1
|
Zhang Y, Gao Y, Zhou J, Zhang Z, Feng M, Liu Y. Advances in brain-computer interface controlled functional electrical stimulation for upper limb recovery after stroke. Brain Res Bull 2025; 226:111354. [PMID: 40280369 DOI: 10.1016/j.brainresbull.2025.111354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 04/15/2025] [Accepted: 04/22/2025] [Indexed: 04/29/2025]
Abstract
Stroke often results in varying degrees of functional impairment, significantly affecting patients' quality of daily life. In recent years, brain-computer interface-controlled functional electrical stimulation has offered new therapeutic approaches for post-stroke rehabilitation. This paper reviews the application of BCI-FES in the recovery of upper limb function after stroke and explores its underlying mechanisms. By analyzing relevant studies, the aim is to provide a theoretical basis for rehabilitating upper limb function post-stroke, promote BCI-FES, and offer guidance for future clinical practice.
Collapse
Affiliation(s)
- Yidan Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Yuling Gao
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Jiaqi Zhou
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Zhenni Zhang
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China
| | - Min Feng
- Department of Respiratory and Critical Care Medicine, the First Affiliated Hospital of Dalian Medical University, China.
| | - Yong Liu
- Department of Rehabilitation Medicine, the First Affiliated Hospital of Dalian Medical University, College of Health-Preservation and Wellness, Dalian Medical University, China.
| |
Collapse
|
2
|
Huhn C, Ho SY, Schulte C, Khayenko V, Hemmen K, Peulen TO, Wiessler AL, Bothe S, Bej A, Talucci I, Schönemann L, Werner C, Schindelin H, Strømgaard K, Villmann C, Heinze KG, Hruska M, Hell JW, Maric HM. eSylites: Synthetic Probes for Visualization and Topographic Mapping of Single Excitatory Synapses. J Am Chem Soc 2025; 147:15261-15280. [PMID: 40111234 DOI: 10.1021/jacs.5c00772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The spatiotemporal organization of the postsynaptic density (PSD) is a fundamental determinant of synaptic transmission, information processing, and storage in the brain. The major bottleneck that prevents the direct and precise representation of the nanometer-scaled organization of excitatory glutamatergic synapses is the size of antibodies, nanobodies, and the genetically encoded fluorescent tags. Here, we introduce small, high affinity synthetic probes for simplified, high contrast visualization of excitatory synapses without the limitations of larger biomolecules. In vitro binding quantification together with microscopy-based evaluation identified eSylites, a series of fluorescent bivalent peptides comprising a dye, linker, and sequence composition that show remarkable cellular target selectivity. Applied on primary neurons or brain slices at nanomolar concentrations, eSylites specifically report PSD-95, the key orchestrator of glutamate receptor nanodomains juxtaposed to the presynaptic glutamate release sites that mediate fast synaptic transmission. The eSylite design minimizes a spatial dye offset and thereby enables visualization of PSD-95 with improved localization precision and further time-resolved discrimination. In particular, we find that individual dendritic spines can contain separate nanodomains enriched for either PSD-95 or its closest homologues, PSD-93 or SAP102. Collectively, these data establish eSylites as a broadly applicable tool for simplified excitatory synapse visualization, as well as a high-end microscopy compatible probe for resolving the PSD organization with unprecedented resolution.
Collapse
Affiliation(s)
- Christiane Huhn
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Sheng-Yang Ho
- Department of Pharmacology, University of California Davis, Davis, California 95616, United States
| | - Clemens Schulte
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Vladimir Khayenko
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Katherina Hemmen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Thomas-Otavio Peulen
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Anna-Lena Wiessler
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität (JMU) Würzburg, 97078 Würzburg, Germany
| | - Sebastian Bothe
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Institute of Pharmacy and Food Chemistry, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Aritra Bej
- Department of Pharmacology, University of California Davis, Davis, California 95616, United States
| | - Ivan Talucci
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Lars Schönemann
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Christian Werner
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hermann Schindelin
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Kristian Strømgaard
- Center for Biopharmaceuticals, Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
| | - Carmen Villmann
- Institute for Clinical Neurobiology, Julius-Maximilians-Universität (JMU) Würzburg, 97078 Würzburg, Germany
| | - Katrin G Heinze
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
| | - Martin Hruska
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Johannes W Hell
- Department of Pharmacology, University of California Davis, Davis, California 95616, United States
| | - Hans M Maric
- Rudolf Virchow Center for Integrative and Translational Bioimaging, Julius-Maximilians-Universität (JMU) Würzburg, Josef-Schneider-Str. 2, 97080 Würzburg, Germany
- Biocenter, Department of Biotechnology and Biophysics, Julius-Maximilians-Universität (JMU) Würzburg, Am Hubland, 97074 Würzburg, Germany
| |
Collapse
|
3
|
Hunjan G, Aran KR. Role of mGluR7 in Alzheimer's disease: pathophysiological insights and therapeutic approaches. Inflammopharmacology 2025:10.1007/s10787-025-01765-3. [PMID: 40316832 DOI: 10.1007/s10787-025-01765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterised by oxidative stress, mitochondrial dysfunction, synaptic impairment, and neuronal loss. The progression of AD depends on two main pathologic features, amyloid-beta accumulation, and tau pathology, whereas the disruption of glutamatergic neurotransmission plays an essential role in disease progression. Glutamate, the brain's primary excitatory neurotransmitter, acts on ionotropic and metabotropic glutamate receptors (mGluRs). Metabotropic glutamate receptor 7 (mGluR7) is a pre-synaptic type III mGluR receptor playing a crucial role in the central nervous system (CNS) through neurotransmitter modulation, reducing glutamate-induced excitotoxicity, and promoting early neuronal growth. Since mGluR7 is a key regulator of neurotransmitter release, it modulates synaptic integrity and neuronal survival, and its dysfunction is associated with impaired synaptic homeostasis in AD. Moreover, mGluR7 interacts with neuroinflammatory pathways by activating microglia and regulating cytokine production, therefore playing a significant role in AD pathogenesis. The drugs targeting mGluR7, including mGluR7 agonists, antagonists, and allosteric modulators, could potentially be among the most effective agents for the treatment of psychiatric disorders, neurodegenerative diseases including AD, as well as neurodevelopmental impairments, though these potential therapies remain in the early stages. This article summarises the structure as well as the function of mGluR7 and explores current insights into the functioning of mGluR7 in molecular mechanisms of AD pathogenesis. It also discusses potential therapeutic targets of mGluR7, highlighting the need to develop such therapies to prevent disease progression.
Collapse
Affiliation(s)
- Garry Hunjan
- Department of Pharmacy Practice, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Khadga Raj Aran
- Neuropharmacology Division, Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
| |
Collapse
|
4
|
He Y, Xie K, Yang K, Wang N, Zhang L. Unraveling the Interplay Between Metabolism and Neurodevelopment in Health and Disease. CNS Neurosci Ther 2025; 31:e70427. [PMID: 40365712 PMCID: PMC12076066 DOI: 10.1111/cns.70427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/14/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Neurodevelopment is a multifaceted and tightly regulated process essential for the formation, maturation, and functional specialization of the nervous system. It spans critical stages, including cellular proliferation, differentiation, migration, synaptogenesis, and synaptic pruning, which collectively establish the foundation for cognitive, behavioral, and emotional functions. Metabolism serves as a cornerstone for neurodevelopment, providing the energy and substrates necessary for biosynthesis, signaling, and cellular activities. RESULTS Key metabolic pathways, including glycolysis, lipid metabolism, and amino acid metabolism, support processes such as cell proliferation, myelination, and neurotransmitter synthesis. Crucial signaling pathways, such as insulin, mTOR, and AMPK, further regulate neuronal growth, synaptic plasticity, and energy homeostasis. Dysregulation of these metabolic processes is linked to a spectrum of neurodevelopmental disorders, including autism spectrum disorders (ASDs), intellectual disabilities, and epilepsy. CONCLUSIONS This review investigates the intricate interplay between metabolic processes and neurodevelopment, elucidating the molecular mechanisms that govern brain development and the pathogenesis of neurodevelopmental disorders. Additionally, it highlights potential avenues for the development of innovative strategies aimed at enhancing brain health and function.
Collapse
Affiliation(s)
- Yanqing He
- Department of Neurosurgery, and National Clinical Research Center of Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Department of NeurosurgeryXiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangChina
| | - Kang Xie
- Department of Neurosurgery, and National Clinical Research Center of Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Department of NeurosurgeryXiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangChina
| | - Kang Yang
- Department of Neurosurgery, and National Clinical Research Center of Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Department of NeurosurgeryXiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangChina
| | - Nianhua Wang
- Department of NeurosurgeryChangde Hospital, Xiangya School of Medicine, Central South University (The First People's Hospital of Changde City)ChangdeHunanChina
| | - Longbo Zhang
- Department of Neurosurgery, and National Clinical Research Center of Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
- Department of NeurosurgeryXiangya Hospital, Central South University, Jiangxi (National Regional Center for Neurological Diseases)NanchangChina
| |
Collapse
|
5
|
Uytiepo M, Zhu Y, Bushong E, Chou K, Polli FS, Zhao E, Kim KY, Luu D, Chang L, Yang D, Ma TC, Kim M, Zhang Y, Walton G, Quach T, Haberl M, Patapoutian L, Shahbazi A, Zhang Y, Beutter E, Zhang W, Dong B, Khoury A, Gu A, McCue E, Stowers L, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. Science 2025; 387:eado8316. [PMID: 40112060 DOI: 10.1126/science.ado8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Memory engrams are formed through experience-dependent plasticity of neural circuits, but their detailed architectures remain unresolved. Using three-dimensional electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway after chemogenetic labeling of cellular ensembles recruited during associative learning. Neurons with a remote history of activity coinciding with memory acquisition showed no strong preference for wiring with each other. Instead, their connectomes expanded through multisynaptic boutons independently of the coactivation state of postsynaptic partners. The rewiring of ensembles representing an initial engram was accompanied by input-specific, spatially restricted upscaling of individual synapses, as well as remodeling of mitochondria, smooth endoplasmic reticulum, and interactions with astrocytes. Our findings elucidate the physical hallmarks of long-term memory and offer a structural basis for the cellular flexibility of information coding.
Collapse
Affiliation(s)
- Marco Uytiepo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yongchuan Zhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Katherine Chou
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Filip Souza Polli
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Zhao
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Danielle Luu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lyanne Chang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Dong Yang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tsz Ching Ma
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mingi Kim
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuting Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Grant Walton
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tom Quach
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Haberl
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Luca Patapoutian
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Arya Shahbazi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuxuan Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth Beutter
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Weiheng Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Brian Dong
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Aureliano Khoury
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Alton Gu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elle McCue
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Stowers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Anton Maximov
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
6
|
Xu N, Chen SY, Tang AH. Tuning synapse strength by nanocolumn plasticity. Trends Neurosci 2025; 48:200-212. [PMID: 39848836 DOI: 10.1016/j.tins.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/25/2025]
Abstract
The precise organization of the complex set of synaptic proteins at the nanometer scale is crucial for synaptic transmission. At the heart of this nanoscale architecture lies the nanocolumn. This aligns presynaptic neurotransmitter release with a high local density of postsynaptic receptor channels, thereby optimizing synaptic strength. Although synapses exhibit diverse protein compositions and nanoscale organizations, the role of structural diversity in the notable differences observed in synaptic physiology remains poorly understood. In this review we examine the current literature on the molecular mechanisms underlying the formation and maintenance of nanocolumns, as well as their role in modulating various aspects of synaptic transmission. We also discuss how the reorganization of nanocolumns contributes to functional dynamics in both synaptic plasticity and pathology.
