1
|
Zhang J, Wang X, Ren X, Gao X, Li J. Synergistic Impacts of Phosphorus Deficiency Coupled with Thermal and High-Light Stress on Physiological Profiles of Cultivated Saccharina japonica. PLANTS (BASEL, SWITZERLAND) 2025; 14:1412. [PMID: 40430978 PMCID: PMC12115160 DOI: 10.3390/plants14101412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/28/2025] [Accepted: 05/07/2025] [Indexed: 05/29/2025]
Abstract
Global kelp farming is garnering growing attention for its contributions to fishery yields, environmental remediation, and carbon neutrality efforts. Kelp farming systems face escalating pressures from compounded climatic and environmental stressors. A severe outbreak disaster caused extensive kelp mortality and significant economic losses in Rongcheng, China, one of the world's largest kelp farming areas. This study investigated the growth and physiological responses of Saccharina japonica to combined stressors involving three levels of N:P ratios (10:1 as a control; 100:1 and 500:1 to represent phosphorus deficiency stress) and two temperature/light regimes (12 °C, 90 μmol photons m-2 s-1 as a control, and 17 °C, 340 μmol photons m-2 s-1 to represent thermal and high-light stress). The results demonstrated that phosphorus deficiency significantly inhibited the relative growth rate of kelp (24% decrease), and the strongest growth inhibition in kelp was observed at the N:P ratio of 500:1 combined with thermal and high-light stress. The algal tissue was whitened due to its progressive disintegration under escalating stress, coupled with damage to its chloroplasts and nucleus ultrastructures. Phosphorus-deficiency-induced declines in photochemistry (27-56% decrease) and chlorophyll content (63% decrease) were paradoxically and transiently reversed by thermal and high-light stress, but this "false recovery" accelerated subsequent metabolic collapse (a 60-75% decrease in the growth rate and a loss of thallus integrity). Alkaline phosphatase was preferentially activated to cope with phosphorus deficiency combined with photothermal stress, while acid phosphatase was subsequently induced to provide auxiliary support. S. japonica suppressed its metabolism but upregulated its nucleotides under phosphorus deficiency; however, the energy/amino acid/coenzyme pathways were activated and a broad spectrum of metabolites were upregulated under combined stressors, indicating that S. japonica employs a dual adaptive strategy where phosphorus scarcity triggers metabolic conservation. Thermal/light stress can override phosphorus limitations by activating specific compensatory pathways. The findings of this study provide a foundation for the sustainable development of kelp farming under climate and environmental changes.
Collapse
Affiliation(s)
| | | | | | - Xu Gao
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (J.Z.); (X.W.); (X.R.)
| | - Jingyu Li
- Key Laboratory of Mariculture, Ministry of Education, Fisheries College, Ocean University of China, Qingdao 266003, China; (J.Z.); (X.W.); (X.R.)
| |
Collapse
|
2
|
Duhamel S. The microbial phosphorus cycle in aquatic ecosystems. Nat Rev Microbiol 2025; 23:239-255. [PMID: 39528792 DOI: 10.1038/s41579-024-01119-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2024] [Indexed: 11/16/2024]
Abstract
Phosphorus is an essential element for life, and phosphorus cycling is crucial to planetary habitability. In aquatic environments, microorganisms are a major component of phosphorus cycling and rapidly transform the diverse chemical forms of phosphorus through various uptake, assimilation and release pathways. Recent discoveries have revealed a more dynamic and complex aquatic microbial phosphorus cycle than previously understood. Some microorganisms have been shown to use and produce new phosphorus compounds, including those in reduced forms. New findings have also raised numerous unanswered questions that warrant further investigation. There is an expanding influence of human activity on aquatic ecosystems. Advancements in understanding the phosphorus biogeochemistry of evolving aquatic environments offer a unique opportunity to comprehend, anticipate and mitigate the effect of human activities. In this Review, I discuss the wealth of new aquatic phosphorus cycle research, spanning disciplines from omics and physiology to global biogeochemical modelling, with a focus on the current comprehension of how aquatic microorganisms sense, transport, assimilate, store, produce and release phosphorus. Of note, I delve into cellular phosphorus allocation, an underexplored topic with wide-ranging implications for energy and element flux in aquatic ecosystems.
Collapse
Affiliation(s)
- Solange Duhamel
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
3
|
Elshobary ME, Abo-Shanab WA, Ende SSW, Alquraishi M, El-Shenody RA. Optimizing Phaeodactylum tricornutum cultivation: integrated strategies for enhancing biomass, lipid, and fucoxanthin production. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2025; 18:7. [PMID: 39827342 PMCID: PMC11742496 DOI: 10.1186/s13068-024-02602-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 12/27/2024] [Indexed: 01/22/2025]
Abstract
BACKGROUND Phaeodactylum tricornutum is a versatile marine microalga renowned for its high-value metabolite production, including omega-3 fatty acids and fucoxanthin, with emerging potential for integrated biorefinery approaches that encompass biofuel and bioproduct generation. Therefore, in this study we aimed to optimize the cultivation conditions for boosting biomass, lipid, and fucoxanthin production in P. tricornutum, focusing on the impacts of different nutrient ratios (nitrogen, phosphorus, silicate), glycerol supplementation, and light regimes. RESULTS Optimized medium (- 50%N%, + 50% P, Zero-Si, 2 g glycerol) under low-intensity blue light (100 μmol m⁻2 s⁻1) improved biomass to 1.6 g L⁻1, with lipid productivity reaching 539.25 mg g⁻1, while fucoxanthin increased to 20.44 mg g-1. Total saturated fatty acid (ΣSFA) content in the optimized culture increased approximately 2.4-fold compared to the control F/2 medium. This change in fatty acid composition led to improved biodiesel properties, including a higher cetane number (59.18 vs. 56.04) and lower iodine value (53.96 vs 88.99 g I2/100 g oil). The optimized conditions also altered the biodiesel characteristics, such as kinematic viscosity, cloud point, and higher heating value. CONCLUSION Our optimization approach reveals the significant potential of P. tricornutum as a versatile microbial platform for biomass, lipid, and fucoxanthin production. The tailored cultivation strategy successfully enhanced biomass and lipid accumulation, with notable improvements in biodiesel properties through strategic nutrient and light regime manipulation. These findings demonstrate the critical role of precise cultivation conditions in optimizing microalgal metabolic performance for biotechnological applications.
