1
|
Kou Z, Zhu S, Zhu J, Wang S, Zheng Y, Zhou S, Si Z, Zhu H. Multi-omics analysis identifies DLX4 as a novel biomarker for diagnosis, prognosis, and immune infiltration: from pan-cancer to renal cancer. Discov Oncol 2025; 16:467. [PMID: 40186710 PMCID: PMC11972278 DOI: 10.1007/s12672-025-02258-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 03/28/2025] [Indexed: 04/07/2025] Open
Abstract
BACKGROUND DLX4 is involved in the regulation of embryonic development, but its function in cancer remains unclear. Here, we conducted a pan-cancer analysis to investigate the molecular mechanisms of DLX4, with a particular emphasis on its role in renal cancer. METHODS A comprehensive analysis of DLX4 was performed, focusing on differences in expression, prognostic value, somatic mutations, methylation modifications, and immune landscapes across various cancer types using multiple databases. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analyses were utilized to explore the potential biological functions. Additionally, we evaluated the expression profile, prognostic significance, and immune infiltration of DLX4 in Kidney Renal Clear Cell Carcinoma (KIRC). The effect of DLX4 on KIRC was further validated by Spatial Transcriptomics, Real-time PCR (RT-PCR), and Immunohistochemistry experiments. RESULTS DLX4 was found to be upregulated in 26 cancer types and associated with poor prognosis. It was also correlated with tumor mutational burden (TMB), microsatellite instability, mismatch repair, and methylation, and was significantly enriched in pathways related to cell proliferation. In KIRC, DLX4 expression increased along with TMB and immune scores, likely due to the infiltration of regulatory T cells (Tregs) and T-helper 2 (Th2) cells. Spatial transcriptomics revealed a strong correlation between DLX4 localization and tumor cells. Experimental validation confirmed that DLX4 expression is significantly upregulated in renal cancer tissues. CONCLUSION Our study explored the mechanisms of DLX4 in pan-cancer, especially in renal clear cell carcinoma, identifying it as a promising biomarker and therapeutic target.
Collapse
Affiliation(s)
- Zengshun Kou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Shuaizhi Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao West Coast New Area District Hospital, Qingdao, China
| | - Jiaxi Zhu
- Faculty of Arts & Science, University of Toronto - St. George Campus, Toronto, Canada
| | - Shufei Wang
- College of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yu Zheng
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
| | - Shengjie Zhou
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Zi'ang Si
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China
| | - Hai Zhu
- Department of Urology, Qingdao Municipal Hospital, Qingdao University, Qingdao, Shandong, China.
- Qingdao Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
2
|
Liu XD, Ye CC, Wang Y, Zhang XS, Wei HX, Xie LJ, Xie JX, Xu YR, Zhong LY, Li SH, Li XJ, Lin L. DNA methylation confers a cerebellum-specific identity in non-human primates. Zool Res 2025; 46:414-428. [PMID: 40091535 PMCID: PMC12000133 DOI: 10.24272/j.issn.2095-8137.2024.325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 12/17/2024] [Indexed: 03/19/2025] Open
Abstract
Selective regulation of gene expression across distinct brain regions is crucial for establishing and maintaining subdivision identities. DNA methylation, a key regulator of gene transcription, modulates transcriptional activity through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). While DNA methylation is hypothesized to play an essential role in shaping brain identity by influencing gene expression patterns, its direct contribution, especially in primates, remains largely unexplored. This study examined DNA methylation landscapes and transcriptional profiles across four brain regions, including the cortex, cerebellum, striatum, and hippocampus, using samples from 12 rhesus monkeys. The cerebellum exhibited distinct epigenetic and transcriptional signatures, with differentially methylated regions (DMRs) significantly enriched in metabolic pathways. Notably, genes harboring clustered differentially hydroxymethylated regions (DhMRs) overlapped with those implicated in schizophrenia. Moreover, 5mC located 1 kb upstream of the ATG start codon was correlated with gene expression and exhibited region-specific associations with 5hmC. These findings provide insights into the coordinated regulation of cerebellum-specific 5mC and 5hmC , highlighting their potential roles in defining cerebellar identity and contributing to neuropsychiatric diseases.
Collapse
Affiliation(s)
- Xiao-Dong Liu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Chang-Cheng Ye
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Yang Wang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Xiao-Song Zhang
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Hui-Xian Wei
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Lei-Jie Xie
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Jia-Xiang Xie
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Yan-Ru Xu
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Li-Ying Zhong
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Shi-Hua Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China
| | - Li Lin
- Guangdong Key Laboratory of Non-human Primate Research, Guangdong-Hongkong-Macau CNS Regeneration Institute of Jinan University, Key Laboratory of CNS Regeneration (Jinan University)-Ministry of Education, Guangzhou, Guangdong 510632, China. E-mail:
| |
Collapse
|
3
|
Li XH, Lee SH, Kim JD, Lee GH, Sim JM, Cui XS. TBX3 is Essential for Zygotic Genome Activation and Embryonic Development in Pigs. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2025; 31:ozae123. [PMID: 39804731 DOI: 10.1093/mam/ozae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 01/16/2025]
Abstract
The pluripotency-related T-box family transcription factor TBX3 maintains mESC self-renewal and plays a key role in the development of several tissues, including the heart, mammary glands, limbs, and lungs. However, the role of TBX3 during porcine preimplantation embryo development remains unclear. In our research, TBX3 was knocked down by injecting dsRNA to explore the function of TBX3. TBX3 expression gradually increases during early embryonic development. TBX3 knockdown resulted in decreased in the rate of four-cell and blastocyst. Depletion of TBX3 decreased the level of H3K9Ac/H3K27Ac and decreased ZGA gene expression at the four-cell stage. Furthermore, TBX3 knockdown led to a decrease in ZSACN4 protein level, DNMT1 and intracellular 5mc levels were increased, and then induced telomeres shorten and DNA damaged. Additionally, TBX3 knockdown significantly decreased histone acetylation and pluripotency genes NANOG/OCT4 expression in blastocysts. TBX3 knockdown induced apoptosis in blastocysts. Taken together, TBX3 regulate histone acetylation and play important roles in zygotic genome activation and early embryonic development in pigs.
Collapse
Affiliation(s)
- Xiao-Han Li
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Song-Hee Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Ji-Dam Kim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Gyu-Hyun Lee
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Jae-Min Sim
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Xiang-Shun Cui
- Department of Animal Science, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| |
Collapse
|
4
|
Tse AY, Spakowitz AJ. Modeling DNA methyltransferase function to predict epigenetic correlation patterns in healthy and cancer cells. Proc Natl Acad Sci U S A 2025; 122:e2415530121. [PMID: 39792289 PMCID: PMC11745332 DOI: 10.1073/pnas.2415530121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/16/2024] [Indexed: 01/12/2025] Open
Abstract
DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established. Our model predicts DNA methylation-state correlation distributions arising from the transport and kinetic properties that are crucial for the establishment of unique methylation profiles. We model the methylation correlation distributions of nine cancerous human cell types to determine how these properties affect the epigenetic profile. Our theory is capable of recapitulating experimental methylation patterns, suggesting the importance of DNA methyltransferase transport in epigenetic regulation. Through this work, we propose a mechanistic description for the establishment of methylation profiles, capturing the key behavioral characteristics of methyltransferase that lead to aberrant methylation.
Collapse
Affiliation(s)
- Ariana Y. Tse
- Department of Materials Science, Stanford University, Stanford, CA94305
| | | |
Collapse
|
5
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
6
|
Postberg J, Schubert MT, Nin V, Wagner L, Piefke M. A perspective on epigenomic aging processes in the human brain and their plasticity in patients with mental disorders - a systematic review. Neurogenetics 2024; 25:351-366. [PMID: 38967831 PMCID: PMC11534990 DOI: 10.1007/s10048-024-00771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 06/28/2024] [Indexed: 07/06/2024]
Abstract
The debate surrounding nature versus nurture remains a central question in neuroscience, psychology, and in psychiatry, holding implications for both aging processes and the etiology of mental illness. Epigenetics can serve as a bridge between genetic predisposition and environmental influences, thus offering a potential avenue for addressing these questions. Epigenetic clocks, in particular, offer a theoretical framework for measuring biological age based on DNA methylation signatures, enabling the identification of disparities between biological and chronological age. This structured review seeks to consolidate current knowledge regarding the relationship between mental disorders and epigenetic age within the brain. Through a comprehensive literature search encompassing databases such as EBSCO, PubMed, and ClinicalTrials.gov, relevant studies were identified and analyzed. Studies that met inclusion criteria were scrutinized, focusing on those with large sample sizes, analyses of both brain tissue and blood samples, investigation of frontal cortex markers, and a specific emphasis on schizophrenia and depressive disorders. Our review revealed a paucity of significant findings, yet notable insights emerged from studies meeting specific criteria. Studies characterized by extensive sample sizes, analysis of brain tissue and blood samples, assessment of frontal cortex markers, and a focus on schizophrenia and depressive disorders yielded particularly noteworthy results. Despite the limited number of significant findings, these studies shed light on the complex interplay between epigenetic aging and mental illness. While the current body of literature on epigenetic aging in mental disorders presents limited significant findings, it underscores the importance of further research in this area. Future studies should prioritize large sample sizes, comprehensive analyses of brain tissue and blood samples, exploration of specific brain regions such as the frontal cortex, and a focus on key mental disorders. Such endeavors will contribute to a deeper understanding of the relationship between epigenetic aging and mental illness, potentially informing novel diagnostic and therapeutic approaches.
Collapse
Affiliation(s)
- Jan Postberg
- Clinical Molecular Genetics and Epigenetics, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
- Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany.
| | - Michèle Tina Schubert
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Vincent Nin
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Lukas Wagner
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| | - Martina Piefke
- Centre for Biomedical Education & Research (ZBAF), Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
- Neurobiology and Genetics of Behavior, Department of Psychology and Psychotherapy, Faculty of Health, Witten/Herdecke University, Alfred-Herrhausen-Str. 50, 58448, Witten, Germany
| |
Collapse
|
7
|
Wang Z, Cassidy M, Wallace DA, Sofer T. MethParquet: an R package for rapid and efficient DNA methylation association analysis adopting Apache Parquet. Bioinformatics 2024; 40:btae410. [PMID: 38897661 PMCID: PMC11219476 DOI: 10.1093/bioinformatics/btae410] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/21/2024] Open
Abstract
SUMMARY Genome-wide DNA methylation (DNAm) profiling is indispensable for unveiling how DNAm regulates biological pathways and individual phenotypes. However, managing and analyzing extensive DNAm data generated from large cohort studies present computational obstacles. Apache Parquet is a data file format that allows for efficient data storage, retrieval, and manipulation, alleviating computational hurdles associated with conventional row-based formats. We here introduce MethParquet, the first R package leveraging the columnar Parquet format for efficient DNAm data analysis. It can be used for data extraction, methylation risk score calculation, epigenome-wide association analyses, and other standard post-quality control tasks. The package flexibly implements diverse regression models. Via a public methylation dataset, we show the efficiency of this package in reducing running time and RAM usage in large-scale EWAS. AVAILABILITY AND IMPLEMENTATION The MethParquet R package is publicly available on the GitHub repository https://github.com/ZWangTen/MethParquet. It includes a vignette and a toy dataset derived from a public resource.
