showed that among the several components of the Wnt signaling pathway, Frizzled 6 (Fzd6) was the transcript most intensely modulated by nanotopography compared with the untreated Ti surface (Ti-Machined). Then, we investigated whether and how Fzd6 participates in the regulation of osteoblast differentiation caused by nanotopography. The Fzd6 silencing with CRISPR-Cas9 transfection in MC3T3-E1 cells induced a more pronounced inhibition of osteoblast differentiation of cells cultured on nanotopography than those cultured on Ti-Machined. The analysis of the expression of calcium-calmodulin-dependent protein kinase II and β-catenin demonstrated that Fzd6 disruption inhibited the osteoblast differentiation induced by Ti-Nano by preventing the activation of Wnt/β-catenin but not that of Wnt/Ca2+ signaling, which is usually triggered by the receptor Fzd6. These findings elucidate the biological function of Fzd6 as a receptor that triggers Wnt/β-catenin signaling and the cellular mechanisms modulated by nanotopography during osteoblast differentiation.
Collapse
Affiliation(s)
- Rodrigo Paolo Flores Abuna
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Fabiola Singaretti Oliveira
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Leticia Faustino Adolpho
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Roger Rodrigo Fernandes
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Adalberto Luiz Rosa
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marcio Mateus Beloti
- Bone Research Lab, School of Dentistry of Ribeirão Preto, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
26
|
Gonzalez-Fernandez C, González P, Rodríguez FJ. New insights into Wnt signaling alterations in amyotrophic lateral sclerosis: a potential therapeutic target? Neural Regen Res 2020; 15:1580-1589. [PMID: 32209757 PMCID: PMC7437582 DOI: 10.4103/1673-5374.276320] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Amyotrophic lateral sclerosis is a fatal neurodegenerative disorder characterized by upper and lower motor neuron degeneration, which leads to progressive paralysis of skeletal muscles and, ultimately, respiratory failure between 2–5 years after symptom onset. Unfortunately, currently accepted treatments for amyotrophic lateral sclerosis are extremely scarce and only provide modest benefit. As a consequence, a great effort is being done by the scientific community in order to achieve a better understanding of the different molecular and cellular processes that influence the progression and/or outcome of this neuropathological condition and, therefore, unravel new potential targets for therapeutic intervention. Interestingly, a growing number of experimental evidences have recently shown that, besides its well-known physiological roles in the developing and adult central nervous system, the Wnt family of proteins is involved in different neuropathological conditions, including amyotrophic lateral sclerosis. These proteins are able to modulate, at least, three different signaling pathways, usually known as canonical (β-catenin dependent) and non-canonical (β-catenin independent) signaling pathways. In the present review, we aim to provide a general overview of the current knowledge that supports the relationship between the Wnt family of proteins and its associated signaling pathways and amyotrophic lateral sclerosis pathology, as well as their possible mechanisms of action. Altogether, the currently available knowledge suggests that Wnt signaling modulation might be a promising therapeutic approach to ameliorate the histopathological and functional deficits associated to amyotrophic lateral sclerosis, and thus improve the progression and outcome of this neuropathology.
Collapse
Affiliation(s)
| | - Pau González
- Laboratory of Molecular Neurology, Hospital Nacional de Parapléjicos (HNP), Toledo, Spain
| | | |
Collapse
|
27
|
Brandenburg VM, Verhulst A, Babler A, D'Haese PC, Evenepoel P, Kaesler N. Sclerostin in chronic kidney disease-mineral bone disorder think first before you block it! Nephrol Dial Transplant 2019; 34:408-414. [PMID: 29846712 DOI: 10.1093/ndt/gfy129] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Accepted: 04/08/2018] [Indexed: 12/11/2022] Open
Abstract
Canonical Wnt signalling activity is a major player in physiological and adaptive bone metabolism. Wnt signalling is regulated by soluble inhibitors, with sclerostin being the most widely studied. Sclerostin's main origin is the osteocyte and its major function is blockade of osteoblast differentiation and function. Therefore, sclerostin is a potent inhibitor of bone formation and mineralization. Consequently, blocking sclerostin via human monoclonal antibodies (such as romosozumab) represents a promising perspective for the treatment of (postmenopausal) osteoporosis. However, sclerostin's physiology and the effects of sclerostin monoclonal antibody treatment are not limited to the skeleton. Specifically, the potential roles of sclerostin in chronic kidney disease (CKD) and associated pathologies covered by the term chronic kidney disease and mineral bone disorder (CKD-MBD), which also includes accelerated cardiovascular calcification, warrant specific attention. CKD-MBD is a complex disease condition in which sclerostin antibodies may interfere at different levels and influence the multiform interplay of hyperparathyroidism, renal osteodystrophy and vascular calcification, but the clinical sequelae remain obscure. The present review summarizes the potential effects of sclerostin blockade in CKD-MBD. We will address and summarize the urgent research targets that are being identified and that need to be addressed before a valid risk-benefit ratio can be established in the clinical setting of CKD.
Collapse
Affiliation(s)
- Vincent M Brandenburg
- Department of Cardiology, University Hospital of the RWTH Aachen, Aachen, Germany.,Department of Cardiology, Rhein-Maas Klinikum, Würselen, Germany
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Anne Babler
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium
| | - Pieter Evenepoel
- Department of Immunology and Microbiology, Laboratory of Nephrology, KU Leuven and University Hospitals Leuven, Leuven, Belgium
| | - Nadine Kaesler
- Department of Nephrology, University Hospital of the RWTH Aachen, Aachen, Germany
| |
Collapse
|
28
|
Martínez-Bartolomé M, Range RC. A biphasic role of non-canonical Wnt16 signaling during early anterior-posterior patterning and morphogenesis of the sea urchin embryo. Development 2019; 146:dev168799. [PMID: 31822478 PMCID: PMC6955209 DOI: 10.1242/dev.168799] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 11/26/2019] [Indexed: 12/28/2022]
Abstract
A Wnt signaling network governs early anterior-posterior (AP) specification and patterning of the deuterostome sea urchin embryo. We have previously shown that non-canonical Fzl1/2/7 signaling antagonizes the progressive posterior-to-anterior downregulation of the anterior neuroectoderm (ANE) gene regulatory network (GRN) by canonical Wnt/β-catenin and non-canonical Wnt1/Wnt8-Fzl5/8-JNK signaling. This study focuses on the non-canonical function of the Wnt16 ligand during early AP specification and patterning. Maternally supplied wnt16 is expressed ubiquitously during cleavage and zygotic wnt16 expression is concentrated in the endoderm/mesoderm beginning at mid-blastula stage. Wnt16 antagonizes the ANE restriction mechanism and this activity depends on a functional Fzl1/2/7 receptor. Our results also show that zygotic wnt16 expression depends on both Fzl5/8 and Wnt/β-catenin signaling. Furthermore, Wnt16 is necessary for the activation and/or maintenance of key regulatory endoderm/mesoderm genes and is essential for gastrulation. Together, our data show that Wnt16 has two functions during early AP specification and patterning: (1) an initial role activating the Fzl1/2/7 pathway that antagonizes the ANE restriction mechanism; and (2) a subsequent function in activating key endoderm GRN factors and the morphogenetic movements of gastrulation.