Collapse
Affiliation(s)
- Mostafa E Elshobary
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570, Bremerhaven, Germany.
| | - Walaa A Abo-Shanab
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Stephan S W Ende
- Aquaculture Research, Alfred Wegener Institute (AWI) - Helmholtz Centre for Polar and Marine Research, Am Handelshafen, 27570, Bremerhaven, Germany
| | - Mohammed Alquraishi
- Department of Community Health Sciences, College of Applied Medical Sciences, King Saud University, 11433, Riyadh, Saudi Arabia
| | - Rania A El-Shenody
- Botany and Microbiology Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
4
|
Zhen Y, Zhu J, Yue M, Mi T. Impacts of phosphoenolpyruvate carboxylase gene silencing on photosynthetic efficiency and carbon fixation in Skeletonema costatum. Gene 2025; 933:148915. [PMID: 39244167 DOI: 10.1016/j.gene.2024.148915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 09/09/2024]
Abstract
Diatoms play a crucial role in marine primary productivity through carbon fixation, which is essential for understanding the operation of marine biological pumps and carbon sinks. This study focuses on the phosphoenolpyruvate carboxylase (PEPC) gene, a key enzyme in the carbon assimilation pathway of diatoms, by investigating the consequences of its silencing in Skeletonema costatum. Through this approach, we aimed to clarify the distinct contributions of PEPC to the overall carbon fixation process. The mutant strains of S. costatum were subjected to thorough analysis to identify any shifts in physiological behavior, alterations in the gene expression of key carbon-fixing enzymes, and changes in the associated enzyme activities. Notably, the inhibition of the PEPC gene did not significantly affect the growth rate of S. costatum; however, it did have a notable impact on the photosynthetic apparatus, as evidenced by a reduction in the maximal electron transport rate and a decline in light utilization efficiency. A significant decrease was observed in both the enzymatic activity and gene expression of PEPCase. This down-regulation also affected other enzymes integral to the carbon fixation pathway, such as phosphoenolpyruvate carboxykinase and pyruvate-phosphate dikinase, indicating a wider metabolic perturbation. In contrast, the expression and activity of the Rubisco enzyme suggested that some facets of carbon fixation remained resilient. Furthermore, the substantial upregulation of carbonic anhydrase expression and activity probably represented an adaptive mechanism to sustain the inorganic carbon supply necessary for the carboxylation process of Rubisco. This research not only underscores the pivotal role of the PEPC gene in the carbon fixation of S. costatum but also expands our comprehension of carbon fixation mechanisms in diatoms.
Collapse
Affiliation(s)
- Yu Zhen
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China.
| | - Jiwei Zhu
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Ming Yue
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Tiezhu Mi
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China; Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
5
|
Kim SY, Moon H, Kwon YM, Kim KW, Kim JYH. Comparative Analysis of the Biochemical and Molecular Responses of Nannochloropsis gaditana to Nitrogen and Phosphorus Limitation: Phosphorus Limitation Enhances Carotenogenesis. Mar Drugs 2024; 22:567. [PMID: 39728141 DOI: 10.3390/md22120567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Nannochloropsis gaditana is well known for its potential for biofuel production due to its high lipid content. Numerous omics and biochemical studies have explored the overall molecular mechanisms underlying the responses of Nannochloropsis sp. to nutrient availability, primarily focusing on lipid metabolism. However, N. gaditana is able to synthesize other valuable products such as carotenoids, including violaxanthin, which has various biological functions and applications. In this study, we comparatively investigated the physiological, biochemical, and molecular responses of N. gaditana to nitrogen and phosphorus limitation, examining biomass production, photosynthetic activity, lipid, chlorophyll, and carotenoids content, and RNA-seq data. Nitrogen limitation decreased photosynthetic activity, chlorophyll content, and biomass production but increased lipid content. Phosphorus limitation substantially increased carotenoids content, with violaxanthin productivity of 10.24 mg/L, 3.38-fold greater than under the control condition, with little effect on biomass production or photosynthetic function. These results were generally consistent with the gene expression pattern observed in transcriptomic analysis. This integrated analysis shows that phosphorus limitation can be an economically competitive solution by enhancing valuable carotenoids while maintaining lipid and biomass production in N. gaditana.
Collapse
Affiliation(s)
- Sun Young Kim
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Hanbi Moon
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Yong Min Kwon
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Kyung Woo Kim
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| | - Jaoon Young Hwan Kim
- National Marine Biodiversity Institute of Korea, Jangsan-ro 101-75, Seocheon 33662, Republic of Korea
| |
Collapse
|
6
|
Windhagauer M, Doblin MA, Signal B, Kuzhiumparambil U, Fabris M, Abbriano RM. Metabolic response to a heterologous poly-3-hydroxybutyrate (PHB) pathway in Phaeodactylum tricornutum. Appl Microbiol Biotechnol 2024; 108:104. [PMID: 38212969 DOI: 10.1007/s00253-023-12823-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 01/13/2024]
Abstract
The marine diatom Phaeodactylum tricornutum is an emerging host for metabolic engineering, but little is known about how introduced pathways are integrated into the existing metabolic framework of the host or influence transgene expression. In this study, we expressed the heterologous poly-3-hydroxybutyrate (PHB) pathway using episomal expression, which draws on the precursor acetyl coenzyme-A (AcCoA). By experimentally perturbing cultivation conditions, we gained insight into the regulation of the endogenous metabolism in transgenic lines under various environmental scenarios, as well as on alterations in AcCoA flux within the host cell. Biosynthesis of PHB led to distinct shifts in the metabolome of the host, and further analysis revealed a condition-dependent relationship between endogenous and transgenic metabolic pathways. Under N limitation, which induced a significant increase in neutral lipid content, both metabolic and transcriptomic data suggest that AcCoA was preferably shunted into the endogenous pathway for lipid biosynthesis over the transgenic PHB pathway. In contrast, supply of organic carbon in the form of glycerol supported both fatty acid and PHB biosynthesis, suggesting cross-talk between cytosolic and plastidial AcCoA precursors. This is the first study to investigate the transcriptomic and metabolomic response of diatom cell lines expressing a heterologous multi-gene pathway under different environmental conditions, providing useful insights for future engineering attempts for pathways based on the precursor AcCoA. KEY POINTS: • PHB expression had minimal effects on transcription of adjacent pathways. • N limitation favoured native lipid rather than transgenic PHB synthesis. • Glycerol addition allowed simultaneous lipid and PHB accumulation.
