1
|
Abdallah NA, Elsharawy H, Abulela HA, Thilmony R, Abdelhadi AA, Elarabi NI. Multiplex CRISPR/Cas9-mediated genome editing to address drought tolerance in wheat. GM CROPS & FOOD 2025; 16:1-17. [PMID: 36200515 DOI: 10.1080/21645698.2022.2120313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/25/2022] [Indexed: 11/05/2022]
Abstract
Genome editing tools have rapidly been adopted by plant scientists for crop improvement. Genome editing using a multiplex sgRNA-CRISPR/Cas9 genome editing system is a useful technique for crop improvement in monocot species. In this study, we utilized precise gene editing techniques to generate wheat 3'(2'), 5'-bisphosphate nucleotidase (TaSal1) mutants using a multiplex sgRNA-CRISPR/Cas9 genome editing system. Five active TaSal1 homologous genes were found in the genome of Giza168 in addition to another apparently inactive gene on chromosome 4A. Three gRNAs were designed and used to target exons 4, 5 and 7 of the five wheat TaSal1 genes. Among the 120 Giza168 transgenic plants, 41 lines exhibited mutations and produced heritable TaSal1 mutations in the M1 progeny and 5 lines were full 5 gene knock-outs. These mutant plants exhibit a rolled-leaf phenotype in young leaves and bended stems, but there were no significant changes in the internode length and width, leaf morphology, and stem shape. Anatomical and scanning electron microscope studies of the young leaves of mutated TaSal1 lines showed closed stomata, increased stomata width and increase in the size of the bulliform cells. Sal1 mutant seedlings germinated and grew better on media containing polyethylene glycol than wildtype seedlings. Our results indicate that the application of the multiplex sgRNA-CRISPR/Cas9 genome editing is efficient tool for mutating more multiple TaSal1 loci in hexaploid wheat.
Collapse
Affiliation(s)
- Naglaa A Abdallah
- Department of Genetics,Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hany Elsharawy
- Department of Genetics,Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Hamiss A Abulela
- Chemistry Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Roger Thilmony
- USDA-ARS Crop Improvement and Genetics Unit, Albany, California, USA
| | | | - Nagwa I Elarabi
- Department of Genetics,Faculty of Agriculture, Cairo University, Giza, Egypt
| |
Collapse
|
2
|
Mondragón‐Botero A, Powers JS. Evaluating the combined effects of light and water availability on the early growth and physiology of Tamarindus indica: Implications for restoration. AMERICAN JOURNAL OF BOTANY 2025; 112:e70008. [PMID: 40038045 PMCID: PMC11928916 DOI: 10.1002/ajb2.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 12/05/2024] [Accepted: 12/06/2024] [Indexed: 03/06/2025]
Abstract
PREMISE The tamarind tree (Tamarindus indica) is a species of significant cultural, economic, and ecological value, with a pantropical distribution. However, the tamarind is experiencing a decline in wild populations in its native range, but the reasons for its decline remain unknown. METHODS We examined the critical early life-history stages for tamarind establishment to understand how varying levels of light and water availability and watering frequency affect its regeneration. Through three greenhouse experiments, we assessed the impact of these resources on the germination, survival, growth, and physiological responses of tamarind seedlings and saplings. RESULTS Water availability was critical for seed germination, but not light levels or pre-germination treatments. Light was the primary limiting factor for seedling growth. Tamarinds in high light availability grew taller, had more biomass and larger diameter, but the effect of light was modulated by water availability, indicating that there was an interaction between both resources. Water and light affected specific leaf area and leaf dry matter content but not biomass allocation, root-to-shoot ratio, or stomatal conductance. Water availability influenced sapling growth, but watering frequency did not, indicating a resilience of tamarind saplings to changes in rainfall periodicity but a sensitivity to total rainfall amounts. CONCLUSIONS Our study underscores the importance of considering both light and water availability in tamarind restoration efforts and contribute to understanding plant responses and trade-offs under different levels of critical resources. Our findings will inform conservation strategies to support the regeneration and long-term survival of Tamarindus indica in its native habitats.
Collapse
|
3
|
Zuffa F, Jung M, Yates S, Quesada‐Traver C, Patocchi A, Studer B, Dow G. Interannual Variation of Stomatal Traits Impacts the Environmental Responses of Apple Trees. PLANT, CELL & ENVIRONMENT 2025; 48:2478-2491. [PMID: 39628004 PMCID: PMC11788966 DOI: 10.1111/pce.15302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 02/04/2025]
Abstract
Stomata are fundamental to plant-water relations and represent promising targets to enhance crop water-use efficiency and climate resilience. Here, we investigated stomatal density (SD) variation in 269 apple accessions across 3 years (2019-2021), which demonstrated significant differences between accessions but consistency over time. We selected 2 subsets of 20 accessions, each with contrasting SD: high stomatal density (HSD; 370-500 mm-2) and low stomatal density (LSD; 192-316 mm-2). SD groups were compared in stomatal function, leaf physiology and crop productivity across two seasons (2021-2022). LSD had lower stomatal conductance (gs) and higher intrinsic water-use efficiency in both years (p < 0.05). Hotter and drier conditions in 2022 reduced gs similarly in both groups (-22% HSD, -21% LSD), but also created a difference in net carbon assimilation (Anet) that was not present in 2021 (HSD + 1.7 μmol CO2 m-2 s-1, p < 0.05). LSD constraints on Anet were reflected in carbon isotope discrimination (δ13C, p < 0.001) and annual decline in fruit yield (-35%, p < 0.001). Our results demonstrate the suitability of SD as a trait to improve WUE, but also identifies a trade-off between water savings and productivity, which requires consideration for breeding.
Collapse
Affiliation(s)
- Francesca Zuffa
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Michaela Jung
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
- Fruit Breeding, Department of Plant BreedingAgroscopeWaedenswilSwitzerland
| | - Steven Yates
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Carles Quesada‐Traver
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Andrea Patocchi
- Fruit Breeding, Department of Plant BreedingAgroscopeWaedenswilSwitzerland
| | - Bruno Studer
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
| | - Graham Dow
- Molecular Plant BreedingInstitute of Agricultural Sciences, ETH ZurichZurichSwitzerland
- Crop Science and Production Systems, NIABCambridgeUK
| |
Collapse
|
4
|
Nicholes V, Khan M, Lemon N, Vila P, Campany C. Acclimation of functional traits leads to biomass increases in leafy green species grown in aquaponics. AOB PLANTS 2025; 17:plaf005. [PMID: 40007953 PMCID: PMC11851069 DOI: 10.1093/aobpla/plaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 01/17/2025] [Indexed: 02/27/2025]
Abstract
As human population size continues to increase and climate change effects worsen, future food security has become a primary concern for agricultural industries worldwide. Yields of traditional agricultural methods are commonly limited by water and nutrient availability and many crop yields are predicted to decline. Alternative farming practices like aquaponics, which can alleviate these negative yield pressures, may become critical to reaching food production targets. Aquaponics approaches involve the cyclic joint production of fish and hydroponic plants where the fish efflux provides nutrients to plants that then purify the water to be recycled to the fish tanks. In this study, we investigated the acclimation of physiology and functional traits of plants grown in aquaponics versus soil for three leafy green species. We compared gas exchange, stomatal anatomy, water-use efficiency, and foliar chemistry on newly formed leaves across weekly measurements. Increased photosynthetic rate, driven by higher stomatal conductance and increases in tissue nitrogen, led to higher biomass production in aquaponics for all species. Aquaponics plants adjusted stomatal behavior and to a lesser degree stomatal anatomy to become less water-use efficient than plants grown in soil. Collectively, our findings demonstrate the ability of plants to acclimate quickly to aquaponics growing systems that largely remove water and nutrient limitations to plant growth. The increased biomass production of broccoli, pak choi, and salanova by 185%, 116%, and 362% in aquaponics compared to soil-grown plants demonstrates the potential of small-scale aquaponics systems as an efficient and sustainable alternative farming practice.
Collapse
Affiliation(s)
- Victoria Nicholes
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
- Department of Biology, West Virginia University, Life Sciences Bldg, PO Box 6057, Morgantown, WV, 26506, USA
| | - Malik Khan
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Nicholas Lemon
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Peter Vila
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| | - Courtney Campany
- Department of Natural and Physical Sciences, Shepherd University, 301 N. King St., Shepherdstown, WV, 25443, USA
| |
Collapse
|
5
|
Liu D, Lu S, Tian R, Zhang X, Dong Q, Ren H, Chen L, Hu YG. Mining genomic regions associated with stomatal traits and their candidate genes in bread wheat through genome-wide association study (GWAS). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:20. [PMID: 39774685 DOI: 10.1007/s00122-024-04814-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 12/28/2024] [Indexed: 01/11/2025]
Abstract
KEY MESSAGE 112 candidate quantitative trait loci (QTLs) and 53 key candidate genes have been identified as associated with stomatal traits in wheat. These include bHLH, MADS-box transcription factors, and mitogen-activated protein kinases (MAPKs). Stomata is a common feature of the leaf surface of plants and serve as vital conduits for the exchange of gases (primarily CO₂ and water vapor) between plants and the external environment. In this study, a comprehensive genome analysis was conducted by integrating genome-wide association study (GWAS) and genome prediction to identify the genomic regions and candidate genes of stomatal traits associated with drought resistance and water-saving properties in a panel of 184 diverse bread wheat genotypes. There were significant variations on stomatal traits in the wheat panel across different environmental conditions. GWAS was conducted with the genotypic data from the wheat 660 K single-nucleotide polymorphism (SNP) chip, and the stomatal traits conducted across three environments during two growing seasons. The final GWAS identified 112 candidate QTLs that exhibited at least two significant marker-trait associations. Subsequent analysis identified 53 key candidate genes, including 13 bHLH transcription factor, 2 MADS-box transcription factors, and 4 mitogen-activated protein kinase genes, which may be strongly associated with stomatal traits. The application of Bayesian ridge regression for genomic prediction yielded an accuracy rate exceeding 60% for all four stomatal traits in both SNP matrices, with stomatal width achieving a rate in excess of 70%. Additionally, three Kompetitive allele-specific PCR markers were developed and validated, representing a significant advancement in marker-assisted prediction. Overall, these results will contribute to a more comprehensive understanding of wheat stomatal traits and provide a valuable reference for germplasm screening and innovation in wheat germplasm with novel stomatal traits.
Collapse
Affiliation(s)
- Dezheng Liu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Shan Lu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Renmei Tian
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Xubin Zhang
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Qingfeng Dong
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Hao Ren
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China
| | - Liang Chen
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yin-Gang Hu
- State Key Laboratory of Crop Stress Resistance and High-Efficiency Production and College of Agronomy, Northwest A&F University, Yangling, Shaanxi, China.
- Institute of Water Saving Agriculture in Arid Regions of China, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
6
|
Mohi-Ud-Din M, Hossain MA, Rohman MM, Uddin MN, Haque MS, Tahery MH, Hasanuzzaman M. Multi-Trait Index-Based Selection of Drought Tolerant Wheat: Physiological and Biochemical Profiling. PLANTS (BASEL, SWITZERLAND) 2024; 14:35. [PMID: 39795295 PMCID: PMC11723105 DOI: 10.3390/plants14010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 12/19/2024] [Accepted: 12/24/2024] [Indexed: 01/13/2025]
Abstract
Drought is a detrimental abiotic stress that severely limits wheat growth and productivity worldwide by altering several physiological processes. Thus, understanding the mechanisms of drought tolerance is essential for the selection of drought-resilient features and drought-tolerant cultivars for wheat breeding programs. This exploratory study evaluated 14 wheat genotypes (13 relatively tolerant, one susceptible) for drought endurance based on flag leaf physiological and biochemical traits during the critical grain-filling stage in the field conditions. Measurements included six physiological, seven gas exchange, six photosystem II, six stomatal, three reactive species, seven metabolomic solutes, and two biomass traits. All parameters were significantly influenced by drought, with varying genotypic responses. Hierarchical cluster analysis (HCA) categorized genotypes into three drought tolerance groups based on trait performance. Seven genotypes in Cluster 2 (BARI Gom 26, BARI Gom 33, BD-631, BD-600, BD-9910, BD-9889, BD-637) exhibited superior drought tolerance, characterized by minimal changes in physiological traits and biomass accumulation, reduced oxidative stress markers, and increased accumulation of osmoprotectants. The innovative multi-trait genotype-ideotype distance index (MGIDI) further ranked wheat genotypes in regard to drought tolerance, identifying BARI Gom 33, BARI Gom 26, BD-9889, and BD-600 as top performers. Notably, all these top-ranking genotypes belonged to Cluster 2, previously identified as the highest-performing group in the HCA. The identified genotypes with superior drought tolerance offer valuable genetic resources for enhancing wheat productivity in water-limiting environments. Traits related to photosynthetic activity, biomass gain, leaf conductance, water stress, and osmoprotection showed high selection differentials and heritability in MGIDI analysis, indicating their potential as selection targets for drought-tolerant wheat. Overall, the strategic approaches have yielded novel insights into genotype screening that can be directly applied to deepen our understanding of drought tolerance mechanisms in wheat.