Collapse
Affiliation(s)
| | - Ryan C Range
- Department of Biological Sciences, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
29
|
Puzik K, Tonnier V, Opper I, Eckert A, Zhou L, Kratzer MC, Noble FL, Nienhaus GU, Gradl D. Lef1 regulates caveolin expression and caveolin dependent endocytosis, a process necessary for Wnt5a/Ror2 signaling during Xenopus gastrulation. Sci Rep 2019; 9:15645. [PMID: 31666627 PMCID: PMC6821757 DOI: 10.1038/s41598-019-52218-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 10/10/2019] [Indexed: 11/09/2022] Open
Abstract
The activation of distinct branches of the Wnt signaling network is essential for regulating early vertebrate development. Activation of the canonical Wnt/β-catenin pathway stimulates expression of β-catenin-Lef/Tcf regulated Wnt target genes and a regulatory network giving rise to the formation of the Spemann organizer. Non-canonical pathways, by contrast, mainly regulate cell polarization and migration, in particular convergent extension movements of the trunk mesoderm during gastrulation. By transcriptome analyses, we found caveolin1, caveolin3 and cavin1 to be regulated by Lef1 in the involuting mesoderm of Xenopus embryos at gastrula stages. We show that caveolins and caveolin dependent endocytosis are necessary for proper gastrulation, most likely by interfering with Wnt5a/Ror2 signaling. Wnt5a regulates the subcellular localization of receptor complexes, including Ror2 homodimers, Ror2/Fzd7 and Ror2/dsh heterodimers in an endocytosis dependent manner. Live-cell imaging revealed endocytosis of Ror2/caveolin1 complexes. In Xenopus explants, in the presence of Wnt5a, these receptor clusters remain stable exclusively at the basolateral side, suggesting that endocytosis of non-canonical Wnt/receptor complexes preferentially takes place at the apical membrane. In support of this blocking endocytosis with inhibitors prevents the effects of Wnt5a. Thus, target genes of Lef1 interfere with Wnt5a/Ror2 signaling to coordinate gastrulation movements.
Collapse
Affiliation(s)
- Katharina Puzik
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Veronika Tonnier
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Isabell Opper
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Antonia Eckert
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Lu Zhou
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Marie-Claire Kratzer
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
| | - Ferdinand le Noble
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Gerd Ulrich Nienhaus
- Institute of Applied Physics, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany
- Institute of Toxicology and Genetics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | - Dietmar Gradl
- Department of Cell and Developmental Biology, Karlsruhe Institute of Technology, 76128, Karlsruhe, Germany.
| |
Collapse
|
30
|
Feng T, Niu J, Pi B, Lu Y, Wang J, Zhang W, Li B, Yang H, Zhu X. Osteogenesis enhancement of silk fibroin/ α-TCP cement by N-acetyl cysteine through Wnt/β-catenin signaling pathway in vivo and vitro. J Mech Behav Biomed Mater 2019; 101:103451. [PMID: 31585350 DOI: 10.1016/j.jmbbm.2019.103451] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 06/11/2019] [Accepted: 09/24/2019] [Indexed: 12/18/2022]
Abstract
High brittleness and lack osteogenesis are two major limitations of calcium phosphate cement (CPC) in application in bone defect reconstruction. Here we prepared a composite calcium phosphate cement by mixing N-acetyl cysteine loaded silk fibroin solution with α-tricalcium phosphate. In vitro cytology experiment revealed that SF-NAC/α-TCP could significantly increase the activity of exocrine ALP and up-regulated expression of bone-related genes. However, NAC up-regulated gene expression could be significantly suppressed by DKK1. We propose that NAC functioning as osteogenic factor by activating the Wnt/β-catenin signaling pathway may be the possible mechanism of up-regulation of osteogenic genes. Bone regeneration in vivo shown in a rat femur defect was enhanced by the addition of NAC in SF/α-TCP. In addition, the combination intensity of cement-bone interface was improved. The combination SF-NAC/α-TCP might be developed into a promising tool for bone tissue repair in the clinic.
Collapse
Affiliation(s)
- Tao Feng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Junjie Niu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Bin Pi
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Yingjie Lu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Jinning Wang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Wen Zhang
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Bin Li
- Orthopedic Institute of Soochow University, Suzhou, 215006, China
| | - Huilin Yang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China
| | - Xuesong Zhu
- Department of Orthopedic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| |
Collapse
|
31
|
Kovács B, Vajda E, Nagy EE. Regulatory Effects and Interactions of the Wnt and OPG-RANKL-RANK Signaling at the Bone-Cartilage Interface in Osteoarthritis. Int J Mol Sci 2019; 20:ijms20184653. [PMID: 31546898 PMCID: PMC6769977 DOI: 10.3390/ijms20184653] [Citation(s) in RCA: 140] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/12/2019] [Accepted: 09/18/2019] [Indexed: 01/05/2023] Open
Abstract
Cartilage and the bordering subchondral bone form a functionally active regulatory interface with a prominent role in osteoarthritis pathways. The Wnt and the OPG-RANKL-RANK signaling systems, as key mediators, interact in subchondral bone remodeling. Osteoarthritic osteoblasts polarize into two distinct phenotypes: a low secretory and an activated, pro-inflammatory and anti-resorptive subclass producing high quantities of IL-6, PGE2, and osteoprotegerin, but low levels of RANKL, thus acting as putative effectors of subchondral bone sclerosis. Wnt agonists, Wnt5a, Wisp-1 initiate excessive bone remodeling, while Wnt3a and 5a simultaneously cause loss of proteoglycans and phenotype shift in chondrocytes, with decreased expression of COL2A, aggrecan, and Sox-9. Sclerostin, a Wnt antagonist possesses a protective effect for the cartilage, while DKK-1 inhibits VEGF, suspending neoangiogenesis in the subchondral bone. Experimental conditions mimicking abnormal mechanical load, the pro-inflammatory milieu, but also a decreased OPG/RANKL ratio in the cartilage, trigger chondrocyte apoptosis and loss of the matrix via degradative matrix metalloproteinases, like MMP-13 or MMP-9. Hypoxia, an important cofactor exerts a dual role, promoting matrix synthesis via HIF-1α, a Wnt silencer, but turning on HIF-2α that enhances VEGF and MMP-13, along with aberrant collagen expression and extracellular matrix deterioration in the presence of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Béla Kovács
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Enikő Vajda
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry, University of Medicine, Pharmacy, Sciences and Technology, Tîrgu Mureș, Romania.