Collapse
Affiliation(s)
- Ziqing Wang
- Department of Medicine, Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, United States
| | - Michael Cassidy
- Department of Medicine, Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, United States
| | - Danielle A Wallace
- Department of Medicine, Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, United States
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Division of Sleep and Circadian Disorders, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, 02115, United States
| | - Tamar Sofer
- Department of Medicine, Cardiovascular Institute, Beth Israel Deaconess Medical Center, Boston, MA, 02215, United States
- Division of Sleep Medicine, Harvard Medical School, Boston, MA, 02115, United States
- Division of Sleep and Circadian Disorders, Department of Medicine, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Division of Sleep and Circadian Disorders, Department of Neurology, Brigham and Women’s Hospital, Boston, MA, 02115, United States
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, United States
| |
Collapse
|
8
|
Banerjee R, Ajithkumar P, Keestra N, Smith J, Gimenez G, Rodger EJ, Eccles MR, Antony J, Weeks RJ, Chatterjee A. Targeted DNA Methylation Editing Using an All-in-One System Establishes Paradoxical Activation of EBF3. Cancers (Basel) 2024; 16:898. [PMID: 38473261 DOI: 10.3390/cancers16050898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Cutaneous melanoma is rapidly on the rise globally, surpassing the growth rate of other cancers, with metastasis being the primary cause of death in melanoma patients. Consequently, understanding the mechanisms behind this metastatic process and exploring innovative treatments is of paramount importance. Recent research has shown promise in unravelling the role of epigenetic factors in melanoma progression to metastasis. While DNA hypermethylation at gene promoters typically suppresses gene expression, we have contributed to establishing the newly understood mechanism of paradoxical activation of genes via DNA methylation, where high methylation coincides with increased gene activity. This mechanism challenges the conventional paradigm that promoter methylation solely silences genes, suggesting that, for specific genes, it might actually activate them. Traditionally, altering DNA methylation in vitro has involved using global demethylating agents, which is insufficient for studying the mechanism and testing the direct consequence of gene methylation changes. To investigate promoter hypermethylation and its association with gene activation, we employed a novel approach utilising a CRISPR-SunTag All-in-one system. Here, we focused on editing the DNA methylation of a specific gene promoter segment (EBF3) in melanoma cells using the All-in-one system. Using bisulfite sequencing and qPCR with RNA-Seq, we successfully demonstrated highly effective methylation and demethylation of the EBF3 promoter, with subsequent gene expression changes, to establish and validate the paradoxical role of DNA methylation. Further, our study provides novel insights into the function of the EBF3 gene, which remains largely unknown. Overall, this study challenges the conventional view of methylation as solely a gene-silencing mechanism and demonstrates a potential function of EBF3 in IFN pathway signalling, potentially uncovering new insights into epigenetic drivers of malignancy and metastasis.
Collapse
Affiliation(s)
- Rakesh Banerjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Priyadarshana Ajithkumar
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Nicholas Keestra
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jim Smith
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Gregory Gimenez
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Jisha Antony
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Robert J Weeks
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin 9054, New Zealand
- School of Health Sciences and Technology, UPES University, Dehradun 248007, India
| |
Collapse
|
9
|
Meulders B, Marei WFA, Xhonneux I, Loier L, Smits A, Leroy JLMR. Preconception Diet Interventions in Obese Outbred Mice and the Impact on Female Offspring Metabolic Health and Oocyte Quality. Int J Mol Sci 2024; 25:2236. [PMID: 38396912 PMCID: PMC10888670 DOI: 10.3390/ijms25042236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Obese individuals often suffer from metabolic health disorders and reduced oocyte quality. Preconception diet interventions in obese outbred mice restore metabolic health and oocyte quality and mitochondrial ultrastructure. Also, studies in inbred mice have shown that maternal obesity induces metabolic alterations and reduces oocyte quality in offspring (F1). Until now, the effect of maternal high-fat diet on F1 metabolic health and oocyte quality and the potential beneficial effects of preconception dietary interventions have not been studied together in outbred mice. Therefore, we fed female mice a high-fat/high-sugar (HF/HS) diet for 7 weeks and switched them to a control (CONT) or caloric-restriction (CR) diet or maintained them on the HF/HS diet for 4 weeks before mating, resulting in three treatment groups: diet normalization (DN), CR, and HF/HS. In the fourth group, mice were fed CONT diet for 11 weeks (CONT). HF/HS mice were fed an HF/HS diet from conception until weaning, while all other groups were then fed a CONT diet. After weaning, offspring were kept on chow diet and sacrificed at 11 weeks. We observed significantly elevated serum insulin concentrations in female HF/HS offspring and a slightly increased percentage of mitochondrial ultrastructural abnormalities, mitochondrial size, and mitochondrial mean gray intensity in HF/HS F1 oocytes. Also, global DNA methylation was increased and cellular stress-related proteins were downregulated in HF/HS F1 oocytes. Mostly, these alterations were prevented in the DN group, while, in CR, this was only the case for a few parameters. In conclusion, this research has demonstrated for the first time that a maternal high-fat diet in outbred mice has a moderate impact on female F1 metabolic health and oocyte quality and that preconception DN is a better strategy to alleviate this compared to CR.
Collapse
Affiliation(s)
- Ben Meulders
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Waleed F. A. Marei
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
- Faculty of Veterinary Medicine, Department of Theriogenology, Cairo University, Giza 12211, Egypt
| | - Inne Xhonneux
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Lien Loier
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Anouk Smits
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| | - Jo L. M. R. Leroy
- Gamete Research Centre, Laboratory of Veterinary Physiology and Biochemistry, Department of Veterinary Sciences, University of Antwerp, 2610 Antwerp, Belgium; (B.M.); (W.F.A.M.); (I.X.); (L.L.); (A.S.)
| |
Collapse
|
10
|
Abbott E, Loockerman C, Matz MV. Modifications to gene body methylation do not alter gene expression plasticity in a reef-building coral. Evol Appl 2024; 17:e13662. [PMID: 38390378 PMCID: PMC10883760 DOI: 10.1111/eva.13662] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/17/2024] [Accepted: 01/30/2024] [Indexed: 02/24/2024] Open
Abstract
As coral reefs continue to decline due to climate change, the role of coral epigenetics (specifically, gene body methylation, GBM) in coral acclimatization warrants investigation. The evidence is currently conflicting. In diverse animal phyla, the baseline GBM level is associated with gene function: continuously expressed "housekeeping" genes are typically highly methylated, while inducible context-dependent genes have low or no methylation at all. Some authors report an association between GBM and the environment and interpret this observation as evidence of the GBM's role in acclimatization. Yet, others argue that the correlation between GBM change and gene expression change is typically absent or negligible. Here, we used the reef-building coral, Acropora millepora, to test whether environmentally driven changes in GBM are associated with a gene's ability to respond to environmental changes (plasticity) rather than expression level. We analyzed two cases of modified gene expression plasticity observed in a 3-week-long heat acclimatization experiment. The first one was a group of heat-induced genes that failed to revert their expression after the coral was translocated back to the control tank. The second case involved genes that changed the magnitude of their response to the daily temperature fluctuations over the course of the experiment. In both cases, we found negligible or no association with GBM change. We conclude that although both gene expression plasticity and GBM can change during acclimatization, there is no direct association between the two. This adds to the increasing volume of evidence that the function of GBM in invertebrates is unrelated to acclimatization on physiological timescales.
Collapse
Affiliation(s)
- Evelyn Abbott
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| | - Coral Loockerman
- University of Hawai'i at Manoa Hawaii Institute of Marine Biology Kaneohe Kaneohe Hawai'i USA
| | - Mikhail V Matz
- Department of Integrative Biology University of Texas at Austin Austin Texas USA
| |
Collapse
|
11
|
Grison S, Braga-Tanaka II, Baatout S, Klokov D. In utero exposure to ionizing radiation and metabolic regulation: perspectives for future multi- and trans-generation effects studies. Int J Radiat Biol 2024; 100:1283-1296. [PMID: 38180060 DOI: 10.1080/09553002.2023.2295293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/03/2023] [Accepted: 11/22/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE The radiation protection community has been particularly attentive to the risks of delayed effects on offspring from low dose or low dose-rate exposures to ionizing radiation. Despite this, the current epidemiologic studies and scientific data are still insufficient to provide the necessary evidence for improving risk assessment guidelines. This literature review aims to inform future studies on multigenerational and transgenerational effects. It primarily focuses on animal studies involving in utero exposure and discusses crucial elements for interpreting the results. These elements include in utero exposure scenarios relative to the developmental stages of the embryo/fetus, and the primary biological mechanisms responsible for transmitting heritable or hereditary effects to future generations. The review addresses several issues within the contexts of both multigenerational and transgenerational effects, with a focus on hereditary perspectives. CONCLUSIONS Knowledge consolidation in the field of Developmental Origins of Health and Disease (DOHaD) has led us to propose a new study strategy. This strategy aims to address the transgenerational effects of in utero exposure to low dose and low dose-rate radiation. Within this concept, there is a possibility that disruption of epigenetic programming in embryonic and fetal cells may occur. This disruption could lead to metabolic dysfunction, which in turn may cause abnormal responses to future environmental challenges, consequently increasing disease risk. Lastly, we discuss methodological limitations in our studies. These limitations are related to cohort size, follow-up time, model radiosensitivity, and analytical techniques. We propose scientific and analytical strategies for future research in this field.
Collapse
Affiliation(s)
- Stéphane Grison
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
| | - Ignacia Iii Braga-Tanaka
- Department of Radiobiology, Institute for Environmental Sciences (IES), Rokkasho Kamikita, Aomori, Japan
| | - Sarah Baatout
- Belgian Nuclear Research Centre, SCK CEN, Institute of Nuclear Medical Applications, Mol, Belgium
- Department of Molecular Biotechnology (BW25) and Department of Human Structure and Repair (GE38), Ghent University, Ghent, Belgium
| | - Dmitry Klokov
- PSE-SANTE, Institut de Radioprotection et de Sûreté Nucléaire, Fontenay-aux-Roses, France
- Department of Microbiology, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
Yu T, Zhang C, Song W, Zhao X, Cheng Y, Liu J, Su J. Single-cell RNA-seq and single-cell bisulfite-sequencing reveal insights into yak preimplantation embryogenesis. J Biol Chem 2024; 300:105562. [PMID: 38097189 PMCID: PMC10821408 DOI: 10.1016/j.jbc.2023.105562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 11/17/2023] [Accepted: 12/03/2023] [Indexed: 01/13/2024] Open
Abstract
Extensive epigenetic reprogramming occurs during preimplantation embryonic development. However, the impact of DNA methylation in plateau yak preimplantation embryos and how epigenetic reprogramming contributes to transcriptional regulatory networks are unclear. In this study, we quantified gene expression and DNA methylation in oocytes and a series of yak embryos at different developmental stages and at single-cell resolution using single-cell bisulfite-sequencing and RNA-seq. We characterized embryonic genome activation and maternal transcript degradation and mapped epigenetic reprogramming events critical for embryonic development. Through cross-species transcriptome analysis, we identified 31 conserved maternal hub genes and 39 conserved zygotic hub genes, including SIN3A, PRC1, HDAC1/2, and HSPD1. Notably, by combining single-cell DNA methylation and transcriptome analysis, we identified 43 candidate methylation driver genes, such as AURKA, NUSAP1, CENPF, and PLK1, that may be associated with embryonic development. Finally, using functional approaches, we further determined that the epigenetic modifications associated with the histone deacetylases HDAC1/2 are essential for embryonic development and that the deubiquitinating enzyme USP7 may affect embryonic development by regulating DNA methylation. Our data represent an extensive resource on the transcriptional dynamics of yak embryonic development and DNA methylation remodeling, and provide new insights into strategies for the conservation of germplasm resources, as well as a better understanding of mammalian early embryonic development that can be applied to investigate the causes of early developmental disorders.