Collapse
Affiliation(s)
- Matthias Windhagauer
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia.
| | - Martina A Doblin
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| | - Brandon Signal
- School of Medicine, College of Health and Medicine, University of Tasmania, Hobart, TAS, Australia
| | | | - Michele Fabris
- SDU Biotechnology, Faculty of Engineering, University of Southern Denmark, 5230, Odense M, Denmark
| | - Raffaela M Abbriano
- Climate Change Cluster, University of Technology Sydney, 15 Broadway, Ultimo, NSW, 2007, Australia
| |
Collapse
|
7
|
Huang J, Zhao H, Wang W, Qin X, Wang P, Hou Q, Chen Q, Jiang G, Dong K, Jiang T, Pu Y, Li N. Harmful Microalgae Exhibit Broad Environmental Adaptability in High-Salinity Area Across the Dafengjiang River Estuary. Ecol Evol 2024; 14:e70455. [PMID: 39445184 PMCID: PMC11496773 DOI: 10.1002/ece3.70455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/25/2024] [Accepted: 09/30/2024] [Indexed: 10/25/2024] Open
Abstract
Harmful algal blooms (HABs) often occur in estuaries due to their unique environmental heterogeneity, posing significant environmental and human health risks. However, there is limited understanding of the community composition and community-level change points (thresholds) of harmful microalgae in subtropical estuaries. This study explored harmful microalgae community structure and thresholds in the Dafengjiang River estuary using a metabarcoding approach. The results revealed 63 harmful microalgae species, and major species included Guinardia flaccida, Prorocentrum cordatum, Thalassiosira punctigera, Pseudo-nitzschia galaxiae and T. gravida. Nonparametric change-point analysis and threshold indicator taxa analysis (TITAN) showed threshold responses of harmful microalgae community structure to ammonium (57.5-60 μg·L-1), total phosphorus (27.8-28.5 μg·L-1) and dissolved inorganic phosphorus (14.5-28 μg·L-1) along the salinity gradient. Wider environmental thresholds were also found in hypersaline areas. Additionally, Pyrodinium bahamense, Pfiesteria piscicida, Skeletonema tropicum and T. punctigera were sensitive to environmental changes and thus could be used as bioindicators. Overall, our study unveiled diverse abrupt transitions of harmful microalgal communities, providing a risk assessment for human health and ecological safety in subtropical estuary ecosystems.
Collapse
Affiliation(s)
- Jiongqing Huang
- School of AgricultureLudong UniversityYantaiChina
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
| | - Huaxian Zhao
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - WeiJun Wang
- School of AgricultureLudong UniversityYantaiChina
| | - Xinyi Qin
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Ministry of EducationNanning Normal UniversityNanningChina
| | - Pengbin Wang
- Key Laboratory of Marine Ecosystem DynamicsSecond Institute of Oceanography, Ministry of Natural ResourcesHangzhouChina
| | - Qinghua Hou
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Qingxiang Chen
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Gonglingxia Jiang
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| | - Ke Dong
- Department of Biological SciencesKyonggi UniversitySuwonSouth Korea
| | - Tao Jiang
- School of OceanYantai UniversityYantaiChina
| | - Yang Pu
- School of AgricultureLudong UniversityYantaiChina
| | - Nan Li
- Laboratory for Coastal Ocean Variation and Disaster Prediction, College of Ocean and MeteorologyGuangdong Ocean UniversityZhanjiangChina
- Key Laboratory of Climate, Resources and Environment in Continental Shelf Sea and Deep Sea of Department of Education of Guangdong ProvinceGuangdong Ocean UniversityZhanjiangChina
| |
Collapse
|
8
|
Liu Y, Xu X, Fan W, Wang G, Deng X, Rong G, Wang H. Mechanistic characterization of dissolved inorganic phosphorus in water during the red tide. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 214:108948. [PMID: 39043057 DOI: 10.1016/j.plaphy.2024.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/23/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024]
Abstract
The eutrophication of water, such as excessive nitrogen and phosphorus, are closely associated with the outbreak of red tide. However, the response of dissolved inorganic phosphorus (DIP) to red tide remained unclear in water. In this study, three species of diatoms capable of causing red tides were cultured in simulated seawater with different concentrations of DIP. The changes of biomass, chlorophyll a concentration and the carbon stable isotope composition of microalgae, the DIP concentration and pH of the culture medium were compared among the experimental groups. In addition, correlation verification was used to test the correlation between the change of DIP concentration and other indicators. The results showed that in the experimental period, the DIP concentration of each experimental group decreased significantly first, and the concentration dropped to less than 40% of the initial level. After that, the pH of the medium, the biomass, chlorophyll a concentration and carbon stable isotope composition of the microalgae showed varying degrees of increase, and then stabilized or decreased. These also marked the outbreak of red tide. Moreover, the correlation test showed that there was a correlation between them and the change of DIP concentration. Therefore, by exploring the relationship between the change of DIP concentration in water and the occurrence of red tide, this study provides a possible direction for the current prediction of red tide, and provides a basis for further investigation of the occurrence mechanism of red tide.
Collapse
Affiliation(s)
- Yu Liu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China.
| | - Xiaohan Xu
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Weijia Fan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Guoguang Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Xiaoshuang Deng
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Guangzhi Rong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, 116026, PR China
| | - Haixia Wang
- Navigation College, Dalian Maritime University, No.1 Linghai Road, Dalian, 116026, PR China
| |
Collapse
|
9
|
Kumar M, Tibocha-Bonilla JD, Füssy Z, Lieng C, Schwenck SM, Levesque AV, Al-Bassam MM, Passi A, Neal M, Zuniga C, Kaiyom F, Espinoza JL, Lim H, Polson SW, Allen LZ, Zengler K. Mixotrophic growth of a ubiquitous marine diatom. SCIENCE ADVANCES 2024; 10:eado2623. [PMID: 39018398 PMCID: PMC466952 DOI: 10.1126/sciadv.ado2623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Diatoms are major players in the global carbon cycle, and their metabolism is affected by ocean conditions. Understanding the impact of changing inorganic nutrients in the oceans on diatoms is crucial, given the changes in global carbon dioxide levels. Here, we present a genome-scale metabolic model (iMK1961) for Cylindrotheca closterium, an in silico resource to understand uncharacterized metabolic functions in this ubiquitous diatom. iMK1961 represents the largest diatom metabolic model to date, comprising 1961 open reading frames and 6718 reactions. With iMK1961, we identified the metabolic response signature to cope with drastic changes in growth conditions. Comparing model predictions with Tara Oceans transcriptomics data unraveled C. closterium's metabolism in situ. Unexpectedly, the diatom only grows photoautotrophically in 21% of the sunlit ocean samples, while the majority of the samples indicate a mixotrophic (71%) or, in some cases, even a heterotrophic (8%) lifestyle in the light. Our findings highlight C. closterium's metabolic flexibility and its potential role in global carbon cycling.