| |
Collapse
|
32
|
Abstract
Developmental signaling pathways control a vast array of biological processes during embryogenesis and in adult life. The WNT pathway was discovered simultaneously in cancer and development. Recent advances have expanded the role of WNT to a wide range of pathologies in humans. Here, we discuss the WNT pathway and its role in human disease and some of the advances in WNT-related treatments.
Collapse
|
33
|
Kerekes K, Bányai L, Trexler M, Patthy L. Structure, function and disease relevance of Wnt inhibitory factor 1, a secreted protein controlling the Wnt and hedgehog pathways. Growth Factors 2019; 37:29-52. [PMID: 31210071 DOI: 10.1080/08977194.2019.1626380] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Wnts and Hedgehogs (Hh) are large, lipid-modified extracellular morphogens that play key roles in embryonic development and stem cell proliferation of Metazoa. Both morphogens signal through heptahelical Frizzled-type receptors of the G-Protein Coupled Receptor family and there are several other similarities that suggest a common evolutionary origin of the Hh and Wnt pathways. There is evidence that the secreted protein, Wnt inhibitory factor 1 (WIF1) modulates the activity of both Wnts and Hhs and may thus contribute to the intertwining of these pathways. In this article, we review the structure, evolution, molecular interactions and functions of WIF1 with major emphasis on its role in carcinogenesis.
Collapse
Affiliation(s)
- Krisztina Kerekes
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Bányai
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - Mária Trexler
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| | - László Patthy
- a Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences , Budapest , Hungary
| |
Collapse
|
34
|
Chiu HC, Li CJ, Yiang GT, Tsai APY, Wu MY. Epithelial to Mesenchymal Transition and Cell Biology of Molecular Regulation in Endometrial Carcinogenesis. J Clin Med 2019; 8:E439. [PMID: 30935077 PMCID: PMC6518354 DOI: 10.3390/jcm8040439] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 12/15/2022] Open
Abstract
Endometrial carcinogenesis is involved in several signaling pathways and it comprises multiple steps. The four major signaling pathways-PI3K/AKT, Ras/Raf/MEK/ERK, WNT/β-catenin, and vascular endothelial growth factor (VEGF)-are involved in tumor cell metabolism, growth, proliferation, survival, and angiogenesis. The genetic mutation and germline mitochondrial DNA mutations also impair cell proliferation, anti-apoptosis signaling, and epithelial⁻mesenchymal transition by several transcription factors, leading to endometrial carcinogenesis and distant metastasis. The PI3K/AKT pathway activates the ransforming growth factor beta (TGF-β)-mediated endothelial-to-mesenchymal transition (EMT) and it interacts with downstream signals to upregulate EMT-associated factors. Estrogen and progesterone signaling in EMT also play key roles in the prognosis of endometrial carcinogenesis. In this review article, we summarize the current clinical and basic research efforts regarding the detailed molecular regulation in endometrial carcinogenesis, especially in EMT, to provide novel targets for further anti-carcinogenesis treatment.
Collapse
Affiliation(s)
- Hsiao-Chen Chiu
- Department of Obstetrics and Gynecology, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taipei 231, Taiwan.
- Department of Obstetrics and Gynecology, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Chia-Jung Li
- Department of Obstetrics and Gynecology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan.
| | - Giou-Teng Yiang
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| | - Andy Po-Yi Tsai
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien 970, Taiwan.
| | - Meng-Yu Wu
- Department of Emergency Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei 231, Taiwan.
- Department of Emergency Medicine, School of Medicine, Tzu Chi University, Hualien 970, Taiwan.
| |
Collapse
|
35
|
Groß A, Kracher B, Kraus JM, Kühlwein SD, Pfister AS, Wiese S, Luckert K, Pötz O, Joos T, Van Daele D, De Raedt L, Kühl M, Kestler HA. Representing dynamic biological networks with multi-scale probabilistic models. Commun Biol 2019; 2:21. [PMID: 30675519 PMCID: PMC6336720 DOI: 10.1038/s42003-018-0268-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 12/07/2018] [Indexed: 12/26/2022] Open
Abstract
Dynamic models analyzing gene regulation and metabolism face challenges when adapted to modeling signal transduction networks. During signal transduction, molecular reactions and mechanisms occur in different spatial and temporal frames and involve feedbacks. This impedes the straight-forward use of methods based on Boolean networks, Bayesian approaches, and differential equations. We propose a new approach, ProbRules, that combines probabilities and logical rules to represent the dynamics of a system across multiple scales. We demonstrate that ProbRules models can represent various network motifs of biological systems. As an example of a comprehensive model of signal transduction, we provide a Wnt network that shows remarkable robustness under a range of phenotypical and pathological conditions. Its simulation allows the clarification of controversially discussed molecular mechanisms of Wnt signaling by predicting wet-lab measurements. ProbRules provides an avenue in current computational modeling by enabling systems biologists to integrate vast amounts of available data on different scales.