Collapse
Affiliation(s)
- Mohammed Mohi-Ud-Din
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Md. Alamgir Hossain
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Motiar Rohman
- Plant Breeding Division, Bangladesh Agricultural Research Institute, Gazipur 1701, Bangladesh
| | - Md. Nesar Uddin
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Md. Sabibul Haque
- Department of Crop Botany, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Mahmudul Hasan Tahery
- Department of Crop Botany, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur 1706, Bangladesh; (M.M.-U.-D.)
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka 1207, Bangladesh
| |
Collapse
|
7
|
Oner F. Effects of nitrogen doses on stomatal characteristics, chlorophyll content, and agronomic traits in wheat ( Triticum aestivum L.). PeerJ 2024; 12:e18792. [PMID: 39735566 PMCID: PMC11674246 DOI: 10.7717/peerj.18792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/10/2024] [Indexed: 12/31/2024] Open
Abstract
It is very important to determine the chlorophyll content (SPAD) and nitrogen (N) requirement in order to increase the seed yield and nutritional quality of wheat. This research was carried out with three N doses (0, 50, 100 kg ha-1) and nine wheat cultivars (Alpu-2001, Soyer-02, Kate-A1, Bezostaja-1, Altay-2000, Müfitbey, Nacibey, Harmankaya-99 and Sönmez-2001) during 2-years field condition according to factorial randomized complete block design and three replications. In this study, with the increase of N dose (N50), seed yield increased by 13%, plant height by 10.8%, 1,000 seed weight by 10.5% compared to control plants (N0). The increase of N dose from 50 kg ha-1 to 100 kg gave lower increase rates in the same criteria (11.7%, 11.4%, 10.3%, respectively). However, the spike number per plant, spikelet number in spike, seed number in spike, spike length showed statistically significant differences between N doses and varieties. Boost of N doses caused a significant increase compared to plants without N application. The chlorophyll content and flag leaf area index were determined at three growth times (1st growth time; early, 2nd growth time; the middle and end of flowering, 3rd growth time; with a 10-day interval). Chlorophyll content was significantly (p < 0.01) affected by the N dose, variety and growth time. As N doses increased, chlorophyll content increased, and it was higher at both N doses compared with N0. The chlorophyll content had the highest rates (30.22%) at 1st growth time and it decreased as the growth period progressed. N doses, varieties and their interactions had significant effects on the flag leaf area index. The highest flag leaf area index (41.9 cm2) was determined from variety Bezostaja-1 and 100 kg ha-1 N dose treatment. The effect of N dose was found significantly on abaxial and adaxial stomata width-length and epidermal cells. The adaxial and abaxial stomata width were higher than N0 at both N levels. The highest adaxial and abaxial stomata width- length was obtained from 100 kg ha-1 N dose. As nitrogen concentration increased, both stomatal density and stomatal index increased. The stomatal index varied between 19% and 36%. The lowest stomata density had appeared in the 100 kg ha-1 N dose and Bezostaja-1 variety. As a result, stomatal characteristics, chlorophyll content, and agronomic traits of wheat were significantly affected by increasing N doses.
Collapse
Affiliation(s)
- Fatih Oner
- Field Crops/Agricultural Faculty, Ordu University, Ordu, Turkey
| |
Collapse
|
8
|
Crawford JD, Twohey RJ, Pathare VS, Studer AJ, Cousins AB. Differences in stomatal sensitivity to CO2 and light influence variation in water use efficiency and leaf carbon isotope composition in two genotypes of the C4 plant Zea mays. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6748-6761. [PMID: 38970337 DOI: 10.1093/jxb/erae286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 07/03/2024] [Indexed: 07/08/2024]
Abstract
The ratio of net CO2 uptake (Anet) and stomatal conductance (gs) is an intrinsic measurement of leaf water use efficiency (WUEi); however, its measurement can be challenging for large phenotypic screens. Measurements of the leaf carbon isotope composition (δ13Cleaf) may be a scalable tool to approximate WUEi for screening because it in part reflects the competing influences of Anet and gs on the CO2 partial pressure (pCO2) inside the leaf over time. However, in C4 photosynthesis, the CO2-concentrating mechanism complicates the relationship between δ13Cleaf and WUEi. Despite this complicated relationship, several studies have shown genetic variation in δ13Cleaf across C4 plants. Yet there has not been a clear demonstration of if Anet or gs are the causal mechanisms controlling WUEi and δ13Cleaf. Our approach was to characterize leaf photosynthetic traits of two Zea mays recombinant inbred lines (Z007E0067 and Z007E0150) which consistently differ for δ13Cleaf even though they have minimal confounding genetic differences. We demonstrate that these two genotypes contrasted in WUEi driven by differences in the speed of stomatal responses to changes in pCO2 and light that lead to unproductive leaf water loss. These findings provide support that differences in δ13Cleaf in closely related genotypes do reflect greater WUEi and further suggest that differences in stomatal kinetic response to changing environmental conditions is a key target to improve WUEi.
Collapse
Affiliation(s)
- Joseph D Crawford
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Robert J Twohey
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Varsha S Pathare
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| | - Anthony J Studer
- Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Asaph B Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
9
|
Chen X, Favero BT, Liu F, Lütken H. Enhanced root system architecture in oilseed rape transformed with Rhizobium rhizogenes. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 348:112209. [PMID: 39098395 DOI: 10.1016/j.plantsci.2024.112209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 07/15/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
Transformation of plants using wild strains of agrobacteria is termed natural transformation and is not covered by GMO legislation in e.g. European Union and Japan. In the current study, offspring lines (A11 and B3) of Rhizobium rhizogenes naturally transformed oilseed rape (Brassica napus) were randomly selected to characterize the morphological traits, and analyze the implications of such morphological changes on plant drought resilience. It was found that the introduction of Ri-genes altered the biomass partitioning to above- and under-ground parts of oilseed rape plants. Compared to the wild type (WT), the A11 and B3 lines exhibited 1.2-4.0 folds lower leaf and stem dry weight, leaf area and plant height, but had 1.3-5.8 folds greater root dry weight, root length and root surface area, resulting in a significantly enhanced root: shoot dry mass ratio and root surface area: leaf area ratio. In addition, the introduction of Ri-genes conferred reduced stomatal pore aperture and increased stomatal density in the B3 line, and increased leaf thickness in A11 line, which could benefit plant drought resilience. Finally, the modulations in morphological traits as a consequence of transformation with Ri-genes are discussed concerning resilience in water-limited conditions. These findings reveal the potential of natural transformation with R. rhizogenes for drought-targeted breeding in crops.
Collapse
Affiliation(s)
- Xuefei Chen
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Bruno Trevenzoli Favero
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Fulai Liu
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| | - Henrik Lütken
- Section for Crop Sciences, Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Taastrup, Denmark.
| |
Collapse
|
10
|
Petrík P, Petek-Petrík A, Lamarque LJ, Link RM, Waite PA, Ruehr NK, Schuldt B, Maire V. Linking stomatal size and density to water use efficiency and leaf carbon isotope ratio in juvenile and mature trees. PHYSIOLOGIA PLANTARUM 2024; 176:e14619. [PMID: 39528910 DOI: 10.1111/ppl.14619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 10/12/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
Water-use efficiency (WUE) is affected by multiple leaf traits, including stomatal morphology. However, the impact of stomatal morphology on WUE across different ontogenetic stages of tree species is not well-documented. Here, we investigated the relationship between stomatal morphology, intrinsic water-use efficiency (iWUE) and leaf carbon isotope ratio (δ13C). We sampled 190 individuals, including juvenile and mature trees belonging to 18 temperate broadleaved tree species and 9 genera. We measured guard cell length (GCL), stomatal density (SD), specific leaf area (SLA), iWUE and bulk leaf δ13C as a proxy for long-term WUE. Leaf δ13C correlated positively with iWUE across species in both juvenile and mature trees, while GCL showed a negative and SD a positive effect on iWUE and leaf δ13C. Within species, however, only GCL was significantly associated with iWUE and leaf δ13C. SLA had a minor negative influence on iWUE and leaf δ13C, but this effect was inconsistent between juvenile and mature trees. We conclude that GCL and SD can be considered functional morphological traits related to the iWUE and leaf δ13C of trees, highlighting their potential for rapid phenotyping approaches in ecological studies.
Collapse
Affiliation(s)
- Peter Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Anja Petek-Petrík
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Laurent J Lamarque
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Québec, QC, Canada
| | - Roman M Link
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Pierre-André Waite
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
- French Agricultural Research Centre for International Development (CIRAD), UPR AIDA, Montpellier, France
- Agroecology and Sustainable Intensification of Annual Crops (AIDA), CIRAD, Université de Montpellier, Montpellier, France
| | - Nadine K Ruehr
- Institute of Meteorology and Climate Research - Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Bernhard Schuldt
- Chair of Forest Botany, Institute of Forest Botany and Forest Zoology, Technical University of Dresden (TUD), Tharandt, Germany
| | - Vincent Maire
- Département des Sciences de l'environnement, Université du Québec à Trois-Rivières, Trois-Rivières, QC, Canada
| |
Collapse
|
11
|
Hendrickx A, Hatangi Y, Honnay O, Janssens SB, Stoffelen P, Vandelook F, Depecker J. Leaf functional trait evolution and its putative climatic drivers in African Coffea species. ANNALS OF BOTANY 2024; 134:683-698. [PMID: 39051731 PMCID: PMC11523614 DOI: 10.1093/aob/mcae111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/23/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND AND AIMS Leaf traits are known to be strong predictors of plant performance and can be expected to (co)vary along environmental gradients. We investigated the variation, integration, environmental relationships and evolutionary history of leaf functional traits in the genus Coffea, typically a rainforest understorey shrub, across Africa. A better understanding of the adaptive processes involved in leaf trait evolution can inform the use and conservation of coffee genetic resources in a changing climate. METHODS We used phylogenetic comparative methods to investigate the evolution of six leaf traits measured from herbarium specimens of 58 African Coffea species. We added environmental data and data on maximum plant height for each species to test trait-environment correlations in various (sub)clades, and we compared continuous trait evolution models to identify variables driving trait diversification. KEY RESULTS Substantial leaf trait variation was detected across the genus Coffea in Africa, which was mostly interspecific. Of these traits, stomatal size and stomatal density exhibited a clear trade-off. We observed low densities of large stomata in early-branching lineages and higher densities of smaller stomata in more recent taxa, which we hypothesize to be related to declining CO2 levels since the mid-Miocene. Brownian motion evolution was rejected in favor of white noise or Ornstein-Uhlenbeck models for all traits, implying these traits are adaptively significant rather than driven by pure drift. The evolution of leaf area was likely driven by precipitation, with smaller leaves in drier climates across the genus. CONCLUSIONS Generally, Coffea leaf traits appear to be evolutionarily labile and governed by stabilizing selection, though evolutionary patterns and correlations differ depending on the traits and clades considered. Our study highlights the importance of a phylogenetic perspective when studying trait relationships across related taxa, as well as the consideration of various taxonomic ranges.
Collapse
Affiliation(s)
- Aiden Hendrickx
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| | - Yves Hatangi
- Meise Botanic Garden, 1860 Meise, Belgium
- Université de Kisangani, 2012 Kisangani, DR Congo
- Liège University, Gembloux Agro-Bio Tech, 5030 Gembloux, Belgium
| | - Olivier Honnay
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| | - Steven B Janssens
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Molecular Biotechnology of Plants and Micro-organisms, KU Leuven, 3001 Leuven, Belgium
| | | | - Filip Vandelook
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| | - Jonas Depecker
- Meise Botanic Garden, 1860 Meise, Belgium
- Division of Ecology, Evolution, and Biodiversity Conservation, KU Leuven, 3000 Leuven, Belgium
- KU Leuven Plant Institute, 3001 Leuven, Belgium
| |
Collapse
|
12
|
Chua LC, Lau OS. Stomatal development in the changing climate. Development 2024; 151:dev202681. [PMID: 39431330 PMCID: PMC11528219 DOI: 10.1242/dev.202681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Stomata, microscopic pores flanked by symmetrical guard cells, are vital regulators of gas exchange that link plant processes with environmental dynamics. The formation of stomata involves the multi-step progression of a specialized cell lineage. Remarkably, this process is heavily influenced by environmental factors, allowing plants to adjust stomatal production to local conditions. With global warming set to alter our climate at an unprecedented pace, understanding how environmental factors impact stomatal development and plant fitness is becoming increasingly important. In this Review, we focus on the effects of carbon dioxide, high temperature and drought - three environmental factors tightly linked to global warming - on stomatal development. We summarize the stomatal response of a variety of plant species and highlight the existence of species-specific adaptations. Using the model plant Arabidopsis, we also provide an update on the molecular mechanisms involved in mediating the plasticity of stomatal development. Finally, we explore how knowledge on stomatal development is being applied to generate crop varieties with optimized stomatal traits that enhance their resilience against climate change and maintain agricultural productivity.
