1
|
Urbaneja-Bernat P, Salazar-Mendoza P, Tena A, González-Cabrera J, Rodriguez-Saona C. Plant Domestication Alters the Nutritional Content of Guttation Droplets with Multi-Trophic Consequences. J Chem Ecol 2025; 51:51. [PMID: 40304810 DOI: 10.1007/s10886-025-01602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/17/2025] [Accepted: 04/22/2025] [Indexed: 05/02/2025]
Abstract
Domestication often alters plant traits, leading to cascading effects on ecological interactions, particularly in tri-trophic relationships among plants, herbivores, and their natural enemies. While recent studies have investigated the influence of domestication on plant-derived food sources, its effect on guttation-a nutrient-rich exudate produced by many plants-remains unexplored. In this study, we examined the effects of guttation droplets from wild and cultivated highbush blueberries on the fitness (longevity and fecundity) and feeding preferences of three insect species from different trophic guilds: an herbivore (Drosophila suzukii), a parasitoid (Trichopria drosophilae), and a predator (Chrysoperla carnea). Additionally, we analyzed and compared the size and nutritional composition-specifically, total sugar and protein content-of guttation droplets between wild and cultivated blueberry plants. Our results indicated that guttation from wild plants enhanced the longevity of all three insect species, often surpassing that of cultivated plants and diets containing only sugar or sugar plus protein. In choice assays, all three insect species consistently preferred guttation from wild plants over that from cultivated ones. Although the guttation droplets from cultivated plants were larger, those from wild plants contained higher concentrations of sugars (six times more) and proteins (five times more), which likely contributed to the insects' enhanced fitness and preference for wild plant guttation. These findings indicate that domestication has reduced the ecological functionality of guttation in blueberries by potentially influencing tri-trophic interactions. Understanding how domestication affects plant-derived food sources like guttation could have important implications for the conservation of natural enemies in agricultural landscapes.
Collapse
Affiliation(s)
- Pablo Urbaneja-Bernat
- IRTA, Sustainable Plant Protection Program Ctra. de Cabrils Km 2, Cabrils (Barcelona), 08348, Spain.
| | - Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - Alejandro Tena
- Centro de Protección Vegetal y Biotecnología, Instituto Valenciano de Investigaciones Agrarias (IVIA), Unidad Mixta Gestión Biotecnológica de Plagas UV-IVIA, Moncada, Valencia, Spain
| | - Joel González-Cabrera
- Department of Genetics, ERI-BIOTECMED, Unidad Mixta Gestión Biotecnológica de Plagas UV-IVIA, Universitat de València, Burjassot, Valencia, Spain
| | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers University, Philip E. Marucci Center, Chatsworth, NJ, USA
| |
Collapse
|
2
|
Kansman JT, Hermann SL, Ali JG, Helms AM. Flipping indirect defense: chemical cues from natural enemies mediate multitrophic interactions. CURRENT OPINION IN INSECT SCIENCE 2025; 68:101330. [PMID: 39743205 DOI: 10.1016/j.cois.2024.101330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/19/2024] [Accepted: 12/23/2024] [Indexed: 01/04/2025]
Abstract
Plants and invertebrates use chemical signals and cues to construct information about their environment. It is well reviewed that chemical signals play key roles in interactions between conspecific insects, such as sex pheromones for finding mates, and that plants transmit chemical signals to recruit natural enemies that kill herbivores. However, it is also known that chemicals emitted by natural enemies can influence insect herbivore physiology and behavior. The detection of chemical cues associated with the presence of natural enemies can influence herbivore movement, feeding, and reproduction, which may limit the damage herbivores inflict on their host plants. Plants detect chemical cues associated with herbivores, but less is known about whether plants also detect chemical cues of natural enemies or how this detection affects plant defense responses. In this review, we highlight what is known about how natural enemy chemical cues directly affect herbivores, how natural enemy cues indirectly affect herbivores through changes in host plant defenses, and we discuss the evolutionary ecology of plant and herbivore responses to natural enemy cues. Finally, we consider application of these concepts for insect pest management. Improving our understanding of how natural enemy chemical cues mediate multitrophic interactions provides a great opportunity for future exploration. CONDENSED ABSTRACT: Plants and invertebrates use chemical signals and cues to construct information about their environment. Detection of chemical cues from natural enemies can influence herbivore behavior and reduce herbivory. Plants detect chemical cues associated with herbivores, but less is known about whether plants detect cues of natural enemies or how detection affects plant defense responses. Here, we highlight what is known about how natural enemy chemical cues directly affect herbivores and how natural enemy cues indirectly affect herbivores through changes in plant defenses. We discuss the evolutionary ecology of plant and herbivore responses to natural enemy cues and consider applications for pest management.
Collapse
Affiliation(s)
- Jessica T Kansman
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Anjel M Helms
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
3
|
Ghosh E, van Nouhuys S, Ode PJ. Anthropogenic effects on the eco-immunology of herbivorous insects. CURRENT OPINION IN INSECT SCIENCE 2024; 66:101285. [PMID: 39454724 DOI: 10.1016/j.cois.2024.101285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/06/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024]
Abstract
Insect herbivore eco-immunology involves complex interactions between herbivore immunity and their natural enemies, and the responses of these interactions to environmental factors including plant anti-herbivore toxins. Plant toxins can affect herbivore immunity, leading to either immunoenhancement or immunosuppression, which in turn influences their vulnerability to parasitoids and pathogens. Herbivore immune responses differ among species regionally, reflecting adaptations to local environmental conditions and natural enemy pressures. Additionally, anthropogenic factors including like climate change, plant domestication, and invasive species are altering these eco-immunological dynamics. Such changes can ripple through food webs, affecting not only herbivores and their natural enemies but also broader community structures. By understanding these complex interactions, we can better predict ecosystem responses to environmental change.
Collapse
Affiliation(s)
- Enakshi Ghosh
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA; Department of Soil & Crop Sciences, Colorado State University, Fort Collins, CO 80523-1101, USA.
| | - Saskya van Nouhuys
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, India
| | - Paul J Ode
- Department of Agricultural Biology, Colorado State University, Fort Collins, CO 80523-1177, USA; Graduate Degree Program in Ecology, Colorado State University, Fort Collins, CO 80523-1021, USA
| |
Collapse
|
4
|
Salazar-Mendoza P, Miyagusuku-Cruzado G, Giusti MM, Rodriguez-Saona C. Genotypic Variation and Potential Mechanisms of Resistance against Multiple Insect Herbivores in Cranberries. J Chem Ecol 2024; 50:751-766. [PMID: 39028464 DOI: 10.1007/s10886-024-01522-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 07/20/2024]
Abstract
Plant genotypes often exhibit varying resistance levels to herbivores. However, the impact of this genotypic variation on resistance against multiple herbivores remains poorly understood, especially in crops undergoing recent process of domestication. To address this gap, we studied the magnitude and mechanism of resistance in 12 cranberry (Vaccinium macrocarpon) genotypes to three leaf-chewing herbivores - Sparganothis fruitworm (Sparganothis sulfureana), spotted fireworm (Choristoneura parallela), and spongy moth (Lymantria dispar) - along a domestication gradient (native 'wild' genotypes, 'early hybrid' genotypes, and 'modern hybrid' genotypes). Like cranberries, S. sulfureana and C. parallela are native to the United Sates, while L. dispar is an invasive pest. We measured the survival and growth of larvae on each genotype, as well as variation in plant performance (height and biomass) and leaf defensive chemical traits (C/N ratio, total phenolics, total proanthocyanidins, and flavonols levels) in these genotypes to elucidate potential resistance mechanisms. We found differences in C. parallela and L. dispar larval performance across genotypes, with larvae performing better on the modern hybrid genotypes, while S. sulfureana showed no differences. Morphological and chemical traits varied among genotypes, with total phenolics being the only trait correlated with C. parallela and L. dispar larval performance. Notably, the wild genotypes 'McFarlin' and 'Potter' had higher total phenolics and were more resistant to both herbivores than the modern hybrids 'Demoranville' and 'Mullica Queen.' This research contributes to a comprehensive understanding of the impact of crop domestication on multiple insect herbivores, offering insights for future breeding efforts to enhance host-plant resistance against agricultural pests.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Gonzalo Miyagusuku-Cruzado
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - M Monica Giusti
- Department of Food Science and Technology, The Ohio State University, 2015 Fyffe Rd., Columbus, OH, 43210-1007, USA
| | - Cesar Rodriguez-Saona
- Department of Entomology, Rutgers University P.E Marucci Center, 125A Lake Oswego Rd., Chatsworth, NJ, 08019, USA
| |
Collapse
|
5
|
Ye W, Di Caprio L, Bruno P, Jaccard C, Bustos-Segura C, Arce CCM, Benrey B. Cultivar-Specific Defense Responses in Wild and Cultivated Squash Induced by Belowground and Aboveground Herbivory. J Chem Ecol 2024; 50:738-750. [PMID: 38914799 PMCID: PMC11543723 DOI: 10.1007/s10886-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 06/08/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024]
Abstract
Plant domestication often alters plant traits, including chemical and physical defenses against herbivores. In squash, domestication leads to reduced levels of cucurbitacins and leaf trichomes, influencing interactions with insects. However, the impact of domestication on inducible defenses in squash remains poorly understood. Here, we investigated the chemical and physical defensive traits of wild and domesticated squash (Cucurbita argyrosperma), and compared their responses to belowground and aboveground infestation by the root-feeding larvae and the leaf-chewing adults of the banded cucumber beetle Diabrotica balteata (Coleoptera: Chrysomelidae). Wild populations contained cucurbitacins in roots and cotyledons but not in leaves, whereas domesticated varieties lacked cucurbitacins in all tissues. Belowground infestation by D. balteata larvae did not increase cucurbitacin levels in the roots but triggered the expression of cucurbitacin biosynthetic genes, irrespective of domestication status, although the response varied among different varieties. Conversely, whereas wild squash had more leaf trichomes than domesticated varieties, the induction of leaf trichomes in response to herbivory was greater in domesticated plants. Leaf herbivory varied among varieties but there was a trend of higher leaf damage on wild squash than domesticated varieties. Overall, squash plants responded to both belowground and aboveground herbivory by activating chemical defense-associated gene expression in roots and upregulating their physical defense in leaves, respectively. While domestication suppressed both chemical and physical defenses, our findings suggest that it may enhance inducible defense mechanisms by increasing trichome induction in response to herbivory.
Collapse
Affiliation(s)
- Wenfeng Ye
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Leandro Di Caprio
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Plant Production Systems, Route Des Eterpys 18, 1964, Agroscope, Conthey, Switzerland
| | - Charlyne Jaccard
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
- Sensory Ecology, Institute of Ecology and Environmental Sciences of Paris, INRAE, Versailles, France
| | - Carla C M Arce
- Laboratory of Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland.
| |
Collapse
|
6
|
Alam O, Purugganan MD. Domestication and the evolution of crops: variable syndromes, complex genetic architectures, and ecological entanglements. THE PLANT CELL 2024; 36:1227-1241. [PMID: 38243576 PMCID: PMC11062453 DOI: 10.1093/plcell/koae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 01/21/2024]
Abstract
Domestication can be considered a specialized mutualism in which a domesticator exerts control over the reproduction or propagation (fitness) of a domesticated species to gain resources or services. The evolution of crops by human-associated selection provides a powerful set of models to study recent evolutionary adaptations and their genetic bases. Moreover, the domestication and dispersal of crops such as rice, maize, and wheat during the Holocene transformed human social and political organization by serving as the key mechanism by which human societies fed themselves. Here we review major themes and identify emerging questions in three fundamental areas of crop domestication research: domestication phenotypes and syndromes, genetic architecture underlying crop evolution, and the ecology of domestication. Current insights on the domestication syndrome in crops largely come from research on cereal crops such as rice and maize, and recent work indicates distinct domestication phenotypes can arise from different domestication histories. While early studies on the genetics of domestication often identified single large-effect loci underlying major domestication traits, emerging evidence supports polygenic bases for many canonical traits such as shattering and plant architecture. Adaptation in human-constructed environments also influenced ecological traits in domesticates such as resource acquisition rates and interactions with other organisms such as root mycorrhizal fungi and pollinators. Understanding the ecological context of domestication will be key to developing resource-efficient crops and implementing more sustainable land management and cultivation practices.