Collapse
Affiliation(s)
- Alexander Groß
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Barbara Kracher
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Johann M. Kraus
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Silke D. Kühlwein
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| | - Astrid S. Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sebastian Wiese
- Core Unit Mass Spectrometry and Proteomics, Ulm University, 89081 Ulm, Germany
| | - Katrin Luckert
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Oliver Pötz
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Thomas Joos
- NMI Natural and Medical Sciences Institute at the University of Tübingen, 72770 Reutlingen, Germany
| | - Dries Van Daele
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Luc De Raedt
- Department of Computer Science, Katholieke Universiteit Leuven, 3001 Heverlee, Belgium
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Hans A. Kestler
- Institute of Medical Systems Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
36
|
Houschyar KS, Tapking C, Borrelli MR, Popp D, Duscher D, Maan ZN, Chelliah MP, Li J, Harati K, Wallner C, Rein S, Pförringer D, Reumuth G, Grieb G, Mouraret S, Dadras M, Wagner JM, Cha JY, Siemers F, Lehnhardt M, Behr B. Wnt Pathway in Bone Repair and Regeneration - What Do We Know So Far. Front Cell Dev Biol 2019; 6:170. [PMID: 30666305 PMCID: PMC6330281 DOI: 10.3389/fcell.2018.00170] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/30/2018] [Indexed: 02/05/2023] Open
Abstract
Wnt signaling plays a central regulatory role across a remarkably diverse range of functions during embryonic development, including those involved in the formation of bone and cartilage. Wnt signaling continues to play a critical role in adult osteogenic differentiation of mesenchymal stem cells. Disruptions in this highly-conserved and complex system leads to various pathological conditions, including impaired bone healing, autoimmune diseases and malignant degeneration. For reconstructive surgeons, critically sized skeletal defects represent a major challenge. These are frequently associated with significant morbidity in both the recipient and donor sites. The Wnt pathway is an attractive therapeutic target with the potential to directly modulate stem cells responsible for skeletal tissue regeneration and promote bone growth, suggesting that Wnt factors could be used to promote bone healing after trauma. This review summarizes our current understanding of the essential role of the Wnt pathway in bone regeneration and repair.
Collapse
Affiliation(s)
- Khosrow S Houschyar
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christian Tapking
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Department of Hand, Plastic and Reconstructive Surgery, Burn Trauma Center, BG Trauma Center Ludwigshafen, University of Heidelberg, Heidelberg, Germany
| | - Mimi R Borrelli
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Daniel Popp
- Department of Surgery, Shriners Hospital for Children-Galveston, University of Texas Medical Branch, Galveston, TX, United States.,Division of Hand, Plastic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Dominik Duscher
- Department of Plastic Surgery and Hand Surgery, Technical University Munich, Munich, Germany
| | - Zeshaan N Maan
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Malcolm P Chelliah
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States
| | - Jingtao Li
- State Key Laboratory of Oral Diseases and Department of Oral Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Kamran Harati
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Christoph Wallner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Susanne Rein
- Department of Plastic and Hand Surgery-Burn Center-Clinic St. Georg, Leipzig, Germany
| | - Dominik Pförringer
- Clinic and Policlinic of Trauma Surgery, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Georg Reumuth
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Gerrit Grieb
- Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité Berlin, Berlin, Germany
| | - Sylvain Mouraret
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Stanford School of Medicine, Stanford, CA, United States.,Department of Periodontology, Service of Odontology, Rothschild Hospital, AP-HP, Paris 7 - Denis, Diderot University, U.F.R. of Odontology, Paris, France
| | - Mehran Dadras
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Johannes M Wagner
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Jungul Y Cha
- Orthodontic Department, College of Dentistry, Yonsei University, Seoul, South Korea
| | - Frank Siemers
- Department of Plastic and Hand Surgery, Burn Unit, Trauma Center Bergmannstrost Halle, Halle, Germany
| | - Marcus Lehnhardt
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| | - Björn Behr
- Department of Plastic Surgery, BG University Hospital Bergmannsheil, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
37
|
Yakubu RR, Nieves E, Weiss LM. The Methods Employed in Mass Spectrometric Analysis of Posttranslational Modifications (PTMs) and Protein-Protein Interactions (PPIs). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:169-198. [PMID: 31347048 DOI: 10.1007/978-3-030-15950-4_10] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mass Spectrometry (MS) has revolutionized the way we study biomolecules, especially proteins, their interactions and posttranslational modifications (PTM). As such MS has established itself as the leading tool for the analysis of PTMs mainly because this approach is highly sensitive, amenable to high throughput and is capable of assigning PTMs to specific sites in the amino acid sequence of proteins and peptides. Along with the advances in MS methodology there have been improvements in biochemical, genetic and cell biological approaches to mapping the interactome which are discussed with consideration for both the practical and technical considerations of these techniques. The interactome of a species is generally understood to represent the sum of all potential protein-protein interactions. There are still a number of barriers to the elucidation of the human interactome or any other species as physical contact between protein pairs that occur by selective molecular docking in a particular spatiotemporal biological context are not easily captured and measured.PTMs massively increase the complexity of organismal proteomes and play a role in almost all aspects of cell biology, allowing for fine-tuning of protein structure, function and localization. There are an estimated 300 PTMS with a predicted 5% of the eukaryotic genome coding for enzymes involved in protein modification, however we have not yet been able to reliably map PTM proteomes due to limitations in sample preparation, analytical techniques, data analysis, and the substoichiometric and transient nature of some PTMs. Improvements in proteomic and mass spectrometry methods, as well as sample preparation, have been exploited in a large number of proteome-wide surveys of PTMs in many different organisms. Here we focus on previously published global PTM proteome studies in the Apicomplexan parasites T. gondii and P. falciparum which offer numerous insights into the abundance and function of each of the studied PTM in the Apicomplexa. Integration of these datasets provide a more complete picture of the relative importance of PTM and crosstalk between them and how together PTM globally change the cellular biology of the Apicomplexan protozoa. A multitude of techniques used to investigate PTMs, mostly techniques in MS-based proteomics, are discussed for their ability to uncover relevant biological function.