Collapse
Affiliation(s)
- Tong Yu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Chengtu Zhang
- Academician Zhang Yong Innovation Center, Xining Animal Disease Control Center, Xining, Qinghai, China
| | - Weijia Song
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Xinyi Zhao
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyao Cheng
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China
| | - Jun Liu
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jianmin Su
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
13
|
Yang Y, Hui Y, Guo Z, Song X, Zhu H, Pan C, Lan X. Investigation of the association between goat DNMT3B gene polymorphism and growth traits. Anim Biotechnol 2023; 34:2492-2498. [PMID: 35895437 DOI: 10.1080/10495398.2022.2101115] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The DNA methyltransferase 3 beta (DNMT3B) gene is key for DNA methylation and has been well recognized in regulating growth and development. A previous observation indicated that an 11-bp indel of DNMT3B affected the reproductive traits in goats, yet the effect of this polymorphism on body measurement traits in goats has not been reported. This study aims to investigate the associations between DNMT3B gene polymorphism and goat growth traits. We investigated this 11-bp indel in 2184 goats and three genotypes have been found in Shaanbei white cashmere goat (SBWC): insertion/insertion (II), deletion/deletion (DD) and insertion/deletion (ID). Only ID and DD genotypes were detected in Nubian goats and Guizhou heima goat (GZHM). The allele frequencies analyzed revealed that the 'D' allele frequencies were higher in all three goat breeds. Further association analysis demonstrated that this indel is markedly associated with the cannon circumference (CC) and cannon circumference index (CCI) of SBWC and cannon circumference (CC) of Nubian goats (p < .05). The CC and CCI are essential indicators to measure the growth status of goats. In summary, our study sheds some light on the potential impact of the 11-bp indel polymorphism of the DNMT3B gene on improving the growth traits in goats.
Collapse
Affiliation(s)
- Yuta Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Yiqing Hui
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Zhengang Guo
- Bijie Animal Husbandry and Veterinary Science Research Institute, Bijie, Guizhou, China
| | - Xiaoyue Song
- College of Life Sciences, Yulin University, Yulin, China
| | - Haijing Zhu
- College of Life Sciences, Yulin University, Yulin, China
| | - Chuanying Pan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| | - Xianyong Lan
- College of Animal Science and Technology, Northwest A&F University, Yangling, China
| |
Collapse
|
14
|
Marson F, Zampieri M, Verdone L, Bacalini MG, Ravaioli F, Morandi L, Chiarella SG, Vetriani V, Venditti S, Caserta M, Raffone A, Dotan Ben-Soussan T, Reale A. Quadrato Motor Training (QMT) is associated with DNA methylation changes at DNA repeats: A pilot study. PLoS One 2023; 18:e0293199. [PMID: 37878626 PMCID: PMC10599555 DOI: 10.1371/journal.pone.0293199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 10/07/2023] [Indexed: 10/27/2023] Open
Abstract
The control of non-coding repeated DNA by DNA methylation plays an important role in genomic stability, contributing to health and healthy aging. Mind-body practices can elicit psychophysical wellbeing via epigenetic mechanisms, including DNA methylation. However, in this context the effects of movement meditations have rarely been examined. Consequently, the current study investigates the effects of a specifically structured movement meditation, called the Quadrato Motor Training (QMT) on psychophysical wellbeing and on the methylation level of repeated sequences. An 8-week daily QMT program was administered to healthy women aged 40-60 years and compared with a passive control group matched for gender and age. Psychological well-being was assessed within both groups by using self-reporting scales, including the Meaning in Life Questionnaire [MLQ] and Psychological Wellbeing Scale [PWB]). DNA methylation profiles of repeated sequences (ribosomal DNA, LINE-1 and Alu) were determined in saliva samples by deep-sequencing. In contrast to controls, the QMT group exhibited increased Search for Meaning, decreased Presence of Meaning and increased Positive Relations, suggesting that QMT may lessen the automatic patterns of thinking. In the QMT group, we also found site-specific significant methylation variations in ribosomal DNA and LINE-1 repeats, consistent with increased genome stability. Finally, the correlations found between changes in methylation and psychometric indices (MLQ and PWB) suggest that the observed epigenetic and psychological changes are interrelated. Collectively, the current results indicate that QMT may improve psychophysical health trajectories by influencing the DNA methylation of specific repetitive sequences.
Collapse
Affiliation(s)
- Fabio Marson
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
- Neuroimaging Laboratory, Department of Physiology and Pharmacology, Sapienza University of Rome, Rome, Italy
| | - Michele Zampieri
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| | - Loredana Verdone
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Maria Giulia Bacalini
- Brain Aging Laboratory, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesco Ravaioli
- Dep. of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Morandi
- Dep. of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
- Functional and Molecular Neuroimaging Unit, IRCCS Istituto Delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Salvatore Gaetano Chiarella
- Institute of Sciences and Technologies of Cognition (ISTC), National Council of Research (CNR), Rome, Italy
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Valerio Vetriani
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Sabrina Venditti
- Dept. of Biology and biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Micaela Caserta
- CNR Institute of Molecular Biology and Pathology, National Council of Research (CNR), Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
| | - Tal Dotan Ben-Soussan
- Research Institute for Neuroscience, Education and Didactics, Fondazione Patrizio Paoletti, Assisi, Italy
| | - Anna Reale
- Department of Experimental Medicine, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
15
|
Ross SE, Vázquez-Marín J, Gert KRB, González-Rajal Á, Dinger ME, Pauli A, Martínez-Morales JR, Bogdanovic O. Evolutionary conservation of embryonic DNA methylome remodelling in distantly related teleost species. Nucleic Acids Res 2023; 51:9658-9671. [PMID: 37615576 PMCID: PMC10570028 DOI: 10.1093/nar/gkad695] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 07/28/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Methylation of cytosines in the CG context (mCG) is the most abundant DNA modification in vertebrates that plays crucial roles in cellular differentiation and identity. After fertilization, DNA methylation patterns inherited from parental gametes are remodelled into a state compatible with embryogenesis. In mammals, this is achieved through the global erasure and re-establishment of DNA methylation patterns. However, in non-mammalian vertebrates like zebrafish, no global erasure has been observed. To investigate the evolutionary conservation and divergence of DNA methylation remodelling in teleosts, we generated base resolution DNA methylome datasets of developing medaka and medaka-zebrafish hybrid embryos. In contrast to previous reports, we show that medaka display comparable DNA methylome dynamics to zebrafish with high gametic mCG levels (sperm: ∼90%; egg: ∼75%), and adoption of a paternal-like methylome during early embryogenesis, with no signs of prior DNA methylation erasure. We also demonstrate that non-canonical DNA methylation (mCH) reprogramming at TGCT tandem repeats is a conserved feature of teleost embryogenesis. Lastly, we find remarkable evolutionary conservation of DNA methylation remodelling patterns in medaka-zebrafish hybrids, indicative of compatible DNA methylation maintenance machinery in far-related teleost species. Overall, these results suggest strong evolutionary conservation of DNA methylation remodelling pathways in teleosts, which is distinct from the global DNA methylome erasure and reestablishment observed in mammals.
Collapse
Affiliation(s)
- Samuel E Ross
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Javier Vázquez-Marín
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Krista R B Gert
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Vienna BioCenter PhD Program, Doctoral School of the University of Vienna and Medical University of Vienna, A-1030, Vienna, Austria
| | - Álvaro González-Rajal
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Marcel E Dinger
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- School of Life and Environmental Sciences, University of Sydney, Sydney, Australia
| | - Andrea Pauli
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Juan Ramon Martínez-Morales
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Ozren Bogdanovic
- Garvan Institute of Medical Research, Sydney, Australia
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
- Centro Andaluz de Biología del Desarrollo, CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| |
Collapse
|
16
|
Moreta-Moraleda C, Queralt C, Vendrell-Ayats C, Forcales S, Martínez-Balibrea E. Chromatin factors: Ready to roll as biomarkers in metastatic colorectal cancer? Pharmacol Res 2023; 196:106924. [PMID: 37709185 DOI: 10.1016/j.phrs.2023.106924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/29/2023] [Accepted: 09/12/2023] [Indexed: 09/16/2023]
Abstract
Colorectal cancer (CRC) ranks as the third most prevalent cancer globally and stands as the fourth leading cause of cancer-related fatalities in 2020. Survival rates for metastatic disease have slightly improved in recent decades, with clinical trials showing median overall survival of approximately 24-30 months. This progress can be attributed to the integration of chemotherapeutic treatments alongside targeted therapies and immunotherapy. Despite these modest improvements, the primary obstacle to successful treatment for advanced CRC lies in the development of chemoresistance, whether inherent or acquired, which remains the major cause of treatment failure. Epigenetics has emerged as a hallmark of cancer, contributing to master transcription regulation and genome stability maintenance. As a result, epigenetic factors are starting to appear as potential clinical biomarkers for diagnosis, prognosis, and prediction of treatment response in CRC.In recent years, numerous studies have investigated the influence of DNA methylation, histone modifications, and chromatin remodelers on responses to chemotherapeutic treatments. While there is accumulating evidence indicating their significant involvement in various types of cancers, the exact relationship between chromatin landscapes and treatment modulation in CRC remains elusive. This review aims to provide a comprehensive summary of the most pertinent and extensively researched epigenetic-associated mechanisms described between 2015 and 2022 and their potential usefulness as predictive biomarkers in the metastatic disease.
Collapse
Affiliation(s)
- Cristina Moreta-Moraleda
- Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain
| | - Cristina Queralt
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Carla Vendrell-Ayats
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain
| | - Sonia Forcales
- Serra Húnter Programme, Immunology Unit, Department of Pathology and Experimental Therapeutics, Faculty of Medicine and Health Sciences, University of Barcelona, c/Feixa Llarga s/n, 08917 L'Hospitalet de Llobregat, Barcelona, Spain; Group of Inflammation, Immunity and Cancer, Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), The Bellvitge Biomedical Research Institute ( IDIBELL), Hospital Duran i Reynals 3a Planta, Av. Gran Via de l'Hospitalet 199, 08908 L'Hospitalet de Llobregat, Spain.
| | - Eva Martínez-Balibrea
- ProCURE Program, Catalan Instiute of Oncology, Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain; CARE Program, Germans Trias I Pujol Research Institute (IGTP), Carretera de Can Ruti, camí de les escoles s/n, 08916 Badalona, Spain.
| |
Collapse
|
17
|
Santos HP, Enggasser AE, Clark J, Roell K, Zhabotynsky V, Gower WA, Yanni D, Yang NG, Washburn L, Gogcu S, Marsit CJ, Kuban K, O'Shea TM, Fry RC. Sexually dimorphic methylation patterns characterize the placenta and blood from extremely preterm newborns. BMC Biol 2023; 21:173. [PMID: 37608375 PMCID: PMC10464100 DOI: 10.1186/s12915-023-01662-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 07/12/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND Health outcomes among children born prematurely are known to be sexually dimorphic, with male infants often more affected, yet the mechanism behind this observation is not clear. CpG methylation levels in the placenta and blood also differ by sex and are associated with adverse health outcomes. We contrasted CpG methylation levels in the placenta and neonatal blood (n = 358) from the Extremely Low Gestational Age Newborn (ELGAN) cohort based on the EPIC array, which assays over 850,000 CpG sites across the epigenome. Sex-specific epigenome-wide association analyses were conducted for the placenta and neonatal blood samples independently, and the results were compared to determine tissue-specific differences between the methylation patterns in males and females. All models were adjusted for cell type heterogeneity. Enrichment pathway analysis was performed to identify the biological functions of genes related to the sexually dimorphic CpG sites. RESULTS Approximately 11,500 CpG sites were differentially methylated in relation to sex. Of these, 5949 were placenta-specific and 5361 were blood-specific, with only 233 CpG sites overlapping in both tissues. For placenta-specific CpG sites, 90% were hypermethylated in males. For blood-specific CpG sites, 95% were hypermethylated in females. In the placenta, keratinocyte differentiation biological pathways were enriched among the differentially methylated genes. No enrichment pathways were observed for blood. CONCLUSIONS Distinct methylation patterns were observed between male and female children born extremely premature, and keratinocyte differentiation pathways were enriched in the placenta. These findings provide new insights into the epigenetic mechanisms underlying sexually dimorphic health outcomes among extremely premature infants.