Collapse
Affiliation(s)
- Na Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China; School of Medicine, Anhui University of Science and Technology, Huainan 232001, China.
| | - Si-Yu Chen
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China
| | - Ai-Hui Tang
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Neurology in the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China; Anhui Province Key Laboratory of Biomedical Imaging and Intelligent Processing, Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei 230088, China.
| |
Collapse
|
7
|
Xu M, Liu F, Hu Y, Li H, Wei Y, Zhong S, Pei J, Deng L. Adaptive Synaptic Scaling in Spiking Networks for Continual Learning and Enhanced Robustness. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2025; 36:5151-5165. [PMID: 38536699 DOI: 10.1109/tnnls.2024.3373599] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current modeling of brain-inspired spiking neural networks (SNN), backpropagation through time is widely adopted because it can achieve high performance using a small number of time steps. Nevertheless, the synaptic scaling mechanism has not yet been well touched. In this work, we propose an experience-dependent adaptive synaptic scaling mechanism (AS-SNN) for spiking neural networks. The learning process has two stages: First, in the forward path, adaptive short-term potentiation or depression is triggered for each synapse according to afferent stimuli intensity accumulated by presynaptic historical neural activities. Second, in the backward path, long-term consolidation is executed through gradient signals regulated by the corresponding scaling factor. This mechanism shapes the pattern selectivity of synapses and the information transfer they mediate. We theoretically prove that the proposed adaptive synaptic scaling function follows a contraction map and finally converges to an expected fixed point, in accordance with state-of-the-art results in three tasks on perturbation resistance, continual learning, and graph learning. Specifically, for the perturbation resistance and continual learning tasks, our approach improves the accuracy on the N-MNIST benchmark over the baseline by 44% and 25%, respectively. An expected firing rate callback and sparse coding can be observed in graph learning. Extensive experiments on ablation study and cost evaluation evidence the effectiveness and efficiency of our nonparametric adaptive scaling method, which demonstrates the great potential of SNN in continual learning and robust learning.
Collapse
|
8
|
Pereira-Iglesias M, Maldonado-Teixido J, Melero A, Piriz J, Galea E, Ransohoff RM, Sierra A. Microglia as hunters or gatherers of brain synapses. Nat Neurosci 2025; 28:15-23. [PMID: 39663381 DOI: 10.1038/s41593-024-01818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 10/02/2024] [Indexed: 12/13/2024]
Abstract
Over a decade ago, it was discovered that microglia, the brain's immune cells, engulf synaptic material in a process named microglial pruning. This term suggests that microglia actively sculpt brain circuits by tagging and phagocytosing unwanted synapses. However, live imaging studies have yet to demonstrate how microglial synapse elimination occurs. To address this issue, we propose a new conceptual framework distinguishing between two potential mechanisms of synapse elimination, culling and scavenging. During culling, microglia may use a contractile ring to sever the neuronal plasma membrane, removing the unwanted synapse. During scavenging, synapse elimination is neuronal-driven, and the neuronal plasma membrane fission machinery sheds off synapses that are later phagocytosed by microglia. We will discuss the current limitations of studying microglial synapse elimination and evaluate evidence supporting either culling or scavenging. Discerning between these mechanisms is essential for determining the therapeutic value of phagocytosis modulators in diseases with altered brain connectivity.
Collapse
Affiliation(s)
- Marta Pereira-Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Neuroscience, University of the Basque Country EHU/UPV, Leioa, Spain
| | - Joel Maldonado-Teixido
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Department of Pharmacology, University of the Basque Country EHU/UPV, Leioa, Spain
| | | | - Joaquin Piriz
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Elena Galea
- Institut de Neurociències and Departament de Bioquímica i Biologia Molecular, Unitat de Bioquímica de Medicina, Universitat Autònoma de Barcelona UAB, Barcelona, Spain
- ICREA, Barcelona, Spain
| | | | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Leioa, Spain.
- Ikerbasque Foundation, Bilbao, Spain.
- Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Leioa, Spain.
| |
Collapse
|
9
|
Popescu BO, Batzu L, Ruiz PJG, Tulbă D, Moro E, Santens P. Neuroplasticity in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1329-1339. [PMID: 39102007 PMCID: PMC11502561 DOI: 10.1007/s00702-024-02813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.
Collapse
Affiliation(s)
- Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania.
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.
| | - Lucia Batzu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | | | - Delia Tulbă
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Piazza MK, Kavalali ET, Monteggia LM. Ketamine induced synaptic plasticity operates independently of long-term potentiation. Neuropsychopharmacology 2024; 49:1758-1766. [PMID: 38898206 PMCID: PMC11399243 DOI: 10.1038/s41386-024-01895-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/11/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024]
Abstract
Synaptic plasticity occurs via multiple mechanisms to regulate synaptic efficacy. Homeostatic and Hebbian plasticity are two such mechanisms by which neuronal synapses can be altered. Although these two processes are mechanistically distinct, they converge on downstream regulation of AMPA receptor activity to modify glutamatergic neurotransmission. However, much remains to be explored regarding how these two prominent forms of plasticity interact. Ketamine, a rapidly acting antidepressant, increases glutamatergic transmission via pharmacologically-induced homeostatic plasticity. Here, we demonstrate that Hebbian plasticity mechanisms are still intact in synapses that have undergone homeostatic scaling by ketamine after either systemic injection or perfusion onto hippocampal brain slices. We also investigated this relationship in the context of stress induced by chronic exposure to corticosterone (CORT) to better model the circumstances under which ketamine may be used as an antidepressant. We found that CORT induced an anhedonia-like behavioral phenotype in mice but did not impair long-term potentiation (LTP) induction. Furthermore, corticosterone exposure does not impact the intersection of homeostatic and Hebbian plasticity mechanisms, as synapses from CORT-exposed mice also demonstrated intact ketamine-induced plasticity and LTP in succession. These results provide a mechanistic explanation for how ketamine used for the treatment of depression does not impair the integrity of learning and memory processes encoded by mechanisms such as LTP.
Collapse
Affiliation(s)
- Michelle K Piazza
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Ege T Kavalali
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA
| | - Lisa M Monteggia
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, 37240-7933, USA.
- Department of Pharmacology, Vanderbilt University, Nashville, TN, 37240-7933, USA.
| |
Collapse
|
11
|
Oliviers G, Bogacz R, Meulemans A. Learning probability distributions of sensory inputs with Monte Carlo predictive coding. PLoS Comput Biol 2024; 20:e1012532. [PMID: 39475902 PMCID: PMC11524488 DOI: 10.1371/journal.pcbi.1012532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/01/2024] [Indexed: 11/02/2024] Open
Abstract
It has been suggested that the brain employs probabilistic generative models to optimally interpret sensory information. This hypothesis has been formalised in distinct frameworks, focusing on explaining separate phenomena. On one hand, classic predictive coding theory proposed how the probabilistic models can be learned by networks of neurons employing local synaptic plasticity. On the other hand, neural sampling theories have demonstrated how stochastic dynamics enable neural circuits to represent the posterior distributions of latent states of the environment. These frameworks were brought together by variational filtering that introduced neural sampling to predictive coding. Here, we consider a variant of variational filtering for static inputs, to which we refer as Monte Carlo predictive coding (MCPC). We demonstrate that the integration of predictive coding with neural sampling results in a neural network that learns precise generative models using local computation and plasticity. The neural dynamics of MCPC infer the posterior distributions of the latent states in the presence of sensory inputs, and can generate likely inputs in their absence. Furthermore, MCPC captures the experimental observations on the variability of neural activity during perceptual tasks. By combining predictive coding and neural sampling, MCPC can account for both sets of neural data that previously had been explained by these individual frameworks.
Collapse
Affiliation(s)
- Gaspard Oliviers
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Rafal Bogacz
- MRC Brain Network Dynamics Unit, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
12
|
Harris KM, Kuwajima M, Flores JC, Zito K. Synapse-specific structural plasticity that protects and refines local circuits during LTP and LTD. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230224. [PMID: 38853547 PMCID: PMC11529630 DOI: 10.1098/rstb.2023.0224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/20/2023] [Accepted: 01/05/2024] [Indexed: 06/11/2024] Open
Abstract
Synapses form trillions of connections in the brain. Long-term potentiation (LTP) and long-term depression (LTD) are cellular mechanisms vital for learning that modify the strength and structure of synapses. Three-dimensional reconstruction from serial section electron microscopy reveals three distinct pre- to post-synaptic arrangements: strong active zones (AZs) with tightly docked vesicles, weak AZs with loose or non-docked vesicles, and nascent zones (NZs) with a postsynaptic density but no presynaptic vesicles. Importantly, LTP can be temporarily saturated preventing further increases in synaptic strength. At the onset of LTP, vesicles are recruited to NZs, converting them to AZs. During recovery of LTP from saturation (1-4 h), new NZs form, especially on spines where AZs are most enlarged by LTP. Sentinel spines contain smooth endoplasmic reticulum (SER), have the largest synapses and form clusters with smaller spines lacking SER after LTP recovers. We propose a model whereby NZ plasticity provides synapse-specific AZ expansion during LTP and loss of weak AZs that drive synapse shrinkage during LTD. Spine clusters become functionally engaged during LTP or disassembled during LTD. Saturation of LTP or LTD probably acts to protect recently formed memories from ongoing plasticity and may account for the advantage of spaced over massed learning. This article is part of a discussion meeting issue 'Long-term potentiation: 50 years on'.
Collapse
Affiliation(s)
- Kristen M. Harris
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Masaaki Kuwajima
- Department of Neuroscience and Center for Learning and Memory, The University of Texas at Austin, Austin, TX78712, USA
| | - Juan C. Flores
- Center for Neuroscience, University of California, Davis, CA95618, USA
| | - Karen Zito
- Center for Neuroscience, University of California, Davis, CA95618, USA
| |
Collapse
|
13
|
Lee CT, Bell M, Bonilla-Quintana M, Rangamani P. Biophysical Modeling of Synaptic Plasticity. Annu Rev Biophys 2024; 53:397-426. [PMID: 38382115 DOI: 10.1146/annurev-biophys-072123-124954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Dendritic spines are small, bulbous compartments that function as postsynaptic sites and undergo intense biochemical and biophysical activity. The role of the myriad signaling pathways that are implicated in synaptic plasticity is well studied. A recent abundance of quantitative experimental data has made the events associated with synaptic plasticity amenable to quantitative biophysical modeling. Spines are also fascinating biophysical computational units because spine geometry, signal transduction, and mechanics work in a complex feedback loop to tune synaptic plasticity. In this sense, ideas from modeling cell motility can inspire us to develop multiscale approaches for predictive modeling of synaptic plasticity. In this article, we review the key steps in postsynaptic plasticity with a specific focus on the impact of spine geometry on signaling, cytoskeleton rearrangement, and membrane mechanics. We summarize the main experimental observations and highlight how theory and computation can aid our understanding of these complex processes.