Collapse
Affiliation(s)
- Ornob Alam
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003, USA
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
- Institute for the Study of the Ancient World, New York University, New York, NY, 10028, USA
| |
Collapse
|
7
|
Bassetti N, Caarls L, Bouwmeester K, Verbaarschot P, van Eijden E, Zwaan BJ, Bonnema G, Schranz ME, Fatouros NE. A butterfly egg-killing hypersensitive response in Brassica nigra is controlled by a single locus, PEK, containing a cluster of TIR-NBS-LRR receptor genes. PLANT, CELL & ENVIRONMENT 2024; 47:1009-1022. [PMID: 37961842 DOI: 10.1111/pce.14765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/15/2023]
Abstract
Knowledge of plant recognition of insects is largely limited to a few resistance (R) genes against sap-sucking insects. Hypersensitive response (HR) characterizes monogenic plant traits relying on R genes in several pathosystems. HR-like cell death can be triggered by eggs of cabbage white butterflies (Pieris spp.), pests of cabbage crops (Brassica spp.), reducing egg survival and representing an effective plant resistance trait before feeding damage occurs. Here, we performed genetic mapping of HR-like cell death induced by Pieris brassicae eggs in the black mustard Brassica nigra (B. nigra). We show that HR-like cell death segregates as a Mendelian trait and identified a single dominant locus on chromosome B3, named PEK (Pieris egg- killing). Eleven genes are located in an approximately 50 kb region, including a cluster of genes encoding intracellular TIR-NBS-LRR (TNL) receptor proteins. The PEK locus is highly polymorphic between the parental accessions of our mapping populations and among B. nigra reference genomes. Our study is the first one to identify a single locus potentially involved in HR-like cell death induced by insect eggs in B. nigra. Further fine-mapping, comparative genomics and validation of the PEK locus will shed light on the role of these TNL receptors in egg-killing HR.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Patrick Verbaarschot
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Ewan van Eijden
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
8
|
Wang C, Chang J, Tian L, Sun Y, Wang E, Yao Z, Ye L, Zhang H, Pang Y, Tian C. A Synthetic Microbiome Based on Dominant Microbes in Wild Rice Rhizosphere to Promote Sulfur Utilization. RICE (NEW YORK, N.Y.) 2024; 17:18. [PMID: 38429614 PMCID: PMC10907558 DOI: 10.1186/s12284-024-00695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 02/14/2024] [Indexed: 03/03/2024]
Abstract
Sulfur (S) is one of the main components of important biomolecules, which has been paid more attention in the anaerobic environment of rice cultivation. In this study, 12 accessions of rice materials, belonging to two Asian rice domestication systems and one African rice domestication system, were used by shotgun metagenomics sequencing to compare the structure and function involved in S cycle of rhizosphere microbiome between wild and cultivated rice. The sulfur cycle functional genes abundances were significantly different between wild and cultivated rice rhizosphere in the processes of sulfate reduction and other sulfur compounds conversion, implicating that wild rice had a stronger mutually-beneficial relationship with rhizosphere microbiome, enhancing sulfur utilization. To assess the effects of sulfate reduction synthetic microbiomes, Comamonadaceae and Rhodospirillaceae, two families containing the genes of two key steps in the dissimilatory sulfate reduction, aprA and dsrA respectively, were isolated from wild rice rhizosphere. Compared with the control group, the dissimilatory sulfate reduction in cultivated rice rhizosphere was significantly improved in the inoculated with different proportions groups. It confirmed that the synthetic microbiome can promote the S-cycling in rice, and suggested that may be feasible to construct the synthetic microbiome step by step based on functional genes to achieve the target functional pathway. In summary, this study reveals the response of rice rhizosphere microbial community structure and function to domestication, and provides a new idea for the construction of synthetic microbiome.
Collapse
Affiliation(s)
- Changji Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingjing Chang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Lei Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Yu Sun
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
| | - Enze Wang
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zongmu Yao
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Libo Ye
- College of Life Science, Jilin Agricultural University, Jilin, Changchun, China
| | - Hengfei Zhang
- College of Life Science, Jilin Agricultural University, Jilin, Changchun, China
| | - Yingnan Pang
- College of Life Science, Jilin Agricultural University, Jilin, Changchun, China
| | - Chunjie Tian
- State Key Laboratory of Black Soils Conservation and Utilization, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, 130102, China.
- College of Resources and Environment, Jilin Agricultural University, Changchun, Jilin, China.
| |
Collapse
|
9
|
Penn HJ, Read QD. Stem borer herbivory dependent on interactions of sugarcane variety, associated traits, and presence of prior borer damage. PEST MANAGEMENT SCIENCE 2024; 80:1126-1136. [PMID: 37855173 DOI: 10.1002/ps.7843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 09/21/2023] [Accepted: 10/16/2023] [Indexed: 10/20/2023]
Abstract
BACKGROUND Herbivory risk is mediated by plant traits related to nutrition and defense that can vary within a species by genotype and age. Prior herbivore damage accrued by a plant can also interact with these traits to alter future herbivory potential by changing plant quantity or quality. Sugarcane (Saccharum spp.) is a perennial crop where aboveground biomass is harvested annually and with varieties differing in nutrition and defenses, making it conducive to evaluating varietal resistance mechanisms. Using data from 16 sugarcane varieties and 28 years, we assessed damage from the primary pest in Louisiana, the sugarcane borer (Diatraea saccharalis, SCB), relative to variety, crop year (ratoon), plant traits, and incidence of prior herbivory. RESULTS SCB damage differed among varieties but not crop year, mostly following previously established classifications of SCB resistance, and correlated with select nutritional and defense traits. Within a crop year, the probability of SCB damage increased with prior conspecific damage on the same stalk. However, the strength of this prior damage effect did not match known resistance patterns but still differed with variety. CONCLUSIONS Interactions of plant variety, traits, and prior pest damage but not age impacted sugarcane borer risk. Borer damage was associated with nutritional traits of fiber and sugar content, but not consistently with defensive traits like high stalk wax or hair density, indicating there may be additional resistance traits or indirect impacts of these traits on predators. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Hannah J Penn
- United States Department of Agriculture, Agricultural Research Service, Sugarcane Research Unit, Houma, Louisiana, USA
| | - Quentin D Read
- United States Department of Agriculture, Agricultural Research Service, Raleigh, North Carolina, USA
| |
Collapse
|
10
|
Dady ER, Kleczewski N, Ugarte CM, Ngumbi E. Plant Variety, Mycorrhization, and Herbivory Influence Induced Volatile Emissions and Plant Growth Characteristics in Tomato. J Chem Ecol 2023; 49:710-724. [PMID: 37924424 DOI: 10.1007/s10886-023-01455-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 09/06/2023] [Accepted: 09/13/2023] [Indexed: 11/06/2023]
Abstract
Plants produce a range of volatile organic compounds (VOCs) that mediate vital ecological interactions between herbivorous insects, their natural enemies, plants, and soil dwelling organisms including arbuscular mycorrhizal fungi (AMF). The composition, quantity, and quality of the emitted VOCs can vary and is influenced by numerous factors such as plant species, variety (cultivar), plant developmental stage, root colonization by soil microbes, as well as the insect developmental stage, and level of specialization of the attacking herbivore. Understanding factors shaping VOC emissions is important and can be leveraged to enhance plant health and pest resistance. In this greenhouse study, we evaluated the influence of plant variety, mycorrhizal colonization, herbivory, and their interactions on the composition of emitted volatiles in tomato plants (Solanum lycopersicum L.). Four tomato varieties from two breeding histories (two heirlooms and two hybrids), were used. Tomato plants were inoculated with a commercial inoculum blend consisting of four species of AMF. Plants were also subjected to herbivory by Manduca sexta (Lepidoptera: Sphingidae L.) five weeks after transplanting. Headspace volatiles were collected from inoculated and non-inoculated plants with and without herbivores using solid phase-microextraction. Volatile profiles consisted of 21 different volatiles in detectable quantities. These included monoterpenes, sesquiterpenes, and alkane hydrocarbons. We documented a strong plant variety effect on VOC emissions. AMF colonization and herbivory suppressed VOC emissions. Plant biomass was improved by colonization of AMF. Our results show that mycorrhization, herbivory and plant variety can alter tomato plant VOC emissions and further shape volatile-mediated insect and plant interactions.
Collapse
Affiliation(s)
- Erinn R Dady
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | | | - Carmen M Ugarte
- Department of Natural Resources and Environmental Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Esther Ngumbi
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
11
|
Kansman JT, Jaramillo JL, Ali JG, Hermann SL. Chemical ecology in conservation biocontrol: new perspectives for plant protection. TRENDS IN PLANT SCIENCE 2023; 28:1166-1177. [PMID: 37271617 DOI: 10.1016/j.tplants.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 06/06/2023]
Abstract
Threats to food security require novel sustainable agriculture practices to manage insect pests. One strategy is conservation biological control (CBC), which relies on pest control services provided by local populations of arthropod natural enemies. Research has explored manipulative use of chemical information from plants and insects that act as attractant cues for natural enemies (predators and parasitoids) and repellents of pests. In this review, we reflect on past strategies using chemical ecology in CBC, such as herbivore-induced plant volatiles and the push-pull technique, and propose future directions, including leveraging induced plant defenses in crop plants, repellent insect-based signaling, and genetically engineered crops. Further, we discuss how climate change may disrupt CBC and stress the importance of context dependency and yield outcomes.
Collapse
Affiliation(s)
- Jessica T Kansman
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| | - Jorge L Jaramillo
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Jared G Ali
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA
| | - Sara L Hermann
- Center for Chemical Ecology, Department of Entomology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
12
|
Li X, Shi Y, Lin X, Li Z, Xiao J, Yang X. Effects of wild, local, and cultivated tobacco varieties on the performance of Spodoptera litura and its parasitoid Meteorus pulchricornis. PEST MANAGEMENT SCIENCE 2023; 79:2390-2396. [PMID: 36802371 DOI: 10.1002/ps.7416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 02/11/2023] [Accepted: 02/21/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Plant domestication can alter plant and insect interactions and influence bottom-up and top-down effects. However, little is known about the effects of wild, local, and cultivated varieties of the same plant species in the same region on herbivores and their parasitoids. Here, six tobacco varieties were selected: wild Bishan and Badan tobaccos, local Liangqiao and Shuangguan sun-cured tobaccos, and cultivated Xiangyan 5 and Cunsanpi. We examined how wild, local, and cultivated tobacco types affect the tobacco cutworm herbivore Spodoptera litura and its parasitoid Meteorus pulchricornis. RESULTS Levels of nicotine and trypsin protease inhibitor in leaves and the fitness of S. litura larvae varied significantly among the varieties. Wild tobacco had the highest levels of nicotine and trypsin protease inhibitor, which reduced the survival rate and prolonged the development period of S. litura. The tobacco types significantly influenced the life history parameters and host selection of M. pulchricornis. The cocoon weight, cocoon emergence rate, adult longevity, hind tibia length, and offspring fecundity of M. pulchricornis increased, whereas the development period decreased from wild to local to cultivated varieties. The parasitoids were more likely to select wild and local varieties than cultivated varieties. CONCLUSION Domestication of tobacco resulted in reduced resistance to S. litura in cultivated tobacco. Wild tobacco varieties suppress S. litura populations, adversely affect M. pulchricornis, and may enhance bottom-up and top-down control of S. litura. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiaohong Li
- Department of Landscape Architecture, College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Yimeng Shi
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - XuanXuan Lin
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang, China
| | - Zhezhi Li
- Department of Landscape Architecture, College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Jiawei Xiao
- Department of Landscape Architecture, College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| | - Xianjun Yang
- Department of Landscape Architecture, College of Agriculture and Forestry Ecology, Shaoyang University, Shaoyang, China
| |
Collapse
|
13
|
Ravetta DA, Vilela AE, Gonzalez-Paleo L, Van Tassel DL. Unpredicted, rapid and unintended structural and functional changes occurred during early domestication of Silphium integrifolium, a perennial oilseed. PLANTA 2023; 258:18. [PMID: 37314591 DOI: 10.1007/s00425-023-04179-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 06/06/2023] [Indexed: 06/15/2023]
Abstract
MAIN CONCLUSION Selection for increased yield changed structure, physiology and overall resource-use strategy from conservative towards acquisitive leaves. Alternative criteria can be considered, to increase yield with less potentially negative traits. We compared the morphology, anatomy and physiology of wild and semi-domesticated (SD) accessions of Silphium integrifolium (Asteraceae), in multi-year experiments. We hypothesized that several cycles of selection for seed-yield would result in acquisitive leaves, including changes predicted by the leaf economic spectrum. Early-selection indirectly resulted in leaf structural and functional changes. Leaf anatomy changed, increasing mesophyll conductance and the size of xylem vessels and mesophyll cells increased. Leaves of SD plants were larger, heavier, with lower stomatal conductance, lower internal CO2 concentration, and lower resin concentration than those of wild types. Despite increased water use efficiency, SD plants transpired 25% more because their increase in leaf area. Unintended and undesired changes in functional plant traits could quickly become fixed during domestication, shortening the lifespan and increasing resource consumption of the crop as well as having consequences in the provision and regulation of ecosystem services.