Collapse
Affiliation(s)
- Li Cong Chua
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| | - On Sun Lau
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117557, Singapore
| |
Collapse
|
13
|
Alon A, Ginzburg N, Zemach H, Voet H, Cohen S, David-Schwartz R. Growing at the arid edge: Anatomical variations in leaves are more extensive than in stems of five Mediterranean species across contrasting moisture regimes. AMERICAN JOURNAL OF BOTANY 2024; 111:e16407. [PMID: 39305264 DOI: 10.1002/ajb2.16407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 06/10/2024] [Accepted: 06/10/2024] [Indexed: 10/25/2024]
Abstract
PREMISE Increasing aridity in the Mediterranean region affects ecosystems and plant life. Various anatomical changes in plants help them cope with dry conditions. This study focused on anatomical differences in leaves and xylem of five co-occurring Mediterranean plant species namely Quercus calliprinos, Pistacia palaestina, Pistacia lentiscus, Rhamnus lycioides, and Phillyrea latifolia in wet and dry sites. METHODS Stomatal density, stomatal length, leaf mass area, lamina composition, percentage of intercellular air spaces, and mesophyll cell area in leaves of plants in wet and dry sites were analyzed. Xylem anatomy was assessed through vessel length and area in branches. RESULTS In the dry site, three species had increased stomatal density and decreased stomatal length. Four species had increased palisade mesophyll and reduced air space volume. In contrast, phenotypic changes in the xylem were less pronounced; vessel length was unaffected by site conditions, but vessel diameter decreased in two species. Intercellular air spaces proved to be the most dynamic anatomical feature. Quercus calliprinos had the most extensive anatomical changes; Rhamnus lycioides had only minor changes. All these changes were observed in comparison to the species in the wet site. CONCLUSIONS This study elucidated variations in anatomical responses in leaves among co-occurring Mediterranean plant species and identified the most dynamic traits. Understanding these adaptations provides valuable insights into the ability of plants to thrive under changing climate conditions.
Collapse
Affiliation(s)
- Asaf Alon
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Neta Ginzburg
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Hanita Zemach
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Hillary Voet
- Department of Environmental Economics and Management, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Shabtai Cohen
- Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Volcani Center, Agricultural Research Organization, Rishon LeZion, Israel
| |
Collapse
|
14
|
Donnelly RC, Nippert JB, Wedel ER, Ferguson CJ. Grass leaf structural and stomatal trait responses to climate gradients assessed over the 20th century and across the Great Plains, USA. AOB PLANTS 2024; 16:plae055. [PMID: 39430436 PMCID: PMC11489733 DOI: 10.1093/aobpla/plae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 09/25/2024] [Indexed: 10/22/2024]
Abstract
Abstract. Using herbarium specimens spanning 133 years and field-collected measurements, we assessed intraspecific trait (leaf structural and stomatal) variability from grass species in the Great Plains of North America. We focused on two widespread, closely related grasses from the tribe Paniceae: Dichanthelium oligosanthes subsp. scribnerianum (C3) and Panicum virgatum (C4). Thirty-one specimens per taxon were sampled from local herbaria from the years 1887 to 2013 to assess trait responses across time to changes in atmospheric [CO2] and growing season precipitation and temperature. In 2021 and 2022, the species were measured from eight grasslands sites to explore how traits vary spatially across natural continental precipitation and temperature gradients. Δ13C increased with atmospheric [CO2] for D. oligosanthes but decreased for P. virgatum, likely linked to increases in precipitation in the study region over the past century. Notably, this is the first record of decreasing Δ13C over time for a C4 species illustrating 13C linkages to climate. As atmospheric [CO2] increased, C:N increased and δ15N decreased for both species and %N decreased for D. oligosanthes. Across a large precipitation gradient, D. oligosanthes leaf traits were more responsive to changes in precipitation than those of P. virgatum. In contrast, only two traits of P. virgatum responded to increases in temperature across a gradient: specific leaf area (increase) and leaf dry matter content (decrease). The only shared significant trend between species was increased C:N with precipitation. Our work demonstrates that these closely related grass species with different photosynthetic pathways exhibited various trait responses across temporal and spatial scales, illustrating the key role of scale of inquiry for forecasting leaf trait responses to future environmental change.
Collapse
Affiliation(s)
- Ryan C Donnelly
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Jesse B Nippert
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Emily R Wedel
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| | - Carolyn J Ferguson
- Division of Biology, Kansas State University – 116 Ackert Hall, Manhattan, KS 66506, USA
| |
Collapse
|
15
|
Jia M, Wang Y, Jin H, Li J, Song T, Chen Y, Yuan Y, Hu H, Li R, Wu Z, Jiao P. Comparative Genomics Analysis of the Populus Epidermal Pattern Factor (EPF) Family Revealed Their Regulatory Effects in Populus euphratica Stomatal Development. Int J Mol Sci 2024; 25:10052. [PMID: 39337538 PMCID: PMC11432118 DOI: 10.3390/ijms251810052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/14/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Drought stress seriously threatens plant growth. The improvement of plant water use efficiency (WUE) and drought tolerance through stomatal regulation is an effective strategy for coping with water shortages. Epidermal patterning factor (EPF)/EPF-like (EPFL) family proteins regulate stomatal formation and development in plants and thus contribute to plant stress adaptation. Here, our analysis revealed the presence of 14 PeEPF members in the Populus euphratica genome, which exhibited a relatively conserved gene structure with 1-3 introns. Subcellular localisation prediction revealed that 9 PeEPF members were distributed in the chloroplasts of P. euphratica, and 5 were located extracellularly. Phylogenetic analysis indicated that PeEPFs can be divided into three clades, with genes within the same clade revealing a relatively conserved structure. Furthermore, we observed the evolutionary conservation of PeEPFs and AtEPF/EPFLs in certain domains, which suggests their conserved function. The analysis of cis-acting elements suggested the possible involvement of PeEPFs in plant response to multiple hormones. Transcriptomic analysis revealed considerable changes in the expression level of PeEPFs during treatment with polyethylene glycol and abscisic acid. The overexpression of PeEPF2 resulted in low stomatal density in transgenetic lines. These findings provide a basis for gaining insights into the function of PeEPFs in response to abiotic stress.
Collapse
Affiliation(s)
- Mingyu Jia
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Ying Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Hongyan Jin
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Jing Li
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Tongrui Song
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ruting Li
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Zhihua Wu
- College of Life Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Peipei Jiao
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
16
|
Lang PLM, Erberich JM, Lopez L, Weiß CL, Amador G, Fung HF, Latorre SM, Lasky JR, Burbano HA, Expósito-Alonso M, Bergmann DC. Century-long timelines of herbarium genomes predict plant stomatal response to climate change. Nat Ecol Evol 2024; 8:1641-1653. [PMID: 39117952 PMCID: PMC11383800 DOI: 10.1038/s41559-024-02481-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 06/21/2024] [Indexed: 08/10/2024]
Abstract
Dissecting plant responses to the environment is key to understanding whether and how plants adapt to anthropogenic climate change. Stomata, plants' pores for gas exchange, are expected to decrease in density following increased CO2 concentrations, a trend already observed in multiple plant species. However, it is unclear whether such responses are based on genetic changes and evolutionary adaptation. Here we make use of extensive knowledge of 43 genes in the stomatal development pathway and newly generated genome information of 191 Arabidopsis thaliana historical herbarium specimens collected over 193 years to directly link genetic variation with climate change. While we find that the essential transcription factors SPCH, MUTE and FAMA, central to stomatal development, are under strong evolutionary constraints, several regulators of stomatal development show signs of local adaptation in contemporary samples from different geographic regions. We then develop a functional score based on known effects of gene knock-out on stomatal development that recovers a classic pattern of stomatal density decrease over the past centuries, suggesting a genetic component contributing to this change. This approach combining historical genomics with functional experimental knowledge could allow further investigations of how different, even in historical samples unmeasurable, cellular plant phenotypes may have already responded to climate change through adaptive evolution.
Collapse
Affiliation(s)
- Patricia L M Lang
- Department of Biology, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA.
| | - Joel M Erberich
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Lua Lopez
- Department of Biological Sciences, California State University San Bernardino, San Bernardino, CA, USA
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Clemens L Weiß
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Gabriel Amador
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hannah F Fung
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Sergio M Latorre
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA, USA
| | - Hernán A Burbano
- Centre for Life's Origins and Evolution, Department of Genetics, Evolution and Environment, University College London, London, UK
- Research Group for Ancient Genomics and Evolution, Department of Molecular Biology, Max Planck Institute for Biology, Tübingen, Germany
| | - Moisés Expósito-Alonso
- Department of Biology, Stanford University, Stanford, CA, USA
- Department of Plant Biology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
- Department of Integrative Biology, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Dominique C Bergmann
- Department of Biology, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
17
|
Tulva I, Koolmeister K, Hõrak H. Low relative air humidity and increased stomatal density independently hamper growth in young Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2718-2736. [PMID: 39072887 DOI: 10.1111/tpj.16944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/26/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Stomatal pores in plant leaves mediate CO2 uptake for photosynthesis and water loss via transpiration. Altered stomatal density can affect plant photosynthetic capacity, water use efficiency, and growth, potentially providing either benefits or drawbacks depending on the environment. Here we explore, at different air humidity regimes, gas exchange, stomatal anatomy, and growth of Arabidopsis lines designed to combine increased stomatal density (epf1, epf2) with high stomatal sensitivity (ht1-2, cyp707a1/a3). We show that the stomatal density and sensitivity traits combine as expected: higher stomatal density increases stomatal conductance, whereas the effect is smaller in the high stomatal sensitivity mutant backgrounds than in the epf1epf2 double mutant. Growth under low air humidity increases plant stomatal ratio with relatively more stomata allocated to the adaxial epidermis. Low relative air humidity and high stomatal density both independently impair plant growth. Higher evaporative demand did not punish increased stomatal density, nor did inherently low stomatal conductance provide any protection against low relative humidity. We propose that the detrimental effects of high stomatal density on plant growth at a young age are related to the cost of producing stomata; future experiments need to test if high stomatal densities might pay off in later life stages.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Kaspar Koolmeister
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
- Institute of Bioengineering, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Hanna Hõrak
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
18
|
Jiao Y, Lv W, Teng W, Li L, Lan H, Bai L, Li Z, Lian Y, Wang Z, Xin Z, Ren Y, Lin T. Peroxidase gene TaPrx109-B1 enhances wheat tolerance to water deficit via modulating stomatal density. PLANT, CELL & ENVIRONMENT 2024; 47:2954-2970. [PMID: 38629794 DOI: 10.1111/pce.14918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 03/23/2024] [Accepted: 04/07/2024] [Indexed: 07/12/2024]
Abstract
Increasing the tolerance of crops to water deficit is crucial for the improvement of crop production in water-restricted regions. Here, a wheat peroxidase gene (TaPrx109-B1) belonging to the class III peroxidase gene family was identified and its function in water deficit tolerance was revealed. We demonstrated that overexpression of TaPrx109-B1 reduced leaf H2O2 level and stomatal density, increased leaf relative water content, water use efficiency, and tolerance to water deficit. The expression of TaEPF1 and TaEPF2, two key negative regulators of stomatal development, were significantly upregulated in TaPrx109-B1 overexpression lines. Furthermore, exogenous H2O2 downregulated the expression of TaEPF1 and TaEPF2 and increased stomatal density, while exogenous application of diphenyleneiodonium chloride, a potent NADPH oxidase inhibitor that repressed the synthesis of H2O2, upregulated the expression of TaEPF1 and TaEPF2, decreased stomatal density, and enhanced wheat tolerance to water deficit. These findings suggest that TaPrx109-B1 influences leaf stomatal density by modulation of H2O2 level and the expression of TaEPF1 and TaEPF2. The results of the field trial showed that overexpressing TaPrx109-B1 increased grain number per spike, which reduced the yield loss caused by water deficiency. Therefore, TaPrx109-B1 has great potential in breeding wheat varieties with improved water deficit tolerance.
Collapse
Affiliation(s)
- Yanqing Jiao
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Weizeng Lv
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
- Department of Modern Agriculture, Lankao Vocational College of San Nong, Kaifeng, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Le Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Haibin Lan
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Lu Bai
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zongzhen Li
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Yanhao Lian
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Zhiqiang Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Zeyu Xin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Yongzhe Ren
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
- State Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou, China
- Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, China
| | - Tongbao Lin
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|
19
|
Rosa-Diaz I, Rowe J, Cayuela-Lopez A, Arbona V, Díaz I, Jones AM. Spider mite herbivory induces an ABA-driven stomatal defense. PLANT PHYSIOLOGY 2024; 195:2970-2984. [PMID: 38669227 PMCID: PMC11288753 DOI: 10.1093/plphys/kiae215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/26/2024] [Accepted: 03/14/2024] [Indexed: 04/28/2024]
Abstract
Arthropod herbivory poses a serious threat to crop yield, prompting plants to employ intricate defense mechanisms against pest feeding. The generalist pest 2-spotted spider mite (Tetranychus urticae) inflicts rapid damage and remains challenging due to its broad target range. In this study, we explored the Arabidopsis (Arabidopsis thaliana) response to T. urticae infestation, revealing the induction of abscisic acid (ABA), a hormone typically associated with abiotic stress adaptation, and stomatal closure during water stress. Leveraging a Forster resonance energy transfer (FRET)-based ABA biosensor (nlsABACUS2-400n), we observed elevated ABA levels in various leaf cell types postmite feeding. While ABA's role in pest resistance or susceptibility has been debated, an ABA-deficient mutant exhibited increased mite infestation alongside intact canonical biotic stress signaling, indicating an independent function of ABA in mite defense. We established that ABA-triggered stomatal closure effectively hinders mite feeding and minimizes leaf cell damage through genetic and pharmacological interventions targeting ABA levels, ABA signaling, stomatal aperture, and density. This study underscores the critical interplay between biotic and abiotic stresses in plants, highlighting how the vulnerability to mite infestation arising from open stomata, crucial for transpiration and photosynthesis, reinforces the intricate relationship between these stress types.