Collapse
Affiliation(s)
- Rama R Yakubu
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Edward Nieves
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA.,Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Louis M Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA. .,Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
38
|
|
39
|
Luan F, Ma K, Mao J, Yang F, Zhang M, Luan H. Differentiation of human amniotic epithelial cells into osteoblasts is induced by mechanical stretch via the Wnt/β‑catenin signalling pathway. Mol Med Rep 2018; 18:5717-5725. [PMID: 30365100 DOI: 10.3892/mmr.2018.9571] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Accepted: 03/02/2018] [Indexed: 11/06/2022] Open
Abstract
Human amniotic epithelial cells (hAECs) have recently been recognized as a potential source of stem cells. The present study was designed to investigate the effects of mechanical stretch on the osteogenic differentiation of hAECs. As it has been previously reported that the physical environment is an important factor in maintaining the phenotype and functionality of differentiated cells, mechanical stretch was use to mimic the mechanical environment in the present study, with the following parameters: 5% elongation of the hAECs at a frequency of 0.5 Hz, with evaluation at 2, 6, 12 and 24 h time points. The osteogenic differentiation process of the hAECs followed by mechanical stimulation was evaluated by reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR), western blotting and immunocytochemistry. Additionally, in a parallel study, a runt‑related transcription factor 2 (Runx2)/core binding factor α 1 (Cbfa1)‑specific short hairpin RNA (shRNA) plasmid vector and a scrambled shRNA control plasmid was constructed for transfection into the hAECs prior to mechanical stimulation. The cultured hAECs exhibited a cobblestone‑shaped epithelial‑like phenotype and were positive for stage‑specific embryonic antigen‑4, cytokeratin‑19, cluster of differentiation 44 and octamer‑binding protein 4, as detected by flow cytometry, western blotting or confocal microscopy. The qPCR and western blotting data demonstrated that the mRNA and protein expression levels of Runx2/Cbfa1, alkaline phosphatase and osteocalcin were upregulated compared with the control group following stretching and they peaked at 12 h. These results indicated that the osteogenic differentiation of the hAECs was induced by mechanical stimuli. Additionally, the mRNA and protein expression levels of β‑catenin and cyclin D were increased significantly following stretching; however, they were decreased following Runx2/Cbfa1‑shRNA transfection as observed by RT‑qPCR and western blotting. These results suggested that the Wnt/β‑catenin pathway may have an important role in mechanical stretch‑induced osteogenic differentiation of the hAECs. Furthermore, the combination of stretch and osteogenic induction medium had synergistic effects on the osteogenic differentiation. The results of the present study demonstrated that mechanical stimuli have an important role in osteogenic differentiation of hAECs via the Wnt/β‑catenin signalling pathway, which may be a potential therapeutic strategy in bone regenerative medicine.
Collapse
Affiliation(s)
- Fujun Luan
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Kunlong Ma
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Jia Mao
- Department of Dermatology, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Fan Yang
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Minghua Zhang
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| | - Hexu Luan
- Department of Orthopedics, Yongchuan Hospital of Chongqing Medical University, Chongqing 402160, P.R. China
| |
Collapse
|
40
|
Canonical and non-canonical Wnt signaling pathways define the expression domains of Frizzled 5/8 and Frizzled 1/2/7 along the early anterior-posterior axis in sea urchin embryos. Dev Biol 2018; 444:83-92. [PMID: 30332609 DOI: 10.1016/j.ydbio.2018.10.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 09/18/2018] [Accepted: 10/06/2018] [Indexed: 01/02/2023]
Abstract
The spatiotemporal expression of Frizzled receptors is critical for patterning along the early anterior-posterior axis during embryonic development in many animal species. However, the molecular mechanisms that regulate the expression of Frizzled receptors are incompletely understood in any species. In this study, I examine how the expression of two Frizzled receptors, Fzl1/2/7 and Fzl5/8, is controlled by the Wnt signaling network which directs specification and positioning of early regulatory states along the anterior-posterior (AP) axis of sea urchin embryos. I used a combination of morpholino- and dominant negative-mediated interference to knock down each Wnt signaling pathway involved in the AP Wnt signaling network. I found that the expression of zygotic fzl5/8 as well as that of the anterior neuroectoderm gene regulatory network (ANE GRN) is activated by an unknown broadly expressed regulatory state and that posterior Wnt/β-catenin signaling is necessary to down regulate fzl5/8's expression in posterior blastomeres. I show that zygotic expression of fzl1/2/7 in the equatorial ectodermal belt is dependent on an uncharacterized regulatory mechanism that works in the same cells receiving the TGF-β signals patterning this territory along the dorsal-ventral axis. In addition, my data indicate that Fzl1/2/7 signaling represses its own expression in a negative feedback mechanism. Finally, we discovered that a balance between the activities of posterior Wnt8 and anterior Dkk1 is necessary to establish the correct spatial expression of zygotic fzl12/7 expression in the equatorial ectodermal domain during blastula and gastrula stages. Together, these studies lead to a better understanding of the complex interactions among the three Wnt signaling pathway governing AP axis specification and patterning in sea urchin embryos.
Collapse
|
41
|
Liu WC, Wu CC, Lim PS, Chien SW, Hou YC, Zheng CM, Shyu JF, Lin YF, Lu KC. Effect of uremic toxin-indoxyl sulfate on the skeletal system. Clin Chim Acta 2018; 484:197-206. [PMID: 29864403 DOI: 10.1016/j.cca.2018.05.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/19/2022]
Abstract
Chronic kidney disease-mineral bone disorders (CKD-MBD) exhibit abnormalities in the circulating mineral levels, vitamin D metabolism, and parathyroid function that contribute to the formation of a bone lesion. The uremic toxin, indoxyl sulfate (IS), accumulates in the blood in cases of renal failure and leads to bone loss. The bone and renal responses to the action of the parathyroid hormone (PTH) are progressively decreased in CKD in spite of increasing PTH levels, a condition commonly called PTH resistance. There is a high prevalence of low bone turnover or adynamic bone disease in the early stages of CKD. This could be due to the inhibition of bone turnover, such as in PTH resistance, reduced active vitamin D levels, diabetes, aluminum, and, increased IS. With an increase in IS, there is a decrease in the osteoblast Wnt/b-catenin signaling and increase in the expression of Wnt signaling inhibitors, such as sclerostin and Dickkopf-1 (DKK1). Thus, a majority of early CKD patients exhibit deterioration of bone quality owing to the action of IS, this scenario could be termed uremic osteoporosis. However, this mechanism is complicated and not fully understood. With progressive deterioration in the renal function, IS accumulates along with persistent PTH secretion, potentially leading to high-turnover bone disease because high serum PTH levels have the ability of overriding peripheral PTH resistance and other inhibitory factors of bone formation. Finally, it leads to deterioration in bone quantity with prominent bone resorption in end stage renal disease. Uremic toxins adsorbents may decelerate oxidative stress and improve bone health in CKD patients. This review article focuses on IS and bone loss in CKD patients.