Collapse
Affiliation(s)
- Manish Kumar
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Juan D. Tibocha-Bonilla
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Chloe Lieng
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Sarah M. Schwenck
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Alice V. Levesque
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Mahmoud M. Al-Bassam
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Anurag Passi
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Maxwell Neal
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Cristal Zuniga
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Farrah Kaiyom
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Josh L. Espinoza
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Way, La Jolla, CA 92037, USA
| | - Hyungyu Lim
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Shawn W. Polson
- Department of Computer and Information Sciences, University of Delaware, 18 Amstel Ave., Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA
| | - Lisa Zeigler Allen
- Scripps Institution of Oceanography, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Microbial and Environmental Genomics, J. Craig Venter Institute, 4120 Capricorn Way, La Jolla, CA 92037, USA
| | - Karsten Zengler
- Department of Pediatrics, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Center for Microbiome Innovation, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
- Program in Materials Science and Engineering, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| |
Collapse
|
10
|
Chachoui S, Amkraz N, Mimouni A, Boubaker H. Physico-chemical characterisation of irrigation basin waters and inventory study of their algal communities. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:508. [PMID: 38703265 DOI: 10.1007/s10661-024-12656-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 04/19/2024] [Indexed: 05/06/2024]
Abstract
To cope with the water shortage in Sous Massa region of Morocco, agricultural producers in the region have resorted to different types of water supply basins, known as "irrigation basins" but the phenomenon of eutrophication has hindered the continuity of agricultural productivity by altering the quality of the water used for irrigation on the one hand, and causing economic damage to agricultural producers due to the clogging of the water pumping network on the other. We began by characterising the physico-chemical quality of the water to determine the causes of its high nutrient content, then we determined the taxonomy of the algal species in the irrigation basins to which we had access. A qualitative study of the water in the irrigation basins in order to better explain the inventory obtained from the taxonomic identification of the algal biomass collected, which proved the existence of new species, not previously identified, characterising the freshwaters of the Moroccan region, is under the scope of this work. The species studied belong mainly to the following groups: green algae (11 genera of Chlorophyta and 7 genera of Charophyta), blue algae (7 genera of Cyanobacteria), brown algae (7 genera of Diatoms), and one genus of Euglenophyta.
Collapse
Affiliation(s)
- Sara Chachoui
- Laboratory of Microbial Biotechnology and Plant Protection LBMPV, Faculty of Sciences, University IBN ZOHR, Agadir, Morocco.
- Integrated Plant Production Unit, National Institute for Agronomic Research INRA, Regional Center, Agadir, Morocco.
| | - Nadiya Amkraz
- Laboratory of Microbial Biotechnology and Plant Protection LBMPV, Faculty of Sciences, University IBN ZOHR, Agadir, Morocco
- Faculty of Applied Sciences, Ait Melloul, University IBN ZOHR, Agadir, Morocco
| | - Abdelaziz Mimouni
- Integrated Plant Production Unit, National Institute for Agronomic Research INRA, Regional Center, Agadir, Morocco
| | - Hassan Boubaker
- Laboratory of Microbial Biotechnology and Plant Protection LBMPV, Faculty of Sciences, University IBN ZOHR, Agadir, Morocco
| |
Collapse
|
11
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Influence of Salinity on the Extracellular Enzymatic Activities of Marine Pelagic Fungi. J Fungi (Basel) 2024; 10:152. [PMID: 38392824 PMCID: PMC10890631 DOI: 10.3390/jof10020152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 02/24/2024] Open
Abstract
Even though fungi are ubiquitous in the biosphere, the ecological knowledge of marine fungi remains rather rudimentary. Also, little is known about their tolerance to salinity and how it influences their activities. Extracellular enzymatic activities (EEAs) are widely used to determine heterotrophic microbes' enzymatic capabilities and substrate preferences. Five marine fungal species belonging to the most abundant pelagic phyla (Ascomycota and Basidiomycota) were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). Due to their sensitivity and specificity, fluorogenic substrate analogues were used to determine hydrolytic activity on carbohydrates (β-glucosidase, β-xylosidase, and N-acetyl-β-D-glucosaminidase); peptides (leucine aminopeptidase and trypsin); lipids (lipase); organic phosphorus (alkaline phosphatase), and sulfur compounds (sulfatase). Afterwards, kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were calculated. All fungal species investigated cleaved these substrates, but some species were more efficient than others. Moreover, most enzymatic activities were reduced in the saline medium, with some exceptions like sulfatase. In non-saline conditions, the average Vmax ranged between 208.5 to 0.02 μmol/g biomass/h, and in saline conditions, 88.4 to 0.02 μmol/g biomass/h. The average Km ranged between 1553.2 and 0.02 μM with no clear influence of salinity. Taken together, our results highlight a potential tolerance of marine fungi to freshwater conditions and indicate that changes in salinity (due to freshwater input or evaporation) might impact their enzymatic activities spectrum and, therefore, their contribution to the oceanic elemental cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Bioprocess Engineering Group, Department of Agrotechnology and Food Sciences, Wageningen University and Research, 6708 WG Wageningen, The Netherlands
| | - Gerhard J. Herndl
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, 1790 AB Texel, The Netherlands
| | - Federico Baltar
- Bio-Oceanography and Marine Biology Unit, Department of Functional and Evolutionary Ecology, University of Vienna, 1030 Vienna, Austria;
| |
Collapse
|
12
|
Bhattacharjya R, Tyagi R, Rastogi S, Ulmann L, Tiwari A. Response of varying combined nutrients on biomass and biochemical composition of marine diatoms Chaetoceros gracilis and Thalassiosira weissflogii. BIORESOURCE TECHNOLOGY 2024; 394:130274. [PMID: 38160848 DOI: 10.1016/j.biortech.2023.130274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 12/27/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Marine diatoms have high adaptability and are known to accumulate lipids under nutrient stress conditions. The present study involves determining the effect of varying macro and micronutrients on growth kinetics and metabolite production of oleaginous marine diatoms, Thalassiosira weissflogii and Chaetoceros gracilis. The results highlighted that C. gracilis and T. weissflogii showed maximum biomass yield of 0.86 ± 0.06 g/L and 0.76 ± 0.01 g/L in the 2f and f supplemented medium respectively. A 2.5-fold increase in cellular lipid content was recorded in the 2f culture setup of both strains ranging from 20 % to 26.7 % (w/w). The study also reveals that high eutrophic nutrient media (f, 2f and 4f) triggered biomass productivity as well as total protein and carbohydrate content in both strains. Thus, providing a reproducible insight of trophic flexibility of diatoms, concomitant with the increment in multiple commercially valuable products.