Collapse
Affiliation(s)
- D A Ravetta
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina.
| | - A E Vilela
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - L Gonzalez-Paleo
- CONICET, Museo Egidio Feruglio, Fontana 144, 9100, Trelew, Chubut, Argentina
| | - D L Van Tassel
- The Land Institute, 2440 E Water Well Rd, Salina, KS, 67401, USA
| |
Collapse
|
14
|
Olazcuaga L, Baltenweck R, Leménager N, Maia-Grondard A, Claudel P, Hugueney P, Foucaud J. Metabolic consequences of various fruit-based diets in a generalist insect species. eLife 2023; 12:84370. [PMID: 37278030 DOI: 10.7554/elife.84370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Most phytophagous insect species exhibit a limited diet breadth and specialize on a few or a single host plant. In contrast, some species display a remarkably large diet breadth, with host plants spanning several families and many species. It is unclear, however, whether this phylogenetic generalism is supported by a generic metabolic use of common host chemical compounds ('metabolic generalism') or alternatively by distinct uses of diet-specific compounds ('multi-host metabolic specialism')? Here, we simultaneously investigated the metabolomes of fruit diets and of individuals of a generalist phytophagous species, Drosophila suzukii, that developed on them. The direct comparison of metabolomes of diets and consumers enabled us to disentangle the metabolic fate of common and rarer dietary compounds. We showed that the consumption of biochemically dissimilar diets resulted in a canalized, generic response from generalist individuals, consistent with the metabolic generalism hypothesis. We also showed that many diet-specific metabolites, such as those related to the particular color, odor, or taste of diets, were not metabolized, and rather accumulated in consumer individuals, even when probably detrimental to fitness. As a result, while individuals were mostly similar across diets, the detection of their particular diet was straightforward. Our study thus supports the view that dietary generalism may emerge from a passive, opportunistic use of various resources, contrary to more widespread views of an active role of adaptation in this process. Such a passive stance towards dietary chemicals, probably costly in the short term, might favor the later evolution of new diet specializations.
Collapse
Affiliation(s)
- Laure Olazcuaga
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
- Department of Agricultural Biology, Colorado State University, Fort Collins, United States
| | | | - Nicolas Leménager
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| | | | | | | | - Julien Foucaud
- UMR CBGP (INRAE-IRD-CIRAD, Montpellier SupAgro), Campus International de Baillarguet, Montferrier, France
| |
Collapse
|
15
|
Poelman EH, Bourne ME, Croijmans L, Cuny MAC, Delamore Z, Joachim G, Kalisvaart SN, Kamps BBJ, Longuemare M, Suijkerbuijk HAC, Zhang NX. Bringing Fundamental Insights of Induced Resistance to Agricultural Management of Herbivore Pests. J Chem Ecol 2023; 49:218-229. [PMID: 37138167 PMCID: PMC10495479 DOI: 10.1007/s10886-023-01432-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
In response to herbivory, most plant species adjust their chemical and morphological phenotype to acquire induced resistance to the attacking herbivore. Induced resistance may be an optimal defence strategy that allows plants to reduce metabolic costs of resistance in the absence of herbivores, allocate resistance to the most valuable plant tissues and tailor its response to the pattern of attack by multiple herbivore species. Moreover, plasticity in resistance decreases the potential that herbivores adapt to specific plant resistance traits and need to deal with a moving target of variable plant quality. Induced resistance additionally allows plants to provide information to other community members to attract natural enemies of its herbivore attacker or inform related neighbouring plants of pending herbivore attack. Despite the clear evolutionary benefits of induced resistance in plants, crop protection strategies to herbivore pests have not exploited the full potential of induced resistance for agriculture. Here, we present evidence that induced resistance offers strong potential to enhance resistance and resilience of crops to (multi-) herbivore attack. Specifically, induced resistance promotes plant plasticity to cope with multiple herbivore species by plasticity in growth and resistance, maximizes biological control by attracting natural enemies and, enhances associational resistance of the plant stand in favour of yield. Induced resistance may be further harnessed by soil quality, microbial communities and associational resistance offered by crop mixtures. In the transition to more sustainable ecology-based cropping systems that have strongly reduced pesticide and fertilizer input, induced resistance may prove to be an invaluable trait in breeding for crop resilience.
Collapse
Affiliation(s)
- Erik H Poelman
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands.
| | - Mitchel E Bourne
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Luuk Croijmans
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maximilien A C Cuny
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Zoë Delamore
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Gabriel Joachim
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Sarah N Kalisvaart
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Bram B J Kamps
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Maxence Longuemare
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Hanneke A C Suijkerbuijk
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| | - Nina Xiaoning Zhang
- Laboratory of Entomology, Wageningen University, P.O. Box 16, 6700AA, Wageningen, the Netherlands
| |
Collapse
|
16
|
Schroeder H, Grab H, Poveda K. Phenotypic clines in herbivore resistance and reproductive traits in wild plants along an agricultural gradient. PLoS One 2023; 18:e0286050. [PMID: 37256895 DOI: 10.1371/journal.pone.0286050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023] Open
Abstract
The conversion of natural landscapes to agriculture is a leading cause of biodiversity loss worldwide. While many studies examine how landscape modification affects species diversity, a trait-based approach can provide new insights into species responses to environmental change. Wild plants persisting in heavily modified landscapes provide a unique opportunity to examine species' responses to land use change. Trait expression within a community plays an important role in structuring species interactions, highlighting the potential implications of landscape mediated trait changes on ecosystem functioning. Here we test the effect of increasing agricultural landscape modification on defensive and reproductive traits in three commonly occurring Brassicaceae species to evaluate plant responses to landscape change. We collected seeds from populations at spatially separated sites with variation in surrounding agricultural land cover and grew them in a greenhouse common garden, measuring defensive traits through an herbivore no-choice bioassay as well as reproductive traits such as flower size and seed set. In two of the three species, plants originating from agriculturally dominant landscapes expressed a consistent reduction in flower size and herbivore leaf consumption. One species also showed reduced fitness associated with increasingly agricultural landscapes. These findings demonstrate that wild plants are responding to landscape modification, suggesting that the conversion of natural landscapes to agriculture has consequences for wild plant evolution.
Collapse
Affiliation(s)
- Hayley Schroeder
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Heather Grab
- School of Integrative Plant Sciences, Cornell University, Ithaca, New York, United States of America
| | - Katja Poveda
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
17
|
Jaccard C, Ye W, Bustos-Segura C, Glauser G, Kaplan I, Benrey B. Consequences of squash (Cucurbita argyrosperma) domestication for plant defence and herbivore interactions. PLANTA 2023; 257:106. [PMID: 37127808 PMCID: PMC10151309 DOI: 10.1007/s00425-023-04139-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023]
Abstract
MAIN CONCLUSION Cucurbita argyrosperma domestication affected plant defence by downregulating the cucurbitacin synthesis-associated genes. However, tissue-specific suppression of defences made the cultivars less attractive to co-evolved herbivores Diabrotica balteata and Acalymma spp. Plant domestication reduces the levels of defensive compounds, increasing susceptibility to insects. In squash, the reduction of cucurbitacins has independently occurred several times during domestication. The mechanisms underlying these changes and their consequences for insect herbivores remain unknown. We investigated how Cucurbita argyrosperma domestication has affected plant chemical defence and the interactions with two herbivores, the generalist Diabrotica balteata and the specialist Acalymma spp. Cucurbitacin levels and associated genes in roots and cotyledons in three wild and four domesticated varieties were analysed. Domesticated varieties contained virtually no cucurbitacins in roots and very low amounts in cotyledons. Contrastingly, cucurbitacin synthesis-associated genes were highly expressed in the roots of wild populations. Larvae of both insects strongly preferred to feed on the roots of wild squash, negatively affecting the generalist's performance but not that of the specialist. Our findings illustrate that domestication results in tissue-specific suppression of chemical defence, making cultivars less attractive to co-evolved herbivores. In the case of squash, this may be driven by the unique role of cucurbitacins in stimulating feeding in chrysomelid beetles.
Collapse
Affiliation(s)
- Charlyne Jaccard
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Wenfeng Ye
- Laboratory for Fundamental and Applied Research in Chemical Ecology (FARCE), Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Carlos Bustos-Segura
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Gaetan Glauser
- Neuchâtel Platform of Analytical Chemistry, University of Neuchâtel, Avenue de Bellevaux 51, 2000 Neuchâtel, Switzerland
| | - Ian Kaplan
- Department of Entomology, Purdue University, West Lafayette, IN 47907 USA
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
18
|
Chacón-Fuentes M, Bardehle L, Seguel I, Espinoza J, Lizama M, Quiroz A. Herbivory Damage Increased VOCs in Wild Relatives of Murtilla Plants Compared to Their First Offspring. Metabolites 2023; 13:metabo13050616. [PMID: 37233657 DOI: 10.3390/metabo13050616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/10/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Murtilla (Ugni molinae) is a shrub native to Chile that has undergone an incipient domestication process aimed at increasing its productivity. The reduction in intrinsic chemical defenses due to the domestication process has resulted in a decrease in the plant's ability to defend itself against mechanical or insect damage. In response to this damage, plants release volatile organic compounds (VOCs) as a means of defense. To understand how domestication has impacted the production of VOCs in the first offspring of murtilla, we hypothesized that their levels would be reduced due to the induction of mechanical and herbivore damage. To test this hypothesis, we collected VOCs from four offspring ecotypes and three wild relatives of murtilla. We induced mechanical and herbivore damage in the plants and then enclosed them in a glass chamber, where we captured the VOCs. We identified 12 compounds using GC-MS. Our results showed that wild relative ecotypes had a higher VOC release rate of 624.6 µg/cm2/day. Herbivore damage was the treatment that produced the highest release of VOCs, with 439.3 µg/cm2/day in wild relatives. These findings suggest that herbivory triggers defenses through the emission of VOCs, and that domestication has influenced the production of these compounds in murtilla. Overall, this study contributes to bridging the gap in the incipient domestication history of murtilla and highlights the importance of considering the impact of domestication on a plant's chemical defenses.
Collapse
Affiliation(s)
| | - Leonardo Bardehle
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4780000, Chile
- Departamento de Producción Agropecuaria, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
| | - Ivette Seguel
- Innovalimentos SPA, Gabriela Mistral 02311, Temuco 4780000, Chile
| | - Javier Espinoza
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4780000, Chile
| | - Marcelo Lizama
- Programa de Doctorado en Ciencias Agroalimentarias y Medioambiente, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, Temuco 4811230, Chile
| | - Andrés Quiroz
- Laboratorio de Química Ecológica, Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4811230, Chile
- Centro de Investigación Biotecnológica Aplicada al Medio Ambiente (CIBAMA), Universidad de La Frontera, Av. Francisco Salazar 01145, Casilla 54-D, Temuco 4780000, Chile
| |
Collapse
|
19
|
Cao L, Hmimsa Y, El Fatehi S, Buatois B, Dubois MP, Le Moigne M, Hossaert-McKey M, Aumeeruddy-Thomas Y, Bagnères AG, Proffit M. Floral scent of the Mediterranean fig tree: significant inter-varietal difference but strong conservation of the signal responsible for pollinator attraction. Sci Rep 2023; 13:5642. [PMID: 37024518 PMCID: PMC10079669 DOI: 10.1038/s41598-023-32450-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/28/2023] [Indexed: 04/08/2023] Open
Abstract
For thousands of years, humans have domesticated different plants by selecting for particular characters, often affecting less-known traits, including the volatile organic compounds (VOCs) emitted by these plants for defense or reproduction. The fig tree Ficus carica has a very wide range of varieties in the Mediterranean region and is selected for its traits affecting fruits, including pollination, but the effect of human-driven diversification on the VOCs emitted by the receptive figs to attract their pollinator (Blastophaga psenes) is not known. In the present study, VOCs from receptive figs of eight varieties in northern Morocco, were collected at different times within the manual pollination period and analyzed by gas chromatography-mass spectrometry. Genetic analyses using microsatellite loci were performed on the same varieties. Despite strong inter-varietal differences in the quantity and relative proportions of all VOCs, the relative proportions of the four pollinator-attractive VOCs showed limited variation among varieties. There was no significant correlation between genetic markers and chemical profiles of the different varieties. While diversification driven by humans has led to differences between varieties in VOC profiles, this paper suggests that throughout the process of domestication and varietal diversification, stabilizing selection has maintained a strong signal favoring pollinator attraction.