Collapse
Affiliation(s)
- Christopher T Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Miriam Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Mayte Bonilla-Quintana
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, California, USA;
| |
Collapse
|
14
|
Nicosia N, Giovenzana M, Misztak P, Mingardi J, Musazzi L. Glutamate-Mediated Excitotoxicity in the Pathogenesis and Treatment of Neurodevelopmental and Adult Mental Disorders. Int J Mol Sci 2024; 25:6521. [PMID: 38928227 PMCID: PMC11203689 DOI: 10.3390/ijms25126521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/09/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Glutamate is the main excitatory neurotransmitter in the brain wherein it controls cognitive functional domains and mood. Indeed, brain areas involved in memory formation and consolidation as well as in fear and emotional processing, such as the hippocampus, prefrontal cortex, and amygdala, are predominantly glutamatergic. To ensure the physiological activity of the brain, glutamatergic transmission is finely tuned at synaptic sites. Disruption of the mechanisms responsible for glutamate homeostasis may result in the accumulation of excessive glutamate levels, which in turn leads to increased calcium levels, mitochondrial abnormalities, oxidative stress, and eventually cell atrophy and death. This condition is known as glutamate-induced excitotoxicity and is considered as a pathogenic mechanism in several diseases of the central nervous system, including neurodevelopmental, substance abuse, and psychiatric disorders. On the other hand, these disorders share neuroplasticity impairments in glutamatergic brain areas, which are accompanied by structural remodeling of glutamatergic neurons. In the current narrative review, we will summarize the role of glutamate-induced excitotoxicity in both the pathophysiology and therapeutic interventions of neurodevelopmental and adult mental diseases with a focus on autism spectrum disorders, substance abuse, and psychiatric disorders. Indeed, glutamatergic drugs are under preclinical and clinical development for the treatment of different mental diseases that share glutamatergic neuroplasticity dysfunctions. Although clinical evidence is still limited and more studies are required, the regulation of glutamate homeostasis is attracting attention as a potential crucial target for the control of brain diseases.
Collapse
Affiliation(s)
- Noemi Nicosia
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mattia Giovenzana
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- PhD Program in Neuroscience, School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy
| | - Paulina Misztak
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Jessica Mingardi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
| | - Laura Musazzi
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (N.N.); (M.G.); (P.M.)
- Fondazione IRCCS San Gerardo dei Tintori, 20900 Monza, Italy
| |
Collapse
|
15
|
Uytiepo M, Zhu Y, Bushong E, Polli F, Chou K, Zhao E, Kim C, Luu D, Chang L, Quach T, Haberl M, Patapoutian L, Beutter E, Zhang W, Dong B, McCue E, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590812. [PMID: 38712256 PMCID: PMC11071366 DOI: 10.1101/2024.04.23.590812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Memory engrams are formed through experience-dependent remodeling of neural circuits, but their detailed architectures have remained unresolved. Using 3D electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway following chemogenetic labeling of cellular ensembles with a remote history of correlated excitation during associative learning. Projection neurons involved in memory acquisition expanded their connectomes via multi-synaptic boutons without altering the numbers and spatial arrangements of individual axonal terminals and dendritic spines. This expansion was driven by presynaptic activity elicited by specific negative valence stimuli, regardless of the co-activation state of postsynaptic partners. The rewiring of initial ensembles representing an engram coincided with local, input-specific changes in the shapes and organelle composition of glutamatergic synapses, reflecting their weights and potential for further modifications. Our findings challenge the view that the connectivity among neuronal substrates of memory traces is governed by Hebbian mechanisms, and offer a structural basis for representational drifts.
Collapse
|
16
|
Chen Y, Liu S, Jacobi AA, Jeng G, Ulrich JD, Stein IS, Patriarchi T, Hell JW. Rapid sequential clustering of NMDARs, CaMKII, and AMPARs upon activation of NMDARs at developing synapses. Front Synaptic Neurosci 2024; 16:1291262. [PMID: 38660466 PMCID: PMC11039796 DOI: 10.3389/fnsyn.2024.1291262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/22/2024] [Indexed: 04/26/2024] Open
Abstract
Rapid, synapse-specific neurotransmission requires the precise alignment of presynaptic neurotransmitter release and postsynaptic receptors. How postsynaptic glutamate receptor accumulation is induced during maturation is not well understood. We find that in cultures of dissociated hippocampal neurons at 11 days in vitro (DIV) numerous synaptic contacts already exhibit pronounced accumulations of the pre- and postsynaptic markers synaptotagmin, synaptophysin, synapsin, bassoon, VGluT1, PSD-95, and Shank. The presence of an initial set of AMPARs and NMDARs is indicated by miniature excitatory postsynaptic currents (mEPSCs). However, AMPAR and NMDAR immunostainings reveal rather smooth distributions throughout dendrites and synaptic enrichment is not obvious. We found that brief periods of Ca2+ influx through NMDARs induced a surprisingly rapid accumulation of NMDARs within 1 min, followed by accumulation of CaMKII and then AMPARs within 2-5 min. Postsynaptic clustering of NMDARs and AMPARs was paralleled by an increase in their mEPSC amplitudes. A peptide that blocked the interaction of NMDAR subunits with PSD-95 prevented the NMDAR clustering. NMDAR clustering persisted for 3 days indicating that brief periods of elevated glutamate fosters permanent accumulation of NMDARs at postsynaptic sites in maturing synapses. These data support the model that strong glutamatergic stimulation of immature glutamatergic synapses results in a fast and substantial increase in postsynaptic NMDAR content that required NMDAR binding to PSD-95 or its homologues and is followed by recruitment of CaMKII and subsequently AMPARs.
Collapse
Affiliation(s)
- Yucui Chen
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Shangming Liu
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Ariel A. Jacobi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Grace Jeng
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Jason D. Ulrich
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
| | - Ivar S. Stein
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Tommaso Patriarchi
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| | - Johannes W. Hell
- Department of Pharmacology, University of Iowa, Iowa City, IA, United States
- Department of Pharmacology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
17
|
Billot A, Kiran S. Disentangling neuroplasticity mechanisms in post-stroke language recovery. BRAIN AND LANGUAGE 2024; 251:105381. [PMID: 38401381 PMCID: PMC10981555 DOI: 10.1016/j.bandl.2024.105381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 11/28/2023] [Accepted: 01/12/2024] [Indexed: 02/26/2024]
Abstract
A major objective in post-stroke aphasia research is to gain a deeper understanding of neuroplastic mechanisms that drive language recovery, with the ultimate goal of enhancing treatment outcomes. Subsequent to recent advances in neuroimaging techniques, we now have the ability to examine more closely how neural activity patterns change after a stroke. However, the way these neural activity changes relate to language impairments and language recovery is still debated. The aim of this review is to provide a theoretical framework to better investigate and interpret neuroplasticity mechanisms underlying language recovery in post-stroke aphasia. We detail two sets of neuroplasticity mechanisms observed at the synaptic level that may explain functional neuroimaging findings in post-stroke aphasia recovery at the network level: feedback-based homeostatic plasticity and associative Hebbian plasticity. In conjunction with these plasticity mechanisms, higher-order cognitive control processes dynamically modulate neural activity in other regions to meet communication demands, despite reduced neural resources. This work provides a network-level neurobiological framework for understanding neural changes observed in post-stroke aphasia and can be used to define guidelines for personalized treatment development.
Collapse
Affiliation(s)
- Anne Billot
- Center for Brain Recovery, Boston University, Boston, USA; Department of Psychology, Center for Brain Science, Harvard University, Cambridge, Massachusetts, USA; Department of Neurology, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Swathi Kiran
- Center for Brain Recovery, Boston University, Boston, USA.
| |
Collapse
|
18
|
Zhang DW, Johnstone SJ, Sauce B, Arns M, Sun L, Jiang H. Remote neurocognitive interventions for attention-deficit/hyperactivity disorder - Opportunities and challenges. Prog Neuropsychopharmacol Biol Psychiatry 2023; 127:110802. [PMID: 37257770 DOI: 10.1016/j.pnpbp.2023.110802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023]
Abstract
Improving neurocognitive functions through remote interventions has been a promising approach to developing new treatments for attention-deficit/hyperactivity disorder (AD/HD). Remote neurocognitive interventions may address the shortcomings of the current prevailing pharmacological therapies for AD/HD, e.g., side effects and access barriers. Here we review the current options for remote neurocognitive interventions to reduce AD/HD symptoms, including cognitive training, EEG neurofeedback training, transcranial electrical stimulation, and external cranial nerve stimulation. We begin with an overview of the neurocognitive deficits in AD/HD to identify the targets for developing interventions. The role of neuroplasticity in each intervention is then highlighted due to its essential role in facilitating neuropsychological adaptations. Following this, each intervention type is discussed in terms of the critical details of the intervention protocols, the role of neuroplasticity, and the available evidence. Finally, we offer suggestions for future directions in terms of optimizing the existing intervention protocols and developing novel protocols.
Collapse
Affiliation(s)
- Da-Wei Zhang
- Department of Psychology/Center for Place-Based Education, Yangzhou University, Yangzhou, China; Department of Psychology, Monash University Malaysia, Bandar Sunway, Malaysia.
| | - Stuart J Johnstone
- School of Psychology, University of Wollongong, Wollongong, Australia; Brain & Behaviour Research Institute, University of Wollongong, Australia
| | - Bruno Sauce
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Martijn Arns
- Research Institute Brainclinics, Brainclinics Foundation, Nijmegen, Netherlands; Department of Experimental Psychology, Utrecht University, Utrecht, Netherlands; NeuroCare Group, Nijmegen, Netherlands
| | - Li Sun
- Peking University Sixth Hospital/Institute of Mental Health, Beijing, China; National Clinical Research Center for Mental Disorders, Key Laboratory of Mental Health, Ministry of Health, Peking University, Beijing, China
| | - Han Jiang
- College of Special Education, Zhejiang Normal University, Hangzhou, China
| |
Collapse
|
19
|
Lansner A, Fiebig F, Herman P. Fast Hebbian plasticity and working memory. Curr Opin Neurobiol 2023; 83:102809. [PMID: 37980802 DOI: 10.1016/j.conb.2023.102809] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 10/10/2023] [Accepted: 10/19/2023] [Indexed: 11/21/2023]
Abstract
Theories and models of working memory (WM) were at least since the mid-1990s dominated by the persistent activity hypothesis. The past decade has seen rising concerns about the shortcomings of sustained activity as the mechanism for short-term maintenance of WM information in the light of accumulating experimental evidence for so-called activity-silent WM and the fundamental difficulty in explaining robust multi-item WM. In consequence, alternative theories are now explored mostly in the direction of fast synaptic plasticity as the underlying mechanism. The question of non-Hebbian vs Hebbian synaptic plasticity emerges naturally in this context. In this review, we focus on fast Hebbian plasticity and trace the origins of WM theories and models building on this form of associative learning.