Collapse
Affiliation(s)
- Raya Bhattacharjya
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Rashi Tyagi
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Subha Rastogi
- CSIR-National Botanical Research Institute, 436, Pratap Marg, Lucknow 226001, Uttar, India; CSIR-National Institute of Science Communication and Policy Research, New Delhi, India Pradesh, India
| | - Lionel Ulmann
- Laboratoire BiOSSE: Biologie des Organismes, Stress, Santé, Environnement, IUT Département Génie Biologique, Le Mans Université, F-53020 Laval, France
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India.
| |
Collapse
|
13
|
Li DW, Tan JZ, Li ZF, Ou LJ. Membrane lipid remodeling and autophagy to cope with phosphorus deficiency in the dinoflagellate Prorocentrum shikokuense. CHEMOSPHERE 2024; 349:140844. [PMID: 38042419 DOI: 10.1016/j.chemosphere.2023.140844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/04/2023]
Abstract
Dinoflagellates, which are responsible for more than 80% of harmful algal blooms in coastal waters, are competitive in low-phosphate environments. However, the specific acclimated phosphorus strategies to adapt to phosphorus deficiency in dinoflagellates, particularly through intracellular phosphorus metabolism, remain largely unknown. Comprehensive physiological, biochemical, and transcriptomic analyses were conducted to investigate intracellular phosphorus modulation in a model dinoflagellate, Prorocentrum shikokuense, with a specific focus on membrane lipid remodeling and autophagy in response to phosphorus deficiency. Under phosphorus deficiency, P. shikokuense exhibited a preference to spare phospholipids with nonphospholipids. The major phospholipid classes of phosphatidylcholine and phosphatidylethanolamine decreased in content, whereas the betaine lipid class of diacylglyceryl carboxyhydroxymethylcholine increased in content. Furthermore, under phosphorus deficiency, P. shikokuense induced autophagy as a mechanism to conserve and recycle cellular phosphorus resources. The present study highlights the effective modulation of intracellular phosphorus in P. shikokuense through membrane phospholipid remodeling and autophagy and contributes to a comprehensive understanding of the acclimation strategies to low-phosphorus conditions in dinoflagellates.
Collapse
Affiliation(s)
- Da-Wei Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Jin-Zhou Tan
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Zhuo-Fan Li
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China
| | - Lin-Jian Ou
- College of Life Science and Technology, and Key Laboratory of Eutrophication and Red Tide Prevention of Guangdong Higher Education Institute, Jinan University, Guangzhou, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, China.
| |
Collapse
|
14
|
Grubišić M, Šantek B, Kuzmić M, Čož-Rakovac R, Ivančić Šantek M. Enhancement of Biomass Production of Diatom Nitzschia sp. S5 through Optimisation of Growth Medium Composition and Fed-Batch Cultivation. Mar Drugs 2024; 22:46. [PMID: 38248671 PMCID: PMC11154399 DOI: 10.3390/md22010046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
The growing commercial application of microalgae in different industry sectors, including the production of bioenergy, pharmaceuticals, nutraceuticals, chemicals, feed, and food, demands large quantities of microalgal biomass with specific compositions produced at reasonable prices. Extensive studies have been carried out on the design of new and improvement of current cultivation systems and the optimisation of growth medium composition for high productivity of microalgal biomass. In this study, the concentrations of the main macronutrients, silicon, nitrogen and phosphorus, essential for the growth of diatom Nitzschia sp. S5 were optimised to obtain a high biomass concentration. The effect of main macronutrients on growth kinetics and cell composition was also studied. Silicon had the most significant effect on diatom growth during batch cultivation. The concentration of biomass increased 5.45-fold (0.49 g L-1) at 1 mM silicon concentration in modified growth medium compared to the original Guillard f/2 medium. Optimisation of silicon, nitrogen, and phosphorus quantities and ratios further increased biomass concentration. The molar ratio of Si:N:P = 7:23:1 mol:mol:mol yielded the highest biomass concentration of 0.73 g L-1. Finally, the fed-batch diatom cultivation of diatom using an optimised Guillard f/2 growth medium with four additions of concentrated macronutrient solution resulted in 1.63 g L-1 of microalgal biomass. The proteins were the most abundant macromolecules in microalgal biomass, with a lower content of carbohydrates and lipids under all studied conditions.
Collapse
Affiliation(s)
- Marina Grubišić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Božidar Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Marija Kuzmić
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| | - Rozelindra Čož-Rakovac
- Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, 10000 Zagreb, Croatia;
- Center of Excellence for Marine Bioprospecting (BioProCro), Ruđer Bošković Institute, 10000 Zagreb, Croatia
| | - Mirela Ivančić Šantek
- Faculty of Food Technology and Biotechnology, University of Zagreb, 10000 Zagreb, Croatia; (M.G.); (B.Š.); (M.K.)
| |
Collapse
|
15
|
Salazar-Alekseyeva K, Herndl GJ, Baltar F. Release of cell-free enzymes by marine pelagic fungal strains. FRONTIERS IN FUNGAL BIOLOGY 2023; 4:1209265. [PMID: 38025900 PMCID: PMC10658710 DOI: 10.3389/ffunb.2023.1209265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/22/2023] [Indexed: 12/01/2023]
Abstract
Fungi are ubiquitous organisms that secrete different enzymes to cleave large molecules into smaller ones so that can then be assimilated. Recent studies suggest that fungi are also present in the oceanic water column harboring the enzymatic repertoire necessary to cleave carbohydrates and proteins. In marine prokaryotes, the cell-free fraction is an important contributor to the oceanic extracellular enzymatic activities (EEAs), but the release of cell-free enzymes by marine fungi remains unknown. Here, to study the cell-free enzymatic activities of marine fungi and the potential influence of salinity on them, five strains of marine fungi that belong to the most abundant pelagic phyla (Ascomycota and Basidiomycota), were grown under non-saline and saline conditions (0 g/L and 35 g/L, respectively). The biomass was separated from the medium by filtration (0.2 μm), and the filtrate was used to perform fluorogenic enzymatic assays with substrate analogues of carbohydrates, lipids, organic phosphorus, sulfur moieties, and proteins. Kinetic parameters such as maximum velocity (Vmax) and half-saturation constant (Km) were obtained. The species studied were able to release cell-free enzymes, and this represented up to 85.1% of the respective total EEA. However, this differed between species and enzymes, with some of the highest contributions being found in those with low total EEA, with some exceptions. This suggests that some of these contributions to the enzymatic pool might be minimal compared to those with higher total EEA. Generally, in the saline medium, the release of cell-free enzymes degrading carbohydrates was reduced compared to the non-saline medium, but those degrading lipids and sulfur moieties were increased. For the remaining substrates, there was not a clear influence of the salinity. Taken together, our results suggest that marine fungi are potential contributors to the oceanic dissolved (i.e., cell-free) enzymatic pool. Our results also suggest that, under salinity changes, a potential effect of global warming, the hydrolysis of organic matter by marine fungal cell-free enzymes might be affected and hence, their potential contribution to the oceanic biogeochemical cycles.