Collapse
Affiliation(s)
- Li Cao
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| | - Younes Hmimsa
- TEDAEEP Research Team, Abdelmalek Essaadi University (FPL), B. P. 745, Poste Principale, 92004, Larache, Morocco
| | - Salama El Fatehi
- TEDAEEP Research Team, Abdelmalek Essaadi University (FPL), B. P. 745, Poste Principale, 92004, Larache, Morocco
| | - Bruno Buatois
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Marie-Pierre Dubois
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Maïlys Le Moigne
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Martine Hossaert-McKey
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Yildiz Aumeeruddy-Thomas
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Anne-Geneviève Bagnères
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France
| | - Magali Proffit
- CEFE, CNRS/University of Montpellier/EPHE/IRD (UMR 5175), 1919 Route de Mende, 34293, Montpellier Cedex 5, France.
| |
Collapse
|
20
|
Benrey B. The effects of plant domestication on the foraging and performance of parasitoids. CURRENT OPINION IN INSECT SCIENCE 2023; 57:101031. [PMID: 37028646 DOI: 10.1016/j.cois.2023.101031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 05/04/2023]
Abstract
Domestication-related changes in the chemical traits of crop plants affect parasitoid foraging success, development, and survival. For example, herbivore-induced changes in the production of volatiles by domesticated plants can enhance or reduce parasitoid attraction. While the trade-off between nutrient content and chemical defense in cultivated plants can increase the suitability of hosts for parasitoids, their increased health and size can positively affect their immune response against parasitoids. Overall, plant domestication is expected to significantly affect their relationship with parasitoids due to altered plant morphology, physical characteristics, chemical defenses, and new plant associations. This review highlights the need for research on the effects of plant domestication on host-parasitoid interactions in the interest of better controlling insect pests.
Collapse
Affiliation(s)
- Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland.
| |
Collapse
|
21
|
Salazar-Mendoza P, Magalhães DM, Lourenção AL, Bento JMS. Differential defensive and nutritional traits among cultivated tomato and its wild relatives shape their interactions with a specialist herbivore. PLANTA 2023; 257:76. [PMID: 36894799 DOI: 10.1007/s00425-023-04108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Cultivated tomato presented lower constitutive volatiles, reduced morphological and chemical defenses, and increased leaf nutritional quality that affect its resistance against the specialist herbivore Tuta absoluta compared to its wild relatives. Plant domestication process has selected desirable agronomic attributes that can both intentionally and unintentionally compromise other important traits, such as plant defense and nutritional value. However, the effect of domestication on defensive and nutritional traits of plant organs not exposed to selection and the consequent interactions with specialist herbivores are only partly known. Here, we hypothesized that the modern cultivated tomato has reduced levels of constitutive defense and increased levels of nutritional value compared with its wild relatives, and such differences affect the preference and performance of the South American tomato pinworm, Tuta absoluta-an insect pest that co-evolved with tomato. To test this hypothesis, we compared plant volatile emissions, leaf defensive (glandular and non-glandular trichome density, and total phenolic content), and nutritional traits (nitrogen content) among the cultivated tomato Solanum lycopersicum and its wild relatives S. pennellii and S. habrochaites. We also determined the attraction and ovipositional preference of female moths and larval performance on cultivated and wild tomatoes. Volatile emissions were qualitatively and quantitatively different among the cultivated and wild species. Glandular trichomes density and total phenolics were lower in S. lycopersicum. In contrast, this species had a greater non-glandular trichome density and leaf nitrogen content. Female moths were more attracted and consistently laid more eggs on the cultivated S. lycopersicum. Larvae fed on S. lycopersicum leaves had a better performance reaching shorter larval developmental times and increasing the pupal weight compared to those fed on wild tomatoes. Overall, our study documents that agronomic selection for increased yields has altered the defensive and nutritional traits in tomato plants, affecting their resistance to T. absoluta.
Collapse
Affiliation(s)
- Paolo Salazar-Mendoza
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil.
| | - Diego M Magalhães
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - André L Lourenção
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| | - José Maurício S Bento
- Department of Entomology and Acarology, "Luiz de Queiroz" College of Agriculture, University of São Paulo, Piracicaba, SP, 13418-900, Brazil
| |
Collapse
|
22
|
Martín-Cacheda L, Vázquez-González C, Rasmann S, Röder G, Abdala-Roberts L, Moreira X. Plant genetic relatedness and volatile-mediated signalling between Solanum tuberosum plants in response to herbivory by Spodoptera exigua. PHYTOCHEMISTRY 2023; 206:113561. [PMID: 36513136 DOI: 10.1016/j.phytochem.2022.113561] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
It has been proposed that plant-plant signalling via herbivore-induced volatile organic compounds (VOCs) should be stronger between closely related than unrelated plants. However, empirical tests remain limited and few studies have provided detailed assessments of induced changes in VOCs emissions across plant genotypes to explain genetic relatedness effects. In this study, we tested whether airborne signalling in response to herbivory between Solanum tuberosum (potato) plants was contingent on plant genetic relatedness, and further investigated genotypic variation in VOCs potentially underlying signalling and its contingency on relatedness. We carried out a greenhouse experiment using 15 S. tuberosum varieties placing pairs of plants in plastic cages, i.e. an emitter and a receiver, where both plants were of the same genotype or different genotype thereby testing for self-recognition, an elemental form genetic relatedness effects. Then, for half of the cages within each level of relatedness the emitter plant was damaged by Spodoptera exigua larvae whereas for the other half the emitter was not damaged. Three days later, we placed S. exigua larvae on receivers to test for emitter VOC effects on leaf consumption and larval weight gain (i.e. induced resistance). In addition, we used a second group of plants subjected to the same induction treatment with the same S. tuberosum varieties to test for herbivore-induced changes in VOC emissions and variation in VOC emissions among these plant genotypes. We found that herbivory drove changes in VOC composition but not total emissions, and also observed quantitative and qualitative variation in constitutive and induced VOC emissions among varieties. Results from the bioassay showed that the amount of leaf area consumed and larval weight gain on receiver plants exposed to damaged emitters were significantly lower compared to mean values on receivers exposed to control emitters. However, and despite genotypic variation in induced VOCs, this signalling effect was not contingent on plant genetic relatedness. These findings provide evidence of VOCs-mediated signalling between S. tuberosum plants in response to S. exigua damage, but no evidence of self-recognition effects in signalling contingent on variation in VOC emissions among S. tuberosum varieties.
Collapse
Affiliation(s)
- Lucía Martín-Cacheda
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain.
| | - Carla Vázquez-González
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain; Department of Ecology and Evolutionary Biology, University of California-Irvine, 92697 Irvine, California, USA
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Gregory Röder
- Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Luis Abdala-Roberts
- Departamento de Ecología Tropical, Campus de Ciencias Biológicas y Agropecuarias, Universidad Autónoma de Yucatán, Apartado Postal 4-116, Itzimná. 97000. Mérida, Yucatán, Mexico
| | - Xoaquín Moreira
- Misión Biológica de Galicia (MBG-CSIC), Apartado de correos 28, 36080 Pontevedra, Galicia, Spain.
| |
Collapse
|
23
|
Cornelissen JHC, Cornwell WK, Freschet GT, Weedon JT, Berg MP, Zanne AE. Coevolutionary legacies for plant decomposition. Trends Ecol Evol 2023; 38:44-54. [PMID: 35945074 DOI: 10.1016/j.tree.2022.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/24/2022]
Abstract
Coevolution has driven speciation and evolutionary novelty in functional traits across the Tree of Life. Classic coevolutionary syndromes such as plant-pollinator, plant-herbivore, and host-parasite have focused strongly on the fitness consequences during the lifetime of the interacting partners. Less is known about the consequences of coevolved traits for ecosystem-level processes, in particular their 'afterlife' legacies for litter decomposition, nutrient cycling, and the functional ecology of decomposers. We review the mechanisms by which traits resulting from coevolution between plants and their consumers, microbial symbionts, or humans, and between microbial decomposers and invertebrates, drive plant litter decomposition pathways and rates. This supports the idea that much of current global variation in the decomposition of plant material is a legacy of coevolution.
Collapse
Affiliation(s)
- J Hans C Cornelissen
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands.
| | - William K Cornwell
- Evolution and Ecology Research Centre, School of Biological, Earth, and Environmental Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Grégoire T Freschet
- Station d'Ecologie Théorique et Expérimentale, Centre National de la Recherche Scientifique (CNRS), Moulis, France
| | - James T Weedon
- Amsterdam Institute for Life and Environment (A-LIFE), Systems Ecology Section, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081, HV, Amsterdam, The Netherlands
| | - Matty P Berg
- A-LIFE, Ecology and Evolution Section, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands; Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, The Netherlands
| | - Amy E Zanne
- Department of Biology, University of Miami, Miami, FL, USA
| |
Collapse
|
24
|
Elsensohn JE, Burrack HJ. Plasticity in oviposition and foraging behavior in the invasive pest Drosophila suzukii across natural and agricultural landscapes. Ecol Evol 2023; 13:e9713. [PMID: 36620402 PMCID: PMC9817201 DOI: 10.1002/ece3.9713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/14/2022] [Accepted: 12/16/2022] [Indexed: 01/09/2023] Open
Abstract
The effects and extent of the impacts of agricultural insect pests in and around cropping systems is a rich field of study. However, little research exists on the presence and consequence of pest insects in undisturbed landscapes distant from crop hosts. Research in such areas may yield novel or key insights on pest behavior or ecology that is not evident from agroecosystem-based studies. Using the invasive fruit pest Drosophila suzukii (Matsumura) as a case study, we investigated the presence and resource use patterns of this agricultural pest in wild blackberries growing within the southern Appalachian Mountain range of North Carolina over 2 years. We found D. suzukii throughout the sampled range with higher levels of infestation (D. suzukii eggs/g fruit) in all ripeness stages in natural areas when compared with cultivated blackberry samples, but especially in under-ripe fruit. We also explored a direct comparison of oviposition preference between wild and cultivated fruit and found higher oviposition in wild berries when equal weights of fruit were offered, but oviposition was higher in cultivated berries when fruit number was equal. Forest populations laid more eggs in unripe wild-grown blackberries throughout the year than populations infesting cultivated berries. This suggests D. suzukii may change its oviposition and foraging behavior in relation to fruit type. Additionally, as D. suzukii exploits a common forest fruit prior to ripeness, further research is needed to explore how this affects wild food web dynamics and spillover to regional agroecosystems.
Collapse
Affiliation(s)
- Johanna E. Elsensohn
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- USDA‐ARS Appalachian Fruit Research StationKearneysvilleWest VirginiaUSA
| | - Hannah J. Burrack
- Department of Entomology and Plant PathologyNorth Carolina State UniversityRaleighNorth CarolinaUSA
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
25
|
Chapuis M, Leménager N, Piou C, Roumet P, Marche H, Centanni J, Estienne C, Ecarnot M, Vasseur F, Violle C, Kazakou E. Domestication provides durum wheat with protection from locust herbivory. Ecol Evol 2023; 13:e9741. [PMID: 36694552 PMCID: PMC9843534 DOI: 10.1002/ece3.9741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 12/17/2022] [Accepted: 12/28/2022] [Indexed: 01/19/2023] Open
Abstract
Lower plant resistance to herbivores following domestication has been suggested as the main cause for higher feeding damage in crops than in wild progenitors. While herbivore compensatory feeding has also been proposed as a possible mechanism for raised damage in crops with low nutritional quality, predictions regarding the effects of plant domestication on nutritional quality for herbivores remain unclear. In particular, data on primary metabolites, even major macronutrients, measured in the organs consumed by herbivores, are scarce. In this study, we used a collection of 10 accessions of wild ancestors and 10 accessions of modern progenies of Triticum turgidum to examine whether feeding damage and selectivity by nymphs of Locusta migratoria primarily depended on five leaf traits related to structural resistance or nutrient profiles. Our results unexpectedly showed that locusts favored wild ancestors over domesticated accessions and that leaf toughness and nitrogen and soluble protein contents increased with the domestication process. Furthermore, the quantitative relationship between soluble protein and digestible carbohydrates was found to poorly meet the specific requirements of the herbivore, in all wheat accessions, both wild and modern. The increase in leaf structural resistance to herbivores in domesticated tetraploid wheat accessions suggested that resource allocation trade-offs between growth and herbivory resistance may have been disrupted by domestication in the vegetative organs of this species. Since domestication did not result in a loss of nutritional quality in the leaves of the tetraploid wheat, our results rather provides evidence for a role of the content of plants in nonnutritive nitrogenous secondary compounds, possibly deterrent or toxic, at least for grasshopper herbivores.