Collapse
Affiliation(s)
- Anders Lansner
- Stockholm University, Department of Mathematics, SE-106 91 Stockholm, Sweden; KTH Royal Institute of Technology, Dept of Computational Science and Technology, 100 44 Stockholm, Sweden; SeRC (Swedish e-Science Research Center), Sweden.
| | - Florian Fiebig
- KTH Royal Institute of Technology, Dept of Computational Science and Technology, 100 44 Stockholm, Sweden.
| | - Pawel Herman
- KTH Royal Institute of Technology, Dept of Computational Science and Technology, 100 44 Stockholm, Sweden; Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden; SeRC (Swedish e-Science Research Center), Sweden. https://twitter.com/PHermanKTHbrain
| |
Collapse
|
20
|
Yang L, Liu W, Shi L, Wu J, Zhang W, Chuang YA, Redding-Ochoa J, Kirkwood A, Savonenko AV, Worley PF. NMDA Receptor-Arc Signaling Is Required for Memory Updating and Is Disrupted in Alzheimer's Disease. Biol Psychiatry 2023; 94:706-720. [PMID: 36796600 PMCID: PMC10423741 DOI: 10.1016/j.biopsych.2023.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
BACKGROUND Memory deficits are central to many neuropsychiatric diseases. During acquisition of new information, memories can become vulnerable to interference, yet mechanisms that underlie interference are unknown. METHODS We describe a novel transduction pathway that links the NMDA receptor (NMDAR) to AKT signaling via the immediate early gene Arc and evaluate its role in memory. The signaling pathway is validated using biochemical tools and transgenic mice, and function is evaluated in assays of synaptic plasticity and behavior. The translational relevance is evaluated in human postmortem brain. RESULTS Arc is dynamically phosphorylated by CaMKII (calcium/calmodulin-dependent protein kinase II) and binds the NMDAR subunits NR2A/NR2B and a previously unstudied PI3K (phosphoinositide 3-kinase) adapter p55PIK (PIK3R3) in vivo in response to novelty or tetanic stimulation in acute slices. NMDAR-Arc-p55PIK recruits p110α PI3K and mTORC2 (mechanistic target of rapamycin complex 2) to activate AKT. NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT assembly occurs within minutes of exploratory behavior and localizes to sparse synapses throughout hippocampal and cortical regions. Studies using conditional (Nestin-Cre) p55PIK deletion mice indicate that NMDAR-Arc-p55PIK-PI3K-mTORC2-AKT functions to inhibit GSK3 and mediates input-specific metaplasticity that protects potentiated synapses from subsequent depotentiation. p55PIK conditional knockout mice perform normally in multiple behaviors including working memory and long-term memory tasks but exhibit deficits indicative of increased vulnerability to interference in both short-term and long-term paradigms. The NMDAR-AKT transduction complex is reduced in postmortem brain of individuals with early Alzheimer's disease. CONCLUSIONS A novel function of Arc mediates synapse-specific NMDAR-AKT signaling and metaplasticity that contributes to memory updating and is disrupted in human cognitive disease.
Collapse
Affiliation(s)
- Liuqing Yang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wenxue Liu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Linyuan Shi
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jing Wu
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Wenchi Zhang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Yang-An Chuang
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alfredo Kirkwood
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Alena V Savonenko
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| | - Paul F Worley
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland.
| |
Collapse
|
21
|
Kim Y, Kim S, Ho WK, Lee SH. Burst firing is required for induction of Hebbian LTP at lateral perforant path to hippocampal granule cell synapses. Mol Brain 2023; 16:45. [PMID: 37217996 DOI: 10.1186/s13041-023-01034-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/04/2023] [Indexed: 05/24/2023] Open
Abstract
High frequency burst firing is critical in summation of back-propagating action potentials (APs) in dendrites, which may greatly depolarize dendritic membrane potential. The physiological significance of burst firings of hippocampal dentate GCs in synaptic plasticity remains unknown. We found that GCs with low input resistance could be categorized into regular-spiking (RS) and burst-spiking (BS) cells based on their initial firing frequency (Finit) upon somatic rheobase current injection, and investigated how two types of GCs differ in long-term potentiation (LTP) induced by high-frequency lateral perforant pathway (LPP) inputs. Induction of Hebbian LTP at LPP synapses required at least three postsynaptic APs at Finit higher than 100 Hz, which was met in BS but not in RS cells. The synaptically evoked burst firing was critically dependent on persistent Na+ current, which was larger in BS than RS cells. The Ca2+ source for Hebbian LTP at LPP synapses was primarily provided by L-type calcium channels. In contrast, Hebbian LTP at medial PP synapses was mediated by T-type calcium channels, and could be induced regardless of cell types or Finit of postsynaptic APs. These results suggest that intrinsic firing properties affect synaptically driven firing patterns, and that bursting behavior differentially affects Hebbian LTP mechanisms depending on the synaptic input pathway.
Collapse
Affiliation(s)
- Yoonsub Kim
- Cell Physiology Lab. Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Sooyun Kim
- Clinical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Won-Kyung Ho
- Cell Physiology Lab. Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Suk-Ho Lee
- Cell Physiology Lab. Department of Physiology, Seoul National University College of Medicine, Seoul, Republic of Korea.
- Department of Brain and Cognitive Science, Seoul National University College of Natural Science, 103 Daehak-Ro, Jongno-Gu, 03080, Seoul, Republic of Korea.
| |
Collapse
|
22
|
Arnold E, Soler-Llavina G, Kambara K, Bertrand D. The importance of ligand gated ion channels in sleep and sleep disorders. Biochem Pharmacol 2023; 212:115532. [PMID: 37019187 DOI: 10.1016/j.bcp.2023.115532] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023]
Abstract
On average, humans spend about 26 years of their life sleeping. Increased sleep duration and quality has been linked to reduced disease risk; however, the cellular and molecular underpinnings of sleep remain open questions. It has been known for some time that pharmacological modulation of neurotransmission in the brain can promote either sleep or wakefulness thereby providing some clues about the molecular mechanisms at play. However, the field of sleep research has developed an increasingly detailed understanding of the requisite neuronal circuitry and key neurotransmitter receptor subtypes, suggesting that it may be possible to identify next generation pharmacological interventions to treat sleep disorders within this same space. The aim of this work is to examine the latest physiological and pharmacological findings highlighting the contribution of ligand gated ion channels including the inhibitory GABAA and glycine receptors and excitatory nicotinic acetylcholine receptors and glutamate receptors in the sleep-wake cycle regulation. Overall, a better understanding of ligand gated ion channels in sleep will help determine if these highly druggable targets could facilitate a better night's sleep.
Collapse
|
23
|
Tanim MMH, Templin Z, Zhao F. Natural Organic Materials Based Memristors and Transistors for Artificial Synaptic Devices in Sustainable Neuromorphic Computing Systems. MICROMACHINES 2023; 14:235. [PMID: 36837935 PMCID: PMC9963886 DOI: 10.3390/mi14020235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Natural organic materials such as protein and carbohydrates are abundant in nature, renewable, and biodegradable, desirable for the construction of artificial synaptic devices for emerging neuromorphic computing systems with energy efficient operation and environmentally friendly disposal. These artificial synaptic devices are based on memristors or transistors with the memristive layer or gate dielectric formed by natural organic materials. The fundamental requirement for these synaptic devices is the ability to mimic the memory and learning behaviors of biological synapses. This paper reviews the synaptic functions emulated by a variety of artificial synaptic devices based on natural organic materials and provides a useful guidance for testing and investigating more of such devices.
Collapse
|
24
|
Schwarz K, Schmitz F. Synapse Dysfunctions in Multiple Sclerosis. Int J Mol Sci 2023; 24:ijms24021639. [PMID: 36675155 PMCID: PMC9862173 DOI: 10.3390/ijms24021639] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Multiple sclerosis (MS) is a chronic neuroinflammatory disease of the central nervous system (CNS) affecting nearly three million humans worldwide. In MS, cells of an auto-reactive immune system invade the brain and cause neuroinflammation. Neuroinflammation triggers a complex, multi-faceted harmful process not only in the white matter but also in the grey matter of the brain. In the grey matter, neuroinflammation causes synapse dysfunctions. Synapse dysfunctions in MS occur early and independent from white matter demyelination and are likely correlates of cognitive and mental symptoms in MS. Disturbed synapse/glia interactions and elevated neuroinflammatory signals play a central role. Glutamatergic excitotoxic synapse damage emerges as a major mechanism. We review synapse/glia communication under normal conditions and summarize how this communication becomes malfunctional during neuroinflammation in MS. We discuss mechanisms of how disturbed glia/synapse communication can lead to synapse dysfunctions, signaling dysbalance, and neurodegeneration in MS.
Collapse
|
25
|
Vanag VK. Plasticity in networks of active chemical cells with pulse coupling. CHAOS (WOODBURY, N.Y.) 2022; 32:123108. [PMID: 36587337 DOI: 10.1063/5.0110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
A method for controlling the coupling strength is proposed for pulsed coupled active chemical micro-cells. The method is consistent with Hebb's rules. The effect of various system parameters on this "spike-timing-dependent plasticity" is studied. In addition to networks of two and three coupled active cells, the effect of this "plasticity" on the dynamic modes of a network of four pulse-coupled chemical micro-cells unidirectionally coupled in a circle is studied. It is shown that the proposed adjustment of the coupling strengths leads to spontaneous switching between network eigenmodes.
Collapse
Affiliation(s)
- Vladimir K Vanag
- Centre for Nonlinear Chemistry, Immanuel Kant Baltic Federal University, 14 A. Nevskogo St., Kaliningrad 236041, Russia
| |
Collapse
|
26
|
Wu QL, Gao Y, Li JT, Ma WY, Chen NH. The Role of AMPARs Composition and Trafficking in Synaptic Plasticity and Diseases. Cell Mol Neurobiol 2022; 42:2489-2504. [PMID: 34436728 PMCID: PMC11421597 DOI: 10.1007/s10571-021-01141-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/11/2021] [Indexed: 11/28/2022]
Abstract
AMPA receptors are tetrameric ionic glutamate receptors, which mediate 90% fast excitatory synaptic transmission induced by excitatory glutamate in the mammalian central nervous system through the activation or inactivation of ion channels. The alternation of synaptic AMPA receptor number and subtype is thought to be one of the primary mechanisms that involve in synaptic plasticity regulation and affect the functions in learning, memory, and cognition. The increasing of surface AMPARs enhances synaptic strength during long-term potentiation, whereas the decreasing of AMPARs weakens synaptic strength during the long-term depression. It is closely related to the AMPA receptor as well as its subunits assembly, trafficking, and degradation. The dysfunction of any step in these precise regulatory processes is likely to induce the disorder of synaptic transmission and loss of neurons, or even cause neuropsychiatric diseases ultimately. Therefore, it is useful to understand how AMPARs regulate synaptic plasticity and its role in related neuropsychiatric diseases via comprehending architecture and trafficking of the receptors. Here, we reviewed the progress in structure, expression, trafficking, and relationship with synaptic plasticity of AMPA receptor, especially in anxiety, depression, neurodegenerative disorders, and cerebral ischemia.