Collapse
Affiliation(s)
- Katherine Salazar-Alekseyeva
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Agrotechnology and Food Sciences, Bioprocess Engineering Group, Wageningen University and Research, Wageningen, Netherlands
| | - Gerhard J. Herndl
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
- Department of Marine Microbiology and Biogeochemistry, Royal Netherlands Institute for Sea Research (NIOZ), University of Utrecht, Texel, Netherlands
| | - Federico Baltar
- Department of Functional and Evolutionary Ecology, Bio-Oceanography and Marine Biology Unit, University of Vienna, Vienna, Austria
| |
Collapse
|
16
|
Akbar MA, Mohd Yusof NY, Usup G, Ahmad A, Baharum SN, Bunawan H. Nutrient Deficiencies Impact on the Cellular and Metabolic Responses of Saxitoxin Producing Alexandrium minutum: A Transcriptomic Perspective. Mar Drugs 2023; 21:497. [PMID: 37755110 PMCID: PMC10532982 DOI: 10.3390/md21090497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 09/28/2023] Open
Abstract
Dinoflagellate Alexandrium minutum Halim is commonly associated with harmful algal blooms (HABs) in tropical marine waters due to its saxitoxin production. However, limited information is available regarding the cellular and metabolic changes of A. minutum in nutrient-deficient environments. To fill this gap, our study aimed to investigate the transcriptomic responses of A. minutum under nitrogen and phosphorus deficiency. The induction of nitrogen and phosphorus deficiency resulted in the identification of 1049 and 763 differently expressed genes (DEGs), respectively. Further analysis using gene set enrichment analysis (GSEA) revealed 702 and 1251 enriched gene ontology (GO) terms associated with nitrogen and phosphorus deficiency, respectively. Our results indicate that in laboratory cultures, nitrogen deficiency primarily affects meiosis, carbohydrate catabolism, ammonium assimilation, ion homeostasis, and protein kinase activity. On the other hand, phosphorus deficiency primarily affects the carbon metabolic response, cellular ion transfer, actin-dependent cell movement, signalling pathways, and protein recycling. Our study provides valuable insights into biological processes and genes regulating A. minutum's response to nutrient deficiencies, furthering our understanding of the ecophysiological response of HABs to environmental change.
Collapse
Affiliation(s)
- Muhamad Afiq Akbar
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Aquatic Animal Health and Therapeutics Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Nurul Yuziana Mohd Yusof
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Gires Usup
- Department of Earth Science and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia; (N.Y.M.Y.); (G.U.)
| | - Asmat Ahmad
- Department of Biological Sciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Syarul Nataqain Baharum
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| | - Hamidun Bunawan
- Institute of System Biology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia;
| |
Collapse
|
17
|
Song L, Liu Y, Song G, Wu J, Liu S. Response of microalgae size-class structure to nutrients differences in northern Yellow Sea, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:85330-85343. [PMID: 37386216 DOI: 10.1007/s11356-023-28363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/17/2023] [Indexed: 07/01/2023]
Abstract
Marine phytoplankton size-class structure affects ecological functions and shellfish culture. We use high-throughput sequencing and size-fractioned grading techniques to identify and analyze responses of phytoplankton differences in environmental variables at Donggang, northern Yellow Sea (high inorganic nitrogen (DIN)) and Changhai (low DIN) for 2021. The main environmental variables that correlate with differences in the proportional contributions of pico-, nano-, and microphytoplankton to the total phytoplankton community are inorganic phosphorus (DIP), nitrite to inorganic nitrogen ratio (NO2/dissolved inorganic nitrogen (DIN)), and ammonia nitrogen to inorganic nitrogen ratio (NH4/DIN), respectively. DIN, which contributes most to environmental differences, mainly positively correlates with changes in picophytoplankton biomass in high DIN waters. Nitrite (NO2) correlates mostly with changes in the proportional contribution of microphytoplankton in high DIN waters and nanophytoplankton in low DIN waters, and negatively correlates with changes in the biomass and proportional representation of microphytoplankton in low DIN waters. For near-shore phosphorus-limited waters, an increase in DIN may increase total microalgal biomass, but proportions of microphytoplankton may not increase; for high DIN waters, an increase in DIP may increase proportions of microphytoplankton, while for low DIN waters, an increase in DIP may preferentially increase proportions of picophytoplankton and nanophytoplankton. Picophytoplankton contributed little to the growth of two commercially cultured filter-feeding shellfish, Ruditapes philippinarum and Mizuhopecten yessoensis.
Collapse
Affiliation(s)
- Lun Song
- Key Laboratory for the Conservation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China.
| | - Yin Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| | - Guangjun Song
- Key Laboratory for the Conservation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Jinhao Wu
- Key Laboratory for the Conservation and Utilization of Aquatic Germplasm Resources, Ministry of Agriculture and Rural Affairs, Liaoning Ocean and Fisheries Science Research Institute, Dalian, 116023, China
| | - Suxuan Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian, 116023, China
| |
Collapse
|
18
|
Gorzelnik SA, Zhu X, Angelidaki I, Koski M, Valverde-Pérez B. Daphnia magna as biological harvesters for green microalgae grown on recirculated aquaculture system effluents. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 873:162247. [PMID: 36791858 DOI: 10.1016/j.scitotenv.2023.162247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
The sustainability of recycling aquaculture systems (RAS) is challenged by nutrient discharges, which cause water eutrophication. Efficient treatments for RAS effluents are needed to mitigate its environmental impacts. Microalgae assimilate nutrients and dissolved carbon into microbial biomass with value as feed or food ingredient. However, they are difficult to harvest efficiently. Daphnia magna is an efficient filter feeder that grazes on microalgae at high rates and serves as valuable fish feed. Combining nutrient removal by microalgae and biomass harvesting by D. magna could be a cost-effective solution for wastewater valorization. Nutrient removal from unsterilized aquaculture wastewater was evaluated using the microalgae species Chlorella vulgaris, Scenedesmus dimorphus, and Haematococcus pluvialis. The first two algae were subsequently harvested using D. magna as a grazer, while H. pluvialis failed to grow stably. All phosphorus was removed, while only 50-70 % nitrogen was recovered, indicating phosphorus limitation. Shortening the hydraulic retention time (HRT) or phosphorus dosing resulted in increased nitrogen removal. C. vulgaris cultivation was unstable at 3 days HRT or when supplied with extra phosphorus at 5 days HRT. D. magna grew on produced algae accumulating protein at 20-30 % of dry weight, with an amino acid profile favorable for use as high value fish feed. Thus, this study demonstrates the application of a two steps multitrophic process to assimilate residual nutrients into live feeds suitable for fish.