Collapse
Affiliation(s)
- Wen-Chih Liu
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Paik-Seong Lim
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City, Taiwan
| | - Shiaw-Wen Chien
- Division of Nephrology, Department of Internal Medicine, Tungs' Taichung Metro Harbor Hospital, Taichung City, Taiwan
| | - Yi-Chou Hou
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Medicine, Cardinal Tien Hospital, School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Cai-Mei Zheng
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Jia-Fwu Shyu
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yuh-Feng Lin
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Division of Nephrology, Department of Internal Medicine, Shuang Ho Hospital, New Taipei City, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Medicine, Fu-Jen Catholic University Hospital & Cardinal-Tien Hospital, School of Medicine, Fu-Jen Catholic University, New Taipei City, Taiwan.
| |
Collapse
|
42
|
Wang X, Zhang Z, Zeng X, Wang J, Zhang L, Song W, Shi Y. Wnt/β-catenin signaling pathway in severe preeclampsia. J Mol Histol 2018; 49:317-327. [PMID: 29603045 DOI: 10.1007/s10735-018-9770-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 03/27/2018] [Indexed: 12/16/2022]
Abstract
This study aims to elucidate the mechanisms of Wnt/β-catenin signaling pathway in the development of preeclampsia (PE). The mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were determined by real-time PCR in the placentas. Moreover, the expression levels of Wnt1, β-catenin, Dickkopf-1 (DKK1) and glycogen synthase kinase 3β (GSK-3β) proteins were detected by Western blot. Immunohistochemistry was used in placental tissue microarray to localize the expression of Wnt1, β-catenin, DKK1 proteins in the placentas of two groups. Compared with the control placentas, the mRNA levels of Wnt1, β-catenin, c-myc and cyclinD1 were decreased in the severe preeclamptic placentas. The Western blot results showed that the expression levels of Wnt1, β-catenin, and GSK-3β proteins were significantly elevated in the control group, while the expression level of DKK1 was significantly decreased. In addition, the staining intensity of Wnt1, β-catenin were weaker in the placentas of the severe PE group while the staining intensity of DKK1 was significantly stronger in the placentas of the severe PE group. Wnt/β-catenin signaling pathway may play a significant role in the pathogenesis of PE by regulating the invasion and proliferation of trophoblast.
Collapse
Affiliation(s)
- Xiaofang Wang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Zhan Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China. .,Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China. .,The Third Affiliated Hospital of Zhengzhou University, No. 7 Kangfu Front Street, Zhengzhou, 450000, Henan, China.
| | - Xianxu Zeng
- Department of Pathology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Jinming Wang
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Linlin Zhang
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| | - Wanyu Song
- Department of Obstetrics and Gynecology, The People's Hospital of Henan Province, Zhengzhou, 450000, Henan Province, China
| | - Ying Shi
- Department of Clinical Laboratory, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan Province, China
| |
Collapse
|
43
|
A Boolean network of the crosstalk between IGF and Wnt signaling in aging satellite cells. PLoS One 2018; 13:e0195126. [PMID: 29596489 PMCID: PMC5875862 DOI: 10.1371/journal.pone.0195126] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/16/2018] [Indexed: 12/29/2022] Open
Abstract
Aging is a complex biological process, which determines the life span of an organism. Insulin-like growth factor (IGF) and Wnt signaling pathways govern the process of aging. Both pathways share common downstream targets that allow competitive crosstalk between these branches. Of note, a shift from IGF to Wnt signaling has been observed during aging of satellite cells. Biological regulatory networks necessary to recreate aging have not yet been discovered. Here, we established a mathematical in silico model that robustly recapitulates the crosstalk between IGF and Wnt signaling. Strikingly, it predicts critical nodes following a shift from IGF to Wnt signaling. These findings indicate that this shift might cause age-related diseases.
Collapse
|
44
|
Activated renal tubular Wnt/β-catenin signaling triggers renal inflammation during overload proteinuria. Kidney Int 2018; 93:1367-1383. [PMID: 29605095 DOI: 10.1016/j.kint.2017.12.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 01/27/2023]
Abstract
Imbalance of Wnt/β-catenin signaling in renal cells is associated with renal dysfunction, yet the precise mechanism is poorly understood. Previously we observed activated Wnt/β-catenin signaling in renal tubules during proteinuric nephropathy with an unknown net effect. Therefore, to identify the definitive role of tubular Wnt/β-catenin, we generated a novel transgenic "Tubcat" mouse conditionally expressing stabilized β-catenin specifically in renal tubules following tamoxifen administration. Four weeks after tamoxifen injection, uninephrectomized Tubcat mice displayed proteinuria and elevated blood urea nitrogen levels compared to non-transgenic mice, implying a detrimental effect of the activated signaling. This was associated with infiltration of the tubulointerstitium predominantly by M1 macrophages and overexpression of the inflammatory chemocytokines CCL-2 and RANTES. Induction of overload proteinuria by intraperitoneal injection of low-endotoxin bovine serum albumin following uninephrectomy for four weeks aggravated proteinuria and increased blood urea nitrogen levels to a significantly greater extent in Tubcat mice. Renal dysfunction correlated with the degree of M1 macrophage infiltration in the tubulointerstitium and renal cortical up-regulation of CCL-2, IL-17A, IL-1β, CXCL1, and ICAM-1. There was overexpression of cortical TLR-4 and NLRP-3 in Tubcat mice, independent of bovine serum albumin injection. Finally, there was no fibrosis, activation of epithelial-mesenchymal transition or non-canonical Wnt pathways observed in the kidneys of Tubcat mice. Thus, conditional activation of renal tubular Wnt/β-catenin signaling in a novel transgenic mouse model demonstrates that this pathway enhances intrarenal inflammation via the TLR-4/NLRP-3 inflammasome axis in overload proteinuria.