Collapse
Affiliation(s)
- Qing-Lin Wu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Yan Gao
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Jun-Tong Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Wen-Yu Ma
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
27
|
Gold OMS, Bardsley EN, Ponnampalam AP, Pauza AG, Paton JFR. Cellular basis of learning and memory in the carotid body. Front Synaptic Neurosci 2022; 14:902319. [PMID: 36046221 PMCID: PMC9420943 DOI: 10.3389/fnsyn.2022.902319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
The carotid body is the primary peripheral chemoreceptor in the body, and critical for respiration and cardiovascular adjustments during hypoxia. Yet considerable evidence now implicates the carotid body as a multimodal sensor, mediating the chemoreflexes of a wide range of physiological responses, including pH, temperature, and acidosis as well as hormonal, glucose and immune regulation. How does the carotid body detect and initiate appropriate physiological responses for these diverse stimuli? The answer to this may lie in the structure of the carotid body itself. We suggest that at an organ-level the carotid body is comparable to a miniature brain with compartmentalized discrete regions of clustered glomus cells defined by their neurotransmitter expression and receptor profiles, and with connectivity to defined reflex arcs that play a key role in initiating distinct physiological responses, similar in many ways to a switchboard that connects specific inputs to selective outputs. Similarly, within the central nervous system, specific physiological outcomes are co-ordinated, through signaling via distinct neuronal connectivity. As with the brain, we propose that highly organized cellular connectivity is critical for mediating co-ordinated outputs from the carotid body to a given stimulus. Moreover, it appears that the rudimentary components for synaptic plasticity, and learning and memory are conserved in the carotid body including the presence of glutamate and GABAergic systems, where evidence pinpoints that pathophysiology of common diseases of the carotid body may be linked to deviations in these processes. Several decades of research have contributed to our understanding of the central nervous system in health and disease, and we discuss that understanding the key processes involved in neuronal dysfunction and synaptic activity may be translated to the carotid body, offering new insights and avenues for therapeutic innovation.
Collapse
|
28
|
Bell MK, Holst MV, Lee CT, Rangamani P. Dendritic spine morphology regulates calcium-dependent synaptic weight change. J Gen Physiol 2022; 154:e202112980. [PMID: 35819365 PMCID: PMC9280073 DOI: 10.1085/jgp.202112980] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 01/14/2023] Open
Abstract
Dendritic spines act as biochemical computational units and must adapt their responses according to their activation history. Calcium influx acts as the first signaling step during postsynaptic activation and is a determinant of synaptic weight change. Dendritic spines also come in a variety of sizes and shapes. To probe the relationship between calcium dynamics and spine morphology, we used a stochastic reaction-diffusion model of calcium dynamics in idealized and realistic geometries. We show that despite the stochastic nature of the various calcium channels, receptors, and pumps, spine size and shape can modulate calcium dynamics and subsequently synaptic weight updates in a deterministic manner. Through a series of exhaustive simulations and analyses, we found that the calcium dynamics and synaptic weight change depend on the volume-to-surface area of the spine. The relationships between calcium dynamics and spine morphology identified in idealized geometries also hold in realistic geometries, suggesting that there are geometrically determined deterministic relationships that may modulate synaptic weight change.
Collapse
Affiliation(s)
- Miriam K. Bell
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Maven V. Holst
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Christopher T. Lee
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA
| |
Collapse
|
29
|
Plasticity of visual evoked potentials in patients with neurofibromatosis type 1. Clin Neurophysiol 2022; 142:220-227. [DOI: 10.1016/j.clinph.2022.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 08/01/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
|
30
|
Eriksson O, Bhalla US, Blackwell KT, Crook SM, Keller D, Kramer A, Linne ML, Saudargienė A, Wade RC, Hellgren Kotaleski J. Combining hypothesis- and data-driven neuroscience modeling in FAIR workflows. eLife 2022; 11:e69013. [PMID: 35792600 PMCID: PMC9259018 DOI: 10.7554/elife.69013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 05/13/2022] [Indexed: 12/22/2022] Open
Abstract
Modeling in neuroscience occurs at the intersection of different points of view and approaches. Typically, hypothesis-driven modeling brings a question into focus so that a model is constructed to investigate a specific hypothesis about how the system works or why certain phenomena are observed. Data-driven modeling, on the other hand, follows a more unbiased approach, with model construction informed by the computationally intensive use of data. At the same time, researchers employ models at different biological scales and at different levels of abstraction. Combining these models while validating them against experimental data increases understanding of the multiscale brain. However, a lack of interoperability, transparency, and reusability of both models and the workflows used to construct them creates barriers for the integration of models representing different biological scales and built using different modeling philosophies. We argue that the same imperatives that drive resources and policy for data - such as the FAIR (Findable, Accessible, Interoperable, Reusable) principles - also support the integration of different modeling approaches. The FAIR principles require that data be shared in formats that are Findable, Accessible, Interoperable, and Reusable. Applying these principles to models and modeling workflows, as well as the data used to constrain and validate them, would allow researchers to find, reuse, question, validate, and extend published models, regardless of whether they are implemented phenomenologically or mechanistically, as a few equations or as a multiscale, hierarchical system. To illustrate these ideas, we use a classical synaptic plasticity model, the Bienenstock-Cooper-Munro rule, as an example due to its long history, different levels of abstraction, and implementation at many scales.
Collapse
Affiliation(s)
- Olivia Eriksson
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
| | - Upinder Singh Bhalla
- National Center for Biological Sciences, Tata Institute of Fundamental ResearchBangaloreIndia
| | - Kim T Blackwell
- Department of Bioengineering, Volgenau School of Engineering, George Mason UniversityFairfaxUnited States
| | - Sharon M Crook
- School of Mathematical and Statistical Sciences, Arizona State UniversityTempeUnited States
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de LausanneLausanneSwitzerland
| | - Andrei Kramer
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| | - Marja-Leena Linne
- Faculty of Medicine and Health Technology, Tampere UniversityTampereFinland
| | - Ausra Saudargienė
- Neuroscience Institute, Lithuanian University of Health SciencesKaunasLithuania
- Department of Informatics, Vytautas Magnus UniversityKaunasLithuania
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS)HeidelbergGermany
- Center for Molecular Biology (ZMBH), ZMBH-DKFZ Alliance, University of HeidelbergHeidelbergGermany
- Interdisciplinary Center for Scientific Computing (IWR), Heidelberg UniversityHeidelbergGermany
| | - Jeanette Hellgren Kotaleski
- Science for Life Laboratory, School of Electrical Engineering and Computer Science, KTH Royal Institute of TechnologyStockholmSweden
- Department of Neuroscience, Karolinska InstituteStockholmSweden
| |
Collapse
|
31
|
Rajagopal L, Huang M, He W, Ryan C, Elzokaky A, Banerjee P, Meltzer HY. Repeated administration of rapastinel produces exceptionally prolonged rescue of memory deficits in phencyclidine-treated mice. Behav Brain Res 2022; 432:113964. [PMID: 35718230 DOI: 10.1016/j.bbr.2022.113964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/02/2022]
Abstract
Rapastinel, a positive N-methyl-D-aspartate receptor (NMDAR) modulator with rapid-acting antidepressant properties, rescues memory deficits in rodents. We have previously reported that a single intravenous dose of rapastinel, significantly, but only transiently, prevented and rescued deficits in the novel object recognition (NOR) test, a measure of episodic memory, produced by acute or subchronic administration of the NMDAR antagonists, phencyclidine (PCP) and ketamine. Here, we tested the ability of single and multiple subcutaneous doses per day of rapastinel to restore NOR and operant reversal learning (ORL) deficits in subchronic PCP-treated mice. Rapastinel, 1 or 3 mg/kg, administered subcutaneously, 30 min before NOR or ORL testing, respectively, transiently rescued both deficits in subchronic PCP mice. This effect of rapastinel on NOR and ORL was mammalian target of rapamycin (mTOR)-dependent. Most importantly, 1 mg/kg rapastinel given twice daily for 3 or 5 days, but not 1 day, restored NOR for at least 9 and 10 weeks, respectively, which is an indication of neuroplastic effects on learning and memory. Both rapastinel (3 mg/kg) and ketamine (30 mg/kg), moderately increased the efflux of dopamine, norepinephrine, and serotonin in medial prefrontal cortex; however, only ketamine increased cortical glutamate efflux. This observation was likely the basis for the contrasting effects of the two drugs on cognition.
Collapse
Affiliation(s)
- Lakshmi Rajagopal
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Mei Huang
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Wenqi He
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| | - Chelsea Ryan
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | - Ahmad Elzokaky
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA
| | | | - Herbert Y Meltzer
- Department of Psychiatry and Behavioral Sciences, Northwestern Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
32
|
Luciana M, Collins PF. Neuroplasticity, the Prefrontal Cortex, and Psychopathology-Related Deviations in Cognitive Control. Annu Rev Clin Psychol 2022; 18:443-469. [PMID: 35534121 DOI: 10.1146/annurev-clinpsy-081219-111203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
A basic survival need is the ability to respond to, and persevere in the midst of, experiential challenges. Mechanisms of neuroplasticity permit this responsivity via functional adaptations (flexibility), as well as more substantial structural modifications following chronic stress or injury. This review focuses on prefrontally based flexibility, expressed throughout large-scale neuronal networks through the actions of excitatory and inhibitory neurotransmitters and neuromodulators. With substance use disorders and stress-related internalizing disorders as exemplars, we review human behavioral and neuroimaging data, considering whether executive control, particularly cognitive flexibility, is impaired premorbidly, enduringly compromised with illness progression, or both. We conclude that deviations in control processes are consistently expressed in the context of active illness but operate through different mechanisms and with distinct longitudinal patterns in externalizing versus internalizing conditions.