Collapse
Affiliation(s)
- Hudson P Santos
- School of Nursing and Health Studies, University of Miami, Coral Gables, FL, USA.
| | - Adam E Enggasser
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jeliyah Clark
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Kyle Roell
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Vasyl Zhabotynsky
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - William Adam Gower
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Diana Yanni
- Department of Neonatology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Nou Gao Yang
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Lisa Washburn
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Semsa Gogcu
- Department of Pediatrics, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carmen J Marsit
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karl Kuban
- Division of Pediatric Neurology, Department of Pediatrics, School of Medicine, Boston. University, Boston, MA, USA
| | - T Michael O'Shea
- Department of Pediatrics, School of Medicine, University of North Carolina, Chapel Hill, NC, USA
| | - Rebecca C Fry
- Gillings School of Global Public Health, Institute for Environmental Health Solutions, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
18
|
Li Q, Lu J, Yin X, Chang Y, Wang C, Yan M, Feng L, Cheng Y, Gao Y, Xu B, Zhang Y, Wang Y, Cui G, Xu L, Sun Y, Zeng R, Li Y, Jing N, Xu GL, Wu L, Tang F, Li J. Base editing-mediated one-step inactivation of the Dnmt gene family reveals critical roles of DNA methylation during mouse gastrulation. Nat Commun 2023; 14:2922. [PMID: 37217538 PMCID: PMC10203112 DOI: 10.1038/s41467-023-38528-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 05/05/2023] [Indexed: 05/24/2023] Open
Abstract
During embryo development, DNA methylation is established by DNMT3A/3B and subsequently maintained by DNMT1. While much research has been done in this field, the functional significance of DNA methylation in embryogenesis remains unknown. Here, we establish a system of simultaneous inactivation of multiple endogenous genes in zygotes through screening for base editors that can efficiently introduce a stop codon. Embryos with mutations in Dnmts and/or Tets can be generated in one step with IMGZ. Dnmt-null embryos display gastrulation failure at E7.5. Interestingly, although DNA methylation is absent, gastrulation-related pathways are down-regulated in Dnmt-null embryos. Moreover, DNMT1, DNMT3A, and DNMT3B are critical for gastrulation, and their functions are independent of TET proteins. Hypermethylation can be sustained by either DNMT1 or DNMT3A/3B at some promoters, which are related to the suppression of miRNAs. The introduction of a single mutant allele of six miRNAs and paternal IG-DMR partially restores primitive streak elongation in Dnmt-null embryos. Thus, our results unveil an epigenetic correlation between promoter methylation and suppression of miRNA expression for gastrulation and demonstrate that IMGZ can accelerate deciphering the functions of multiple genes in vivo.
Collapse
Affiliation(s)
- Qing Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Jiansen Lu
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Xidi Yin
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Yunjian Chang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Chao Wang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Meng Yan
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China
| | - Li Feng
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Yanbo Cheng
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Yun Gao
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China
| | - Beiying Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yao Zhang
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yingyi Wang
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China
| | - Guizhong Cui
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Luang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Yidi Sun
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Center for Excellence in Molecular Cell Science, Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, Shanghai, China
| | - Yixue Li
- Bio-Med Big Data Center, Key Laboratory of Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, China
| | - Naihe Jing
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Guo-Liang Xu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Ligang Wu
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China.
| | - Fuchou Tang
- School of Life Sciences, Biomedical Pioneering Innovation Center, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, China.
| | - Jinsong Li
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, Shanghai, China.
| |
Collapse
|
19
|
Laqqan MM, Al-Ghora SS, Yassin MM. Impact of waterpipe and tobacco cigarette smoking on global DNA methylation and nuclear proteins genes transcription in spermatozoa: a comparative investigation. Inhal Toxicol 2023:1-10. [PMID: 37145555 DOI: 10.1080/08958378.2023.2208608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
BACKGROUND Waterpipe smoking is harmful and dangerous, and it is a growing threat to public health. OBJECTIVES This study was performed to evaluate the influence of waterpipe smoking on global DNA methylation, DNA fragmentation, and protamine deficiency in spermatozoa compared to cigarette heavy smokers and nonsmokers, and to determine whether the transcription levels of spermatozoa nuclear proteins genes 'PRM1, PRM2, and H2BFWT' in waterpipe smokers are different compared to cigarette heavy smokers and nonsmokers. METHODS A total of 900 semen samples were collected from males with a mean age of 32.5 ± 6.3 years (300 waterpipe smokers, 300 cigarette heavy smokers, and 300 nonsmokers). The nucleic acids were isolated from purified spermatozoa, and then the global DNA methylation and transcription levels of the PRM1, PRM2, and H2BFWT genes were assessed using ELISA and qPCR, respectively. RESULTS A significant increase was found in the level of global DNA methylation (8.6 ± 0.6 ng/μl vs. 7.1 ± 0.6 ng/μl and 4.7 ± 0.6 ng/μl, p < 0.001), protamine deficiency (72.8 ± 15.3 vs. 51.7 ± 19.2 and 15.3 ± 5.9%, p < 0.001), and DNA fragmentation (73.4 ± 13.4 vs. 50.5 ± 18.9 and 9.3 ± 4.3%, p < 0.001) in waterpipe smokers compared to cigarette heavy smokers and nonsmokers. A significant increase was shown in the transcription levels of PRM1, PRM2, and H2BFWT genes in waterpipe smokers compared to cigarette heavy smokers and nonsmokers (p < 0.001). A down-regulation was found in the transcription level of these genes in different smoker groups compared to nonsmokers (<0.001). CONCLUSION This study suggests that waterpipe smoking is more harmful than cigarette smoking on semen parameters, global DNA methylation, and transcription of nuclear protein genes.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Faculty of Health Sciences, Department of Medical Laboratory Sciences, Islamic University of Gaza, Gaza, Palestine
| | - Said S Al-Ghora
- Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
| | - Maged M Yassin
- Faculty of Medicine, Department of Human Physiology, Islamic University of Gaza, Gaza, Palestine
| |
Collapse
|
20
|
Lima CNC, Kovács EHC, Mirza S, Del Favero-Campbell A, Diaz AP, Quevedo J, Argue BMR, Richards JG, Williams A, Wemmie JA, Magnotta VA, Fiedorowicz JG, Soares JC, Gaine ME, Fries GR. Association between the epigenetic lifespan predictor GrimAge and history of suicide attempt in bipolar disorder. Neuropsychopharmacology 2023; 48:954-962. [PMID: 36878995 PMCID: PMC10156727 DOI: 10.1038/s41386-023-01557-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/07/2023] [Accepted: 02/20/2023] [Indexed: 03/08/2023]
Abstract
Bipolar disorder (BD) has been previously associated with premature mortality and aging, including acceleration of epigenetic aging. Suicide attempts (SA) are greatly elevated in BD and are associated with decreased lifespan, biological aging, and poorer clinical outcomes. We investigated the relationship between GrimAge, an epigenetic clock trained on time-to-death and associated with mortality and lifespan, and SA in two independent cohorts of BD individuals (discovery cohort - controls (n = 50), BD individuals with (n = 77, BD/SA) and without (n = 67, BD/non-SA) lifetime history of SA; replication cohort - BD/SA (n = 48) and BD/non-SA (n = 47)). An acceleration index for the GrimAge clock (GrimAgeAccel) was computed from blood DNA methylation (DNAm) and compared between groups with multiple general linear models. Differences in epigenetic aging from the discovery cohort were validated in the independent replication cohort. In the discovery cohort, controls, BD/non-SA, and BD/SA significantly differed on GrimAgeAccel (F = 5.424, p = 0.005), with the highest GrimAgeAccel in BD/SA (p = 0.004, BD/SA vs. controls). Within the BD individuals, BD/non-SA and BD/SA differed on GrimAgeAccel in both cohorts (p = 0.008) after covariate adjustment. Finally, DNAm-based surrogates revealed possible involvement of plasminogen activator inhibitor 1, leptin, and smoking pack-years in driving accelerated epigenetic aging. These findings pair with existing evidence that not only BD, but also SA, may be associated with an accelerated biological aging and provide putative biological mechanisms for morbidity and premature mortality in this population.
Collapse
Affiliation(s)
- Camila N C Lima
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Emese H C Kovács
- Department of Neuroscience and Pharmacology, The University of Iowa, 51 Newton Rd, 52242, Iowa City, IA, USA
| | - Salahudeen Mirza
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Institute of Child Development, University of Minnesota, 51 E River Rd, 55455, Minneapolis, MN, USA
| | - Alexandra Del Favero-Campbell
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
| | - Alexandre Paim Diaz
- Center for the Study and Prevention of Suicide, Department of Psychiatry, University of Rochester Medical Center, Rochester, NY, USA
| | - Joao Quevedo
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Benney M R Argue
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
| | - Jenny Gringer Richards
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Aislinn Williams
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - John A Wemmie
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Vincent A Magnotta
- Department of Radiology, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
- Department of Psychiatry, The University of Iowa, 200 Hawkins Dr, 52242, Iowa City, IA, USA
| | - Jess G Fiedorowicz
- University of Ottawa Brain and Mind Research Institute, Ottawa Hospital Research Institute, 501 Smyth, K1H 8L6, Ottawa, ON, Canada
| | - Jair C Soares
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA
| | - Marie E Gaine
- Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, 180 South Grand Ave, 52242, Iowa City, IA, USA
- Iowa Neuroscience Institute, The University of Iowa, 169 Newton Rd, 52242, Iowa City, IA, USA
| | - Gabriel R Fries
- Translational Psychiatry Program, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Center of Excellence in Mood Disorders, Faillace Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, 1941 East Rd, 77054, Houston, TX, USA.
- Neuroscience Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, 6767 Bertner Ave, 77030, Houston, TX, USA.
- Center for Precision Health, School of Biomedical Informatics, The University of Texas Health Science Center at Houston, 7000 Fannin, 77030, Houston, TX, USA.
| |
Collapse
|
21
|
Lo JO, D’Mello RJ, Watch L, Schust DJ, Murphy SK. An epigenetic synopsis of parental substance use. Epigenomics 2023; 15:453-473. [PMID: 37282544 PMCID: PMC10308258 DOI: 10.2217/epi-2023-0064] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023] Open
Abstract
The rate of substance use is rising, especially among reproductive-age individuals. Emerging evidence suggests that paternal pre-conception and maternal prenatal substance use may alter offspring epigenetic regulation (changes to gene expression without modifying DNA) and outcomes later in life, including neurodevelopment and mental health. However, relatively little is known due to the complexities and limitations of existing studies, making causal interpretations challenging. This review examines the contributions and influence of parental substance use on the gametes and potential transmissibility to the offspring's epigenome as possible areas to target public health warnings and healthcare provider counseling of individuals or couples in the pre-conception and prenatal periods to ultimately mitigate short- and long-term offspring morbidity and mortality.
Collapse
Affiliation(s)
- Jamie O Lo
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Rahul J D’Mello
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR 97006, USA; Department of Obstetrics & Gynecology, Maternal Fetal Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lester Watch
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Danny J Schust
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Endocrinology & Infertility, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
| | - Susan K Murphy
- Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27710, USA
- Division of Reproductive Sciences, Department of Obstetrics & Gynecology, Duke University Medical Center, Durham, NC 27701, USA; Division of Environmental Sciences & Policy, Duke Nicholas School of the Environment, Duke University, Durham, NC 27708, USA; Department of Pathology, Duke University Medical Center, Durham, NC, 27710, USA
| |
Collapse
|
22
|
Perng W, Nakiwala D, Goodrich JM. What Happens In Utero Does Not Stay In Utero: a Review of Evidence for Prenatal Epigenetic Programming by Per- and Polyfluoroalkyl Substances (PFAS) in Infants, Children, and Adolescents. Curr Environ Health Rep 2023; 10:35-44. [PMID: 36414885 DOI: 10.1007/s40572-022-00387-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2022] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Review human literature on the relationship between prenatal exposure to per- and polyfluoroalkyl substances (PFAS) and epigenetic modifications in infants, children, and adolescents < 18 years of age. RECENT FINDINGS Eleven studies were identified, with study populations located in the U.S., Taiwan, Japan, and the Kingdom of Denmark. Many studies (n = 5) were cross-sectional, with PFAS exposure and epigenetic outcomes measured in the same tissue collected at delivery via cord blood or dried newborn blood spots. The other six studies were prospective, with prenatal PFAS measured on maternal blood during pregnancy and DNA methylation (DNAm) assessed in cord blood and childhood peripheral leukocytes (n = 1 study). Epigenetic marks of interest included global DNAm measures (LINE-1, Alu, and an ELISA-based method), candidate genes (IFG2, H19, and MEST), and epigenome-wide DNA methylation via array-based methods (Infinium 450 K and EPIC). Two studies using array-based methods employed discovery and validation paradigms, in which a small subset of loci (n = 6 and n = 4) were replicated in the discovery population. One site (TNXB) was a hit in two independent studies. Collectively, loci associated with PFAS were in regions involved in growth and development, lipid metabolism, and nutrient metabolism. There is moderate human evidence supporting associations of prenatal PFAS exposure on DNAm at birth, with one study suggesting sustained effects into childhood. Future studies are warranted to link PFAS-associated DNAm to health outcomes, as well as to investigate the role of other epigenetic marks such as hydroxymethylation, miRNA expression, and histone modifications.