Collapse
Affiliation(s)
- Marie‐Pierre Chapuis
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Nicolas Leménager
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Cyril Piou
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Pierre Roumet
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | - Héloïse Marche
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Julia Centanni
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Christophe Estienne
- CIRAD, CBGPMontpellierFrance
- CBGP, CIRAD, Montpellier SupAgro, INRA, IRD, Univ MontpellierMontpellierFrance
| | - Martin Ecarnot
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut AgroMontpellierFrance
| | | | - Cyrille Violle
- CEFE, Univ Montpellier, CNRS, EPHE, IRDMontpellierFrance
| | - Elena Kazakou
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Institut AgroMontpellierFrance
| |
Collapse
|
26
|
Niza-Costa M, Rodríguez-dos Santos AS, Rebelo-Romão I, Ferrer MV, Sequero López C, Vílchez JI. Geographically Disperse, Culturable Seed-Associated Microbiota in Forage Plants of Alfalfa ( Medicago sativa L.) and Pitch Clover ( Bituminaria bituminosa L.): Characterization of Beneficial Inherited Strains as Plant Stress-Tolerance Enhancers. BIOLOGY 2022; 11:biology11121838. [PMID: 36552347 PMCID: PMC9775229 DOI: 10.3390/biology11121838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/24/2022]
Abstract
Agricultural production is being affected by increasingly harsh conditions caused by climate change. The vast majority of crops suffer growth and yield declines due to a lack of water or intense heat. Hence, commercial legume crops suffer intense losses of production (20-80%). This situation is even more noticeable in plants used as fodder for animals, such as alfalfa and pitch trefoil, since their productivity is linked not only to the number of seeds produced, but also to the vegetative growth of the plant itself. Thus, we decided to study the microbiota associated with their seeds in different locations on the Iberian Peninsula, with the aim of identifying culturable bacteria strains that have adapted to harsh environments and that can be used as biotreatments to improve plant growth and resistance to stress. As potentially inherited microbiota, they may also represent a treatment with medium- and long-term adaptative effects. Hence, isolated strains showed no clear relationship with their geographical sampling location, but had about 50% internal similarity with their model plants. Moreover, out of the 51 strains isolated, about 80% were capable of producing biofilms; around 50% produced mid/high concentrations of auxins and grew notably in ACC medium; only 15% were characterized as xerotolerant, while more than 75% were able to sporulate; and finally, 65% produced siderophores and more than 40% produced compounds to solubilize phosphates. Thus, Paenibacillus amylolyticus BB B2-A, Paenibacillus xylanexedens MS M1-C, Paenibacillus pabuli BB Oeiras A, Stenotrophomonas maltophilia MS M1-B and Enterobacter hormaechei BB B2-C strains were tested as plant bioinoculants in lentil plants (Lens culinaris Medik.), showing promising results as future treatments to improve plant growth under stressful conditions.
Collapse
Affiliation(s)
- Marla Niza-Costa
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | | | - Inês Rebelo-Romão
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | - María Victoria Ferrer
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
| | - Cristina Sequero López
- GeoBioTec, Department of Earth Sciences, NOVA School of Sciences and Technology, Universidade NOVA de Lisboa (Campus de Caparica), 1070-312 Caparica, Portugal
| | - Juan Ignacio Vílchez
- iPlantMicro Lab, Instituto de Tecnologia Química e Biológica (ITQB)-NOVA, Oeiras, 2784-501 Lisboa, Portugal
- Correspondence:
| |
Collapse
|
27
|
Gutierrez A, Grillo MA. Effects of Domestication on Plant-Microbiome Interactions. PLANT & CELL PHYSIOLOGY 2022; 63:1654-1666. [PMID: 35876043 DOI: 10.1093/pcp/pcac108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 07/15/2022] [Accepted: 07/22/2022] [Indexed: 06/15/2023]
Abstract
Through the process of domestication, selection is targeted on a limited number of plant traits that are typically associated with yield. As an unintended consequence, domesticated plants often perform poorly compared to their wild progenitors for a multitude of traits that were not under selection during domestication, including abiotic and biotic stress tolerance. Over the past decade, advances in sequencing technology have allowed for the rigorous characterization of host-associated microbial communities, termed the microbiome. It is now clear that nearly every conceivable plant interaction with the environment is mediated by interactions with the microbiome. For this reason, plant-microbiome interactions are an area of great promise for plant breeding and crop improvement. Here, we review the literature to assess the potential impact that domestication has had on plant-microbiome interactions and the current understanding of the genetic basis of microbiome variation to inform plant breeding efforts. Overall, we find limited evidence that domestication impacts the diversity of microbiomes, but domestication is often associated with shifts in the abundance and composition of microbial communities, including taxa of known functional significance. Moreover, genome-wide association studies and mutant analysis have not revealed a consistent set of core candidate genes or genetic pathways that confer variation in microbiomes across systems. However, such studies do implicate a consistent role for plant immunity, root traits, root and leaf exudates and cell wall integrity as key traits that control microbiome colonization and assembly. Therefore, selection on these key traits may pose the most immediate promise for enhancing plant-microbiome interactions through breeding.
Collapse
Affiliation(s)
- Andres Gutierrez
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| | - Michael A Grillo
- Department of Biology, Loyola University Chicago, 1032 W. Sheridan Rd, Chicago, IL 60660, USA
| |
Collapse
|
28
|
Serrano-Mejía C, Bello-Bedoy R, Arteaga MC, Castillo GR. Does Domestication Affect Structural and Functional Leaf Epidermal Traits? A Comparison between Wild and Cultivated Mexican Chili Peppers ( Capsicum annuum). PLANTS (BASEL, SWITZERLAND) 2022; 11:3062. [PMID: 36432791 PMCID: PMC9692241 DOI: 10.3390/plants11223062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
During domestication, lineages diverge phenotypically and genetically from wild relatives, particularly in preferred traits. In addition to evolutionary divergence in selected traits, other fitness-related traits that are unselected may change in concert. For instance, the selection of chili pepper fruits was not intended to change the structure and function of the leaf epidermis. Leaf stomata and trichome densities play a prominent role in regulating stomatal conductance and resistance to herbivores. Here, we assessed whether domestication affected leaf epidermis structure and function in Capsicum annuum. To do this, we compared leaf stomata and trichome densities in six cultivated varieties of Mexican Capsicum annuum and their wild relative. We measured stomatal conductance and resistance to herbivores. Resistance to (defense against) herbivores was measured as variation in the herbivory rate and larvae mortality of Spodoptera frugiperda fed with leaves of wild and cultivated plants. As expected, the different varieties displayed low divergence in stomatal density and conductance. Leaf trichome density was higher in the wild relative, but variation was not correlated with the herbivory rate. In contrast, a higher mortality rate of S. frugiperda larvae was recorded when fed with the wild relative and two varieties than larvae fed with four other varieties. Overall, although domestication did not aim at resistance to herbivores, this evolutionary process produced concerted changes in defensive traits.
Collapse
Affiliation(s)
- Carlos Serrano-Mejía
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, C.P. Ensenada 22860, Baja California, Mexico
| | - Rafael Bello-Bedoy
- Facultad de Ciencias, Universidad Autónoma de Baja California, Carretera Ensenada-Tijuana 3917, C.P. Ensenada 22860, Baja California, Mexico
| | - María Clara Arteaga
- Departamento de Biología de la Conservación, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada 22860, Baja California, Mexico
| | - Guillermo R. Castillo
- Facultad de Negocios Sostenibles, Universidad del Medio Ambiente, San Mateo Acatitlán, Valle de Bravo 51200, Estado de Mexico, Mexico
| |
Collapse
|
29
|
Tronson E, Kaplan I, Enders L. Characterizing rhizosphere microbial communities associated with tolerance to aboveground herbivory in wild and domesticated tomatoes. Front Microbiol 2022; 13:981987. [PMID: 36187948 PMCID: PMC9515613 DOI: 10.3389/fmicb.2022.981987] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/18/2022] [Indexed: 11/25/2022] Open
Abstract
Root-associated microbial communities are well known for their ability to prime and augment plant defenses that reduce herbivore survival or alter behavior (i.e., resistance). In contrast, the role root microbes play in plant tolerance to herbivory, an evolutionarily sustainable alternative to resistance, is overlooked. In this study, we aimed to expand our limited understanding of what role rhizosphere microbial communities play in supporting tolerance to insect damage. Using domesticated tomatoes and their wild ancestors (Solanum spp.), we first documented how tobacco hornworm (Manduca sexta) herbivory impacted tomato fruit production in order to quantify plant tolerance. We then characterized the bacterial and fungal rhizosphere communities harbored by high and low tolerance plants. Wild tomatoes excelled at tolerating hornworm herbivory, experiencing no significant yield loss despite 50% leaf area removal. Their domesticated counterparts, on the other hand, suffered 26% yield losses under hornworm herbivory, indicating low tolerance. Ontogeny (i.e., mid- vs. late-season sampling) explained the most variation in rhizosphere community structure, with tomato line, tolerance, and domestication status also shaping rhizosphere communities. Fungal and bacterial community traits that associated with the high tolerance line include (1) high species richness, (2) relatively stable community composition under herbivory, and (3) the relative abundance of taxa belonging to Stenotrophomonas, Sphingobacterium, and Sphingomonas. Characterizing tolerance-associating microbiomes may open new avenues through which plant defenses are amended in pest management, such as plant breeding efforts that enhance crop recruitment of beneficial microbiomes.
Collapse
|
30
|
Ali J, Sobhy IS, Bruce TJA. Wild potato ancestors as potential sources of resistance to the aphid Myzus persicae. PEST MANAGEMENT SCIENCE 2022; 78:3931-3938. [PMID: 35485863 PMCID: PMC9543925 DOI: 10.1002/ps.6957] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plant resistance to insects can be reduced by crop domestication which means their wild ancestors could provide novel sources of resistance. Thus, crossing wild ancestors with domesticated crops can potentially enhance their resistance against insects. However, a prerequisite for this is identification of sources of resistance. Here, we investigated the response of three wild potato (Solanum stoloniferum Schltdl.) accessions and cultivated potato (Solanum tuberosum) to aphid (Myzus persicae Sulzer) herbivory. RESULTS Results revealed that there was a significant reduction in aphid survival and reproduction on wild potato accessions (CGN18333, CGN22718, CGN23072) compared to cultivated (Desiree) potato plants. A similar trend was observed in olfactometer bioassay; the wild accessions had a repellent effect on adult aphids. In contrast, among the tested wild potato accessions, the parasitoid Diaeretiella rapae (M'Intosh) was significantly attracted to volatiles from CGN18333. Volatile analysis showed that wild accessions emitted significantly more volatiles compared to cultivated potato. Principal component analysis (PCA) of volatile data revealed that the volatile profiles of wild and cultivated potato are dissimilar. β-Bisabolene, (E)-β-farnesene, trans-α-bergamotene, d-limonene, (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene (TMTT), and p-cymen-7-ol were the main volatiles contributing to the emitted blends, suggesting possible involvement in the behavioural response of both M. persicae and D. rapae. CONCLUSION Our findings show that the tested wild accessions have the potential to be used to breed aphid-resistant potatoes. This opens new opportunities to reduce the aphid damage and to enhance the recruitment of natural enemies. © 2022 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Jamin Ali
- School of Life SciencesKeele UniversityKeeleUK
| | - Islam S Sobhy
- School of Life SciencesKeele UniversityKeeleUK
- Department of Plant Protection, Faculty of AgricultureSuez Canal UniversityIsmailiaEgypt
- Present address:
School of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | | |
Collapse
|
31
|
Romero B, Olivier C, Wist T, Prager SM. Do Options Matter? Settling Behavior, Stylet Sheath Counts, and Oviposition of Aster Leafhoppers (Hemiptera: Cicadellidae) in Two-Choice Bioassays. ENVIRONMENTAL ENTOMOLOGY 2022; 51:460-470. [PMID: 35077564 DOI: 10.1093/ee/nvab148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Indexed: 06/14/2023]
Abstract
Polyphagous insects are characterized by a broad diet comprising plant species from different taxonomic groups. Within these insects, migratory species are of particular interest, given that they encounter unpredictable environments, with abrupt spatial and temporal changes in plant availability and density. Aster leafhoppers (Hemiptera: Cicadellidae: Macrosteles quadrilineatus Forbes) arrive in the Canadian Prairies in spring and early summer and are the main vector of a prokaryotic plant pathogen known as Aster Yellows Phytoplasma (AYp) (Candidatus Phytoplasma asteris). Host choice selection behavior of Aster leafhoppers was evaluated through two-choice bioassays, using domesticated and wild plants species commonly found in the Canadian Prairies. Leaf tissues from these plants were collected and stained to quantify the number of stylet sheaths and eggs. To assess possible effects due to insect infection, two-choice bioassays were repeated using leafhoppers infected with AYp and a subset of plant species. When two domesticated or wild plant species were presented together, similar numbers of uninfected Aster leafhoppers were observed on both plant species in most combinations. In domesticated-wild plant bioassays, uninfected Aster leafhoppers preferred to settle on the domesticated species. There was little to no association between settling preferences and stylet sheath and egg counts. These findings provide a better understanding of AY epidemiology and suggest that after domesticated species germination, leafhoppers could move from nearby wild plants into the preferred cereals (Poales: Poaceae) to settle on them, influencing the risk of AYp infection in some of these species.