Collapse
Affiliation(s)
- Monica Luciana
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA; ,
| | - Paul F Collins
- Department of Psychology, University of Minnesota, Minneapolis, Minnesota, USA; ,
| |
Collapse
|
33
|
Hoerndli FJ, Brockie PJ, Wang R, Mellem JE, Kallarackal A, Doser RL, Pierce DM, Madsen DM, Maricq AV. MAPK signaling and a mobile scaffold complex regulate AMPA receptor transport to modulate synaptic strength. Cell Rep 2022; 38:110577. [PMID: 35354038 PMCID: PMC9965202 DOI: 10.1016/j.celrep.2022.110577] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 01/31/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022] Open
Abstract
Synaptic plasticity depends on rapid experience-dependent changes in the number of neurotransmitter receptors. Previously, we demonstrated that motor-mediated transport of AMPA receptors (AMPARs) to and from synapses is a critical determinant of synaptic strength. Here, we describe two convergent signaling pathways that coordinate the loading of synaptic AMPARs onto scaffolds, and scaffolds onto motors, thus providing a mechanism for experience-dependent changes in synaptic strength. We find that an evolutionarily conserved JIP-protein scaffold complex and two classes of mitogen-activated protein kinase (MAPK) proteins mediate AMPAR transport by kinesin-1 motors. Genetic analysis combined with in vivo, real-time imaging in Caenorhabditis elegans revealed that CaMKII is required for loading AMPARs onto the scaffold, and MAPK signaling is required for loading the scaffold complex onto motors. Our data support a model where CaMKII signaling and a MAPK-signaling pathway cooperate to facilitate the rapid exchange of AMPARs required for early stages of synaptic plasticity.
Collapse
Affiliation(s)
- Frédéric J Hoerndli
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| | - Penelope J Brockie
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Rui Wang
- Pathology Department, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jerry E Mellem
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Angy Kallarackal
- Department of Psychology, Mount Saint Mary's University, Emmitsburg, MD 21727, USA
| | - Rachel L Doser
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Dayton M Pierce
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - David M Madsen
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA
| | - Andres V Maricq
- Department of Neurobiology, University of Utah, Salt Lake City, UT 84112-9458, USA.
| |
Collapse
|
34
|
Huang Q, Wang P, Liu H, Li M, Yue Y, Xu P. Inhibition of ERK1/2 regulates cognitive function by decreasing expression levels of PSD-95 in the Hippocampus of CIH Rats. Eur J Neurosci 2022; 55:1471-1482. [PMID: 35243702 DOI: 10.1111/ejn.15635] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 11/30/2022]
Abstract
Obstructive sleep apnea syndrome (OSAS) is a potentially severe sleep disorder characterized by intermittent hypoxia, and there is growing evidence that OSAS can lead to cognitive decline. Extracellular signal-regulated protein kinase 1/2 (ERK1/2) plays a key role in synaptic plasticity. We established CIH model in male SD rats and examined their expression of p-ERK1/2 and PSD-95, as well as in CIH group, the effect of SL327 on the expression of p-ERK1/2 and PSD-95 in hippocampus of CIH model rats was observed by pretreating the experimental rats with SL327 during peak time of p-ERK1/2 expression. Mean oxygen saturation in the tail artery was lower in the CIH group. In the CIH groups exhibited increased escape latencies in the navigation test and decreased numbers of platform crossings in the space exploration test. Reduced volume, irregular structure, deepened cytoplasmic eosinophilic staining in the cytoplasm, and decreased nuclear size were found in hippocampal neurons in the 28-d CIH 、28-d CIH + SL327 group. The hippocampus of CIH rats, p-ERK expressions gradually increased with prolonged CIH exposure but decreased after SL327 treatment. Moreover, PSD-95 expressions gradually reduced in the 14-d CIH, 21-d CIH, and 28-d CIH groups but increased in the SL327-treated group. The SL327 intervention decreased p-ERK1/2 expression, increased PSD-95 expression, and improved cognitive function in CIH rats. The present findings provide some insights into the mechanisms underlying OSAS-associated cognitive impairment.
Collapse
Affiliation(s)
- Qin Huang
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,The second affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Pei Wang
- Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China.,Department of Neurology, Central Hospital of Chongqing University, Chongqing, China
| | - Haijun Liu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| | - Mingjian Li
- The second affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Yujiao Yue
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China
| | - Ping Xu
- Department of Neurology, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, China.,Key Laboratory of Basic Pharmacology of Ministry of Education, Zunyi Medical University, Zunyi, Guizhou, China
| |
Collapse
|
35
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
36
|
Electroacupuncture Reverses CUMS-Induced Depression-Like Behaviors and LTP Impairment in Hippocampus by Downregulating NR2B and CaMK II Expression. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:9639131. [PMID: 34804187 PMCID: PMC8604574 DOI: 10.1155/2021/9639131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 10/13/2021] [Indexed: 11/18/2022]
Abstract
Objective Depression is a global mental health problem with high disability rate, which brings a huge disease burden to the world. Electroacupuncture (EA) has been shown to be an effective method for the treatment of depression. However, the mechanism underling the antidepressant effect of EA has not been clearly clarified. The change of synaptic plasticity is the focus in the study of antidepressant mechanism. This study will observe the effect of EA on LTP of hippocampal synaptic plasticity and explore its possible mechanism. Methods The depression-like behavior rat model was established by chronic unpredictable mild stress (CUMS). EA stimulation (Hegu and Taichong) was used to treat the depressed rats. The depression-like behavior of rats was tested by weight measurement, open field test, depression preference test, and novelty suppressed feeding test. Long-term potentiation (LTP) was recorded at CA1 synapses in hippocampal slices by electrophysiological method. N-methyl-D-aspartate receptor subunit 2B (NR2B) and calmodulin-dependent protein kinase II (CaMK II) protein levels were examined by using western blot. Results After the establishment of CUMS-induced depression model, the weight gain rate, sucrose preference rate, line crossing number, and rearing times of rats decreased, and feeding time increased. At the same time, the LTP in hippocampus was impaired, and the expressions of NR2B and CaMK II were upregulated. After EA treatment, the depression-like behavior of rats was improved, the impairment of LTP was reversed, and the expression levels of NR2B and CaMK II protein were downregulated. Conclusion EA can ameliorate depression-like behaviors by restoring LTP induction, downregulating NR2B and CaMK II expression in CUMS model rats, which might be part of the mechanism of EA antidepressant.
Collapse
|
37
|
Xu J, Wang C, Xu P. Effects of hydroxyapatite extract on rats with transient ischemia: Long-term potentiation and axon regeneration. Exp Ther Med 2021; 22:1486. [PMID: 34765027 DOI: 10.3892/etm.2021.10921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/10/2021] [Indexed: 11/05/2022] Open
Abstract
Hydroxyapatite (HA) has been extensively used as a reconstructive and prosthetic material for osseous tissue. The present study aimed to determine whether HA extract exerted effects on central nervous system injury following transient cerebral ischemia/reperfusion in rats. Male Wistar rats were treated with HA following bilateral common carotid artery clamping (two-vessel occlusion). The results demonstrated that treatment with HA extract attenuated the inhibition of long-term potential in a rat model of transient cerebral ischemia/reperfusion. Furthermore, HA extract improved axon regeneration, which was confirmed via the immunohistochemical analysis of growth associated protein 43 and glial fibrillary acidic protein. Taken together, the results of the present study provided preliminary evidence of the protective effect of HA on neuronal damage.
Collapse
Affiliation(s)
- Jing Xu
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Chunyang Wang
- Department of Neurology, Tianjin Medical University General Hospital, Tianjin 300052, P.R. China
| | - Pengjuan Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
| |
Collapse
|
38
|
Brandalise F, Carta S, Leone R, Helmchen F, Holtmaat A, Gerber U. Dendritic Branch-constrained N-Methyl-d-Aspartate Receptor-mediated Spikes Drive Synaptic Plasticity in Hippocampal CA3 Pyramidal Cells. Neuroscience 2021; 489:57-68. [PMID: 34634424 DOI: 10.1016/j.neuroscience.2021.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 09/27/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
N-methyl-d-aspartate receptor-mediated ( spikes can be causally linked to the induction of synaptic long-term potentiation (LTP) in hippocampal and cortical pyramidal cells. However, it is unclear if they regulate plasticity at a local or global scale in the dendritic tree. Here, we used dendritic patch-clamp recordings and calcium imaging to investigate the integrative properties of single dendrites of hippocampal CA3 cells. We show that local hyperpolarization of a single dendritic segment prevents NMDA spikes, their associated calcium transients, as well as LTP in a branch-specific manner. This result provides direct, causal evidence that the single dendritic branch can operate as a functional unit in regulating CA3 pyramidal cell plasticity.
Collapse
Affiliation(s)
- Federico Brandalise
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland; Former affiliation(b).
| | - Stefano Carta
- Brain Research Institute and Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Roberta Leone
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland
| | - Fritjof Helmchen
- Brain Research Institute and Neuroscience Center Zurich, University of Zurich, CH-8057 Zurich, Switzerland
| | - Anthony Holtmaat
- Department of Basic Neurosciences and the Center for Neuroscience, Centre Médical Universitaire (CMU), University of Geneva, 1211 Geneva, Switzerland
| | | |
Collapse
|
39
|
Chen BK, Luna VM, Shannon ME, Hunsberger HC, Mastrodonato A, Stackmann M, McGowan JC, Rubinstenn G, Denny CA. Fluoroethylnormemantine, a Novel NMDA Receptor Antagonist, for the Prevention and Treatment of Stress-Induced Maladaptive Behavior. Biol Psychiatry 2021; 90:458-472. [PMID: 34274107 PMCID: PMC9590626 DOI: 10.1016/j.biopsych.2021.04.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 12/13/2022]
Abstract
BACKGROUND Major depressive disorder is a common, recurrent illness. Recent studies have implicated the NMDA receptor in the pathophysiology of major depressive disorder. (R,S)-ketamine, an NMDA receptor antagonist, is an effective antidepressant but has numerous side effects. Here, we characterized a novel NMDA receptor antagonist, fluoroethylnormemantine (FENM), to determine its effectiveness as a prophylactic and/or antidepressant against stress-induced maladaptive behavior. METHODS Saline, memantine (10 mg/kg), (R,S)-ketamine (30 mg/kg), or FENM (10, 20, or 30 mg/kg) was administered before or after contextual fear conditioning in 129S6/SvEv mice. Drug efficacy was assayed using various behavioral tests. Protein expression in the hippocampus was quantified with immunohistochemistry or Western blotting. In vitro radioligand binding was used to assay drug binding affinity. Patch clamp electrophysiology was used to determine the effect of drug administration on glutamatergic activity in ventral hippocampal cornu ammonis 3 (vCA3) 1 week after injection. RESULTS Given after stress, FENM decreased behavioral despair and reduced perseverative behavior. When administered after re-exposure, FENM facilitated extinction learning. As a prophylactic, FENM attenuated learned fear and decreased stress-induced behavioral despair. FENM was behaviorally effective in both male and female mice. (R,S)-ketamine, but not FENM, increased expression of c-fos in vCA3. Both (R,S)-ketamine and FENM attenuated large-amplitude AMPA receptor-mediated bursts in vCA3, indicating a common neurobiological mechanism for further study. CONCLUSIONS Our results indicate that FENM is a novel drug that is efficacious when administered at various times before or after stress. Future work will further characterize FENM's mechanism of action with the goal of clinical development.