Collapse
Affiliation(s)
- Wei Perng
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA.
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA.
| | - Dorothy Nakiwala
- Lifecourse Epidemiology of Adiposity and Diabetes (LEAD) Center, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Jaclyn M Goodrich
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, USA
| |
Collapse
|
23
|
Laqqan MM, Yassin MM. Effect of hubble-bubble smoking on global DNA methylation and transcription levels of protamine and histone genes in human spermatozoa. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:53-60. [PMID: 36744325 DOI: 10.1080/10934529.2023.2174326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/27/2022] [Accepted: 01/06/2023] [Indexed: 06/18/2023]
Abstract
This study was conducted to assess the impact of hubble-bubble smoking on global DNA methylation, DNA fragmentation; protamine deficiency of spermatozoa, and to determine whether the transcription levels of the protamine and histone genes are different in hubble-bubble smokers compared to nonsmokers. Five hundred semen samples were collected from males with an average age of 32.2 ± 6.1 years (300 hubble-bubble smokers "60%" and 200 nonsmokers "40%"). The nucleic acid was isolated from purified sperm, then ELISA and qPCR were used to evaluate the global DNA methylation and transcription level of protamine and histone, respectively. A significant elevation in global DNA methylation, protamine deficiency, and DNA fragmentation was found in hubble-bubble smokers compared to nonsmokers (P < 0.0001). A significant decline was shown in transcription levels of protamine and histone genes in hubble-bubble compared to nonsmokers (P < 0.0001). Additionally, a down-regulation in the transcription levels of protamine and histone was revealed in hubble-bubble compared to nonsmokers with fold change (0.0001 and 0.007, respectively). In conclusion, this study provided proof that hubble-bubble smoking has a negative impact on global DNA methylation, DNA fragmentation, protamine deficiency, and the transcription of protamine and histone genes in spermatozoa, and these findings influence negatively males' fecundity.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University of Gaza, Gaza, Palestine
- Department of Gynecology & Obstetrics, Faculty of Medicine, Saarland University "Graduate", Saarbrucken, Germany
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University of Gaza, Gaza, Palestine
| |
Collapse
|
24
|
Epigenetic Modification of Cytosines in Hematopoietic Differentiation and Malignant Transformation. Int J Mol Sci 2023; 24:ijms24021727. [PMID: 36675240 PMCID: PMC9863985 DOI: 10.3390/ijms24021727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
The mammalian DNA methylation landscape is established and maintained by the combined activities of the two key epigenetic modifiers, DNA methyltransferases (DNMT) and Ten-eleven-translocation (TET) enzymes. Once DNMTs produce 5-methylcytosine (5mC), TET proteins fine-tune the DNA methylation status by consecutively oxidizing 5mC to 5-hydroxymethylcytosine (5hmC) and further oxidized derivatives. The 5mC and oxidized methylcytosines are essential for the maintenance of cellular identity and function during differentiation. Cytosine modifications with DNMT and TET enzymes exert pleiotropic effects on various aspects of hematopoiesis, including self-renewal of hematopoietic stem/progenitor cells (HSPCs), lineage determination, differentiation, and function. Under pathological conditions, these enzymes are frequently dysregulated, leading to loss of function. In particular, the loss of DNMT3A and TET2 function is conspicuous in diverse hematological disorders, including myeloid and lymphoid malignancies, and causally related to clonal hematopoiesis and malignant transformation. Here, we update recent advances in understanding how the maintenance of DNA methylation homeostasis by DNMT and TET proteins influences normal hematopoiesis and malignant transformation, highlighting the potential impact of DNMT3A and TET2 dysregulation on clonal dominance and evolution of pre-leukemic stem cells to full-blown malignancies. Clarification of the normal and pathological functions of DNA-modifying epigenetic regulators will be crucial to future innovations in epigenetic therapies for treating hematological disorders.
Collapse
|
25
|
Dynamics of DNA hydroxymethylation and methylation during mouse embryonic and germline development. Nat Genet 2023; 55:130-143. [PMID: 36539615 DOI: 10.1038/s41588-022-01258-x] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/01/2022] [Indexed: 12/24/2022]
Abstract
In mammals, DNA 5-hydroxymethylcytosine (5hmC) is involved in methylation reprogramming during early embryonic development. Yet, to what extent 5hmC participates in genome-wide methylation reprogramming remains largely unknown. Here, we characterize the 5hmC landscapes in mouse early embryos and germ cells with parental allele specificity. DNA hydroxymethylation was most strongly correlated with DNA demethylation as compared with de novo or maintenance methylation in zygotes, while 5hmC was targeted to particular de novo methylated sites in postimplantation epiblasts. Surprisingly, DNA replication was also required for 5hmC generation, especially in the female pronucleus. More strikingly, aberrant nuclear localization of Dnmt1/Uhrf1 in mouse zygotes due to maternal deficiency of Nlrp14 led to defects in DNA-replication-coupled passive demethylation and impaired 5hmC deposition, revealing the divergency between genome-wide 5-methylcytosine (5mC) maintenance and Tet-mediated oxidation. In summary, our work provides insights and a valuable resource for the study of epigenetic regulation in early embryo development.
Collapse
|
26
|
Zhang P, Li Y, Wang K, Huang J, Su BB, Xu C, Wang Z, Tan S, Yang F, Tan Y. Altered DNA methylation of CYP2E1 gene in schizophrenia patients with tardive dyskinesia. BMC Med Genomics 2022; 15:253. [PMID: 36494682 PMCID: PMC9733323 DOI: 10.1186/s12920-022-01404-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/25/2022] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND About 20-30% of patients with schizophrenia develop tardive dyskinesia (TD). Oxidative stress is one potential causes of TD. CYP2E1 is considered as an oxidative stress-related gene, however, no study has been reported on the DNA methylation levels of the CYP2E1 in schizophrenia or TD. METHODS A total of 35 schizophrenia patients with TD, 35 schizophrenia patients without TD (NTD), and 35 health controls (HCs) were collected in Beijing, China. DNA was extracted from peripheral blood samples. The promoter methylation levels of CYP2E1 were detected using pyrosequencing. The generalized linear model (GLM) was used to examine the methylation levels of three CpG sites among three diagnostic groups (TD vs. NTD vs. HC). RESULTS The average methylation levels were 8.8 ± 10.0, 14.5 ± 11.9 and 15.1 ± 11.3 in TD, NTD and HC groups, respectively. The F-test in GLM revealed overall differences in the average of methylation levels of three CpG sites among three diagnostic groups (p = 0.0227) and in the third CpG site (p = 0.0026). Furthermore, the TD group had lower average methylation levels than HC and NTD groups (p = 0.0115 and 0.0268, respectively). Specifically, TD group showed lower methylation levels in the third CpG site than HC and NTD groups (p = 0.0012 and 0.0072, respectively). Additionally, associations of the methylation levels with clinical features in the TD group were observed using Spearman correlation analysis. CONCLUSION This study provides the first evidence of DNA methylation levels in the promoter of CYP2E1 gene associated with schizophrenia and TD. The abnormal DNA methylation might serve as a potential mechanism for TD.
Collapse
Affiliation(s)
- Ping Zhang
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| | - Yanli Li
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| | - Kesheng Wang
- grid.268154.c0000 0001 2156 6140Department of Family and Community Health, Robert C. Byrd Health Sciences Center, School of Nursing, West Virginia University, Morgantown, WV 26506 USA
| | - Junchao Huang
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| | - Brenda Bin Su
- grid.449717.80000 0004 5374 269XDepartment of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valle, Brownsville, TX USA
| | - Chun Xu
- grid.449717.80000 0004 5374 269XDepartment of Health and Biomedical Sciences, College of Health Affairs, University of Texas Rio Grande Valle, Brownsville, TX USA
| | - Zhiren Wang
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| | - Shuping Tan
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| | - Fude Yang
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| | - Yunlong Tan
- grid.11135.370000 0001 2256 9319Beijing HuiLongGuan Hospital, Peking University HuiLongGuan Clinical Medical School, Beijing, 100096 China
| |
Collapse
|
27
|
Zhang M, Zong W, Zou D, Wang G, Zhao W, Yang F, Wu S, Zhang X, Guo X, Ma Y, Xiong Z, Zhang Z, Bao Y, Li R. MethBank 4.0: an updated database of DNA methylation across a variety of species. Nucleic Acids Res 2022; 51:D208-D216. [PMID: 36318250 PMCID: PMC9825483 DOI: 10.1093/nar/gkac969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/05/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
DNA methylation, as the most intensively studied epigenetic mark, regulates gene expression in numerous biological processes including development, aging, and disease. With the rapid accumulation of whole-genome bisulfite sequencing data, integrating, archiving, analyzing, and visualizing those data becomes critical. Since its first publication in 2015, MethBank has been continuously updated to include more DNA methylomes across more diverse species. Here, we present MethBank 4.0 (https://ngdc.cncb.ac.cn/methbank/), which reports an increase of 309% in data volume, with 1449 single-base resolution methylomes of 23 species, covering 236 tissues/cell lines and 15 biological contexts. Value-added information, such as more rigorous quality evaluation, more standardized metadata, and comprehensive downstream annotations have been integrated in the new version. Moreover, expert-curated knowledge modules of featured differentially methylated genes associated with biological contexts and methylation analysis tools have been incorporated as new components of MethBank. In addition, MethBank 4.0 is equipped with a series of new web interfaces to browse, search, and visualize DNA methylation profiles and related information. With all these improvements, we believe the updated MethBank 4.0 will serve as a fundamental resource to provide a wide range of data services for the global research community.