Collapse
Affiliation(s)
- Berenice Romero
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| | - Chrystel Olivier
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Tyler Wist
- Agriculture and Agri-Food Canada Saskatoon Research and Development Centre, 107 Science Place, Saskatoon, SK S7N 0X2, Canada
| | - Sean M Prager
- Department of Plant Sciences, College of Agriculture and Bioresources, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
32
|
Lampasona T, Rodriguez‐Saona C, Nielsen AL. Novel hosts can incur fitness costs to a frugivorous insect pest. Ecol Evol 2022; 12:e8841. [PMID: 35462977 PMCID: PMC9019138 DOI: 10.1002/ece3.8841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/26/2022] [Accepted: 03/10/2022] [Indexed: 11/18/2022] Open
Abstract
In phytophagous insects, adult attraction and oviposition preference for a host plant are often positively correlated with their immature fitness; however, little is known how this preference–performance relationship changes within insect populations utilizing different host plants. Here, we investigated differences in the preference and performance of two populations of a native North American frugivorous insect pest, the plum curculio (Conotrachelus nenuphar)—one that utilizes peaches and another that utilizes blueberries as hosts—in the Mid‐Atlantic United States. We collected C. nenuphar adult populations from peach and blueberry farms and found that they exhibited a clear preference for the odors of, as well as an ovipositional preference for, the hosts they were collected from, laying 67%–83% of their eggs in their respective collected hosts. To measure C. nenuphar larval performance, a fitness index was calculated using data on larval weights, development, and survival rate from egg to 4th instars when reared on the parent's collected and novel hosts. Larvae of C. nenuphar adults collected from peach had high fitness on peach but low fitness when reared on blueberry. In contrast, larvae from C. nenuphar adults collected in blueberry had high fitness regardless of the host on which they were reared. In this study, we show that utilizing a novel host such as blueberry incurs a fitness cost for C. nenuphar from peaches, but this cost was not observed for C. nenuphar from blueberries, indicating that the preference–performance relationship is present in the case of insects reared on peach, but insects reared on blueberry were more flexible and able to utilize either host, despite preferring blueberry.
Collapse
Affiliation(s)
- Timothy Lampasona
- Department of Entomology Rutgers University Bridgeton New Jersey USA
| | | | - Anne L. Nielsen
- Department of Entomology Rutgers University Bridgeton New Jersey USA
| |
Collapse
|
33
|
Deletre E, Matu FK, Murungi LK, Mohamed S. Repellency Potential of Tomato Herbivore-Induced Volatiles Against the Greenhouse Whitefly (Trialeurodes vaporariorum) (Hemiptera: Aleyrodidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:565-572. [PMID: 35244166 DOI: 10.1093/jee/toac015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 06/14/2023]
Abstract
The greenhouse whitefly, Trialeurode vaporariorum, is among the key pests of tomato (Solanum lycopersicum) in sub-Saharan Africa with Tuta absoluta, spider mite, thrips, and fruitworms. To understand the interaction between the pest and the plant's herbivory-induced plant volatile (HIPVs), we investigated the repellency of four tomato cultivars (Kilele F1, Assila F1, Red Beauty F1, and Nemonneta F1) upon infestation by Trialeurode vaporariorum. We analyzed the behavioral response of T. vaporariorum to infested and uninfested tomato plants of these cultivars using olfactory bioassays followed by gas chromatography-mass spectrometry (GC-MS) analyses of emitted volatiles. Trialeurode vaporariorum was attracted to uninfested plants of all four tomato cultivars. However, two cultivars Kilele F1 and Red Beauty F1 were no longer attractive to the whitefly when they were already infested by the pest. GC-MS analyses identified 25 compounds, 18 monoterpenes, 3 sesquiterpenes, 2 xylenes, 1 aldehyde, and 1 carboxylic compound in the 4 uninfested and infested cultivars. Based on the insects' behavioral response, 1,8-cineole, p-cymene, and limonene did not attract T. vaporariorum at varying concentrations when combined with Red Beauty F1, the most attractive tomato cultivar. This repellence behavioral response can be used as a basis for improvement of other vegetable crops for the management of arthropod pests as for odor masking technique.
Collapse
Affiliation(s)
- Emilie Deletre
- CIRAD-UPR HORTSYS, University of Montpellier, TA B-103/C-Campus International de Baillarguet, 34398 Montpellier Cedex, France
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| | - Francis Kiamba Matu
- CIRAD-UPR HORTSYS, University of Montpellier, TA B-103/C-Campus International de Baillarguet, 34398 Montpellier Cedex, France
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
- Jomo Kenyatta University of Agriculture and Technology, Nairobi, Kenya
| | | | - Samira Mohamed
- International Center of Insect Physiology and Ecology, Nairobi, Kenya
| |
Collapse
|
34
|
Bassetti N, Caarls L, Bukovinszkine'Kiss G, El-Soda M, van Veen J, Bouwmeester K, Zwaan BJ, Schranz ME, Bonnema G, Fatouros NE. Genetic analysis reveals three novel QTLs underpinning a butterfly egg-induced hypersensitive response-like cell death in Brassica rapa. BMC PLANT BIOLOGY 2022; 22:140. [PMID: 35331150 PMCID: PMC8944062 DOI: 10.1186/s12870-022-03522-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Cabbage white butterflies (Pieris spp.) can be severe pests of Brassica crops such as Chinese cabbage, Pak choi (Brassica rapa) or cabbages (B. oleracea). Eggs of Pieris spp. can induce a hypersensitive response-like (HR-like) cell death which reduces egg survival in the wild black mustard (B. nigra). Unravelling the genetic basis of this egg-killing trait in Brassica crops could improve crop resistance to herbivory, reducing major crop losses and pesticides use. Here we investigated the genetic architecture of a HR-like cell death induced by P. brassicae eggs in B. rapa. RESULTS A germplasm screening of 56 B. rapa accessions, representing the genetic and geographical diversity of a B. rapa core collection, showed phenotypic variation for cell death. An image-based phenotyping protocol was developed to accurately measure size of HR-like cell death and was then used to identify two accessions that consistently showed weak (R-o-18) or strong cell death response (L58). Screening of 160 RILs derived from these two accessions resulted in three novel QTLs for Pieris brassicae-induced cell death on chromosomes A02 (Pbc1), A03 (Pbc2), and A06 (Pbc3). The three QTLs Pbc1-3 contain cell surface receptors, intracellular receptors and other genes involved in plant immunity processes, such as ROS accumulation and cell death formation. Synteny analysis with A. thaliana suggested that Pbc1 and Pbc2 are novel QTLs associated with this trait, while Pbc3 also contains an ortholog of LecRK-I.1, a gene of A. thaliana previously associated with cell death induced by a P. brassicae egg extract. CONCLUSIONS This study provides the first genomic regions associated with the Pieris egg-induced HR-like cell death in a Brassica crop species. It is a step closer towards unravelling the genetic basis of an egg-killing crop resistance trait, paving the way for breeders to further fine-map and validate candidate genes.
Collapse
Affiliation(s)
- Niccolò Bassetti
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Lotte Caarls
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Gabriella Bukovinszkine'Kiss
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - Mohamed El-Soda
- Department of Genetics, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Jeroen van Veen
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Klaas Bouwmeester
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Entomology, Wageningen University & Research, Wageningen, The Netherlands
| | - Bas J Zwaan
- Laboratory of Genetics, Wageningen University & Research, Wageningen, The Netherlands
| | - M Eric Schranz
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Guusje Bonnema
- Laboratory of Plant Breeding, Wageningen University & Research, Wageningen, The Netherlands
| | - Nina E Fatouros
- Biosystematics Group, Wageningen University & Research, Wageningen, The Netherlands.
| |
Collapse
|
35
|
Brzozowski LJ, Hu H, Campbell MT, Broeckling CD, Caffe M, Gutiérrez L, Smith KP, Sorrells ME, Gore MA, Jannink JL. Selection for seed size has uneven effects on specialized metabolite abundance in oat (Avena sativa L.). G3 (BETHESDA, MD.) 2022; 12:6459173. [PMID: 34893823 PMCID: PMC9210299 DOI: 10.1093/g3journal/jkab419] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022]
Abstract
Plant breeding strategies to optimize metabolite profiles are necessary to develop health-promoting food crops. In oats (Avena sativa L.), seed metabolites are of interest for their antioxidant properties, yet have not been a direct target of selection in breeding. In a diverse oat germplasm panel spanning a century of breeding, we investigated the degree of variation of these specialized metabolites and how it has been molded by selection for other traits, like yield components. We also ask if these patterns of variation persist in modern breeding pools. Integrating genomic, transcriptomic, metabolomic, and phenotypic analyses for three types of seed specialized metabolites—avenanthramides, avenacins, and avenacosides—we found reduced heritable genetic variation in modern germplasm compared with diverse germplasm, in part due to increased seed size associated with more intensive breeding. Specifically, we found that abundance of avenanthramides increases with seed size, but additional variation is attributable to expression of biosynthetic enzymes. In contrast, avenacoside abundance decreases with seed size and plant breeding intensity. In addition, these different specialized metabolites do not share large-effect loci. Overall, we show that increased seed size associated with intensive plant breeding has uneven effects on the oat seed metabolome, but variation also exists independently of seed size to use in plant breeding. This work broadly contributes to our understanding of how plant breeding has influenced plant traits and tradeoffs between traits (like growth and defense) and the genetic bases of these shifts.
Collapse
Affiliation(s)
- Lauren J Brzozowski
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Haixiao Hu
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Malachy T Campbell
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Corey D Broeckling
- Bioanalysis and Omics Center of the Analytical Resources Core, Colorado State University, Fort Collins, CO 80523 USA
| | - Melanie Caffe
- Department of Agronomy, Horticulture & Plant Science, South Dakota State University, Brookings, SD 57006, USA
| | - Lucía Gutiérrez
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Kevin P Smith
- Department of Agronomy and Plant Genetics, University of Minnesota, St. Paul, MN 55108, USA
| | - Mark E Sorrells
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Michael A Gore
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Jean-Luc Jannink
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA.,USDA-ARS, Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853 USA
| |
Collapse
|
36
|
Adachi-Fukunaga S, Nakabayashi Y, Tokuda M. Transgenerational changes in pod maturation phenology and seed traits of Glycine soja infested by the bean bug Riptortus pedestris. PLoS One 2022; 17:e0263904. [PMID: 35235584 PMCID: PMC8890626 DOI: 10.1371/journal.pone.0263904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 01/30/2022] [Indexed: 11/18/2022] Open
Abstract
Land plants have diverse defenses against herbivores. In some cases, plant response to insect herbivory may be chronological and even transgenerational. Feeding by various stink bugs, such as the bean bug Riptortus pedestris (Hemiptera: Alydidae), induce physiological changes in soybean, called as green stem syndrome, which are characterized by delayed senescence in stems, leaves, and pods. To investigate the plant response to the bean bug feeding in the infested generation and its offspring, we studied the effects of R. pedestris infestation on Glycine soja, the ancestral wild species of soybean. Field surveys revealed that the occurrence of the autumn R. pedestris generation coincided with G. soja pod maturation in both lowland and mountainous sites. Following infestation by R. pedestris, pod maturation was significantly delayed in G. soja. When G. soja seeds obtained from infested and non-infested plants were cultivated, the progeny of infested plants exhibited much earlier pod maturation and larger-sized seed production than that of control plants, indicating that R. pedestris feeding induced transgenerational changes. Because earlier seed maturity results in asynchrony with occurrence of R. pedestris, the transgenerational changes in plant phenology are considered to be an adaptive transgenerational and chronological defense for the plant against feeding by the stink bug.
Collapse
Affiliation(s)
- Shuhei Adachi-Fukunaga
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Yui Nakabayashi
- Department of Biological Resource Science, Saga University, Saga, Japan
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Department of Biological Resource Science, Saga University, Saga, Japan
| |
Collapse
|
37
|
Johnson SN, Cibils-Stewart X, Waterman JM, Biru FN, Rowe RC, Hartley SE. Elevated atmospheric CO 2 changes defence allocation in wheat but herbivore resistance persists. Proc Biol Sci 2022; 289:20212536. [PMID: 35168395 PMCID: PMC8848237 DOI: 10.1098/rspb.2021.2536] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/14/2022] [Indexed: 11/12/2022] Open
Abstract
Predicting how plants allocate to different anti-herbivore defences in response to elevated carbon dioxide (CO2) concentrations is important for understanding future patterns of crop susceptibility to herbivory. Theories of defence allocation, especially in the context of environmental change, largely overlook the role of silicon (Si), despite it being the major anti-herbivore defence in the Poaceae. We demonstrated that elevated levels of atmospheric CO2 (e[CO2]) promoted plant growth by 33% and caused wheat (Triticum aestivum) to switch from Si (-19%) to phenolic (+44%) defences. Despite the lower levels of Si under e[CO2], resistance to the global pest Helicoverpa armigera persisted; relative growth rates (RGRs) were reduced by at least 33% on Si-supplied plants, irrespective of CO2 levels. RGR was negatively correlated with leaf Si concentrations. Mandible wear was c. 30% higher when feeding on Si-supplemented plants compared to those feeding on plants with no Si supply. We conclude that higher carbon availability under e[CO2] reduces silicification and causes wheat to increase concentrations of phenolics. However, Si supply, at all levels, suppressed the growth of H. armigera under both CO2 regimes, suggesting that shifts in defence allocation under future climate change may not compromise herbivore resistance in wheat.