Collapse
Affiliation(s)
- Stanley A Gorzelnik
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DTU, Søltofts Plads 228A, 2800 Kgs. Lyngby, Denmark
| | - Marja Koski
- National Institute for Aquatic Resources, Technical University of Denmark, DTU, Kemitorvet 202, 2800 Kgs. Lyngby, Denmark
| | - Borja Valverde-Pérez
- Department of Environmental and Resource Engineering, Technical University of Denmark, DTU, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
19
|
Li M, Young JN. Temperature sensitivity of carbon concentrating mechanisms in the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2023; 156:205-215. [PMID: 36881356 PMCID: PMC10154264 DOI: 10.1007/s11120-023-01004-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/10/2023] [Indexed: 05/03/2023]
Abstract
Marine diatoms are key primary producers across diverse habitats in the global ocean. Diatoms rely on a biophysical carbon concentrating mechanism (CCM) to supply high concentrations of CO2 around their carboxylating enzyme, RuBisCO. The necessity and energetic cost of the CCM are likely to be highly sensitive to temperature, as temperature impacts CO2 concentration, diffusivity, and the kinetics of CCM components. Here, we used membrane inlet mass spectrometry (MIMS) and modeling to capture temperature regulation of the CCM in the diatom Phaeodactylum tricornutum (Pt). We found that enhanced carbon fixation rates by Pt at elevated temperatures were accompanied by increased CCM activity capable of maintaining RuBisCO close to CO2 saturation but that the mechanism varied. At 10 and 18 °C, diffusion of CO2 into the cell, driven by Pt's 'chloroplast pump' was the major inorganic carbon source. However, at 18 °C, upregulation of the chloroplast pump enhanced (while retaining the proportion of) both diffusive CO2 and active HCO3- uptake into the cytosol, and significantly increased chloroplast HCO3- concentrations. In contrast, at 25 °C, compared to 18 °C, the chloroplast pump had only a slight increase in activity. While diffusive uptake of CO2 into the cell remained constant, active HCO3- uptake across the cell membrane increased resulting in Pt depending equally on both CO2 and HCO3- as inorganic carbon sources. Despite changes in the CCM, the overall rate of active carbon transport remained double that of carbon fixation across all temperatures tested. The implication of the energetic cost of the Pt CCM in response to increasing temperatures was discussed.
Collapse
Affiliation(s)
- Meng Li
- School of Oceanography, University of Washington, Seattle, WA, USA
| | - Jodi N Young
- School of Oceanography, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
Brownlee C, Helliwell KE, Meeda Y, McLachlan D, Murphy EA, Wheeler GL. Regulation and integration of membrane transport in marine diatoms. Semin Cell Dev Biol 2023; 134:79-89. [PMID: 35305902 DOI: 10.1016/j.semcdb.2022.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 02/18/2022] [Accepted: 03/04/2022] [Indexed: 12/27/2022]
Abstract
Diatoms represent one of the most successful groups of marine phytoplankton and are major contributors to ocean biogeochemical cycling. They have colonized marine, freshwater and ice environments and inhabit all regions of the World's oceans, from poles to tropics. Their success is underpinned by a remarkable ability to regulate their growth and metabolism during nutrient limitation and to respond rapidly when nutrients are available. This requires precise regulation of membrane transport and nutrient acquisition mechanisms, integration of nutrient sensing mechanisms and coordination of different transport pathways. This review outlines transport mechanisms involved in acquisition of key nutrients (N, C, P, Si, Fe) by marine diatoms, illustrating their complexity, sophistication and multiple levels of control.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Ocean and Earth Sciences, University of Southampton, Southampton SO14 3ZH, UK
| | - Katherine E Helliwell
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Yasmin Meeda
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Deirdre McLachlan
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK; School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Eleanor A Murphy
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth PL1 2PB, UK
| |
Collapse
|
21
|
Li J, Xu M, Wang J, Lan C, Lai J. Effects of nutrient limitation on cell growth, exopolysaccharide secretion and TEP production of Phaeocystis globosa. MARINE ENVIRONMENTAL RESEARCH 2023; 183:105801. [PMID: 36399939 DOI: 10.1016/j.marenvres.2022.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/31/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Phaeocystis globosa (P. globosa) often colonizes and produces mucus, which may cause massive blooms in coastal areas. To understand mechanism of the growth and the impact factors for better control of the bloom, we conducted a laboratory experiment on the effect of nitrogen (N) or phosphorus (P) limitation on the cell growth, production of exopolysaccharide (EPS), and transparent exopolymeric particles (TEP) of P. globosa. Results show no obvious differences in the N- and/or P-limitation in TEP production, polysaccharide secretion, and colony growth of P. globosa. Particularly in the death phase of the algae growth, the TEP production level in the experiment differed significantly, and was higher in the P-limitation group than that in the N-limitation group; additionally, the P-limitation group produced a relatively higher amount of EPS than N-limitation group, with greater cellular chlorophyll-a content, and in greater photosynthetic reaction rate of P. globosa cells, than those of the N-limitation group. However, under N-limited conditions, the algae colony survived longer. Under P-limited condition, P. globosa cells spend the photosynthesis-produced substances and energy for the secretion of extracellular substances but for cell reproduction, which was indicated by P. globosa cell growth and carbon content ratio between TEP and biomass.
Collapse
Affiliation(s)
- Jie Li
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, China; Beibu Gulf Marine Industry Research Institute, Fangchenggang, 538000, China
| | - Mingben Xu
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, China; Beibu Gulf Marine Industry Research Institute, Fangchenggang, 538000, China; School of Marine Science, Guangxi University, Nanning, 530004, China; College of Forestry, Guangxi University, Nanning, 530004, China
| | - Jiale Wang
- School of Marine Science, Guangxi University, Nanning, 530004, China
| | - Caibi Lan
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, China; Beibu Gulf Marine Industry Research Institute, Fangchenggang, 538000, China
| | - Junxiang Lai
- Guangxi Key Laboratory of Marine Environmental Science, Guangxi Beibu Gulf Marine Research Center, Guangxi Academy of Sciences, Nanning, 530007, China; Beibu Gulf Marine Industry Research Institute, Fangchenggang, 538000, China.
| |
Collapse
|
22
|
Ma J, Chen F, Zhou B, Zhang Z, Pan K. Effects of nitrogen and phosphorus availability on cadmium tolerance in the marine diatom Phaeodactylum tricornutum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156615. [PMID: 35691352 DOI: 10.1016/j.scitotenv.2022.156615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Although the influence of major nutrients on metal toxicity in marine phytoplankton has been widely explored, the mechanisms involving the cell surface are poorly understood. Here, the model marine diatom Phaeodactylum tricornutum was cultured under different nitrogen (N), and phosphorus (P) availabilities from the f/2 to the f/20 level in the laboratory; the diatom's accumulation of cadmium (Cd) and the effects of the physical and chemical properties of the cell wall were investigated at the single-cell level. Under higher N and/or P supply at the f/2 level, both the adsorption and uptake of Cd were enhanced in the P. tricornutum cells. The N and P increased the ion-binding sites on the cell surface, causing more negative surface potential and less depolarization of the diatoms' cell walls. Up-regulated transporter genes were detected in those cells with enriched nutrient supply, which could be attributed to the higher Cd uptake. These results strongly indicate that N and P are critical nutrients for frustule-mediated metal accumulation and tolerance in marine diatoms. Our study provides new clues on the nutrient-dependent cell-surface physical and chemical mechanisms involved in metal toxicity in marine diatoms.