Collapse
Affiliation(s)
- Irene Rosa-Diaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
| | - James Rowe
- Sainsbury Laboratory, Cambridge University, Cambridge CB2 1LR, UK
| | - Ana Cayuela-Lopez
- Confocal Microscopy Unit, Spanish National Cancer Research Center (CNIO), 28029 Madrid, Spain
| | - Vicent Arbona
- Departament de Biologia, Bioquímica i Ciències Naturals, Universitat Jaume I, 12071 Castelló de la Plana, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid (UPM)-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo, 20223 Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, UPM, 28040 Madrid, Spain
| | | |
Collapse
|
20
|
Earley AM, Nolting KM, Donovan LA, Burke JM. Trait variation and performance across varying levels of drought stress in cultivated sunflower ( Helianthus annuus L.). AOB PLANTS 2024; 16:plae031. [PMID: 39011498 PMCID: PMC11247526 DOI: 10.1093/aobpla/plae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/24/2024] [Indexed: 07/17/2024]
Abstract
Drought is a major agricultural challenge that is expected to worsen with climate change. A better understanding of drought responses has the potential to inform efforts to breed more tolerant plants. We assessed leaf trait variation and covariation in cultivated sunflower (Helianthus annuus L.) in response to water limitation. Plants were grown under four levels of water availability and assessed for environmentally induced plasticity in leaf stomatal and vein traits as well as biomass (performance indicator), mass fractions, leaf area, leaf mass per area, and chlorophyll content. Overall, biomass declined in response to stress; these changes were accompanied by responses in leaf-level traits including decreased leaf area and stomatal size, and increased stomatal and vein density. The magnitude of trait responses increased with stress severity and relative plasticity of smaller-scale leaf anatomical traits was less than that of larger-scale traits related to construction and growth. Across treatments, where phenotypic plasticity was observed, stomatal density was negatively correlated with stomatal size and positively correlated with minor vein density, but the correlations did not hold up within treatments. Four leaf traits previously shown to reflect major axes of variation in a large sunflower diversity panel under well-watered conditions (i.e. stomatal density, stomatal pore length, vein density, and leaf mass per area) predicted a surprisingly large amount of the variation in biomass across treatments, but trait associations with biomass differed within treatments. Additionally, the importance of these traits in predicting variation in biomass is mediated, at least in part, through leaf size. Our results demonstrate the importance of leaf anatomical traits in mediating drought responses in sunflower, and highlight the role that phenotypic plasticity and multi-trait phenotypes can play in predicting productivity under complex abiotic stresses like drought.
Collapse
Affiliation(s)
- Ashley M Earley
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Kristen M Nolting
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - Lisa A Donovan
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
| | - John M Burke
- Department of Plant Biology, University of Georgia, Athens, GA 30602, USA
- The Plant Center, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Chao YS, Yang YW, Sheue CR, Lai IL. Niche and phenotypic differentiation in fern hybrid speciation, a case study of Pteris fauriei (Pteridaceae). ANNALS OF BOTANY 2024; 134:71-84. [PMID: 38470192 PMCID: PMC11756704 DOI: 10.1093/aob/mcae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
BACKGROUND AND AIMS Niche differentiation is a crucial issue in speciation. Although it has a well-known role in adaptive processes of hybrid angiosperms, it is less understood in hybrid ferns. Here, we investigate whether an intermediate ecological niche of a fern hybrid is a novel adaptation that provides insights into fern hybrid speciation. METHODS Pteris fauriei (Pteridaceae) is a natural hybrid fern, occurring in environments between its parent species. The maternal Pteris minor is found in sunny areas, but the habitat of the paternal Pteris latipinna is shady. We combined data from morphology, leaf anatomy and photosynthetic traits to explore adaptation and differentiation, along with measuring the environmental features of their niches. We also performed experiments in a common garden to understand ecological plasticity. KEY RESULTS The hybrid P. fauriei was intermediate between the parent species in stomatal density, leaf anatomical features and photosynthetic characteristics in both natural habitats and a common garden. Interestingly, the maternal P. minor showed significant environmental plasticity and was more similar to the hybrid P. fauriei in the common garden, suggesting that the maternal species experiences stress in its natural habitats but thrives in environments similar to those of the hybrid. CONCLUSIONS Based on the similar niche preferences of the hybrid and parents, we propose hybrid superiority. Our results indicate that the hybrid P. fauriei exhibits greater fitness and can compete with and occupy the initial niches of the maternal P. minor. Consequently, we suggest that the maternal P. minor has experienced a niche shift, elucidating the pattern of niche differentiation in this hybrid group. These findings offer a potential explanation for the frequent occurrence of hybridization in ferns and provide new insights into fern hybrid speciation, enhancing our understanding of fern diversity.
Collapse
Affiliation(s)
- Yi-Shan Chao
- Department of Life Science, National Taiwan Normal
University, Taipei, Taiwan
| | - Yao-Wei Yang
- Department of Life Sciences, National Chung Hsing University,
Taichung, Taiwan
| | - Chiou-Rong Sheue
- Department of Life Sciences, National Chung Hsing University,
Taichung, Taiwan
- Global Change Biology Research Center, National Chung Hsing
University, Taichung, Taiwan
| | - I-Ling Lai
- Graduate Institute of Bioresources, National Pingtung University of Science
and Technology, Pingtung, Taiwan
| |
Collapse
|
22
|
Gray J, Dunn J. Optimizing Crop Plant Stomatal Density to Mitigate and Adapt to Climate Change. Cold Spring Harb Perspect Biol 2024; 16:a041672. [PMID: 37923396 PMCID: PMC11146307 DOI: 10.1101/cshperspect.a041672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
Plants take up carbon dioxide, and lose water, through pores on their leaf surfaces called stomata. We have a good understanding of the biochemical signals that control the production of stomata, and over the past decade, these have been manipulated to produce crops with fewer stomata. Crops with abnormally low stomatal densities require less water to produce the same yield and have enhanced drought tolerance. These "water-saver" crops also have improved salinity tolerance and are expected to have increased resistance to some diseases. We calculate that the widespread adoption of water-saver crops could lead to reductions in greenhouse gas emissions equivalent to a maximum of 0.5 GtCO2/yr and thus could help to mitigate the impacts of climate change on agriculture and food security through protecting yields in stressful environments and requiring fewer inputs.
Collapse
Affiliation(s)
- Julie Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Jessica Dunn
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Institute for Sustainable Food, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
23
|
Srivastava A, Srinivasan V, Long SP. Stomatal conductance reduction tradeoffs in maize leaves: A theoretical study. PLANT, CELL & ENVIRONMENT 2024; 47:1716-1731. [PMID: 38305579 DOI: 10.1111/pce.14821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/07/2023] [Accepted: 01/07/2024] [Indexed: 02/03/2024]
Abstract
As the leading global grain crop, maize significantly impacts agricultural water usage. Presently, photosynthesis (A net ${A}_{\text{net}}$ ) in leaves of modern maize crops is saturated withCO 2 ${\text{CO}}_{2}$ , implying that reducing stomatal conductance (g s ${g}_{{\rm{s}}}$ ) would not affectA net ${A}_{\text{net}}$ but reduce transpiration (τ $\tau $ ), thereby increasing water use efficiency (WUE). Whileg s ${g}_{{\rm{s}}}$ reduction benefits upper canopy leaves under optimal conditions, the tradeoffs in low light and nitrogen-deficient leaves under nonoptimal microenvironments remain unexplored. Moreover,g s ${g}_{{\rm{s}}}$ reduction increases leaf temperature (T leaf ${T}_{\text{leaf}}$ ) and water vapor pressure deficit, partially counteracting transpiratory water savings. Therefore, the overall impact ofg s ${g}_{{\rm{s}}}$ reduction on water savings remains unclear. Here, we use a process-based leaf model to investigate the benefits of reducedg s ${g}_{{\rm{s}}}$ in maize leaves under different microenvironments. Our findings show that increases inT leaf ${T}_{\text{leaf}}$ due tog s ${g}_{{\rm{s}}}$ reduction can diminish WUE gains by up to 20%. However,g s ${g}_{{\rm{s}}}$ reduction still results in beneficial WUE tradeoffs, where a 29% decrease ing s ${g}_{{\rm{s}}}$ in upper canopy leaves results in a 28% WUE gain without loss inA net ${A}_{\text{net}}$ . Lower canopy leaves exhibit superior tradeoffs ing s ${g}_{{\rm{s}}}$ reduction with 178% gains in WUE without loss inA net ${A}_{\text{net}}$ . Our simulations show that these WUE benefits are resilient to climate change.
Collapse
Affiliation(s)
- Antriksh Srivastava
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
| | - Venkatraman Srinivasan
- Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, India
- School of Sustainability, Indian Institute of Technology Madras, Chennai, India
| | - Stephen P Long
- The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana Champaign, Champaign, Illinois, USA
- Department of Crop Sciences, University of Illinois Urbana Champaign, Champaign, Illinois, USA
- Department of Plant Biology, University of Illinois Urbana Champaign, Champaign, Illinois, USA
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| |
Collapse
|
24
|
Ač A, Jansen MAK, Grace J, Urban O. Unravelling the neglected role of ultraviolet radiation on stomata: A meta-analysis with implications for modelling ecosystem-climate interactions. PLANT, CELL & ENVIRONMENT 2024; 47:1769-1781. [PMID: 38314642 DOI: 10.1111/pce.14841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/23/2024] [Indexed: 02/06/2024]
Abstract
Stomata play a pivotal role in regulating gas exchange between plants and the atmosphere controlling water and carbon cycles. Accordingly, we investigated the impact of ultraviolet-B radiation, a neglected environmental factor varying with ongoing global change, on stomatal morphology and function by a Comprehensive Meta-Analysis. The overall UV effect at the leaf level is to decrease stomatal conductance, stomatal aperture and stomatal size, although stomatal density was increased. The significant decline in stomatal conductance is marked (6% in trees and >10% in grasses and herbs) in short-term experiments, with more modest decreases noted in long-term UV studies. Short-term experiments in growth chambers are not representative of long-term field UV effects on stomatal conductance. Important consequences of altered stomatal function are hypothesized. In the short term, UV-mediated stomatal closure may reduce carbon uptake but also water loss through transpiration, thereby alleviating deleterious effects of drought. However, in the long term, complex changes in stomatal aperture, size, and density may reduce the carbon sequestration capacity of plants and increase vegetation and land surface temperatures, potentially exacerbating negative effects of drought and/or heatwaves. Therefore, the expected future strength of carbon sink capacity in high-UV regions is likely overestimated.
Collapse
Affiliation(s)
- Alexander Ač
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| | - Marcel A K Jansen
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of Biological, Earth and Environmental Sciences, Environmental Research Institute, UCC, Cork, Ireland
| | - John Grace
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Edinburgh, UK
| | - Otmar Urban
- Global Change Research of the Czech Academy of Sciences, Brno, Czech Republic
| |
Collapse
|
25
|
Tran VH, Nolting KM, Donovan LA, Temme AA. Cultivated sunflower ( Helianthus annuus L.) has lower tolerance of moderate drought stress than its con-specific wild relative, but the underlying traits remain elusive. PLANT DIRECT 2024; 8:e581. [PMID: 38585190 PMCID: PMC10995449 DOI: 10.1002/pld3.581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 04/09/2024]
Abstract
Cultivated crops are generally expected to have less abiotic stress tolerance than their wild relatives. However, this assumption is not well supported by empirical literature and may depend on the type of stress and how it is imposed, as well as the measure of tolerance being used. Here, we investigated whether wild and cultivated accessions of Helianthus annuus differed in stress tolerance assessed as proportional decline in biomass due to drought and whether wild and cultivated accessions differed in trait responses to drought and trait associations with tolerance. In a greenhouse study, H. annuus accessions in the two domestication classes (eight cultivated and eight wild accessions) received two treatments: a well-watered control and a moderate drought implemented as a dry down followed by maintenance at a predetermined soil moisture level with automated irrigation. Treatments were imposed at the seedling stage, and plants were harvested after 2 weeks of treatment. The proportional biomass decline in response to drought was 24% for cultivated H. annuus accessions but was not significant for the wild accessions. Thus, using the metric of proportional biomass decline, the cultivated accessions had less drought tolerance. Among accessions, there was no tradeoff between drought tolerance and vigor assessed as biomass in the control treatment. In a multivariate analysis, wild and cultivated accessions did not differ from each other or in response to drought for a subset of morphological, physiological, and allocational traits. Analyzed individually, traits varied in response to drought in wild and/or cultivated accessions, including declines in specific leaf area, leaf theoretical maximum stomatal conductance (gsmax), and stomatal pore length, but there was no treatment response for stomatal density, succulence, or the ability to osmotically adjust. Focusing on traits associations with tolerance, plasticity in gsmax was the most interesting because its association with tolerance differed by domestication class (although the effects were relatively weak) and thus might contribute to lower tolerance of cultivated sunflower. Our H. annuus results support the expectation that stress tolerance is lower in crops than wild relatives under some conditions. However, determining the key traits that underpin differences in moderate drought tolerance between wild and cultivated H. annuus remains elusive.