Collapse
|
45
|
You J, Munoz-Erazo L, Wen L, Hodge C, Madigan MC, Sutton G. In-Vitro Effects of Secreted Frizzled-Related Protein 1 (SFRP1) On Human Corneal Epithelial Cells. Curr Eye Res 2018; 43:455-459. [PMID: 29381095 DOI: 10.1080/02713683.2018.1431284] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
PURPOSE Limbal corneal epithelial cells (LCECs) are responsible for corneal epithelial cell regeneration. However, corneal central epithelial cells (CCECs) are also suggested to display potential for self-renewal. Additionally, a better understanding of molecules that regulate corneal epithelial cell regeneration is important for studying conditions affecting the cornea, for example, keratoconus. Given our previous findings of reduced levels of secreted frizzled-related protein 1 (SFRP1) in tears from keratoconus patients compared to controls, we investigated the effects of SFRP1 on the proliferation and survival of cultured central and limbal human corneal epithelial cells. MATERIAL AND METHODS Limbal and central corneal explants were established from postmortem human corneas, and cultured in CnT-PR, an epithelial-specific tissue culture media. Subcultured cells from explants were immunostained for the cytokeratins CK3, 12, 19, and the proliferative/oligopotent markers Ki67 and p63. BrdU flow cytometry, Alamar Blue and LDH assays were used to assess effects of SFRP1 treatment on central and LCECs. RESULTS Primary limbal and central corneal epithelial cells were successfully cultured in vitro to confluence (P6 and P4, respectively). They all expressed varying levels of cytokeratins CK3, CK12 and CK19, and Ki67 and p63. Additionally, they showed significantly increased metabolic activity after SFRP1 treatment (p < 0.05), with a maximum response at 1 μg/mL of SPRF1. No difference in proliferation was detected in SFRP1 treated LCECs; however, a reduction in cell death was noted (p < 0.05). CONCLUSION Similar to the LCECs, primary human CCECs can be cultured in vitro, and expressed epithelial markers. SFRP1 demonstrated an improvement on the metabolic activity of both CCECs and LCECs, which in LCECs could be resulted from reduced cell death. This may have implications in degenerative corneal disorders, such as keratoconus.
Collapse
Affiliation(s)
- Jingjing You
- a Save Sight Institute, Sydney Medical School , University of Sydney , Sydney , Australia.,b School of Optometry & Vision Science , University of New South Wales , Sydney , Australia
| | - Luis Munoz-Erazo
- a Save Sight Institute, Sydney Medical School , University of Sydney , Sydney , Australia.,c Department of Pathology, Sydney Medical School , University of Sydney , Sydney , Australia
| | - Li Wen
- a Save Sight Institute, Sydney Medical School , University of Sydney , Sydney , Australia
| | - Chris Hodge
- a Save Sight Institute, Sydney Medical School , University of Sydney , Sydney , Australia.,d Vision Eye Institute , Sydney , Australia.,e Lions NSW Eye Bank , Sydney , Australia
| | - Michele C Madigan
- a Save Sight Institute, Sydney Medical School , University of Sydney , Sydney , Australia.,b School of Optometry & Vision Science , University of New South Wales , Sydney , Australia
| | - Gerard Sutton
- a Save Sight Institute, Sydney Medical School , University of Sydney , Sydney , Australia.,d Vision Eye Institute , Sydney , Australia.,e Lions NSW Eye Bank , Sydney , Australia
| |
Collapse
|
46
|
Pfister AS, Kühl M. Of Wnts and Ribosomes. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 153:131-155. [PMID: 29389514 DOI: 10.1016/bs.pmbts.2017.11.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Wnt proteins are secreted glycoproteins that activate different intracellular signal transduction pathways. They regulate cell proliferation and are required for proper embryonic development. Misregulation of Wnt signaling can result in various diseases including cancer. In most circumstances, cell growth is essential for cell division and thus cell proliferation. Therefore, several reports have highlighted the key role of Wnt proteins for cell growth. Ribosomes represent the cellular protein synthesis machinery and cells need to be equipped with an appropriate number of ribosomes to allow cell growth. Recent findings suggest a role for Wnt proteins in regulating ribosome biogenesis and we here summarize these findings representing a previously unknown function of Wnt proteins. Understanding this role of Wnt signaling might open new avenues to slow down proliferation by drugs for instance in cancer therapy.
Collapse
Affiliation(s)
- Astrid S Pfister
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany.
| | - Michael Kühl
- Institute of Biochemistry and Molecular Biology, Ulm University, Ulm, Germany
| |
Collapse
|
47
|
Meyer P, Maity P, Burkovski A, Schwab J, Müssel C, Singh K, Ferreira FF, Krug L, Maier HJ, Wlaschek M, Wirth T, Kestler HA, Scharffetter-Kochanek K. A model of the onset of the senescence associated secretory phenotype after DNA damage induced senescence. PLoS Comput Biol 2017; 13:e1005741. [PMID: 29206223 PMCID: PMC5730191 DOI: 10.1371/journal.pcbi.1005741] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 12/14/2017] [Accepted: 08/22/2017] [Indexed: 12/21/2022] Open
Abstract
Cells and tissues are exposed to stress from numerous sources. Senescence is a protective mechanism that prevents malignant tissue changes and constitutes a fundamental mechanism of aging. It can be accompanied by a senescence associated secretory phenotype (SASP) that causes chronic inflammation. We present a Boolean network model-based gene regulatory network of the SASP, incorporating published gene interaction data. The simulation results describe current biological knowledge. The model predicts different in-silico knockouts that prevent key SASP-mediators, IL-6 and IL-8, from getting activated upon DNA damage. The NF-κB Essential Modulator (NEMO) was the most promising in-silico knockout candidate and we were able to show its importance in the inhibition of IL-6 and IL-8 following DNA-damage in murine dermal fibroblasts in-vitro. We strengthen the speculated regulator function of the NF-κB signaling pathway in the onset and maintenance of the SASP using in-silico and in-vitro approaches. We were able to mechanistically show, that DNA damage mediated SASP triggering of IL-6 and IL-8 is mainly relayed through NF-κB, giving access to possible therapy targets for SASP-accompanied diseases.