Collapse
Affiliation(s)
- Briana K Chen
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | - Victor M Luna
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | | | - Holly C Hunsberger
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Alessia Mastrodonato
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York
| | - Michelle Stackmann
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | - Josephine C McGowan
- Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York
| | | | - Christine A Denny
- Division of Systems Neuroscience, Research Foundation for Mental Hygiene, Inc./New York State Psychiatric Institute, New York, New York; Department of Psychiatry, Columbia University Irving Medical Center, New York, New York.
| |
Collapse
|
40
|
Walker JR, Detloff MR. Plasticity in Cervical Motor Circuits following Spinal Cord Injury and Rehabilitation. BIOLOGY 2021; 10:biology10100976. [PMID: 34681075 PMCID: PMC8533179 DOI: 10.3390/biology10100976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary Spinal cord injury results in a decreased quality of life and impacts hundreds of thousands of people in the US alone. This review discusses the underlying cellular mechanisms of injury and the concurrent therapeutic hurdles that impede recovery. It then describes the phenomena of neural plasticity—the nervous system’s ability to change. The primary focus of the review is on the impact of cervical spinal cord injury on control of the upper limbs. The neural plasticity that occurs without intervention is discussed, which shows new connections growing around the injury site and the involvement of compensatory movements. Rehabilitation-driven neural plasticity is shown to have the ability to guide connections to create more normal functions. Various novel stimulation and recording technologies are outlined for their role in further improving rehabilitative outcomes and gains in independence. Finally, the importance of sensory input, an often-overlooked aspect of motor control, is shown in driving neural plasticity. Overall, this review seeks to delineate the historical and contemporary research into neural plasticity following injury and rehabilitation to guide future studies. Abstract Neuroplasticity is a robust mechanism by which the central nervous system attempts to adapt to a structural or chemical disruption of functional connections between neurons. Mechanical damage from spinal cord injury potentiates via neuroinflammation and can cause aberrant changes in neural circuitry known as maladaptive plasticity. Together, these alterations greatly diminish function and quality of life. This review discusses contemporary efforts to harness neuroplasticity through rehabilitation and neuromodulation to restore function with a focus on motor recovery following cervical spinal cord injury. Background information on the general mechanisms of plasticity and long-term potentiation of the nervous system, most well studied in the learning and memory fields, will be reviewed. Spontaneous plasticity of the nervous system, both maladaptive and during natural recovery following spinal cord injury is outlined to provide a baseline from which rehabilitation builds. Previous research has focused on the impact of descending motor commands in driving spinal plasticity. However, this review focuses on the influence of physical therapy and primary afferent input and interneuron modulation in driving plasticity within the spinal cord. Finally, future directions into previously untargeted primary afferent populations are presented.
Collapse
|
41
|
Manos T, Diaz-Pier S, Tass PA. Long-Term Desynchronization by Coordinated Reset Stimulation in a Neural Network Model With Synaptic and Structural Plasticity. Front Physiol 2021; 12:716556. [PMID: 34566681 PMCID: PMC8455881 DOI: 10.3389/fphys.2021.716556] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Several brain disorders are characterized by abnormal neuronal synchronization. To specifically counteract abnormal neuronal synchrony and, hence, related symptoms, coordinated reset (CR) stimulation was computationally developed. In principle, successive epochs of synchronizing and desynchronizing stimulation may reversibly move neural networks with plastic synapses back and forth between stable regimes with synchronized and desynchronized firing. Computationally derived predictions have been verified in pre-clinical and clinical studies, paving the way for novel therapies. However, as yet, computational models were not able to reproduce the clinically observed increase of desynchronizing effects of regularly administered CR stimulation intermingled by long stimulation-free epochs. We show that this clinically important phenomenon can be computationally reproduced by taking into account structural plasticity (SP), a mechanism that deletes or generates synapses in order to homeostatically adapt the firing rates of neurons to a set point-like target firing rate in the course of days to months. If we assume that CR stimulation favorably reduces the target firing rate of SP, the desynchronizing effects of CR stimulation increase after long stimulation-free epochs, in accordance with clinically observed phenomena. Our study highlights the pivotal role of stimulation- and dosing-induced modulation of homeostatic set points in therapeutic processes.
Collapse
Affiliation(s)
- Thanos Manos
- Institute of Neuroscience and Medicine, Brain and Behaviour (INM-7), Research Centre Jülich, Jülich, Germany.,Medical Faculty, Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.,Laboratoire de Physique Théorique et Modélisation, CNRS, UMR 8089, CY Cergy Paris Université, Cergy-Pontoise Cedex, France
| | - Sandra Diaz-Pier
- Simulation & Data Lab Neuroscience, Institute for Advanced Simulation, Jülich Supercomputing Centre (JSC), Forschungszentrum Jülich GmbH, JARA, Jülich, Germany
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
42
|
Muñoz-Martin I, Bianchi S, Hashemkhani S, Pedretti G, Melnic O, Ielmini D. A Brain-Inspired Homeostatic Neuron Based on Phase-Change Memories for Efficient Neuromorphic Computing. Front Neurosci 2021; 15:709053. [PMID: 34489628 PMCID: PMC8417123 DOI: 10.3389/fnins.2021.709053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/27/2021] [Indexed: 11/13/2022] Open
Abstract
One of the main goals of neuromorphic computing is the implementation and design of systems capable of dynamic evolution with respect to their own experience. In biology, synaptic scaling is the homeostatic mechanism which controls the frequency of neural spikes within stable boundaries for improved learning activity. To introduce such control mechanism in a hardware spiking neural network (SNN), we present here a novel artificial neuron based on phase change memory (PCM) devices capable of internal regulation via homeostatic and plastic phenomena. We experimentally show that this mechanism increases the robustness of the system thus optimizing the multi-pattern learning under spike-timing-dependent plasticity (STDP). It also improves the continual learning capability of hybrid supervised-unsupervised convolutional neural networks (CNNs), in terms of both resilience and accuracy. Furthermore, the use of neurons capable of self-regulating their fire responsivity as a function of the PCM internal state enables the design of dynamic networks. In this scenario, we propose to use the PCM-based neurons to design bio-inspired recurrent networks for autonomous decision making in navigation tasks. The agent relies on neuronal spike-frequency adaptation (SFA) to explore the environment via penalties and rewards. Finally, we show that the conductance drift of the PCM devices, contrarily to the applications in neural network accelerators, can improve the overall energy efficiency of neuromorphic computing by implementing bio-plausible active forgetting.
Collapse
Affiliation(s)
| | | | | | | | | | - Daniele Ielmini
- Dipartimento di Elettronica, Informazione e Bioingegneria (DEIB), Politecnico di Milano, Milan, Italy
| |
Collapse
|
43
|
Ramsey AM, Tang AH, LeGates TA, Gou XZ, Carbone BE, Thompson SM, Biederer T, Blanpied TA. Subsynaptic positioning of AMPARs by LRRTM2 controls synaptic strength. SCIENCE ADVANCES 2021; 7:7/34/eabf3126. [PMID: 34417170 PMCID: PMC8378824 DOI: 10.1126/sciadv.abf3126] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 06/30/2021] [Indexed: 05/07/2023]
Abstract
Recent evidence suggests that nano-organization of proteins within synapses may control the strength of communication between neurons in the brain. The unique subsynaptic distribution of glutamate receptors, which cluster in nanoalignment with presynaptic sites of glutamate release, supports this hypothesis. However, testing it has been difficult because mechanisms controlling subsynaptic organization remain unknown. Reasoning that transcellular interactions could position AMPA receptors (AMPARs), we targeted a key transsynaptic adhesion molecule implicated in controlling AMPAR number, LRRTM2, using engineered, rapid proteolysis. Severing the LRRTM2 extracellular domain led quickly to nanoscale declustering of AMPARs away from release sites, not prompting their escape from synapses until much later. This rapid remodeling of AMPAR position produced significant deficits in evoked, but not spontaneous, postsynaptic receptor activation. These results dissociate receptor numbers from their nanopositioning in determination of synaptic function and support the novel concept that adhesion molecules acutely position receptors to dynamically control synaptic strength.
Collapse
Affiliation(s)
- Austin M Ramsey
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ai-Hui Tang
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tara A LeGates
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | - Beatrice E Carbone
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Scott M Thompson
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Thomas Biederer
- Department of Neurology, Yale School of Medicine, New Haven, CT 06520, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA.
- Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
44
|
Nikitina VA, Zakharova MV, Trofimov AN, Schwarz AP, Beznin GV, Tsikunov SG, Zubareva OE. Neonatal Exposure to Bacterial Lipopolysaccharide Affects Behavior and Expression of Ionotropic Glutamate Receptors in the Hippocampus of Adult Rats after Psychogenic Trauma. BIOCHEMISTRY (MOSCOW) 2021; 86:761-772. [PMID: 34225597 DOI: 10.1134/s0006297921060134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
According to the two-hit hypothesis of psychoneuropathology formation, infectious diseases and other pathological conditions occurring during the critical periods of early ontogenesis disrupt normal brain development and increase its susceptibility to stress experienced in adolescence and adulthood. It is believed that these disorders are associated with changes in the functional activity of the glutamatergic system in the hippocampus. Here, we studied expression of NMDA (GluN1, GluN2a, GluN2b) and AMPA (GluA1, GluA2) glutamate receptor subunits, as well as glutamate transporter EAAT2, in the ventral and dorsal regions of the hippocampus of rats injected with LPS during the third postnatal week and then subjected to predator stress (contact with a python) in adulthood. The tests were performed 25 days after the stress. It was found that stress altered protein expression in the ventral, but not in the dorsal hippocampus. Non-stressed LPS-treated rats displayed lower levels of the GluN2b protein in the ventral hippocampus vs. control animals. Stress significantly increased the content of GluN2b in the LPS-treated rats, but not in the control animals. Stress also affected differently the exploratory behavior of LPS-injected and control rats. Compared to the non-stressed animals, stressed control rats demonstrated a higher locomotor activity during the 1st min of the open field test, while the stressed LPS-injected rats displayed lower locomotor activity than the non-stressed rats. In addition, LPS-treated stressed and non-stressed rats spent more time in the open arms of the elevated plus maze and demonstrated reduced blood levels of corticosterone. To summarize the results of our study, exposure to bacterial LPS in the early postnatal ontogenesis affects the pattern of stress-induced changes in the behavior and hippocampal expression of genes coding for ionotropic glutamate receptor subunits after psychogenic trauma suffered in adulthood.