Collapse
Affiliation(s)
- Vivian H. Tran
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | | | - Lisa A. Donovan
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
| | - Andries A. Temme
- Department of Plant BiologyUniversity of GeorgiaAthensGeorgiaUSA
- Department of Plant BreedingWageningen University & ResearchWageningenNetherlands
| |
Collapse
|
26
|
Herrera JC, Savoi S, Dostal J, Elezovic K, Chatzisavva M, Forneck A, Savi T. The legacy of past droughts induces water-sparingly behaviour in Grüner Veltliner grapevines. PLANT BIOLOGY (STUTTGART, GERMANY) 2024. [PMID: 38315499 DOI: 10.1111/plb.13620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 02/07/2024]
Abstract
Drought is becoming more frequent and severe in numerous wine-growing regions. Nevertheless, limited research has examined the legacy of recurrent droughts, focusing on leaf physiology and anatomy over consecutive seasons. We investigated drought legacies (after 2 years of drought exposure) in potted grapevines, focusing on stomatal behaviour under well-watered conditions during the third year. Vines were subjected for two consecutive years to short- (SD) or long-term (LD) seasonal droughts, or well-watered conditions (WW). In the third year, all plants were grown without water limitation. Water potential and gas exchange were monitored throughout the three seasons, while leaf morpho-anatomical traits were measured at the end of the third year. During droughts (1st and 2nd year), stem water potential of SD and LD plants fell below -1.1 MPa, with a consequent 75% reduction in stomatal conductance (gs ) compared to WW. In the 3rd year, when all vines were daily irrigated to soil capacity (midday stem water potential ~ -0.3 MPa), 45% lower values of gs were observed in the ex-LD group compared to both ex-SD and ex-WW. Reduced midrib vessel diameter, lower leaf theoretical hydraulic conductivity, and smaller stomata were measured in ex-LD leaves compared to ex-SD and ex-WW, likely contributing to the reduced gas exchange. Our findings suggest that grapevines exposed to drought may adopt a more water-conserving strategy in subsequent seasons, irrespective of current soil water availability, with the degree of change influenced by the intensity and duration of past drought events.
Collapse
Affiliation(s)
- J C Herrera
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - S Savoi
- Department of Agricultural, Forest and Food Sciences, University of Turin, Grugliasco, Italy
| | - J Dostal
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - K Elezovic
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - M Chatzisavva
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - A Forneck
- Department of Crop Sciences, Institute of Viticulture and Pomology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - T Savi
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| |
Collapse
|
27
|
Wu Y, Guo Q, Long C, El-Kassaby YA, Sun Y, Li Y. Transcriptomic and Phenotypic Analyses Reveal the Molecular Mechanism of Dwarfing in Tetraploid Robinia pseudoacacia L. Int J Mol Sci 2024; 25:1312. [PMID: 38279314 PMCID: PMC10816058 DOI: 10.3390/ijms25021312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/12/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024] Open
Abstract
Polyploid breeding techniques aid in the cultivation of new forestry cultivars, thus expanding the suite of strategies for the improvement of arboreal traits and innovation within the field of forestry. Compared to diploid Robinia pseudoacacia L. (black locust) 'D26-5①' (2×), its dwarfed homologous tetraploid 'D26-5②' (4×) variety has better application prospects in garden vegetation guardrails and urban landscape. However, the molecular mechanism of the generation and growth of this dwarf variety is still unclear. Here, plant growth and development as well as histological differences between the diploid and its autotetraploid were investigated. Levels of endogenous hormones at three different developmental stages (20, 40, and 70 days) of 2× and homologous 4× tissue culture plantlets were assessed, and it was found that the brassinosteroid (BR) contents of the former were significantly higher than the latter. Transcriptome sequencing data analysis of 2× and homologous 4× showed that differentially expressed genes (DEGs) were significantly enriched in plant hormone synthesis and signal transduction, sugar and starch metabolism, and the plant circadian rhythm pathway, which are closely related to plant growth and development. Therefore, these biological pathways may be important regulatory pathways leading to dwarfism and slow growth in tetraploids. Additionally, utilizing weighted gene coexpression network analysis (WGCNA), we identified three crucial differentially expressed genes (DEGs)-PRR5, CYP450, and SPA1-that potentially underlie the observed ploidy variation. This study provides a new reference for the molecular mechanism of dwarfism in dwarfed autotetraploid black locusts. Collectively, our results of metabolite analysis and comparative transcriptomics confirm that plant hormone signaling and the circadian rhythm pathway result in dwarfism in black locusts.
Collapse
Affiliation(s)
- Yue Wu
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.W.)
| | - Qi Guo
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.W.)
| | - Cui Long
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.W.)
| | - Yousry A. El-Kassaby
- Department of Forest and Conservation Sciences Faculty of Forestry, The University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada;
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.W.)
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China; (Y.W.)
| |
Collapse
|
28
|
Mamine N, Grara N, Khaldi F, Maresca V, Aouaichia K, Basile A. Determination of the Toxic Effects of Heavy Metals on the Morpho-Anatomical Responses of the Leaf of Typha latifolia as a Biomonitoring Tool. PLANTS (BASEL, SWITZERLAND) 2024; 13:176. [PMID: 38256730 PMCID: PMC10820412 DOI: 10.3390/plants13020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/24/2024]
Abstract
Typha latifolia leaves act as sensitive barometers for trace heavy metal pollution, as revealed by their pronounced anatomical responses in a constructed wetland. Monthly water samples and Typha latifolia leaf tissue were collected over three consecutive months in 2018 from the Burgas Lake wetlands (Taoura), northeast Algeria. While physical and chemical parameters improved after treatment, atomic absorption spectrometry (Perkin Elmer A Analyst 800 AAS) detected persistent trace levels of cadmium, chromium, and lead in both the treated water and leaf tissue, highlighting the need for continued phytoremediation efforts. Microscopic examination of leaf tissue exposed to these metals revealed distinct anatomical adaptations, including shrunken vascular bundles, altered cell shapes, and stomatal closure. These findings underscore Typha latifolia's effectiveness in accumulating heavy metals and its potential as a highly sensitive biomonitor for persistent pollution in lake ecosystems.
Collapse
Affiliation(s)
- Nedjma Mamine
- Department of Biology, Faculty of Life and Natural Science, University of Mohamed Cherif Messaadia, Souk Ahras 41000, Algeria;
| | - Nedjoud Grara
- Department of Biology, Faculty of Nature, Life Sciences, Earth and Universe Sciences, University 8 May 1945, P.O. Box 401, Guelma 24000, Algeria
| | - Fadila Khaldi
- Laboratory of Science and Technology of Water and Environment, University of Mohamed Cherif Messaadia, Souk Ahras 41000, Algeria; (F.K.); (K.A.)
| | - Viviana Maresca
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| | - Khaoula Aouaichia
- Laboratory of Science and Technology of Water and Environment, University of Mohamed Cherif Messaadia, Souk Ahras 41000, Algeria; (F.K.); (K.A.)
| | - Adriana Basile
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy;
| |
Collapse
|
29
|
Falquetto-Gomes P, Silva WJ, Siqueira JA, Araújo WL, Nunes-Nesi A. From epidermal cells to functional pores: Understanding stomatal development. JOURNAL OF PLANT PHYSIOLOGY 2024; 292:154163. [PMID: 38118303 DOI: 10.1016/j.jplph.2023.154163] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/06/2023] [Accepted: 12/08/2023] [Indexed: 12/22/2023]
Abstract
Stomata, small hydromechanical valves in the leaf epidermis, are fundamental in regulating gas exchange and water loss between plants and the environment. Stomatal development involves a series of coordinated events ranging from the initial cell division that determines the meristemoid mother cells to forming specialized structures such as guard cells. These events are orchestrated by the transcription factors SPEECHLESS, FAMA, and MUTE through signaling networks. The role of plant hormones (e.g., abscisic acid, jasmonic acid, and brassinosteroids) in regulating stomatal development has been elucidated through these signaling cascades. In addition, environmental factors, such as light availability and CO2 concentration, also regulate the density and distribution of stomata in leaves, ultimately affecting overall water use efficiency. In this review, we highlight the mechanisms underlying stomatal development, connecting key signaling processes that activate or inhibit cell differentiation responsible for forming guard cells in the leaf epidermis. The factors responsible for integrating transcription factors, hormonal responses, and the influence of climatic factors on the signaling network that leads to stomatal development in plants are further discussed. Understanding the intricate connections between these factors, including the metabolic regulation of plant development, may enable us to maximize plant productivity under specific environmental conditions in changing climate scenarios.
Collapse
Affiliation(s)
- Priscilla Falquetto-Gomes
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Welson Júnior Silva
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - João Antonio Siqueira
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil
| | - Adriano Nunes-Nesi
- National Institute of Science and Technology on Plant Physiology Under Stress Conditions, Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil.
| |
Collapse
|
30
|
Soufi HR, Roosta HR, Fatehi F, Ghorbanpour M. Spectral composition of LED light differentially affects biomass, photosynthesis, nutrient profile, and foliar nitrate accumulation of lettuce grown under various replacement methods of nutrient solution. Food Sci Nutr 2023; 11:8143-8162. [PMID: 38107131 PMCID: PMC10724622 DOI: 10.1002/fsn3.3735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/15/2023] [Accepted: 09/20/2023] [Indexed: 12/19/2023] Open
Abstract
To enhance crop yield and quality, plant cultivation in controlled-growing systems is an alternative to traditional open-field farming. The use of light-emitting diode (LED) as an adjustable light source represents a promising approach to improve plant growth, metabolism, and function. The objective of this study was to assess the impact of different light spectra (red, red/blue (3:1), blue, and white) with an emission peak of around 656, 656, 450, and 449 nm, respectively, under various replacement methods of nutrient solution (complete replacement (CR), EC-based replacement (ECBR), and replacing based on plant needs (RBPN)), on biomass, physiological traits, and macro- and micronutrient contents of two best-known lettuce varieties, Lollo Rossa (LR) and Lollo Bionda (LB), in the nutrient film technique (NFT) hydroponic system. The results indicated that mix of red and blue LED spectra under RBPN method is the most effective treatment to enhance fresh and dry weights of lettuce plants. In addition, red LED spectrum under RBPN, and red and blue light under ECBR nutrient solution significantly increased leaf stomatal conductance, net photosynthesis and transpiration rate, and intercellular CO2 concentration of LR variety. Phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mn) content in LR variety, and iron (Fe), zinc (Zn), copper (Cu), and manganese (Mn) content in both varieties increased upon exposure to blue and red LED light spectrum with RBPN method. Our results suggest that exposure to combination of red and blue light along with feeding plants using RBPN and ECBR methods can increase absorption of macro- and micronutrient elements and improve photosynthetic properties, and eventually increase lettuce yield with lower nitrate accumulation.
Collapse
Affiliation(s)
- Hamid Reza Soufi
- Department of Horticultural Sciences, Faculty of AgricultureVali‐e‐Asr University of RafsanjanRafsanjanIran
| | - Hamid Reza Roosta
- Department of Horticultural Sciences, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| | - Foad Fatehi
- Department of AgriculturePayame Noor University (PNU)TehranIran
| | - Mansour Ghorbanpour
- Department of Medicinal Plants, Faculty of Agriculture and Natural ResourcesArak UniversityArakIran
| |
Collapse
|
31
|
Nir I, Budrys A, Smoot NK, Erberich J, Bergmann DC. Targeting editing of tomato SPEECHLESS cis-regulatory regions generates plants with altered stomatal density in response to changing climate conditions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.02.564550. [PMID: 37961313 PMCID: PMC10635072 DOI: 10.1101/2023.11.02.564550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Flexible developmental programs enable plants to customize their organ size and cellular composition. In leaves of eudicots, the stomatal lineage produces two essential cell types, stomata and pavement cells, but the total numbers and ratio of these cell types can vary. Central to this flexibility is the stomatal lineage initiating transcription factor, SPEECHLESS (SPCH). Here we show, by multiplex CRISPR/Cas9 editing of SlSPCH cis-regulatory sequences in tomato, that we can identify variants with altered stomatal development responses to light and temperature cues. Analysis of tomato leaf development across different conditions, aided by newly-created tools for live-cell imaging and translational reporters of SlSPCH and its paralogues SlMUTE and SlFAMA, revealed the series of cellular events that lead to the environmental change-driven responses in leaf form. Plants bearing the novel SlSPCH variants generated in this study are powerful resources for fundamental and applied studies of tomato resilience in response to climate change.