Collapse
Affiliation(s)
- Patrick Meyer
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Pallab Maity
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Andre Burkovski
- Institute of Medical Systems Biology, University of Ulm, Germany
- International Graduate School in Molecular Medicine, University of Ulm, Germany
| | - Julian Schwab
- Institute of Medical Systems Biology, University of Ulm, Germany
- International Graduate School in Molecular Medicine, University of Ulm, Germany
| | - Christoph Müssel
- Institute of Medical Systems Biology, University of Ulm, Germany
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Filipa F. Ferreira
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
| | - Linda Krug
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | | | - Meinhard Wlaschek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, University of Ulm, Germany
| | - Hans A. Kestler
- Aging Research Center (ARC), University of Ulm, Germany
- Institute of Medical Systems Biology, University of Ulm, Germany
| | - Karin Scharffetter-Kochanek
- Department of Dermatology and Allergic Diseases, University of Ulm, Germany
- Aging Research Center (ARC), University of Ulm, Germany
| |
Collapse
|
48
|
Janovská P, Bryja V. Wnt signalling pathways in chronic lymphocytic leukaemia and B-cell lymphomas. Br J Pharmacol 2017; 174:4701-4715. [PMID: 28703283 PMCID: PMC5727250 DOI: 10.1111/bph.13949] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 06/19/2017] [Accepted: 06/29/2017] [Indexed: 12/31/2022] Open
Abstract
In this review, we discuss the intricate roles of the Wnt signalling network in the development and progression of mature B-cell-derived haematological malignancies, with a focus on chronic lymphocytic leukaemia (CLL) and related B-cell lymphomas. We review the current literature and highlight the differences between the β-catenin-dependent and -independent branches of Wnt signalling. Special attention is paid to the role of the non-canonical Wnt/planar cell polarity (PCP) pathway, mediated by the Wnt-5-receptor tyrosine kinase-like orphan receptor (ROR1)-Dishevelled signalling axis in CLL. This is mainly because the Wnt/PCP co-receptor ROR1 was found to be overexpressed in CLL and the Wnt/PCP pathway contributes to numerous aspects of CLL pathogenesis. We also discuss the possibilities of therapeutically targeting the Wnt signalling pathways as an approach to disrupt the crucial interaction between malignant cells and their micro-environment. We also advocate the need for research in this direction for other lymphomas, namely, diffuse large B-cell lymphoma, Hodgkin lymphoma, mantle cell lymphoma, Burkitt lymphoma and follicular lymphoma where the Wnt signalling pathway probably plays a similar role. LINKED ARTICLES This article is part of a themed section on WNT Signalling: Mechanisms and Therapeutic Opportunities. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.24/issuetoc.
Collapse
Affiliation(s)
- Pavlína Janovská
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| | - Vítězslav Bryja
- Institute of Experimental Biology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic
| |
Collapse
|
49
|
Kovács B, Nagy EE, Chendrean NN, Székely-Szentmiklósi B, Gyéresi Á. The Wnt Signalling Pathways: A Short Review and Specific Roles in Bone Biochemistry. ACTA MEDICA MARISIENSIS 2017. [DOI: 10.1515/amma-2017-0026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractAs musculoskeletal diseases become an emerging healthcare problem worldwide, profound and comprehensive research has been focused on the biochemistry of bone metabolism in the past decades. Wnt signalling, one of the novel described pathways influencing bone metabolism from the early stages of tissue development, has been recently in the centre of attention. Several Wnt ligands are implied in bone forming pathways via canonical (β-catenin dependent) and non-canonical (β-catenin independent) signalling. Osteoporosis, a catabolic bone disease, has its pathologic background related, inter alia, to alterations in the Wnt signalling, thus key modulators of these pathways became one of the most promising targets in the treatment of osteoporosis. Antibodies inhibiting the activity of endogenous Wnt pathway inhibitors (sclerostin, dickkopf) are recently under clinical trials. The current article offers a brief review of the Wnt signalling pathways, its implication in bone metabolism and fate, and the therapeutic possibilities of osteoporosis through Wnt signalling.
Collapse
Affiliation(s)
- Béla Kovács
- University of Medicine and Pharmacy Tîrgu Mureș , Romania
| | - Előd Ernő Nagy
- Department of Biochemistry and Environmental Chemistry , University of Medicine and Pharmacy Tîrgu Mureș , Romania
| | - Norbert Nándor Chendrean
- Department of Biochemistry and Environmental Chemistry , University of Medicine and Pharmacy Tîrgu Mureș , Romania
| | | | - Árpád Gyéresi
- Department of Pharmaceutical Chemistry , University of Medicine and Pharmacy Tîrgu Mureș , Romania
| |
Collapse
|
50
|
Tortelote GG, Reis RR, de Almeida Mendes F, Abreu JG. Complexity of the Wnt/β‑catenin pathway: Searching for an activation model. Cell Signal 2017; 40:30-43. [PMID: 28844868 DOI: 10.1016/j.cellsig.2017.08.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 08/08/2017] [Accepted: 08/23/2017] [Indexed: 12/13/2022]
Abstract
Wnt signaling refers to a conserved signaling pathway, widely studied due to its roles in cellular communication, cell fate decisions, development and cancer. However, the exact mechanism underlying inhibition of the GSK phosphorylation towards β-catenin and activation of the pathway after biding of Wnt ligand to its cognate receptors at the plasma membrane remains unclear. Wnt target genes are widely spread over several animal phyla. They participate in a plethora of functions during the development of an organism, from axial specification, gastrulation and organogenesis all the way to regeneration and repair in adults. Temporal and spatial oncogenetic re-activation of Wnt signaling almost certainly leads to cancer. Wnt signaling components have been extensively studied as possible targets in anti-cancer therapies. In this review we will discuss one of the most intriguing questions in this field, that is how β-catenin, a major component in this pathway, escapes the destruction complex, gets stabilized in the cytosol and it is translocated to the nucleus where it acts as a co-transcription factor. Four major models have evolved during the past 20years. We dissected each of them along with current views and future perspectives on this pathway. This review will focus on the molecular mechanisms by which Wnt proteins modulate β-catenin cytoplasmic levels and the relevance of this pathway for the development and cancer.
Collapse
Affiliation(s)
- Giovane G Tortelote
- Carlos Chagas Filho Biophysics Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Renata R Reis
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabio de Almeida Mendes
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jose Garcia Abreu
- Institute of Biomedical Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|