Collapse
Affiliation(s)
- Scott N. Johnson
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Ximena Cibils-Stewart
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- Instituto Nacional de Investigación Agropecuaria (INIA), La Estanzuela Research Station, Ruta 50, Km. 11, Colonia, Uruguay
| | - Jamie M. Waterman
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Fikadu N. Biru
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
- College of Agriculture and Veterinary Medicine, Jimma University, Jimma 307, Ethiopia
| | - Rhiannon C. Rowe
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia
| | - Susan E. Hartley
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
38
|
Jaccard C, Marguier NT, Arce CCM, Bruno P, Glauser G, Turlings TCJ, Benrey B. The effect of squash domestication on a belowground tritrophic interaction. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2022; 3:28-39. [PMID: 37283693 PMCID: PMC10168047 DOI: 10.1002/pei3.10071] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/13/2022] [Indexed: 06/08/2023]
Abstract
The domestication of plants has commonly resulted in the loss of plant defense metabolites, with important consequences for the plants' interactions with herbivores and their natural enemies. Squash domestication started 10'000 years ago and has led to the loss of cucurbitacins, which are highly toxic triterpenes. The banded cucumber beetle (Diabrotica balteata), a generalist herbivore, is adapted to feed on plants from the Cucurbitaceae and is known to sequester cucurbitacins, supposedly for its own defense. However, the evidence for this is inconclusive. In this study we tested the impact of squash domestication on the chemical protection of D. balteata larvae against a predatory rove beetle (Dalotia coriaria). We found that cucurbitacins do not defend the larvae against this common soil dwelling predator. In fact, D. balteata larvae were less attacked when they fed on cucurbitacin-free roots of domesticated varieties compared to high-cucurbitacin roots of wild plants. This study appears to be the first to look at the consequences of plant domestication on belowground tritrophic interactions. Our results challenge the generalized assumption that sequestered cucurbitacins protect this herbivore against natural enemies, and instead reveals an opposite effect that may be due to a tradeoff between coping with cucurbitacins and avoiding predation.
Collapse
Affiliation(s)
- Charlyne Jaccard
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Nicolas T. Marguier
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Carla C. M. Arce
- Laboratory of Fundamental and Applied Research in Chemical EcologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Pamela Bruno
- Laboratory of Fundamental and Applied Research in Chemical EcologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical ChemistryUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Ted C. J. Turlings
- Laboratory of Fundamental and Applied Research in Chemical EcologyUniversity of NeuchâtelNeuchâtelSwitzerland
| | - Betty Benrey
- Institute of Biology, Laboratory of Evolutionary EntomologyUniversity of NeuchâtelNeuchâtelSwitzerland
| |
Collapse
|
39
|
Gómez-Fernández A, Osborne CP, Rees M, Palomino J, Ingala C, Gómez G, Milla R. Disparities among crop species in the evolution of growth rates: the role of distinct origins and domestication histories. THE NEW PHYTOLOGIST 2022; 233:995-1010. [PMID: 34726792 DOI: 10.1111/nph.17840] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
Growth rates vary widely among plants with different strategies. For crops, evolution under predictable and high-resource environments might favour rapid resource acquisition and growth, but whether this strategy has consistently evolved during domestication and improvement remains unclear. Here we report a comprehensive study of the evolution of growth rates based on comparisons among wild, landrace, and improved accessions of 19 herbaceous crops grown under common conditions. We also examined the underlying growth components and the influence of crop origin and history on growth evolution. Domestication and improvement did not affect growth consistently, that is growth rates increased or decreased or remained unchanged in different crops. Crops selected for fruits increased the physiological component of growth (net assimilation rate), whereas leaf and seed crops showed larger domestication effects on morphology (leaf mass ratio and specific leaf area). Moreover, climate and phylogeny contributed to explaining the effects of domestication and changes in growth. Crop-specific responses to domestication and improvement suggest that selection for high yield has not consistently changed growth rates. The trade-offs between morpho-physiological traits and the distinct origins and histories of crops accounted for the variability in growth changes. These findings have far-reaching implications for our understanding of crop performance and adaptation.
Collapse
Affiliation(s)
- Alicia Gómez-Fernández
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Colin P Osborne
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Mark Rees
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK
| | - Javier Palomino
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Carlos Ingala
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Guillermo Gómez
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| | - Rubén Milla
- Departamento de Biología y Geología, Física y Química Inorgánica, Universidad Rey Juan Carlos, C/Tulipán s/n, Móstoles, 28933, Spain
| |
Collapse
|
40
|
Chabaane Y, Marques Arce C, Glauser G, Benrey B. Altered capsaicin levels in domesticated chili pepper varieties affect the interaction between a generalist herbivore and its ectoparasitoid. JOURNAL OF PEST SCIENCE 2022; 95:735-747. [PMID: 35221844 PMCID: PMC8860780 DOI: 10.1007/s10340-021-01399-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/31/2021] [Accepted: 06/08/2021] [Indexed: 05/20/2023]
Abstract
UNLABELLED Plant domestication has commonly reduced levels of secondary metabolites known to confer resistance against insects. Chili pepper is a special case because the fruits of different varieties have been selected for lower and higher levels of capsaicin, the main compound associated with defence. This may have important consequences for insect herbivores and their natural enemies. Despite the widespread consumption of chili peppers worldwide, the effects of capsaicin on insects are poorly understood. Here, we investigated the effect of capsaicin on a generalist herbivore, Spodoptera latifascia (Lepidoptera: Noctuidae) and its ectoparasitoid, Euplectrus platyhypenae (Hymenoptera: Eulophidae). Using chili varieties with three pungency levels: non-pungent (Padron), mild (Cayenne) and highly pungent (Habanero), as well as artificial diets spiked with three different levels of synthetic capsaicin, we determined whether higher capsaicin levels negatively affect the performance of these insects. Overall, capsaicin had a negative effect on both herbivore and parasitoid performance, particularly at high concentrations. Caterpillars reared on highly pungent fruits and high-capsaicin diet had longer development time, reduced pupation success, lower adult emergence, but also lower parasitism rates than caterpillars reared on mild or non-capsaicin treatments. In addition, we found that the caterpillars were capable of sequestering capsaicinoids in their haemolymph when fed on the high pungent variety with consequences for parasitoids' performance and oviposition decisions. These results increase our understanding of the role of capsaicin as a chemical defence against insects and its potential implications for pest management. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s10340-021-01399-8.
Collapse
Affiliation(s)
- Yosra Chabaane
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Carla Marques Arce
- Fundamental and Applied Research in Chemical Ecology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Gaëtan Glauser
- Neuchâtel Platform of Analytical Chemistry, Institute of Chemistry, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| | - Betty Benrey
- Laboratory of Evolutionary Entomology, Institute of Biology, University of Neuchâtel, Rue Emile-Argand 11, 2000 Neuchâtel, Switzerland
| |
Collapse
|
41
|
Robinson ML, Schilmiller AL, Wetzel WC. A domestic plant differs from its wild relative along multiple axes of within-plant trait variability and diversity. Ecol Evol 2022; 12:e8545. [PMID: 35127045 PMCID: PMC8794722 DOI: 10.1002/ece3.8545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 11/28/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
For 10,000 years humans have altered plant traits through domestication and ongoing crop improvement, shaping plant form and function in agroecosystems. To date, studies have focused on how these processes shape whole-plant or average traits; however, plants also have characteristic levels of trait variability among their repeated parts, which can be heritable and mediate critical ecological interactions. Here, we examine an underappreciated scale of trait variation-among leaves, within plants-that may have changed through the process of domestication and improvement. Variability at this scale may itself be a target of selection, or be shaped as a by-product of the domestication process. We explore how levels of among-leaf trait variability differ between cultivars and wild relatives of alfalfa (Medicago sativa), a key forage crop with a 7,000-year domestication history. We grew individual plants from 30 wild populations and 30 cultivars, and quantified variability in a broad suite of physical, nutritive, and chemical leaf traits, including measures of chemical dissimilarity (beta diversity) among leaves within each plant. We find that trait variability has changed over the course of domestication, with effects often larger than changes in trait means. Domestic alfalfa had elevated among-leaf variability in SLA, trichomes, and C:N; increased diversity in defensive compounds; and reduced variability in phytochemical composition. We also elucidate fundamental relationships between trait means and variability, and between overall production of secondary metabolites and patterns of chemical diversity. We conclude that within-plant variability is an overlooked dimension of trait diversity in a globally critical agricultural crop. Trait variability is actually higher in cultivated plants compared to wild progenitors for multiple nutritive, physical, and chemical traits, highlighting a scale of variation that may mitigate loss of trait diversity at other scales in alfalfa agroecosystems, and in other crops with similar histories of domestication and improvement.
Collapse
Affiliation(s)
- Moria L. Robinson
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
| | | | - William C. Wetzel
- Department of EntomologyMichigan State UniversityEast LansingMichiganUSA
- Kellogg Biological StationMichigan State UniversityEast LansingMichiganUSA
- Ecology, Evolution, and Behavior ProgramMichigan State UniversityEast LansingMichiganUSA
- Department of Integrative BiologyMichigan State UniversityEast LansingMichiganUSA
- AgBioResearchMichigan State UniversityEast LansingMichiganUSA
| |
Collapse
|
42
|
Smulders L, Ferrero V, de la Peña E, Pozo MJ, Díaz Pendón JA, Benítez E, López-García Á. Resistance and Not Plant Fruit Traits Determine Root-Associated Bacterial Community Composition along a Domestication Gradient in Tomato. PLANTS (BASEL, SWITZERLAND) 2021; 11:plants11010043. [PMID: 35009046 PMCID: PMC8747438 DOI: 10.3390/plants11010043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/20/2021] [Accepted: 12/20/2021] [Indexed: 05/12/2023]
Abstract
Soil bacterial communities are involved in multiple ecosystem services, key in determining plant productivity. Crop domestication and intensive agricultural practices often disrupt species interactions with unknown consequences for rhizosphere microbiomes. This study evaluates whether variation in plant traits along a domestication gradient determines the composition of root-associated bacterial communities; and whether these changes are related to targeted plant traits (e.g., fruit traits) or are side effects of less-often-targeted traits (e.g., resistance) during crop breeding. For this purpose, 18 tomato varieties (wild and modern species) differing in fruit and resistance traits were grown in a field experiment, and their root-associated bacterial communities were characterised. Root-associated bacterial community composition was influenced by plant resistance traits and genotype relatedness. When only considering domesticated tomatoes, the effect of resistance on bacterial OTU composition increases, while the effect due to phylogenetic relatedness decreases. Furthermore, bacterial diversity positively correlated with plant resistance traits. These results suggest that resistance traits not selected during domestication are related to the capacity of tomato varieties to associate with different bacterial groups. Taken together, these results evidence the relationship between plant traits and bacterial communities, pointing out the potential of breeding to affect plant microbiomes.
Collapse
Affiliation(s)
- Lisanne Smulders
- Department Enviromental Protection, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
- Correspondence:
| | - Victoria Ferrero
- Department of Biodiversity and Environmental Management, Campus de Vegazana s/n, University of León, 24071 León, Spain;
| | - Eduardo de la Peña
- Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium;
- Department Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain; (M.J.P.); (Á.L.-G.)
| | - María J. Pozo
- Department Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain; (M.J.P.); (Á.L.-G.)
| | - Juan Antonio Díaz Pendón
- Finca Experimental “La Mayora” CSIC, Instituto de Hortofruticultura Subtropical y Mediterránea (IHSM-UMA-CSIC), 29750 Málaga, Spain;
| | - Emilio Benítez
- Department Enviromental Protection, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain;
| | - Álvaro López-García
- Department Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, 18008 Granada, Spain; (M.J.P.); (Á.L.-G.)
- Department Animal Biology, Plant Biology and Ecology, Universidad de Jaén, 23071 Jaén, Spain
- Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), 18006 Granada, Spain
| |
Collapse
|
43
|
Gonzalez-Ibeas D, Ibanez V, Perez-Roman E, Borredá C, Terol J, Talon M. Shaping the biology of citrus: II. Genomic determinants of domestication. THE PLANT GENOME 2021; 14:e20133. [PMID: 34464512 DOI: 10.1002/tpg2.20133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/19/2021] [Indexed: 06/13/2023]
Abstract
We performed genomic analyses on species and varieties of the genus Citrus to identify several determinants of domestication, based on the pattern of pummelo [Citrus maxima (Burr. f) Merr] and mandarin (Citrus reticulata Blanco) admixture into the ancestral genome, as well as population genetic tests at smaller scales. Domestication impacted gene families regulating pivotal components of citrus flavor (such as acidity) because in edible mandarin varieties, chromosome areas with negative Tajimas values were enriched with genes associated with the regulation of citric acid. Detection of sweeps in edible mandarins that diverged from wild relatives indicated that domestication reduced chemical defenses involving cyanogenesis and alkaloid synthesis, thus increasing palatability. Also, a cluster of SAUR genes in domesticated mandarins derived from the pummelo genome appears to contain candidate genes controlling fruit size. Similarly, conserved stretches of pure mandarin areas were likely important as well for domestication, as, for example, a fragment in chromosome 1 that is involved in the apomictic reproduction of most edible mandarins. Interestingly, our results also support the hypothesis that various genes subject to selective pressure during evolution or derived from whole genome duplication events later became potential targets of domestication.