Collapse
Affiliation(s)
- Ido Nir
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Current Address, Institute of Plant Sciences, ARO, Volcani Center, HaMaccabbim Road 68, POB 15159, Rishon LeZion 7505101, Israel
| | - Alanta Budrys
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Current Address, Department of Biology, New York University, 24 Waverly Pl, New York, NY, 10003, USA
| | - N. Katherine Smoot
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
- Current Address, Plant and Microbial Biology, UC Berkeley, Berkeley, CA 94720, USA
| | - Joel Erberich
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Dominique C. Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
32
|
Kim H, Choi B, Lee C, Paik JH, Jang CG, Weiss-Schneeweiss H, Jang TS. Does the evolution of micromorphology accompany chromosomal changes on dysploid and polyploid levels in the Barnardia japonica complex (Hyacinthaceae)? BMC PLANT BIOLOGY 2023; 23:485. [PMID: 37817118 PMCID: PMC10565974 DOI: 10.1186/s12870-023-04456-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/12/2023] [Indexed: 10/12/2023]
Abstract
BACKGROUND Chromosome number and genome size changes via dysploidy and polyploidy accompany plant diversification and speciation. Such changes often impact also morphological characters. An excellent system to address the questions of how extensive and structured chromosomal changes within one species complex affect the phenotype is the monocot species complex of Barnardia japonica. This taxon contains two well established and distinct diploid cytotypes differing in base chromosome numbers (AA: x = 8, BB: x = 9) and their allopolyploid derivatives on several ploidy levels (from 3x to 6x). This extensive and structured genomic variation, however, is not mirrored by gross morphological differentiation. RESULTS The current study aims to analyze the correlations between the changes of chromosome numbers and genome sizes with palynological and leaf micromorphological characters in diploids and selected allopolyploids of the B. japonica complex. The chromosome numbers varied from 2n = 16 and 18 (2n = 25 with the presence of supernumerary B chromosomes), and from 2n = 26 to 51 in polyploids on four different ploidy levels (3x, 4x, 5x, and 6x). Despite additive chromosome numbers compared to diploid parental cytotypes, all polyploid cytotypes have experienced genome downsizing. Analyses of leaf micromorphological characters did not reveal any diagnostic traits that could be specifically assigned to individual cytotypes. The variation of pollen grain sizes correlated positively with ploidy levels. CONCLUSIONS This study clearly demonstrates that karyotype and genome size differentiation does not have to be correlated with morphological differentiation of cytotypes.
Collapse
Affiliation(s)
- Hyeonjin Kim
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Bokyung Choi
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Changyoung Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Jin-Hyub Paik
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Chang-Gee Jang
- Department of Biology Education, Kongju National University, Gongju, 32588, Republic of Korea
| | - Hanna Weiss-Schneeweiss
- Department of Botany and Biodiversity Research, University of Vienna, Vienna, A-1030, Austria.
| | - Tae-Soo Jang
- Department of Biological Science, College of Bioscience and Biotechnology, Chungnam National University, Daejeon, Republic of Korea.
| |
Collapse
|
33
|
Matkowski H, Daszkowska-Golec A. Update on stomata development and action under abiotic stress. FRONTIERS IN PLANT SCIENCE 2023; 14:1270180. [PMID: 37849845 PMCID: PMC10577295 DOI: 10.3389/fpls.2023.1270180] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 09/14/2023] [Indexed: 10/19/2023]
Abstract
Stomata, key gatekeepers of plant hydration, have long been known to play a pivotal role in mitigating the impacts of abiotic stressors. However, the complex molecular mechanisms underscoring this role remain unresolved fully and continue to be the subject of research. In the context of water-use efficiency (WUE), a key indicator of a plant's ability to conserve water, this aspect links intrinsically with stomatal behavior. Given the pivotal role of stomata in modulating water loss, it can be argued that the complex mechanisms governing stomatal development and function will significantly influence a plant's WUE under different abiotic stress conditions. Addressing these calls for a concerted effort to strengthen plant adaptability through advanced, targeted research. In this vein, recent studies have illuminated how specific stressors trigger alterations in gene expression, orchestrating changes in stomatal pattern, structure, and opening. This reveals a complex interplay between stress stimuli and regulatory sequences of essential genes implicated in stomatal development, such as MUTE, SPCH, and FAMA. This review synthesizes current discoveries on the molecular foundations of stomatal development and behavior in various stress conditions and their implications for WUE. It highlights the imperative for continued exploration, as understanding and leveraging these mechanisms guarantee enhanced plant resilience amid an ever-changing climatic landscape.
Collapse
Affiliation(s)
| | - Agata Daszkowska-Golec
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Katowice, Poland
| |
Collapse
|
34
|
Al-Salman Y, Ghannoum O, Cano FJ. Midday water use efficiency in sorghum is linked to faster stomatal closure rate, lower stomatal aperture and higher stomatal density. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1661-1676. [PMID: 37300871 DOI: 10.1111/tpj.16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Most studies assume midday gas exchange measurements capture the leaf's daytime performance. However, stomatal conductance (gs ) and photosynthesis (An ) fluctuate diurnally due to endogenous and environmental rhythms, which can affect intrinsic water use efficiency (iWUE). Six Sorghum lines with contrasting stomatal anatomical traits were grown in environmentally controlled conditions, and leaf gas exchange was measured three times a day. Stomatal anatomy and kinetic responses to light transients were also measured. The highest An and gs and the lowest iWUE were observed at midday for most lines. Diurnally averaged iWUE correlated positively with morning and midday iWUE and negatively with the time taken for stomata to close after transition to low light intensity (kclose ). There was significant variation among sorghum lines for kclose , and smaller kclose correlated with lower gs and higher stomatal density (SD) across the lines. In turn, gs was negatively correlated with SD and regulated by the operational stomatal aperture regardless of stomatal size. Altogether, our data suggest a common physiology to improve iWUE in sorghum related to the control of water loss without impacting photosynthesis relying on higher SD, lower stomatal aperture and faster stomatal closing in response to low light intensity.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
| | - Francisco Javier Cano
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, New South Wales, 2751, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Carretera de la Coruña km 7.5, 28040, Madrid, Spain
| |
Collapse
|
35
|
Al-Salman Y, Cano FJ, Pan L, Koller F, Piñeiro J, Jordan D, Ghannoum O. Anatomical drivers of stomatal conductance in sorghum lines with different leaf widths grown under different temperatures. PLANT, CELL & ENVIRONMENT 2023; 46:2142-2158. [PMID: 37066624 DOI: 10.1111/pce.14592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 06/08/2023]
Abstract
Sustaining crop productivity and resilience in water-limited environments and under rising temperatures are matters of concern worldwide. We investigated the leaf anatomical traits that underpin our recently identified link between leaf width (LW) and intrinsic water use efficiency (iWUE), as traits of interest in plant breeding. Ten sorghum lines with varying LW were grown under three temperatures to expand the range of variation of both LW and gas exchange rates. Leaf gas exchange, surface morphology and cross-sectional anatomy were measured and analysed using structural equations modelling. Narrower leaves had lower stomatal conductance (gs ) and higher iWUE across growth temperatures. They also had smaller intercellular airspaces, stomatal size, percentage of open stomatal aperture relative to maximum, hydraulic pathway, mesophyll thickness, and leaf mass per area. Structural modelling revealed a developmental association among leaf anatomical traits that underpinned gs variation in sorghum. Growing temperature and LW both impacted leaf gas exchange rates, but only LW directly impacted leaf anatomy. Wider leaves may be more productive under well-watered conditions, but consume more water for growth and development, which is detrimental under water stress.
Collapse
Affiliation(s)
- Yazen Al-Salman
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Francisco J Cano
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
- Instituto de Ciencias Forestales (ICIFOR-INIA), CSIC, Madrid, Spain
| | - Ling Pan
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Fiona Koller
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Juan Piñeiro
- Department of Biology, IVAGRO, Campus de Excelencia Internacional Agroalimentario, Capus del Rio San Pedro, University of Cádiz, Puerto Real, Spain
| | - David Jordan
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hermitage Research Facility, The University of Queensland, Warwick, Queensland, Australia
- Agri-Science Queensland, Department of Agriculture & Fisheries, Hermitage Research Facility, Warwick, Queensland, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, ACT, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
36
|
Dubois M, Achon I, Brench RA, Polyn S, Tenorio Berrío R, Vercauteren I, Gray JE, Inzé D, De Veylder L. SIAMESE-RELATED1 imposes differentiation of stomatal lineage ground cells into pavement cells. NATURE PLANTS 2023:10.1038/s41477-023-01452-7. [PMID: 37386150 DOI: 10.1038/s41477-023-01452-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 05/30/2023] [Indexed: 07/01/2023]
Abstract
The leaf epidermis represents a multifunctional tissue consisting of trichomes, pavement cells and stomata, the specialized cellular pores of the leaf. Pavement cells and stomata both originate from regulated divisions of stomatal lineage ground cells (SLGCs), but whereas the ontogeny of the stomata is well characterized, the genetic pathways activating pavement cell differentiation remain relatively unexplored. Here, we reveal that the cell cycle inhibitor SIAMESE-RELATED1 (SMR1) is essential for timely differentiation of SLGCs into pavement cells by terminating SLGC self-renewal potency, which depends on CYCLIN A proteins and CYCLIN-DEPENDENT KINASE B1. By controlling SLGC-to-pavement cell differentiation, SMR1 determines the ratio of pavement cells to stomata and adjusts epidermal development to suit environmental conditions. We therefore propose SMR1 as an attractive target for engineering climate-resilient plants.
Collapse
Affiliation(s)
- Marieke Dubois
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ignacio Achon
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Robert A Brench
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Stefanie Polyn
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Rubén Tenorio Berrío
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Ilse Vercauteren
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Julie E Gray
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium
- Center for Plant Systems Biology, VIB, Gent, Belgium
| | - Lieven De Veylder
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Gent, Belgium.
- Center for Plant Systems Biology, VIB, Gent, Belgium.
| |
Collapse
|
37
|
Liao Q, Ding R, Du T, Kang S, Tong L, Li S. Salinity-specific stomatal conductance model parameters are reduced by stomatal saturation conductance and area via leaf nitrogen. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162584. [PMID: 36889407 DOI: 10.1016/j.scitotenv.2023.162584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/08/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Modeling stomatal behavior is necessary for accurate stomatal simulation and predicting the terrestrial water‑carbon cycle. Although the Ball-Berry and Medlyn stomatal conductance (gs) models have been widely used, variations and the drivers of their key slope parameters (m and g1) remain poorly understood under salinity stress. We measured leaf gas exchange, physiological and biochemical traits, soil water content and electrical conductivity of saturation extract (ECe), and fitted slope parameters of two genotypes of maize growing in two water and two salinity levels. We found m was different between the genotypes, but no difference in g1. Salinity stress reduced m and g1, saturated stomatal conductance (gsat), the fraction of leaf epidermis area allocation to stomata (fs), and leaf nitrogen (N) content, and increased ECe, but no marked decrease in slope parameters under drought. Both m and g1 were positively correlated with gsat, fs, and leaf N content, and negatively correlated with ECe in the same fashion among the two genotypes. Salinity stress altered m and g1 by modulating gsat and fs via leaf N content. The prediction accuracy of gs was improved using salinity-specific slope parameters, with root mean square error (RMSE) being decreased from 0.056 to 0.046 and 0.066 to 0.025 mol m-2 s-1 for the Ball-Berry and Medlyn models, respectively. This study provides a modeling approach to improving the simulation of stomatal conductance under salinity.
Collapse
Affiliation(s)
- Qi Liao
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Risheng Ding
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China.
| | - Taisheng Du
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Shaozhong Kang
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Ling Tong
- Center for Agricultural Water Research in China, China Agricultural University, Beijing 100083, China; National Field Scientific Observation and Research Station on Efficient Water Use of Oasis Agriculture, Wuwei, Gansu Province 733009, China
| | - Shuai Li
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
38
|
Ofori-Amanfo KK, Klem K, Veselá B, Holub P, Agyei T, Juráň S, Grace J, Marek MV, Urban O. The effect of elevated CO2 on photosynthesis is modulated by nitrogen supply and reduced water availability in Picea abies. TREE PHYSIOLOGY 2023; 43:925-937. [PMID: 36864576 DOI: 10.1093/treephys/tpad024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 02/22/2023] [Indexed: 06/11/2023]
Abstract
It is assumed that the stimulatory effects of elevated CO2 concentration ([CO2]) on photosynthesis and growth may be substantially reduced by co-occurring environmental factors and the length of CO2 treatment. Here, we present the study exploring the interactive effects of three manipulated factors ([CO2], nitrogen supply and water availability) on physiological (gas-exchange and chlorophyll fluorescence), morphological and stoichiometric traits of Norway spruce (Picea abies) saplings after 2 and 3 years of the treatment under natural field conditions. Such multifactorial studies, going beyond two-way interactions, have received only limited attention until now. Our findings imply a significant reduction of [CO2]-enhanced rate of CO2 assimilation under reduced water availability which deepens with the severity of water depletion. Similarly, insufficient nitrogen availability leads to a down-regulation of photosynthesis under elevated [CO2] being particularly associated with reduced carboxylation efficiency of the Rubisco enzyme. Such adjustments in the photosynthesis machinery result in the stimulation of water-use efficiency under elevated [CO2] only when it is combined with a high nitrogen supply and reduced water availability. These findings indicate limited effects of elevated [CO2] on carbon uptake in temperate coniferous forests when combined with naturally low nitrogen availability and intensifying droughts during the summer periods. Such interactions have to be incorporated into the mechanistic models predicting changes in terrestrial carbon sequestration and forest growth in the future.