Collapse
Affiliation(s)
| | | | | | | | - Wei Zhao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Yang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China
| | - Song Wu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinran Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xutong Guo
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingke Ma
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China
| | - Zhuang Xiong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing 100101, China,China National Center for Bioinformation, Beijing 100101, China,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhang Zhang
- Correspondence may also be addressed to Zhang Zhang. Tel: +86 10 84097261;
| | - Yiming Bao
- Correspondence may also be addressed to Yiming Bao. Tel: +86 10 84097858;
| | - Rujiao Li
- To whom correspondence should be addressed. Tel: +86 10 84097638;
| |
Collapse
|
28
|
Ashapkin V, Suvorov A, Pilsner JR, Krawetz SA, Sergeyev O. Age-associated epigenetic changes in mammalian sperm: implications for offspring health and development. Hum Reprod Update 2022; 29:24-44. [PMID: 36066418 PMCID: PMC9825272 DOI: 10.1093/humupd/dmac033] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 08/05/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Modern reproductive behavior in most developed countries is characterized by delayed parenthood. Older gametes are generally less fertile, accumulating and compounding the effects of varied environmental exposures that are modified by lifestyle factors. Clinicians are primarily concerned with advanced maternal age, while the influence of paternal age on fertility, early development and offspring health remains underappreciated. There is a growing trend to use assisted reproductive technologies for couples of advanced reproductive age. Thus, the number of children born from older gametes is increasing. OBJECTIVE AND RATIONALE We review studies reporting age-associated epigenetic changes in mammals and humans in sperm, including DNA methylation, histone modifications and non-coding RNAs. The interplay between environment, fertility, ART and age-related epigenetic signatures is explored. We focus on the association of sperm epigenetics on epigenetic and phenotype events in embryos and offspring. SEARCH METHODS Peer-reviewed original and review articles over the last two decades were selected using PubMed and the Web of Science for this narrative review. Searches were performed by adopting the two groups of main terms. The first group included 'advanced paternal age', 'paternal age', 'postponed fatherhood', 'late fatherhood', 'old fatherhood' and the second group included 'sperm epigenetics', 'sperm', 'semen', 'epigenetic', 'inheritance', 'DNA methylation', 'chromatin', 'non-coding RNA', 'assisted reproduction', 'epigenetic clock'. OUTCOMES Age is a powerful factor in humans and rodent models associated with increased de novo mutations and a modified sperm epigenome. Age affects all known epigenetic mechanisms, including DNA methylation, histone modifications and profiles of small non-coding (snc)RNA. While DNA methylation is the most investigated, there is a controversy about the direction of age-dependent changes in differentially hypo- or hypermethylated regions with advanced age. Successful development of the human sperm epigenetic clock based on cross-sectional data and four different methods for DNA methylation analysis indicates that at least some CpG exhibit a linear relationship between methylation levels and age. Rodent studies show a significant overlap between genes regulated through age-dependent differentially methylated regions and genes targeted by age-dependent sncRNA. Both age-dependent epigenetic mechanisms target gene networks enriched for embryo developmental, neurodevelopmental, growth and metabolic pathways. Thus, age-dependent changes in the sperm epigenome cannot be described as a stochastic accumulation of random epimutations and may be linked with autism spectrum disorders. Chemical and lifestyle exposures and ART techniques may affect the epigenetic aging of sperm. Although most epigenetic modifications are erased in the early mammalian embryo, there is growing evidence that an altered offspring epigenome and phenotype is linked with advanced paternal age due to the father's sperm accumulating epigenetic changes with time. It has been hypothesized that age-induced changes in the sperm epigenome are profound, physiological and dynamic over years, yet stable over days and months, and likely irreversible. WIDER IMPLICATIONS This review raises a concern about delayed fatherhood and age-associated changes in the sperm epigenome that may compromise reproductive health of fathers and transfer altered epigenetic information to subsequent generations. Prospective studies using healthy males that consider confounders are recommended. We suggest a broader discussion focused on regulation of the father's age in natural and ART conceptions is needed. The professional community should be informed and should raise awareness in the population and when counseling older men.
Collapse
Affiliation(s)
| | | | - J Richard Pilsner
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Stephen A Krawetz
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Oleg Sergeyev
- Correspondence address. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, Room 322, Moscow 119992, Russia. E-mail: https://orcid.org/0000-0002-5745-3348
| |
Collapse
|
29
|
Anqi Y, Saina Y, Chujie C, Yanfei Y, Xiangwei T, Jiajia M, Jiaojiao X, Maoliang R, Bin C. Regulation of DNA methylation during the testicular development of Shaziling pigs. Genomics 2022; 114:110450. [PMID: 35995261 DOI: 10.1016/j.ygeno.2022.110450] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/18/2022]
Abstract
DNA methylation is one of the key epigenetic regulatory mechanisms in development and spermatogenesis. However, the dynamic regulatory mechanisms of genome-wide DNA methylation during testicular development remain largely unknown. Herein, we generated a single-base resolution DNA methylome and transcriptome atlas of precocious porcine testicular tissues across three developmental stages (1, 75, and 150 days old). The results showed that the dynamic methylation patterns were directly related to the expression of the DNMT3A gene. Conjoint analysis revealed a negative regulatory pattern between promoter methylation and the positive regulation of 3'-untranslated region (3'UTR) methylation. Mechanistically, the decrease in promoter methylation affected the upregulation of meiosis-related genes, such as HORMAD1, SPO11, and SYCE1. Demethylation in the 3'UTR induced the downregulation of the INHBA gene and knockdown of INHBA inhibited cell proliferation by reducing the synthesis of activin A. These findings contribute to exploring the regulatory mechanisms of DNA methylation in testicular development.
Collapse
Affiliation(s)
- Yang Anqi
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yan Saina
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Chen Chujie
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Yin Yanfei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Tang Xiangwei
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ma Jiajia
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Xiang Jiaojiao
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China
| | - Ran Maoliang
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| | - Chen Bin
- College of Animal Science and Technology, Hunan Provincial Key Laboratory for Genetic Improvement of Domestic Animal, Hunan Agricultural University, Hunan, Changsha 410128, China.
| |
Collapse
|
30
|
Li X, Wang M, Liu S, Chen X, Qiao Y, Yang X, Yao J, Wu S. Paternal transgenerational nutritional epigenetic effect: A new insight into nutritional manipulation to reduce the use of antibiotics in animal feeding. ANIMAL NUTRITION 2022; 11:142-151. [PMID: 36204282 PMCID: PMC9527621 DOI: 10.1016/j.aninu.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 07/10/2022] [Accepted: 07/14/2022] [Indexed: 11/15/2022]
Abstract
The use of antibiotics in animal feeding has been banned in many countries because of increasing concerns about the development of bacterial resistance to antibiotics and potential issues on food safety. Searching for antibiotic substitutes is essential. Applying transgenerational epigenetic technology to animal production could be an alternative. Some environmental changes can be transferred to memory-like responses in the offspring through epigenetic mechanisms without changing the DNA sequence. In this paper, we reviewed those nutrients and non-nutritional additives that have transgenerational epigenetic effects, including some amino acids, vitamins, and polysaccharides. The paternal transgenerational nutritional epigenetic regulation was particularly focused on mechanism of the substantial contribution of male stud animals to the animal industries. We illustrated the effects of paternal transgenerational epigenetics on the metabolism and immunity in farming animals and proposed strategies to modulate male breeding livestock or poultry.
Collapse
Affiliation(s)
- Xinyi Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Medicine, Karolinska Institutet, Solna, Stockholm 17165, Sweden
| | - Mengya Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Shimin Liu
- Institute of Agriculture, University of Western Australia, Crawley, WA 6009, Australia
| | - Xiaodong Chen
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yu Qiao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Animal Engineering, Yangling Vocational and Technical College, Yangling, Shaanxi 712100, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Junhu Yao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| | - Shengru Wu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi 712100, China
- Corresponding authors.
| |
Collapse
|
31
|
Stage-specific H3K9me3 occupancy ensures retrotransposon silencing in human pre-implantation embryos. Cell Stem Cell 2022; 29:1051-1066.e8. [DOI: 10.1016/j.stem.2022.06.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 03/31/2022] [Accepted: 06/01/2022] [Indexed: 12/13/2022]
|
32
|
Chandramouly G. Gadd45 in DNA Demethylation and DNA Repair. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1360:55-67. [PMID: 35505162 DOI: 10.1007/978-3-030-94804-7_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Growth arrest and DNA damage 45 (Gadd45) family genes, Gadd45A, Gadd45B, and GADD45 G are implicated as stress sensors that are rapidly induced upon genotoxic/physiological stress. They are involved in regulation of various cellular functions such as DNA repair, senescence, and cell cycle control. Gadd45 family of genes serve as tumor suppressors in response to different stimuli and defects in Gadd45 pathway can give rise to oncogenesis. More recently, Gadd45 has been shown to promote gene activation by demethylation and this function is important for transcriptional regulation and differentiation during development. Gadd45 serves as an adaptor for DNA repair factors to promote removal of 5-methylcytosine from DNA at gene specific loci. Therefore, Gadd45 serves as a powerful link between DNA repair and epigenetic gene regulation.
Collapse
Affiliation(s)
- Gurushankar Chandramouly
- Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Laqqan MM, Yassin MM. Cigarette heavy smoking alters DNA methylation patterns and gene transcription levels in humans spermatozoa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26835-26849. [PMID: 34855177 DOI: 10.1007/s11356-021-17786-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/23/2021] [Indexed: 05/27/2023]
Abstract
Tobacco smoking is considered the most common reason of death and infertility around the world. This study was designed to assess the impact of tobacco heavy smoking on sperm DNA methylation patterns and to determine whether the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes is different in heavy smokers compared to non-smokers. As a screening study, the 450 K array was used to assess the alteration in DNA methylation patterns between heavy smokers (n = 15) and non-smokers (n = 15). Then, four CpGs that have the highest difference in methylation level (cg16338278, cg08408433, cg05799088, and cg07227024) were selected for validation using deep bisulfite sequencing in an independent cohort of heavy smokers (n = 200) and non-smokers (n = 100). A significant variation was found between heavy smokers and non-smokers in the methylation level at all CpGs within the PRICKLE2 and ALS2CR12 gene amplicon (P < 0.001). Similarly, a significant variation was found in the methylation level at nine out of thirteen CpGs within the ALDH3B2 gene amplicon (P < 0.01). Additionally, eighteen CpGs out of the twenty-six within the PTGIR gene amplicon have a significant difference in the methylation level between heavy smokers and non-smokers (P < 0.01). The study showed a significant difference in sperm global DNA methylation, chromatin non-condensation, and DNA fragmentation (P < 0.001) between heavy smokers and non-smokers. A significant decline was shown in the transcription level of ALDH3B2, PTGIR, PRICKLE2, and ALS2CR12 genes (P < 0.001) in heavy smokers. In conclusion, heavy smoking influences DNA methylation at several CpGs, sperm global DNA methylation, and transcription level of the PRICKLE2, ALS2CR12, ALDH3B2, and PTGIR genes, which affects negatively the semen parameters of heavy smokers.
Collapse
Affiliation(s)
- Mohammed M Laqqan
- Department of Medical Laboratory Sciences, Faculty of Health Sciences, Islamic University, Gaza, Palestinian Territories, Palestine.
| | - Maged M Yassin
- Department of Human Physiology, Faculty of Medicine, Islamic University, Gaza, Palestinian Territories, Palestine
| |
Collapse
|
34
|
Dixon G, Matz M. Changes in gene body methylation do not correlate with changes in gene expression in Anthozoa or Hexapoda. BMC Genomics 2022; 23:234. [PMID: 35337260 PMCID: PMC8957121 DOI: 10.1186/s12864-022-08474-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
Background As human activity alters the planet, there is a pressing need to understand how organisms adapt to environmental change. Of growing interest in this area is the role of epigenetic modifications, such as DNA methylation, in tailoring gene expression to fit novel conditions. Here, we reanalyzed nine invertebrate (Anthozoa and Hexapoda) datasets to validate a key prediction of this hypothesis: changes in DNA methylation in response to some condition correlate with changes in gene expression. Results In accord with previous observations, baseline levels of gene body methylation (GBM) positively correlated with transcription, and negatively correlated with transcriptional variation between conditions. Correlations between changes in GBM and transcription, however, were negligible. There was also no consistent negative correlation between methylation and transcription at the level of gene body methylation class (either highly- or lowly-methylated), anticipated under the previously described “seesaw hypothesis”. Conclusion Our results do not support the direct involvement of GBM in regulating dynamic transcriptional responses in invertebrates. If changes in DNA methylation regulate invertebrate transcription, the mechanism must involve additional factors or regulatory influences. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08474-z.