Collapse
Affiliation(s)
- Daniel Gonzalez-Ibeas
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Victoria Ibanez
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Estela Perez-Roman
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Carles Borredá
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Javier Terol
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| | - Manuel Talon
- Instituto Valenciano de Investigaciones Agrarias (IVIA), Carretera Moncada CV-315, Km 10, Valencia, 46113, Spain
| |
Collapse
|
44
|
Li X, Huang Z, Yang X, Wu S. Influence of wild, local and cultivated tobacco varieties on the oviposition preference and offspring performance of Spodoptera litura. BULLETIN OF ENTOMOLOGICAL RESEARCH 2021; 112:1-7. [PMID: 34602115 DOI: 10.1017/s0007485321000900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The influences of different plants on herbivores have recently attracted research interest; however, little is known regarding the effects of wild, local and cultivated varieties of the same plant from the same origin on herbivores. This study aimed to examine the effects of different tobacco varieties from the same origin on the oviposition preference and offspring performance of Spodoptera litura. We selected two wild ('Bishan wild tobacco' and 'Badan wild tobacco'), two local ('Liangqiao sun-cured tobacco' and 'Shuangguan sun-cured tobacco') and two cultivated ('Xiangyan No. 5' and 'Cunsanpi') tobacco varieties from Hunan Province, China. We found that female S. litura varied in oviposition preferences across the tobacco varieties. They preferred to lay eggs on the cultivated varieties, followed by the local varieties, with the wild varieties being the least preferred. Furthermore, different tobacco varieties significantly influenced the life history parameters of S. litura. Survival rate, pupal weight, emergence rate and adult dry weight decreased in the following order: cultivated varieties > local varieties > wild varieties. Conversely, the pupal stage and development period decreased in the following order: wild varieties > local varieties > cultivated varieties. Therefore, we conclude that wild tobacco varieties have higher resistance to S. litura than cultivated and local varieties, reflecting the evolutionary advantages of wild tobacco varieties.
Collapse
Affiliation(s)
- Xiaohong Li
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Zhiyou Huang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Xianjun Yang
- College of Urban and Rural Construction, Shaoyang University, Shaoyang, China
| | - Shaolong Wu
- Hunan Province Tobacco Company, Changsha, China
| |
Collapse
|
45
|
Fontes-Puebla AA, Borrego EJ, Kolomiets MV, Bernal JS. Maize biochemistry in response to root herbivory was mediated by domestication, spread, and breeding. PLANTA 2021; 254:70. [PMID: 34499214 DOI: 10.1007/s00425-021-03720-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
With domestication, northward spread, and breeding, maize defence against root-herbivores relied on induced defences, decreasing levels of phytohormones involved in resistance, and increasing levels of a phytohormone involved in tolerance. We addressed whether a suite of maize (Zea mays mays) phytohormones and metabolites involved in herbivore defence were mediated by three successive processes: domestication, spread to North America, and modern breeding. With those processes, and following theoretical predictions, we expected to find: a change in defence strategy from reliance on induced defences to reliance on constitutive defences; decreasing levels of phytohormones involved in herbivore resistance, and; increasing levels of a phytohormone involved in herbivore tolerance. We tested those predictions by comparing phytohormone levels in seedlings exposed to root herbivory by Diabrotica virgifera virgifera among four plant types encompassing those processes: the maize ancestor Balsas teosinte (Zea mays parviglumis), Mexican maize landraces, USA maize landraces, and USA inbred maize cultivars. With domestication, maize transitioned from reliance on induced defences in teosinte to reliance on constitutive defences in maize, as predicted. One subset of metabolites putatively involved in herbivory defence (13-oxylipins) was suppressed with domestication, as predicted, though another was enhanced (9-oxylipins), and both were variably affected by spread and breeding. A phytohormone (indole-3-acetic acid) involved in tolerance was enhanced with domestication, and with spread and breeding, as predicted. These changes are consistent with documented changes in herbivory resistance and tolerance, and occurred coincidentally with cultivation in increasingly resource-rich environments, i.e., from wild to highly enriched agricultural environments. We concluded that herbivore defence evolution in crops may be mediated by processes spanning thousands of generations, e.g., domestication and spread, as well as by processes spanning tens of generations, e.g., breeding and agricultural intensification.
Collapse
Affiliation(s)
- Ana A Fontes-Puebla
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Campo Experimental Costa de Hermosillo, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Hermosillo, Sonora, México
| | - Eli J Borrego
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, USA
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX, USA.
| | - Julio S Bernal
- Department of Entomology, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
46
|
Caseys C, Shi G, Soltis N, Gwinner R, Corwin J, Atwell S, Kliebenstein DJ. Quantitative interactions: the disease outcome of Botrytis cinerea across the plant kingdom. G3 (BETHESDA, MD.) 2021; 11:jkab175. [PMID: 34003931 PMCID: PMC8496218 DOI: 10.1093/g3journal/jkab175] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/28/2021] [Indexed: 11/12/2022]
Abstract
Botrytis cinerea is a fungal pathogen that causes necrotic disease on more than a thousand known hosts widely spread across the plant kingdom. How B. cinerea interacts with such extensive host diversity remains largely unknown. To address this question, we generated an infectivity matrix of 98 strains of B. cinerea on 90 genotypes representing eight host plants. This experimental infectivity matrix revealed that the disease outcome is largely explained by variations in either the host resistance or pathogen virulence. However, the specific interactions between host and pathogen account for 16% of the disease outcome. Furthermore, the disease outcomes cluster among genotypes of a species but are independent of the relatedness between hosts. When analyzing the host specificity and virulence of B. cinerea, generalist strains are predominant. In this fungal necrotroph, specialization may happen by a loss in virulence on most hosts rather than an increase of virulence on a specific host. To uncover the genetic architecture of Botrytis host specificity and virulence, a genome-wide association study (GWAS) was performed and revealed up to 1492 genes of interest. The genetic architecture of these traits is widespread across the B. cinerea genome. The complexity of the disease outcome might be explained by hundreds of functionally diverse genes putatively involved in adjusting the infection to diverse hosts.
Collapse
Affiliation(s)
- Celine Caseys
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Gongjun Shi
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Plant Pathology, North Dakota State University, Fargo, ND 58102, USA
| | - Nicole Soltis
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Plant Biology Graduate Group, University of California, Davis, Davis, CA 95616 USA
| | - Raoni Gwinner
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Embrapa Amazonia Ocidental, Manaus 69010-970, Brazil
| | - Jason Corwin
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- Department of Ecology and Evolution Biology, University of Colorado, Boulder, CO 80309-0334, USA
| | - Susanna Atwell
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
- DynaMo Center of Excellence, University of Copenhagen, Frederiksberg C DK-1871, Denmark
| |
Collapse
|
47
|
Fernandez AR, Sáez A, Quintero C, Gleiser G, Aizen MA. Intentional and unintentional selection during plant domestication: herbivore damage, plant defensive traits and nutritional quality of fruit and seed crops. THE NEW PHYTOLOGIST 2021; 231:1586-1598. [PMID: 33977519 DOI: 10.1111/nph.17452] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/23/2021] [Indexed: 05/19/2023]
Abstract
Greater susceptibility to herbivory can arise as an effect of crop domestication. One proposed explanation is that defenses decreased intentionally or unintentionally during the domestication process, but evidence for this remains elusive. An alternative but nonexclusive explanation is presumed selection for higher nutritional quality. We used a metaanalytical approach to examine susceptibility to herbivores in fruit and seed crops and their wild relatives. Our analyses provide novel insights into the mechanisms of increased susceptibility by evaluating whether it can be attributed to either a reduction in herbivore defensive traits, including direct/indirect and constitutive/inducible defenses, or an increase in the nutritional content of crops. The results confirm higher herbivory and lower levels of all types of defenses in crops compared to wild relatives, although indirect defenses were more affected than direct ones. Contrary to expectations, nutritional quality was lower in crops than in wild relatives, which may enhance biomass loss to herbivores if they increase consumption to meet nutritional requirements. Our findings represent an important advance in our understanding of how changes in defensive and nutritional traits following domestication could influence, in combination or individually, crop susceptibility to herbivore attacks.
Collapse
Affiliation(s)
- Anahí R Fernandez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- IRNAD, CONICET, Universidad Nacional de Río Negro, Mitre 630, Bariloche, 8400, Argentina
| | - Agustín Sáez
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Carolina Quintero
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Gabriela Gleiser
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
| | - Marcelo A Aizen
- Laboratorio Ecotono, INIBIOMA, CONICET, Universidad Nacional del Comahue, Quintral 1250, Bariloche, 8400, Argentina
- Wissenschaftskolleg zu Berlin, Berlin, 14193, Germany
| |
Collapse
|
48
|
Espinosa-García FJ, García-Rodríguez YM, Bravo-Monzón AE, Vega-Peña EV, Delgado-Lamas G. Implications of the foliar phytochemical diversity of the avocado crop Persea americana cv. Hass in its susceptibility to pests and pathogens. PeerJ 2021; 9:e11796. [PMID: 35070514 PMCID: PMC8759378 DOI: 10.7717/peerj.11796] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 06/25/2021] [Indexed: 11/20/2022] Open
Abstract
Phytochemical diversity (PD) can be considered as a defensive trait; it can operate through single plant secondary metabolites or usually as complex mixtures of them. We tested the more diversity-better defense hypothesis correlating the leaf plant secondary metabolites (PSMs) with the incidence of plant enemies on Hass avocado trees. We expected a negative correlation between the occurrence of plant enemies and PD metrics. Also, as intraspecific PSMs polymorphisms in plant populations are common, we studied the incidence of plant enemies on Hass avocado trees representing chemical variants (chemotypes). We expected a differential incidence of plant enemies among trees grouped by their mono and sesquiterpene + phenylpropanoid chemotypes. We analyzed foliar hexane extracts from 236 trees in 17 orchards by gas chromatography and for the incidence of red mite, thrips, whitefly, avocado branch borer, fruit rot, scab, and peduncle collar blight. The predicted negative correlation between the plant enemies’ incidence and the phytochemical metrics did not occur. To determine the relationship between enemy incidence and chemotypes we grouped the trees by cluster analysis using a matrix of PSMs in each tree. Most trees were grouped under four out of 23 chemotypes. Branch borers attacked trees of low-frequency chemotypes more frequently than trees with common chemotypes. The incidence of five plant enemies was different among the predominant chemotypes. The hypothesis of more diversity-better defense was not supported by the correlations between the phytochemical diversity and the incidence of pests and pathogens in Hass avocado orchards. Based on our results, we hypothesize that phytochemical diversity function as a defensive trait relies more on differentiation among individuals in a population than on the sole increase of chemical diversity. Also, the differential incidence of pests and pathogens on trees classified by their foliar chemotypes implies that these susceptibility or resistance markers represent potential useful tools for Hass avocado orchard pest management.
Collapse
Affiliation(s)
- Francisco J. Espinosa-García
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Yolanda M. García-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | - Angel E. Bravo-Monzón
- Escuela Nacional de Estudios Superiores Mérida, Universidad Nacional Autónoma de México, Mérida, Yucatán, México
| | - Ernesto V. Vega-Peña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, Morelia, Michoacán, México
| | | |
Collapse
|
49
|
Whitehead SR, Schneider GF, Dybzinski R, Nelson AS, Gelambi M, Jos E, Beckman NG. Fruits, frugivores, and the evolution of phytochemical diversity. OIKOS 2021. [DOI: 10.1111/oik.08332] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Susan R. Whitehead
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | | | - Ray Dybzinski
- School of Environmental Sustainability, Loyola Univ. Chicago IL USA
| | - Annika S. Nelson
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Mariana Gelambi
- Dept of Biological Sciences, Virginia Polytechnic Inst. and State Univ. Blacksburg VI USA
| | - Elsa Jos
- Dept of Biology and Ecology Center, Utah State Univ. Logan UT USA
| | | |
Collapse
|
50
|
Michel A, Harris M. Editorial overview: Why modern research justifies the re-emergence of host-plant resistance as a focus for pest management. CURRENT OPINION IN INSECT SCIENCE 2021; 45:iii-v. [PMID: 34303486 DOI: 10.1016/j.cois.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Affiliation(s)
- Andy Michel
- Department of Entomology, The Ohio State University, United States.
| | | |
Collapse
|