Collapse
Affiliation(s)
- Kojo Kwakye Ofori-Amanfo
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Karel Klem
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
| | - Barbora Veselá
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Petr Holub
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - Thomas Agyei
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Department of Agrosystems and Bioclimatology, Faculty of AgriSciences, Mendel University in Brno, Zemědělská 1665/1, 613 00 Brno, Czech Republic
- Department of Biological Science, School of Sciences, University of Energy and Natural Resources, Post Office Box 214, Sunyani, Ghana
| | - Stanislav Juráň
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| | - John Grace
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- School of GeoSciences, University of Edinburgh, Crew Bldg, Kings Bldgs, Alexander Crum Brown Rd, Edinburgh EH9 3FF, UK
| | - Michal V Marek
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
- Institute of Management, Slovak Technical University Bratislava, Vazovova 5, 812 43 Bratislava, Slovakia
| | - Otmar Urban
- Global Change Research Institute, Czech Academy of Sciences, Bělidla 986/4a, 603 00 Brno, Czech Republic
| |
Collapse
|
39
|
Phetluan W, Wanchana S, Aesomnuk W, Adams J, Pitaloka MK, Ruanjaichon V, Vanavichit A, Toojinda T, Gray JE, Arikit S. Candidate genes affecting stomatal density in rice (Oryza sativa L.) identified by genome-wide association. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111624. [PMID: 36737006 DOI: 10.1016/j.plantsci.2023.111624] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/18/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Stomata regulate photosynthesis and water loss. They have been an active subject of research for centuries, but our knowledge of the genetic components that regulate stomatal development in crops remains very limited in comparison to the model plant Arabidopsis thaliana. Leaf stomatal density was found to vary by over 2.5-fold across a panel of 235 rice accessions. Using GWAS, we successfully identified five different QTLs associated with stomatal density on chromosomes 2, 3, 9, and 12. Forty-two genes were identified within the haplotype blocks corresponding to these QTLs. Of these, nine genes contained haplotypes that were associated with different stomatal densities. These include a gene encoding a trehalose-6-phosphate synthase, an enzyme that has previously been associated with altered stomatal density in Arabidopsis, and genes encoding a B-BOX zinc finger family protein, a leucine-rich repeat family protein, and the 40 S ribosomal protein S3a, none of which have previously been linked to stomatal traits. We investigated further and show that a closely related B-BOX protein regulates stomatal development in Arabidopsis. The results of this study provide information on genetic associations with stomatal density in rice. The QTLs and candidate genes may be useful in future breeding programs for low or high stomatal density and, consequently, improved photosynthetic capacity, water use efficiency, or drought tolerance.
Collapse
Affiliation(s)
- Watchara Phetluan
- Center for Agricultural Biotechnology, Kasetsart University, Kamphaeng Saen Campus, Nakhon Pathom 73140, Thailand; Center of Excellence on Agricultural Biotechnology: (AG-BIO/MHESI), Bangkok 10900, Thailand.
| | - Samart Wanchana
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Wanchana Aesomnuk
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julian Adams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Mutiara K Pitaloka
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand.
| | - Vinitchan Ruanjaichon
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Apichart Vanavichit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| | - Theerayut Toojinda
- National Center for Genetic Engineering and Biotechnology (BIOTEC), 113 Thailand Science Park, Pahonyothin Road, Khlong Nueng, Khlong Luang, Pathum Thani 12120, Thailand.
| | - Julie E Gray
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield S102TN, United Kingdom.
| | - Siwaret Arikit
- Rice Science Center, Kasetsart University, Kamphaeng Saen, Nakhon Pathom 73140, Thailand; Department of Agronomy, Faculty of Agriculture at Kamphaeng Saen, Kasetsart University, Nakhon Pathom 73140, Thailand.
| |
Collapse
|
40
|
Rathnasamy SA, Kambale R, Elangovan A, Mohanavel W, Shanmugavel P, Ramasamy G, Alagarsamy S, Marimuthu R, Rajagopalan VR, Manickam S, Ramanathan V, Muthurajan R, Vellingiri G. Altering Stomatal Density for Manipulating Transpiration and Photosynthetic Traits in Rice through CRISPR/Cas9 Mutagenesis. Curr Issues Mol Biol 2023; 45:3801-3814. [PMID: 37232714 DOI: 10.3390/cimb45050245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/12/2023] [Accepted: 02/28/2023] [Indexed: 05/27/2023] Open
Abstract
Stomata regulates conductance, transpiration and photosynthetic traits in plants. Increased stomatal density may contribute to enhanced water loss and thereby help improve the transpirational cooling process and mitigate the high temperature-induced yield losses. However, genetic manipulation of stomatal traits through conventional breeding still remains a challenge due to problems involved in phenotyping and the lack of suitable genetic materials. Recent advances in functional genomics in rice identified major effect genes determining stomatal traits, including its number and size. Widespread applications of CRISPR/Cas9 in creating targeted mutations paved the way for fine tuning the stomatal traits for enhancing climate resilience in crops. In the current study, attempts were made to create novel alleles of OsEPF1 (Epidermal Patterning Factor), a negative regulator of stomatal frequency/density in a popular rice variety, ASD 16, using the CRISPR/Cas9 approach. Evaluation of 17 T0 progenies identified varying mutations (seven multiallelic, seven biallelic and three monoallelic mutations). T0 mutant lines showed a 3.7-44.3% increase in the stomatal density, and all the mutations were successfully inherited into the T1 generation. Evaluation of T1 progenies through sequencing identified three homozygous mutants for one bp insertion. Overall, T1 plants showed 54-95% increased stomatal density. The homozygous T1 lines (# E1-1-4, # E1-1-9 and # E1-1-11) showed significant increase in the stomatal conductance (60-65%), photosynthetic rate (14-31%) and the transpiration rate (58-62%) compared to the nontransgenic ASD 16. Results demonstrated that the genetic alterations in OsEPF1 altered the stomatal density, stomatal conductance and photosynthetic efficiency in rice. Further experiments are needed to associate this technology with canopy cooling and high temperature tolerance.
Collapse
Affiliation(s)
- Sakthi Ambothi Rathnasamy
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Rohit Kambale
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Allimuthu Elangovan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Williams Mohanavel
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Priyanka Shanmugavel
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Gowtham Ramasamy
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Senthil Alagarsamy
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Rajavel Marimuthu
- Department of Crop Physiology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Veera Ranjani Rajagopalan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Sudha Manickam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | | | - Raveendran Muthurajan
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| | - Geethalakshmi Vellingiri
- Agro-Climatology Research Centre, Tamil Nadu Agricultural University, Coimbatore 641 003, Tamil Nadu, India
| |
Collapse
|
41
|
Jiao P, Liang Y, Chen S, Yuan Y, Chen Y, Hu H. Bna.EPF2 Enhances Drought Tolerance by Regulating Stomatal Development and Stomatal Size in Brassica napus. Int J Mol Sci 2023; 24:ijms24098007. [PMID: 37175713 PMCID: PMC10179174 DOI: 10.3390/ijms24098007] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/15/2023] Open
Abstract
Drought stress severely affects global plant growth and production. The enhancement of plant water-use efficiency (WUE) and drought tolerance by the manipulation of the stomata is an effective strategy to deal with water shortage. However, increasing the WUE and drought tolerance by manipulation on the stomata has rarely been tested in Brassica napus. Here, we isolated Bna.EPF2, an epidermal patterning factor (EPF) in Brassica napus (ecotype Westar), and identified its role in drought performance. Bna.EPF2 overexpression lines had a reduction average of 19.02% in abaxial stomatal density and smaller stomatal pore size, leading to approximately 25% lower transpiration, which finally resulted in greater instantaneous WUE and enhanced drought tolerance. Interestingly, the reduction in stomatal density did not affect the CO2 assimilation or yield-related agronomic traits in Bna.EPF2 overexpression plants. Together with the complementation of Bna.EPF2 significantly decreasing the stomatal density of Arabidopsis epf2, and Bna.EPF2 being expressed in mature guard cells, these results suggest that Bna.EPF2 not only functions in stomatal density development, but also in stomatal dimension in Brassicas. Taken together, our results suggest that Bna.EPF2 improves WUE and drought tolerance by the regulation of stomatal density and stomatal size in Brassica without growth and yield penalty, and provide insight into the manipulation of this gene in the breeding of drought tolerant plants with increased production under water deficit conditions.
Collapse
Affiliation(s)
- Peipei Jiao
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, College of Life Science, Tarim University, Alar 843300, China
| | - Yuanlin Liang
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaoping Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yang Yuan
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqiang Chen
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Honghong Hu
- Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
42
|
Wall S, Cockram J, Vialet-Chabrand S, Van Rie J, Gallé A, Lawson T. The impact of growth at elevated [CO2] on stomatal anatomy and behavior differs between wheat species and cultivars. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2860-2874. [PMID: 36633860 PMCID: PMC10134898 DOI: 10.1093/jxb/erad011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 01/11/2023] [Indexed: 06/06/2023]
Abstract
The ability of plants to respond to changes in the environment is crucial to their survival and reproductive success. The impact of increasing the atmospheric CO2 concentration (a[CO2]), mediated by behavioral and developmental responses of stomata, on crop performance remains a concern under all climate change scenarios, with potential impacts on future food security. To identify possible beneficial traits that could be exploited for future breeding, phenotypic variation in morphological traits including stomatal size and density, as well as physiological responses and, critically, the effect of growth [CO2] on these traits, was assessed in six wheat relative accessions (including Aegilops tauschii, Triticum turgidum ssp. Dicoccoides, and T. turgidum ssp. dicoccon) and five elite bread wheat T. aestivum cultivars. Exploiting a range of different species and ploidy, we identified key differences in photosynthetic capacity between elite hexaploid wheat and wheat relatives. We also report differences in the speed of stomatal responses which were found to be faster in wheat relatives than in elite cultivars, a trait that could be useful for enhanced photosynthetic carbon gain and water use efficiency. Furthermore, these traits do not all appear to be influenced by elevated [CO2], and determining the underlying genetics will be critical for future breeding programmes.
Collapse
Affiliation(s)
- Shellie Wall
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - James Cockram
- NIAB, 93 Lawrence Weaver Road, Cambridge CB3 0LE, UK
| | | | - Jeroen Van Rie
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | - Alexander Gallé
- BASF Belgium Coordination Center CommV-Innovation Center Gent, Technologiepark-Zwijnaarde 101, 9052 Gent, Belgium
| | | |
Collapse
|
43
|
Nunes TDG, Berg LS, Slawinska MW, Zhang D, Redt L, Sibout R, Vogel JP, Laudencia-Chingcuanco D, Jesenofsky B, Lindner H, Raissig MT. Regulation of hair cell and stomatal size by a hair cell-specific peroxidase in the grass Brachypodium distachyon. Curr Biol 2023; 33:1844-1854.e6. [PMID: 37086717 DOI: 10.1016/j.cub.2023.03.089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/23/2023] [Accepted: 03/31/2023] [Indexed: 04/24/2023]
Abstract
The leaf epidermis is the outermost cell layer forming the interface between plants and the atmosphere that must both provide a robust barrier against (a)biotic stressors and facilitate carbon dioxide uptake and leaf transpiration.1 To achieve these opposing requirements, the plant epidermis developed a wide range of specialized cell types such as stomata and hair cells. Although factors forming these individual cell types are known,2,3,4,5 it is poorly understood how their number and size are coordinated. Here, we identified a role for BdPRX76/BdPOX, a class III peroxidase, in regulating hair cell and stomatal size in the model grass Brachypodium distachyon. In bdpox mutants, prickle hair cells were smaller and stomata were longer. Because stomatal density remained unchanged, the negative correlation between stomatal size and density was disrupted in bdpox and resulted in higher stomatal conductance and lower intrinsic water-use efficiency. BdPOX was exclusively expressed in hair cells, suggesting that BdPOX cell-autonomously promotes hair cell size and indirectly restricts stomatal length. Cell-wall autofluorescence and lignin stainings indicated a role for BdPOX in the lignification or crosslinking of related phenolic compounds at the hair cell base. Ectopic expression of BdPOX in the stomatal lineage increased phenolic autofluorescence in guard cell (GC) walls and restricted stomatal elongation in bdpox. Together, we highlight a developmental interplay between hair cells and stomata that optimizes epidermal functionality. We propose that cell-type-specific changes disrupt this interplay and lead to compensatory developmental defects in other epidermal cell types.