Collapse
Affiliation(s)
- Groves Dixon
- Department of Integrative Biology, University of Texas at Austin, Austin, USA.
| | - Mikhail Matz
- Department of Integrative Biology, University of Texas at Austin, Austin, USA
| |
Collapse
|
35
|
Adaptive feature selection framework for DNA methylation-based age prediction. Soft comput 2022. [DOI: 10.1007/s00500-022-06844-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Carlini V, Policarpi C, Hackett JA. Epigenetic inheritance is gated by naïve pluripotency and Dppa2. EMBO J 2022; 41:e108677. [PMID: 35199868 PMCID: PMC8982627 DOI: 10.15252/embj.2021108677] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 01/12/2022] [Accepted: 01/17/2022] [Indexed: 12/14/2022] Open
Abstract
Environmental factors can trigger cellular responses that propagate across mitosis or even generations. Perturbations to the epigenome could underpin such acquired changes, however, the extent and contexts in which modified chromatin states confer heritable memory in mammals is unclear. Here, we exploit a precision epigenetic editing strategy and forced Xist activity to programme de novo heterochromatin domains (epialleles) at endogenous loci and track their inheritance in a developmental model. We find that naïve pluripotent phases systematically erase ectopic domains of heterochromatin via active mechanisms, which likely acts as an intergenerational safeguard against transmission of epialleles. Upon lineage specification, however, acquired chromatin states can be probabilistically inherited under selectively favourable conditions, including propagation of p53 silencing through in vivo development. Using genome‐wide CRISPR screening, we identify molecular factors that restrict heritable memory of epialleles in naïve pluripotent cells, and demonstrate that removal of chromatin factor Dppa2 unlocks the potential for epigenetic inheritance uncoupled from DNA sequence. Our study outlines a mechanistic basis for how epigenetic inheritance is constrained in mammals, and reveals genomic and developmental contexts in which heritable memory is feasible.
Collapse
Affiliation(s)
- Valentina Carlini
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy.,Faculty of Biosciences, Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Heidelberg, Germany
| | - Cristina Policarpi
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| | - Jamie A Hackett
- Epigenetics & Neurobiology Unit, European Molecular Biology Laboratory (EMBL), Rome, Italy
| |
Collapse
|
37
|
Vozdova M, Kubickova S, Kopecka V, Sipek J, Rubes J. Effects of the air pollution dynamics on semen quality and sperm DNA methylation in men living in urban industrial agglomeration. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:76-83. [PMID: 35246879 DOI: 10.1002/em.22474] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Human populations living in urban industrial regions of developed countries are exposed to high levels of environmental pollutants. The reproductive consequences of the exposure to air pollution can be monitored through semen analysis and molecular methods. In this study, we tested the possible impact of seasonal changes in the level of air pollution on the semen quality and sperm DNA methylation of 24 men living and working in the industrial agglomeration of Ostrava (Czech Republic). The study participants were healthy non-smokers. The study group was homogeneous regarding their profession, moderate alcohol consumption, no drug abuse and no additional exposure to chemical toxicants. We performed targeted methylation next generation sequencing (NGS) using Agilent SureSelect Human Methyl-Seq and Illumina NextSeq 500 platform to analyze semen samples collected repeatedly from the same men following the season of high (winter) and low (summer) air pollution exposure. We did not detect any adverse effects of the increased exposure on the semen quality; neither we found any difference in average sperm DNA methylation between the two sampling periods. Our search for differentially methylated CpG sites did not reveal any specific CpG methylation change. Our data indicate that the seasonal changes in the level of the air pollution probably do not have any substantial effect on sperm DNA methylation of men living in the highly polluted industrial agglomeration for a long period of time.
Collapse
Affiliation(s)
- Miluse Vozdova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Svatava Kubickova
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Vera Kopecka
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jaroslav Sipek
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| | - Jiri Rubes
- Department of Genetics and Reproductive Biotechnologies, Central European Institute of Technology, Veterinary Research Institute, Brno, Czech Republic
| |
Collapse
|
38
|
Zong W, Kang H, Xiong Z, Ma Y, Jin T, Gong Z, Yi L, Zhang M, Wu S, Wang G, Bao Y, Li R. scMethBank: a database for single-cell whole genome DNA methylation maps. Nucleic Acids Res 2022; 50:D380-D386. [PMID: 34570235 PMCID: PMC8728155 DOI: 10.1093/nar/gkab833] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/06/2021] [Accepted: 09/23/2021] [Indexed: 12/12/2022] Open
Abstract
Single-cell bisulfite sequencing methods are widely used to assess epigenomic heterogeneity in cell states. Over the past few years, large amounts of data have been generated and facilitated deeper understanding of the epigenetic regulation of many key biological processes including early embryonic development, cell differentiation and tumor progression. It is an urgent need to build a functional resource platform with the massive amount of data. Here, we present scMethBank, the first open access and comprehensive database dedicated to the collection, integration, analysis and visualization of single-cell DNA methylation data and metadata. Current release of scMethBank includes processed single-cell bisulfite sequencing data and curated metadata of 8328 samples derived from 15 public single-cell datasets, involving two species (human and mouse), 29 cell types and two diseases. In summary, scMethBank aims to assist researchers who are interested in cell heterogeneity to explore and utilize whole genome methylation data at single-cell level by providing browse, search, visualization, download functions and user-friendly online tools. The database is accessible at: https://ngdc.cncb.ac.cn/methbank/scm/.
Collapse
Affiliation(s)
- Wenting Zong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongen Kang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuang Xiong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingke Ma
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Tong Jin
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zheng Gong
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lizhi Yi
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| | - Mochen Zhang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Song Wu
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Wang
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yiming Bao
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rujiao Li
- National Genomics Data Center & CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
- China National Center for Bioinformation, Beijing 100101, China
| |
Collapse
|
39
|
OUP accepted manuscript. Hum Reprod Update 2022; 28:629-655. [DOI: 10.1093/humupd/dmac010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 02/04/2022] [Indexed: 11/13/2022] Open
|
40
|
Al Momani S, Rodger EJ, Stockwell PA, Eccles MR, Chatterjee A. Generating Sequencing-Based DNA Methylation Maps from Low DNA Input Samples. Methods Mol Biol 2022; 2458:3-21. [PMID: 35103959 DOI: 10.1007/978-1-0716-2140-0_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Reduced representation bisulfite sequencing (RRBS) is a technique used for assessing genome-wide DNA methylation patterns in eukaryotes. RRBS was introduced to focus on CpG-rich regions that are likely to be of most interest for epigenetic regulation, such as gene promoters and enhancer sequence elements (Meissner et al., Nature 454:766-770, 2008). This "reduced representation" lowers the cost of sequencing and also gives increased depth of coverage, facilitating the resolution of more subtle changes in methylation levels. Here, we describe a modified RRBS sequencing (RRBS-seq) library preparation. Our protocol is optimized for generating single base-resolution libraries when low input DNA is a concern (10-100 ng). Our protocol includes steps to optimize library preparation, such as using deparaffinization solution (when formalin-fixed material is used), and a replacement of gel size-selection with sample purification beads. The described protocol can be accomplished in 3 days and has been successfully applied to tissues or cells from different organisms, including formalin-fixed tissues, to yield robust and reproducible results.
Collapse
Affiliation(s)
- Suzan Al Momani
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Euan J Rodger
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Peter A Stockwell
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand
| | - Aniruddha Chatterjee
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand.
- Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
41
|
Park YJ, Han SM, Huh JY, Kim JB. Emerging roles of epigenetic regulation in obesity and metabolic disease. J Biol Chem 2021; 297:101296. [PMID: 34637788 PMCID: PMC8561000 DOI: 10.1016/j.jbc.2021.101296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/07/2021] [Accepted: 10/07/2021] [Indexed: 01/10/2023] Open
Abstract
Adipose tissue dysfunction is a hallmark of obesity and contributes to obesity-related sequelae such as metabolic complications and insulin resistance. Compelling evidence indicates that adipose-tissue-specific gene expression is influenced by gene interactions with proximal and distal cis-regulatory elements; the latter exert regulatory effects via three-dimensional (3D) chromosome conformation. Recent advances in determining the regulatory mechanisms reveal that compromised epigenomes are molecularly interlinked to altered cis-regulatory element activity and chromosome architecture in the adipose tissue. This review summarizes the roles of epigenomic components, particularly DNA methylation, in transcriptional rewiring in adipose tissue. In addition, we discuss the emerging roles of DNA methylation in the maintenance of 3D chromosome conformation and its pathophysiological significance concerning adipose tissue function.
Collapse
Affiliation(s)
- Yoon Jeong Park
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Sang Mun Han
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jin Young Huh
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jae Bum Kim
- Center for Adipose Tissue Remodeling, Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul, South Korea.
| |
Collapse
|
42
|
Affiliation(s)
- Seungbok Yang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Yoonjae Cho
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Jiwon Jang
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Institute of Convergence Science, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
43
|
Singh P, Bhadada SK, Dahiya D, Saikia UN, Arya AK, Sachdeva N, Kaur J, Behera A, Brandi ML, Rao SD. GCM2 Silencing in Parathyroid Adenoma Is Associated With Promoter Hypermethylation and Gain of Methylation on Histone 3. J Clin Endocrinol Metab 2021; 106:e4084-e4096. [PMID: 34077544 PMCID: PMC8475237 DOI: 10.1210/clinem/dgab374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Indexed: 02/06/2023]
Abstract
CONTEXT Glial cells missing 2 (GCM2), a zinc finger-transcription factor, is essentially required for the development of the parathyroid glands. OBJECTIVE We sought to identify whether the epigenetic alterations in GCM2 transcription are involved in the pathogenesis of sporadic parathyroid adenoma. In addition, we examined the association between promoter methylation and histone modifications with disease indices. METHODS Messenger RNA (mRNA) and protein expression of GCM2 were analyzed by reverse transcriptase-quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry in 33 adenomatous and 10 control parathyroid tissues. DNA methylation and histone methylation/acetylation of the GCM2 promoter were measured by bisulfite sequencing and chromatin immunoprecipitation-qPCR. Additionally, we investigated the role of epigenetic modifications on GCM2 and DNA methyltransferase 1 (DNMT1) expression in parathyroid (PTH)-C1 cells by treating with 5-aza-2'-deoxycytidine (DAC) and BRD4770 and assessed for GCM2 mRNA and DNMT1 protein levels. RESULTS mRNA and protein expression of GCM2 were lower in sporadic adenomatous than in control parathyroid tissues. This reduction correlated with hypermethylation (P < .001) and higher H3K9me3 levels in the GCM2 promoter (P < .04) in adenomas. In PTH-C1 cells, DAC treatment resulted in increased GCM2 transcription and decreased DNMT1 protein expression, while cells treated with the BRD4770 showed reduced H3K9me3 levels but a nonsignificant change in GCM2 transcription. CONCLUSION These findings suggest the concurrent association of promoter hypermethylation and higher H3K9me3 with the repression of GCM2 expression in parathyroid adenomas. Treatment with DAC restored GCM2 expression in PTH-C1 cells. Our results showed a possible epigenetic landscape in the tumorigenesis of parathyroid adenoma and also that DAC may be a promising avenue of research for parathyroid adenoma therapeutics.
Collapse
Affiliation(s)
- Priyanka Singh
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Sanjay Kumar Bhadada
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Divya Dahiya
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | | | - Ashutosh Kumar Arya
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Naresh Sachdeva
- Department of Endocrinology, Post Graduate Institute of Medical Education and Research (PGIMER), Chandigarh, 160012, India
| | - Jyotdeep Kaur
- Department of Biochemistry, PGIMER, Chandigarh, 160012, India
| | - Arunanshu Behera
- Department of General Surgery, PGIMER, Chandigarh, 160012, India
| | - Maria Luisa Brandi
- Department of Experimental and Clinical Biomedical Sciences, University of Florence, Florence 50121, Italy
| | - Sudhaker Dhanwada Rao
- Bone and Mineral Research Laboratory, Henry Ford Hospital, Detroit, Michigan 48202, USA
| |
Collapse
|
44
|
Abstract
More than a century ago, August Weissman defined a distinction between the germline (responsible for propagating heritable information from generation to generation) and the perishable soma. A central motivation for this distinction was to argue against the inheritance of acquired characters, as the germline was partly defined by its protection from external conditions. However, recent decades have seen an explosion of studies documenting the intergenerational and transgenerational effects of environmental conditions, forcing a re-evaluation of how external signals are sensed by, or communicated to, the germline epigenome. Here, motivated by the centrality of small RNAs in paradigms of epigenetic inheritance, we review across species the myriad examples of intercellular RNA trafficking from nurse cells or somatic tissues to developing gametes.