Collapse
Affiliation(s)
| | - Maria V Zakharova
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | | | - Alexander P Schwarz
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia
| | - Gleb V Beznin
- Institute of Experimental Medicine, Saint Petersburg, 197376, Russia
| | - Sergei G Tsikunov
- Institute of Experimental Medicine, Saint Petersburg, 197376, Russia
| | - Olga E Zubareva
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, Saint Petersburg, 194223, Russia.
| |
Collapse
|
45
|
Lee CW, Fang YP, Chu MC, Chung YJ, Chi H, Tang CW, So EC, Lin HC, Lin HC. Differential mechanisms of synaptic plasticity for susceptibility and resilience to chronic social defeat stress in male mice. Biochem Biophys Res Commun 2021; 562:112-118. [PMID: 34049204 DOI: 10.1016/j.bbrc.2021.05.064] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022]
Abstract
Mood dysregulation refers to the inability of a person to control their negative emotions, and it is linked to various stressful experiences. Dysregulated neural synaptic plasticity and actin-filament dynamics are important regulators of stress response in animal models. However, until now, there is no evidence to differential the mechanisms of synaptic plasticity and actin-filament dynamics in stress susceptibility and stress-resistant. Here we found that depression-like behaviour was observed in the susceptible group following chronic social defeat stress (CSDS) exposure, but not in stress-resistant mice. High-frequency stimulation-induced long-term potentiation (LTP) was impaired in the CSDS-induced depression-susceptible group. Further, the levels of pro-brain derived neurotrophic factor (BDNF), mature BDNF, PSD-95, phosphorylated CaMKII, and phosphorylated Cofilin, an actin-filament dynamics regulator, were reduced in CSDS-induced depression-susceptible mice unlike in stress-resistant mice. These results demonstrate that synaptic plasticity-related molecules, such as BDNF and phosphorylated Cofilin, are important for maintaining synaptic functions and structure in mice that experience more stress.
Collapse
Affiliation(s)
- Chi-Wei Lee
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan
| | - Yen-Po Fang
- Department of Orthopaedic Surgery, An Nan Hospital, China Medical University, Tainan, Taiwan
| | - Ming-Chia Chu
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Yueh-Jung Chung
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hsiang Chi
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Chih-Wei Tang
- Department of Neurology, Far Eastern Memorial Hospital, New Taipei City, Taiwan
| | - Edmund Cheung So
- Department of Anesthesia and Medical Research, An Nan Hospital, China Medical University, Tainan City, Taiwan; Graduate Institute of Medical Sciences, Chang Jung Christian University, Tainan City, Taiwan
| | - Hsin-Chuan Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Hui-Ching Lin
- Department and Institute of Physiology, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department and Institute of Physiology, School of Medicine, National Yang-Ming University, Taipei, Taiwan; Ph.D. Program for Neural Regenerative Medicine, College of Medical Science and Technology, Taipei Medical University and National Health Research Institute, Taipei, Taiwan; Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
46
|
Villalba RM, Behnke JA, Pare JF, Smith Y. Comparative Ultrastructural Analysis of Thalamocortical Innervation of the Primary Motor Cortex and Supplementary Motor Area in Control and MPTP-Treated Parkinsonian Monkeys. Cereb Cortex 2021; 31:3408-3425. [PMID: 33676368 PMCID: PMC8599722 DOI: 10.1093/cercor/bhab020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/29/2020] [Accepted: 01/19/2021] [Indexed: 12/15/2022] Open
Abstract
The synaptic organization of thalamic inputs to motor cortices remains poorly understood in primates. Thus, we compared the regional and synaptic connections of vGluT2-positive thalamocortical glutamatergic terminals in the supplementary motor area (SMA) and the primary motor cortex (M1) between control and MPTP-treated parkinsonian monkeys. In controls, vGluT2-containing fibers and terminal-like profiles invaded layer II-III and Vb of M1 and SMA. A significant reduction of vGluT2 labeling was found in layer Vb, but not in layer II-III, of parkinsonian animals, suggesting a potential thalamic denervation of deep cortical layers in parkinsonism. There was a significant difference in the pattern of synaptic connectivity in layers II-III, but not in layer Vb, between M1 and SMA of control monkeys. However, this difference was abolished in parkinsonian animals. No major difference was found in the proportion of perforated versus macular post-synaptic densities at thalamocortical synapses between control and parkinsonian monkeys in both cortical regions, except for a slight increase in the prevalence of perforated axo-dendritic synapses in the SMA of parkinsonian monkeys. Our findings suggest that disruption of the thalamic innervation of M1 and SMA may underlie pathophysiological changes of the motor thalamocortical loop in the state of parkinsonism.
Collapse
Affiliation(s)
- Rosa M Villalba
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Joseph A Behnke
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Jean-Francois Pare
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
| | - Yoland Smith
- Division of Neuropharmacology and Neurological Diseases, Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- UDALL Center for Excellence for Parkinson’s Disease, Emory University, Atlanta, GA 30329, USA
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
47
|
Serine/Threonine Phosphatases in LTP: Two B or Not to Be the Protein Synthesis Blocker-Induced Impairment of Early Phase. Int J Mol Sci 2021; 22:ijms22094857. [PMID: 34064311 PMCID: PMC8125358 DOI: 10.3390/ijms22094857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Dephosphorylation of target proteins at serine/threonine residues is one of the most crucial mechanisms regulating their activity and, consequently, the cellular functions. The role of phosphatases in synaptic plasticity, especially in long-term depression or depotentiation, has been reported. We studied serine/threonine phosphatase activity during the protein synthesis blocker (PSB)-induced impairment of long-term potentiation (LTP). Established protein phosphatase 2B (PP2B, calcineurin) inhibitor cyclosporin A prevented the LTP early phase (E-LTP) decline produced by pretreatment of hippocampal slices with cycloheximide or anisomycin. For the first time, we directly measured serine/threonine phosphatase activity during E-LTP, and its significant increase in PSB-treated slices was demonstrated. Nitric oxide (NO) donor SNAP also heightened phosphatase activity in the same manner as PSB, and simultaneous application of anisomycin + SNAP had no synergistic effect. Direct measurement of the NO production in hippocampal slices by the NO-specific fluorescent probe DAF-FM revealed that PSBs strongly stimulate the NO concentration in all studied brain areas: CA1, CA3, and dentate gyrus (DG). Cyclosporin A fully abolished the PSB-induced NO production in the hippocampus, suggesting a close relationship between nNOS and PP2B activity. Surprisingly, cyclosporin A alone impaired short-term plasticity in CA1 by decreasing paired-pulse facilitation, which suggests bi-directionality of the influences of PP2B in the hippocampus. In conclusion, we proposed a minimal model of signaling events that occur during LTP induction in normal conditions and the PSB-treated slices.
Collapse
|
48
|
Amyloid-Beta Mediates Homeostatic Synaptic Plasticity. J Neurosci 2021; 41:5157-5172. [PMID: 33926999 PMCID: PMC8211553 DOI: 10.1523/jneurosci.1820-20.2021] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 03/02/2021] [Accepted: 03/28/2021] [Indexed: 12/25/2022] Open
Abstract
The physiological role of the amyloid-precursor protein (APP) is insufficiently understood. Recent work has implicated APP in the regulation of synaptic plasticity. Substantial evidence exists for a role of APP and its secreted ectodomain APPsα in Hebbian plasticity. Here, we addressed the relevance of APP in homeostatic synaptic plasticity using organotypic tissue cultures prepared from APP -/- mice of both sexes. In the absence of APP, dentate granule cells failed to strengthen their excitatory synapses homeostatically. Homeostatic plasticity is rescued by amyloid-β and not by APPsα, and it is neither observed in APP+/+ tissue treated with β- or γ-secretase inhibitors nor in synaptopodin-deficient cultures lacking the Ca2+-dependent molecular machinery of the spine apparatus. Together, these results suggest a role of APP processing via the amyloidogenic pathway in homeostatic synaptic plasticity, representing a function of relevance for brain physiology as well as for brain states associated with increased amyloid-β levels.
Collapse
|
49
|
Field M, Dorovykh V, Thomas P, Smart TG. Physiological role for GABA A receptor desensitization in the induction of long-term potentiation at inhibitory synapses. Nat Commun 2021; 12:2112. [PMID: 33837214 PMCID: PMC8035410 DOI: 10.1038/s41467-021-22420-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/03/2021] [Indexed: 01/03/2023] Open
Abstract
GABAA receptors (GABAARs) are pentameric ligand-gated ion channels distributed throughout the brain where they mediate synaptic and tonic inhibition. Following activation, these receptors undergo desensitization which involves entry into long-lived agonist-bound closed states. Although the kinetic effects of this state are recognised and its structural basis has been uncovered, the physiological impact of desensitization on inhibitory neurotransmission remains unknown. Here we describe an enduring form of long-term potentiation at inhibitory synapses that elevates synaptic current amplitude for 24 h following desensitization of GABAARs in response to agonist exposure or allosteric modulation. Using receptor mutants and allosteric modulators we demonstrate that desensitization of GABAARs facilitates their phosphorylation by PKC, which increases the number of receptors at inhibitory synapses. These observations provide a physiological relevance to the desensitized state of GABAARs, acting as a signal to regulate the efficacy of inhibitory synapses during prolonged periods of inhibitory neurotransmission.
Collapse
Affiliation(s)
- Martin Field
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
- Department of Pharmacology, University of Oxford, Oxford, UK
| | - Valentina Dorovykh
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, UCL, London, UK.
| |
Collapse
|
50
|
Stavroulaki V, Ioakeimidis V, Konstantoudaki X, Sidiropoulou K. Enhanced synaptic properties of the prefrontal cortex and hippocampus after learning a spatial working memory task in adult male mice. J Neurosci Res 2021; 99:1802-1814. [PMID: 33740288 DOI: 10.1002/jnr.24833] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 03/03/2021] [Accepted: 03/05/2021] [Indexed: 12/28/2022]
Abstract
Working memory (WM) is the ability to hold on-line and manipulate information. The prefrontal cortex (PFC) is a key brain region involved in WM, while the hippocampus is also involved, particularly, in spatial WM. Although several studies have investigated the neuronal substrates of WM in trained animals, the effects and the mechanisms underlying learning WM tasks have not been explored. In our study, we investigated the effects of learning WM tasks in mice on the function of PFC and hippocampus, by training mice in the delayed alternation task for 9 days (adaptive group). This group was compared to naïve mice (which stayed in their homecage) and mice trained in the alternation procedure only (non-adaptive). Following training, a cohort of mice (Experiment A) was tested in the left-right discrimination task and the reversal learning task, while another cohort (Experiment B) was tested in the attention set-shifting task (AST). The adaptive group performed significantly better in the reversal learning task (Experiment A) and AST (Experiment B), compared to non-adaptive and naïve groups. At the end of the behavioral experiments in Experiment A, field excitatory post-synaptic potential (fEPSP) recordings were performed in PFC and hippocampal brain slices. The adaptive group had enhanced the long-term potentiation (LTP) in the PFC, compared to the other groups. In the hippocampus, both the adaptive and the non-adaptive groups exhibited increased fEPSP compared to the naïve group, but no differences in LTP. In Experiment B, the dendritic spine density was measured, which, in the PFC, was found increased in the adaptive group, compared to the non-adaptive and naïve groups. In the hippocampus, there was an increase in mature dendritic spine density in the adaptive group, compared to the other two groups. Our results indicate a role for LTP and dendritic spine density in learning WM tasks.
Collapse
Affiliation(s)
| | | | | | - Kyriaki Sidiropoulou
- Department of Biology, University of Crete, Heraklion, Greece.,Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology Hellas, Heraklion, Greece
| |
Collapse
|