Collapse
Affiliation(s)
- Tiago D G Nunes
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Lea S Berg
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Magdalena W Slawinska
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Dan Zhang
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Leonie Redt
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Richard Sibout
- UR1268 BIA (Biopolymères Interactions Assemblages), INRAE, Nantes 44300, France
| | - John P Vogel
- DOE Joint Genome Institute, Berkeley, CA 94720, USA; University of California, Berkeley, Berkeley, CA 94720, USA
| | | | - Barbara Jesenofsky
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany
| | - Heike Lindner
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | - Michael T Raissig
- Centre for Organismal Studies Heidelberg, Heidelberg University, 69120 Heidelberg, Germany; Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland.
| |
Collapse
|
44
|
Barratt GE, Murchie EH, Sparkes DL. Water use efficiency responses to fluctuating soil water availability in contrasting commercial sugar beet varieties. FRONTIERS IN PLANT SCIENCE 2023; 14:1119321. [PMID: 36968376 PMCID: PMC10034331 DOI: 10.3389/fpls.2023.1119321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/22/2023] [Indexed: 06/18/2023]
Abstract
Many areas of sugar beet production will face hotter and drier summers as the climate changes. There has been much research on drought tolerance in sugar beet but water use efficiency (WUE) has been less of a focus. An experiment was undertaken to examine how fluctuating soil water deficits effect WUE from the leaf to the crop level and identify if sugar beet acclimates to water deficits to increase WUE in the longer term. Two commercial sugar beet varieties with contrasting upright and prostrate canopies were examined to identify if WUE differs due to contrasting canopy architecture. The sugar beet were grown under four different irrigation regimes (fully irrigated, single drought, double drought and continually water limited) in large 610 L soil boxes in an open ended polytunnel. Measurements of leaf gas exchange, chlorophyll fluorescence and relative water content (RWC) were regularly undertaken and stomatal density, sugar and biomass yields and the associated WUE, SLW and Δ13C were assessed. The results showed that water deficits generally increase intrinsic (WUEi) and dry matter (WUEDM) water use efficiency but reduce yield. Sugar beet recovered fully after severe water deficits, as assessed by leaf gas exchange and chlorophyll fluorescence parameters and, except for reducing canopy size, showed no other acclimation to drought, and therefore no changes in WUE or drought avoidance. Spot measurements of WUEi, showed no differences between the two varieties but the prostrate variety showed lower Δ13C values, and traits associated with more water conservative phenotypes of a lower stomatal density and greater leaf RWC. Leaf chlorophyll content was affected by water deficit but the relationship with WUE was unclear. The difference in Δ13C values between the two varieties suggests traits associated with greater WUEi may be linked to canopy architecture.
Collapse
|
45
|
Kelly G, Yaaran A, Gal A, Egbaria A, Brandsma D, Belausov E, Wolf D, David-Schwartz R, Granot D, Eyal Y, Carmi N, Sade N. Guard cell activity of PIF4 and HY5 control transpiration. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 328:111583. [PMID: 36608874 DOI: 10.1016/j.plantsci.2022.111583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 12/30/2022] [Accepted: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Whole-plant transpiration, controlled by plant hydraulics and stomatal movement, is regulated by endogenous and environmental signals, with the light playing a dominant role. Stomatal pore size continuously adjusts to changes in light intensity and quality to ensure optimal CO2 intake for photosynthesis on the one hand, together with minimal water loss on the other. The link between light and transpiration is well established, but the genetic knowledge of how guard cells perceive those signals to affect stomatal conductance is still somewhat limited. In the current study, we evaluated the role of two central light-responsive transcription factors; a bZIP-family transcription factor ELONGATED HYPOCOTYL5 (HY5) and the basic helix-loop-helix (BHLH) transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4), in the regulation of steady-state transpiration. We show that overexpression of PIF4 exclusively in guard cells (GCPIF4) decreases transpiration, and can restrain the high transpiration of the pif4 mutant. Expression of HY5 specifically in guard cells (GCHY5) had the opposite effect of enhancing transpiration rates of WT- Arabidopsis and tobacco plants and of the hy5 mutant in Arabidopsis. In addition, we show that GCHY5 can reverse the low transpiration caused by guard cell overexpression of the sugar sensor HEXOKINASE1 (HXK1, GCHXK), an established low transpiring genotype. Finally, we suggest that the GCHY5 reversion of low transpiration by GCHXK requires the auto-activation of the endogenous HY5 in other tissues. These findings support the existence of an ongoing diurnal regulation of transpiration by the light-responsive transcription factors HY5 and PIF4 in the stomata, which ultimately determine the whole-plant water use efficiency.
Collapse
Affiliation(s)
- Gilor Kelly
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Adi Yaaran
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Atara Gal
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Aiman Egbaria
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Danja Brandsma
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Dalia Wolf
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - David Granot
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Yoram Eyal
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Nir Carmi
- Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, Rishon LeZion 7505101, Israel
| | - Nir Sade
- School of Plant Science and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
46
|
Wu D, Shu M, Moran EV. Heritability of plastic trait changes in drought‐exposed ponderosa pine seedlings. Ecosphere 2023. [DOI: 10.1002/ecs2.4454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2023] Open
Affiliation(s)
- Dean Wu
- School of Natural Sciences University of California Merced Merced California USA
| | - Mengjun Shu
- School of Natural Sciences University of California Merced Merced California USA
| | - Emily V. Moran
- School of Natural Sciences University of California Merced Merced California USA
| |
Collapse
|
47
|
Yao X, Qi Y, Chen H, Zhang B, Chen Z, Lu L. Study of Camellia sinensis diploid and triploid leaf development mechanism based on transcriptome and leaf characteristics. PLoS One 2023; 18:e0275652. [PMID: 36800382 PMCID: PMC9937487 DOI: 10.1371/journal.pone.0275652] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 09/21/2022] [Indexed: 02/18/2023] Open
Abstract
Polyploidization results in significant changes in the morphology and physiology of plants, with increased growth rate and genetic gains as the number of chromosomes increases. In this study, the leaf functional traits, photosynthetic characteristics, leaf cell structure and transcriptome of Camellia sinensis were analyzed. The results showed that triploid tea had a significant growth advantage over diploid tea, the leaf area was 59.81% larger, and the photosynthetic capacity was greater. The morphological structure of triploid leaves was significantly different, the xylem of the veins was more developed, the cell gap between the palisade tissue and the sponge tissue was larger and the stomata of the triploid leaves were also larger. Transcriptome sequencing analysis revealed that in triploid tea, the changes in leaf morphology and physiological characteristics were affected by the expression of certain key regulatory genes. We identified a large number of genes that may play important roles in leaf development, especially genes involved in photosynthesis, cell division, hormone synthesis and stomata development. This research will enhance our understanding of the molecular mechanism underlying tea and stomata development and provide a basis for molecular breeding of high-quality and high-yield tea varieties.
Collapse
Affiliation(s)
- Xinzhuan Yao
- College of Tea Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Yong Qi
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Hufang Chen
- College of Tea Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Baohui Zhang
- College of Tea Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
| | - Zhengwu Chen
- Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Litang Lu
- College of Tea Science, Guizhou University, Guiyang, Guizhou, People’s Republic of China
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering, Guiyang, Guizhou, People’s Republic of China
- * E-mail:
| |
Collapse
|
48
|
Verslues PE, Bailey-Serres J, Brodersen C, Buckley TN, Conti L, Christmann A, Dinneny JR, Grill E, Hayes S, Heckman RW, Hsu PK, Juenger TE, Mas P, Munnik T, Nelissen H, Sack L, Schroeder JI, Testerink C, Tyerman SD, Umezawa T, Wigge PA. Burning questions for a warming and changing world: 15 unknowns in plant abiotic stress. THE PLANT CELL 2023; 35:67-108. [PMID: 36018271 PMCID: PMC9806664 DOI: 10.1093/plcell/koac263] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 08/21/2022] [Indexed: 05/08/2023]
Abstract
We present unresolved questions in plant abiotic stress biology as posed by 15 research groups with expertise spanning eco-physiology to cell and molecular biology. Common themes of these questions include the need to better understand how plants detect water availability, temperature, salinity, and rising carbon dioxide (CO2) levels; how environmental signals interface with endogenous signaling and development (e.g. circadian clock and flowering time); and how this integrated signaling controls downstream responses (e.g. stomatal regulation, proline metabolism, and growth versus defense balance). The plasma membrane comes up frequently as a site of key signaling and transport events (e.g. mechanosensing and lipid-derived signaling, aquaporins). Adaptation to water extremes and rising CO2 affects hydraulic architecture and transpiration, as well as root and shoot growth and morphology, in ways not fully understood. Environmental adaptation involves tradeoffs that limit ecological distribution and crop resilience in the face of changing and increasingly unpredictable environments. Exploration of plant diversity within and among species can help us know which of these tradeoffs represent fundamental limits and which ones can be circumvented by bringing new trait combinations together. Better defining what constitutes beneficial stress resistance in different contexts and making connections between genes and phenotypes, and between laboratory and field observations, are overarching challenges.
Collapse
Affiliation(s)
| | - Julia Bailey-Serres
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, California 92521, USA
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, Connecticut 06511, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California 95616, USA
| | - Lucio Conti
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Alexander Christmann
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - José R Dinneny
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Erwin Grill
- School of Life Sciences, Technical University Munich, Freising-Weihenstephan 85354, Germany
| | - Scott Hayes
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Robert W Heckman
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Po-Kai Hsu
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Thomas E Juenger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB, Barcelona 08193, Spain
- Consejo Superior de Investigaciones Científicas (CSIC), Barcelona 08028, Spain
| | - Teun Munnik
- Department of Plant Cell Biology, Green Life Sciences Cluster, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam NL-1098XH, The Netherlands
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent 9052, Belgium
- VIB Center for Plant Systems Biology, Ghent 9052, Belgium
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, Institute of the Environment and Sustainability, University of California, Los Angeles, California 90095, USA
| | - Julian I Schroeder
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California San Diego, La Jolla, California 92093, USA
| | - Christa Testerink
- Laboratory of Plant Physiology, Plant Sciences Group, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | - Stephen D Tyerman
- ARC Center Excellence, Plant Energy Biology, School of Agriculture Food and Wine, University of Adelaide, Adelaide, South Australia 5064, Australia
| | - Taishi Umezawa
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Tokyo 6708 PB, Japan
| | - Philip A Wigge
- Leibniz-Institut für Gemüse- und Zierpflanzenbau, Großbeeren 14979, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam 14476, Germany
| |
Collapse
|
49
|
Li L, Jin Z, Huang R, Zhou J, Song F, Yao L, Li P, Lu W, Xiao L, Quan M, Zhang D, Du Q. Leaf physiology variations are modulated by natural variations that underlie stomatal morphology in Populus. PLANT, CELL & ENVIRONMENT 2023; 46:150-170. [PMID: 36285358 DOI: 10.1111/pce.14471] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 06/16/2023]
Abstract
Stomata are essential for photosynthesis and abiotic stress tolerance. Here, we used multiomics approaches to dissect the genetic architecture and adaptive mechanisms that underlie stomatal morphology in Populus tomentosa juvenile natural population (303 accessions). We detected 46 candidate genes and 15 epistatic gene-pairs, associated with 5 stomatal morphologies and 18 leaf development and photosynthesis traits, through genome-wide association studies. Expression quantitative trait locus mapping revealed that stomata-associated gene loci were significantly associated with the expression of leaf-related genes; selective sweep analysis uncovered significant differentiation in the allele frequencies of genes that underlie stomatal variations. An allelic regulatory network operating under drought stress and adequate precipitation conditions, with three key regulators (DUF538, TRA2 and AbFH2) and eight interacting genes, was identified that might regulate leaf physiology via modulation of stomatal shape and density. Validation of candidate gene variations in drought-tolerant and F1 hybrid populations of P. tomentosa showed that the DUF538, TRA2 and AbFH2 loci cause functional stabilisation of spatiotemporal regulatory, whose favourable alleles can be faithfully transmitted to offspring. This study provides insights concerning leaf physiology and stress tolerance via the regulation of stomatal determination in perennial plants.
Collapse
Affiliation(s)
- Lianzheng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Zhuoying Jin
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Rui Huang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Jiaxuan Zhou
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Fangyuan Song
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liangchen Yao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Peng Li
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Wenjie Lu
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Liang Xiao
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Mingyang Quan
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Deqiang Zhang
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| | - Qingzhang Du
- National Engineering Research Center of Tree breeding and Ecological restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants, Ministry of Education, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, P.R. China
| |
Collapse
|
50
|
Wang T, Zheng L, Xiong D, Wang F, Man J, Deng N, Cui K, Huang J, Peng S, Ling X. Stomatal Ratio Showing No Response to Light Intensity in Oryza. PLANTS (BASEL, SWITZERLAND) 2022; 12:66. [PMID: 36616195 PMCID: PMC9823486 DOI: 10.3390/plants12010066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Stomata control carbon and water exchange between the leaves and the ambient. However, the plasticity responses of stomatal traits to growth conditions are still unclear, especially for monocot leaves. The current study investigated the leaf anatomical traits, stomatal morphological traits on both adaxial and abaxial leaf surfaces, and photosynthetic traits of Oryza leaves developed in two different growth conditions. Substantial variation exists across the Oryza species in leaf anatomy, stomatal traits, photosynthetic rate, and stomatal conductance. The abaxial stomatal density was higher than the adaxial stomatal density in all the species, and the stomatal ratios ranged from 0.35 to 0.46 across species in two growth environments. However, no difference in the stomatal ratio was observed between plants in the growth chamber and outdoors for a given species. Photosynthetic capacity, stomatal conductance, leaf width, major vein thickness, minor vein thickness, inter-vein distance, and stomatal pore width values for leaves grown outdoors were higher than those for plants grown in the growth chamber. Our results indicate that a broad set of leaf anatomical, stomatal, and photosynthetic traits of Oryza tend to shift together during plasticity to diverse growing conditions, but the previously projected sensitive trait, stomatal ratio, does not shape growth conditions.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaoxia Ling
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|