Collapse
|
45
|
Chang X, Ma J, Xue X, Wang G, Yan T, Su L, Han X, Zhou H, Hou L. DNMT family induces down-regulation of NDRG1 via DNA methylation and clinicopathological significance in gastric cancer. PeerJ 2021; 9:e12146. [PMID: 34616614 PMCID: PMC8450010 DOI: 10.7717/peerj.12146] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/20/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Aberrant DNA methylation of tumor suppressor genes is a common event in the development and progression of gastric cancer (GC). Our previous study showed NDRG1, which could suppress cell invasion and migration, was frequently down-regulated by DNA methylation of its promoter in GC. PURPOSE AND METHODS To analyze the relationship between the expression and DNA methylation of NDRG1 and DNA methyltransferase (DNMT) family. We performed a comprehensive comparison analysis using 407 patients including sequencing analysis data of GC from TCGA. RESULTS NDRG1 was down-regulated in GC, and was negatively correlative to DNMT1 (r = -0.11, p = 0.03), DNMT3A (r = -0.10, p = 0.01), DNMT3B (r = -0.01, p = 0.88), respectively, whereas the DNA methylation of NDRG1 was positively correlative to DNMT family (DNMT1 r = 0.20, p < 0.01; DNMT3A r = 0.26, p < 0.001; DNMT3B r = 0.03, p = 0.57, respectively). NDRG1 expression was significantly inverse correlated with invasion depth (p = 0.023), but DNMT1 was significantly positive correlated with invasion depth (p = 0.049). DNMT3B was significantly correlated with the degree of tumor cell differentiation (p = 0.030). However, there was no association between the expression of DNMT3A and clinicopathological features. The KM plotter showed that NDRG1 (HR = 0.95, 95% CI [0.8-1.12], p = 0.53) and DNMT1 (HR = 1.04, 95% CI [0.88-1.23], p = 0.67) had no association with prognosis of GC patients, while, DNMT3A (p = 0.0064) and DNMT3B (p = 0.00025) displayed significantly association. But the overall survival of high expression of NDRG1 tended to be prolonged. CONCLUSION These data suggest that down-regulation of NDRG1expression in GC may be due to its promoter DNA methylation via DNMT family. The demethylating agent maybe a potential target drug for GC patients.
Collapse
Affiliation(s)
- Xiaojing Chang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Jinguo Ma
- Department of Internal-Oncology, Hulun Buir People’s Hospital, Hulun Buir Medical School, Nationalities University of Inner Mongolia, Hulun Buir, China
| | - Xiaoying Xue
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Guohui Wang
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Tianfang Yan
- Department of Neurological Diagnosis and Restoration, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Linlin Su
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Xuetao Han
- Department of Radiotherapy, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Huandi Zhou
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Liubing Hou
- Department of Central Laboratory, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
46
|
Ren L, Gao C, Duren Z, Wang Y. GuidingNet: revealing transcriptional cofactor and predicting binding for DNA methyltransferase by network regularization. Brief Bioinform 2021; 22:bbaa245. [PMID: 33048117 PMCID: PMC8293812 DOI: 10.1093/bib/bbaa245] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/15/2020] [Accepted: 09/02/2020] [Indexed: 11/14/2022] Open
Abstract
The DNA methyltransferases (DNMTs) (DNMT3A, DNMT3B and DNMT3L) are primarily responsible for the establishment of genomic locus-specific DNA methylation patterns, which play an important role in gene regulation and animal development. However, this important protein family's binding mechanism, i.e. how and where the DNMTs bind to genome, is still missing in most tissues and cell lines. This motivates us to explore DNMTs and TF's cooperation and develop a network regularized logistic regression model, GuidingNet, to predict DNMTs' genome-wide binding by integrating gene expression, chromatin accessibility, sequence and protein-protein interaction data. GuidingNet accurately predicted methylation experimental data validated DNMTs' binding, outperformed single data source based and sparsity regularized methods and performed well in within and across tissue prediction for several DNMTs in human and mouse. Importantly, GuidingNet can reveal transcription cofactors assisting DNMTs for methylation establishment. This provides biological understanding in the DNMTs' binding specificity in different tissues and demonstrate the advantage of network regularization. In addition to DNMTs, GuidingNet achieves good performance for other chromatin regulators' binding. GuidingNet is freely available at https://github.com/AMSSwanglab/GuidingNet.
Collapse
|
47
|
Laqqan MM, Yassin MM. Potential effect of tobacco cigarettes smoking on global DNA methylation status and protamines transcripts in human spermatozoa. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2021. [DOI: 10.1186/s43043-021-00066-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Abstract
Background
Epigenetics refers to an alteration in gene expression without alteration in the sequence of DNA and this process may be affected by environmental factors and lifestyle like cigarette smoking. This study was designed to evaluate the potential effect of cigarette smoking on the global DNA methylation status and the transcription level of protamine 1 and protamine 2 in human spermatozoa. A total of 188 semen samples were collected from men with a mean age of 34.9 ± 5.8 years old (98 heavy smokers and 90 non-smokers). The DNA and RNA were isolated from purified spermatozoa, then the status of global DNA methylation and the transcription level of protamine 1 and protamine 2 were evaluated using ELISA and qPCR, respectively. The chromatin non-condensation and DNA fragmentation in human spermatozoa were evaluated using chromomycin A3 staining and TUNEL assay, respectively.
Results
A significant increase has been found in the status of global DNA methylation in spermatozoa of heavy smokers compared to non-smokers (7.69 ± 0.69 ng/μl vs. 4.90 ± 0.40 ng/μl, P < 0.001). Additionally, a significant reduction has been found in transcription level of protamine 1 (25.49 ± 0.31 vs. 23.94 ± 0.40, P < 0.001) and protamine 2 (28.27 ± 0.39 vs. 23.45 ± 0.30, P < 0.001) in heavy smokers. A downregulation has been found in the transcription level of protamine 1 and protamine 2 with a fold change of 0.497 and 0.047, respectively. A significant increase has been shown in the level of DNA fragmentation and chromatin non-condensation in heavy smokers compared to non-smokers (P < 0.001). On the other hand, a significant positive correlation has been found between sperm chromatin non-condensation, sperm DNA fragmentation, transcription level of protamine 1, transcription level of protamine 2, and global DNA methylation status (r = 0.304, P < 0.001; r = 0.399, P < 0.001; r = 0.216, P = 0.003; r = 0.494, P < 0.001, respectively).
Conclusion
Tobacco cigarette smoking has a potential influence on the global DNA methylation and the transcription level of protamine genes in human spermatozoa, and consequently, affect negatively on the semen parameters.
Collapse
|
48
|
Abstract
There has been a substantial increase in the incidence and the prevalence of allergic disorders in the recent decades, which seems to be related to rapid environmental and lifestyle changes, such as higher exposure to factors thought to exert pro-allergic effects but less contact with factors known to be associated with protection against the development of allergies. Pollution is the most remarkable example of the former, while less contact with microorganisms, lower proportion of unprocessed natural products in diet, and others resulting from urbanization and westernization of the lifestyle exemplify the latter. It is strongly believed that the effects of environmental factors on allergy susceptibility and development are mediated by epigenetic mechanisms, i.e. biologically relevant biochemical changes of the chromatin carrying transcriptionally-relevant information but not affecting the nucleotide sequence of the genome. Classical epigenetic mechanisms include DNA methylation and histone modifications, for instance acetylation or methylation. In addition, microRNA controls gene expression at the mRNA level. Such epigenetic mechanisms are involved in crucial regulatory processes in cells playing a pivotal role in allergies. Those include centrally managing cells, such as T lymphocytes, as well as specific structural and effector cells in the affected organs, responsible for the local clinical presentation of allergy, e.g. epithelial or airway smooth muscle cells in asthma. Considering that allergic disorders possess multiple clinical (phenotypes) and mechanistic (endotypes) forms, targeted, stratified treatment strategies based on detailed clinical and molecular diagnostics are required. Since conventional diagnostic or therapeutic approaches do not suffice, this gap could possibly be filled out by epigenetic approaches.
Collapse
|
49
|
Riluzole Administration to Rats with Levodopa-Induced Dyskinesia Leads to Loss of DNA Methylation in Neuronal Genes. Cells 2021; 10:cells10061442. [PMID: 34207710 PMCID: PMC8228416 DOI: 10.3390/cells10061442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 06/01/2021] [Accepted: 06/02/2021] [Indexed: 11/16/2022] Open
Abstract
Dyskinesias are characterized by abnormal repetitive involuntary movements due to dysfunctional neuronal activity. Although levodopa-induced dyskinesia, characterized by tic-like abnormal involuntary movements, has no clinical treatment for Parkinson’s disease patients, animal studies indicate that Riluzole, which interferes with glutamatergic neurotransmission, can improve the phenotype. The rat model of Levodopa-Induced Dyskinesia is a unilateral lesion with 6-hydroxydopamine in the medial forebrain bundle, followed by the repeated administration of levodopa. The molecular pathomechanism of Levodopa-Induced Dyskinesia is still not deciphered; however, the implication of epigenetic mechanisms was suggested. In this study, we investigated the striatum for DNA methylation alterations under chronic levodopa treatment with or without co-treatment with Riluzole. Our data show that the lesioned and contralateral striata have nearly identical DNA methylation profiles. Chronic levodopa and levodopa + Riluzole treatments led to DNA methylation loss, particularly outside of promoters, in gene bodies and CpG poor regions. We observed that several genes involved in the Levodopa-Induced Dyskinesia underwent methylation changes. Furthermore, the Riluzole co-treatment, which improved the phenotype, pinpointed specific methylation targets, with a more than 20% methylation difference relative to levodopa treatment alone. These findings indicate potential new druggable targets for Levodopa-Induced Dyskinesia.
Collapse
|
50
|
Rossetti MF, Canesini G, Lorenz V, Milesi MM, Varayoud J, Ramos JG. Epigenetic Changes Associated With Exposure to Glyphosate-Based Herbicides in Mammals. Front Endocrinol (Lausanne) 2021; 12:671991. [PMID: 34093442 PMCID: PMC8177816 DOI: 10.3389/fendo.2021.671991] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/03/2021] [Indexed: 01/01/2023] Open
Abstract
Glyphosate is a phosphonomethyl amino acid derivative present in a number of non-selective and systemic herbicides. During the last years the use of glyphosate-based herbicide (GBH) has been increasing exponentially around the world, including Argentina. This fact added to the detection of glyphosate, and its main metabolite, amino methylphosphonic acid (AMPA), in environmental matrices such as soil, sediments, and food, has generated great concern about its risks for humans, animals, and environment. During the last years, there were controversy and intense debate regarding the toxicological effects of these compounds associated with the endocrine system, cancer, reproduction, and development. The mechanisms of action of GBH and their metabolites are still under investigation, although recent findings have shown that they could comprise epigenetic modifications. These are reversible mechanisms linked to tissue-specific silencing of gene expression, genomic imprinting, and tumor growth. Particularly, glyphosate, GBH, and AMPA have been reported to produce changes in global DNA methylation, methylation of specific genes, histone modification, and differential expression of non-coding RNAs in human cells and rodents. Importantly, the epigenome could be heritable and could lead to disease long after the exposure has ended. This mini-review summarizes the epigenetic changes produced by glyphosate, GBHs, and AMPA in humans and rodents and proposes it as a potential mechanism of action through which these chemical compounds could alter body functions.
Collapse
Affiliation(s)
- María Florencia Rossetti
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Guillermina Canesini
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Patología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Virginia Lorenz
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - María Mercedes Milesi
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorgelina Varayoud
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Cátedra de Fisiología Humana, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Jorge Guillermo Ramos
- Instituto de Salud y Ambiente del Litoral (ISAL), Universidad Nacional del Litoral (UNL)- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Departamento de Bioquímica Clínica y Cuantitativa, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|