Collapse
Affiliation(s)
- Jie Ma
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Fengyuan Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Beibei Zhou
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Zhen Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China; Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, SAR, China
| | - Ke Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
23
|
Modeling the elemental stoichiometry and silica accumulation in diatoms. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100164. [DOI: 10.1016/j.crmicr.2022.100164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
24
|
Nutrient Deprivation Coupled with High Light Exposure for Bioactive Chrysolaminarin Production in the Marine Microalga Isochrysis zhangjiangensis. Mar Drugs 2022; 20:md20060351. [PMID: 35736154 PMCID: PMC9225646 DOI: 10.3390/md20060351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/15/2022] [Accepted: 05/23/2022] [Indexed: 01/27/2023] Open
Abstract
Chrysolaminarin, a kind of water-soluble bioactive β-glucan produced by certain microalgae, is a potential candidate for food/pharmaceutical applications. This study identified a marine microalga Isochrysis zhangjiangensis, in which chrysolaminarin production was investigated via nutrient (nitrogen, phosphorus, or sulfur) deprivations (-N, -P, or -S conditions) along with an increase in light intensity. A characterization of the antioxidant activities of the chrysolaminarin produced under each condition was also conducted. The results showed that nutrient deprivation caused a significant increase in chrysolaminarin accumulation, though this was accompanied by diminished biomass production and photosynthetic activity. -S was the best strategy to induce chrysolaminarin accumulation. An increase in light intensity from 80 (LL) to 150 (HL) µE·m−2·s−1 further enhanced chrysolaminarin production. Compared with -N, -S caused more suitable stress and reduced carbon allocation toward neutral lipid production, which enabled a higher chrysolaminarin accumulation capacity. The highest chrysolaminarin content and concentration reached 41.7% of dry weight (%DW) and 632.2 mg/L, respectively, under HL-S, with a corresponding productivity of 155.1 mg/L/day achieved, which exceeds most of the photoautotrophic microalgae previously reported. The chrysolaminarin produced under HL-N (Iz-N) had a relatively competitive hydroxyl radical scavenging activity at low concentrations, while the chrysolaminarin produced under HL-S (Iz-S) exhibited an overall better activity, comparable to the commercial yeast β-glucan, demonstrating I. zhangjiangensis as a promising bioactive chrysolaminarin producer from CO2.
Collapse
|
25
|
Moran MA, Kujawinski EB, Schroer WF, Amin SA, Bates NR, Bertrand EM, Braakman R, Brown CT, Covert MW, Doney SC, Dyhrman ST, Edison AS, Eren AM, Levine NM, Li L, Ross AC, Saito MA, Santoro AE, Segrè D, Shade A, Sullivan MB, Vardi A. Microbial metabolites in the marine carbon cycle. Nat Microbiol 2022; 7:508-523. [PMID: 35365785 DOI: 10.1038/s41564-022-01090-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 02/23/2022] [Indexed: 01/08/2023]
Abstract
One-quarter of photosynthesis-derived carbon on Earth rapidly cycles through a set of short-lived seawater metabolites that are generated from the activities of marine phytoplankton, bacteria, grazers and viruses. Here we discuss the sources of microbial metabolites in the surface ocean, their roles in ecology and biogeochemistry, and approaches that can be used to analyse them from chemistry, biology, modelling and data science. Although microbial-derived metabolites account for only a minor fraction of the total reservoir of marine dissolved organic carbon, their flux and fate underpins the central role of the ocean in sustaining life on Earth.
Collapse
Affiliation(s)
- Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA, USA.
| | - Elizabeth B Kujawinski
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
| | - William F Schroer
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Shady A Amin
- Division of Science, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| | - Nicholas R Bates
- Bermuda Institute of Ocean Sciences, St George's, Bermuda.,School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Erin M Bertrand
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Rogier Braakman
- Departments of Earth, Atmospheric and Planetary Sciences, and Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - C Titus Brown
- Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, USA
| | - Markus W Covert
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Scott C Doney
- Department of Environmental Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sonya T Dyhrman
- Lamont-Doherty Earth Observatory, Columbia University, Palisades, NY, USA.,Department of Earth and Environmental Science, Columbia University, Palisades, NY, USA
| | - Arthur S Edison
- Departments of Biochemistry and Genetics, Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - A Murat Eren
- Josephine Bay Paul Center, Marine Biological Laboratory, Woods Hole, MA, USA.,Helmholtz-Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, Oldenburg, Germany
| | - Naomi M Levine
- Marine and Environmental Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, USA
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Avena C Ross
- Department of Chemistry, Queen's University, Kingston, Ontario, Canada
| | - Mak A Saito
- Department of Marine Sciences, University of Georgia, Athens, GA, USA
| | - Alyson E Santoro
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA
| | - Daniel Segrè
- Department of Biology and Bioinformatics Program, Boston University, Boston, MA, USA
| | - Ashley Shade
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Matthew B Sullivan
- Departments of Microbiology and Civil, Environmental, and Geodetic Engineering, and Center of Microbiome Science, The Ohio State University, Columbus, OH, USA
| | - Assaf Vardi
- Department of Plant and Environmental Sciences, The Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
26
|
Jin P, Ji Y, Huang Q, Li P, Pan J, Lu H, Liang Z, Guo Y, Zhong J, Beardall J, Xia J. A reduction in metabolism explains the tradeoffs associated with the long-term adaptation of phytoplankton to high CO 2 concentrations. THE NEW PHYTOLOGIST 2022; 233:2155-2167. [PMID: 34907539 DOI: 10.1111/nph.17917] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 11/28/2021] [Indexed: 06/14/2023]
Abstract
Phytoplankton are responsible for nearly half of global primary productivity and play crucial roles in the Earth's biogeochemical cycles. However, the long-term adaptive responses of phytoplankton to rising CO2 remains unknown. Here we examine the physiological and proteomics responses of a marine diatom, Phaeodactylum tricornutum, following long-term (c. 900 generations) selection to high CO2 conditions. Our results show that this diatom responds to long-term high CO2 selection by downregulating proteins involved in energy production (Calvin cycle, tricarboxylic acid cycle, glycolysis, oxidative pentose phosphate pathway), with a subsequent decrease in photosynthesis and respiration. Nearly similar extents of downregulation of photosynthesis and respiration allow the high CO2 -adapted populations to allocate the same fraction of carbon to growth, thereby maintaining their fitness during the long-term high CO2 selection. These results indicate an important role of metabolism reduction under high CO2 and shed new light on the adaptive mechanisms of phytoplankton in response to climate change.
Collapse
Affiliation(s)
- Peng Jin
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yan Ji
- School of Biological & Chemical Engineering, Qingdao Technical College, Qingdao, 266555, China
| | - Quanting Huang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Peiyuan Li
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jinmei Pan
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Hua Lu
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Zhe Liang
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yingyan Guo
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiahui Zhong
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| | - John Beardall
- School of Biological Sciences, Monash University, Clayton, Vic, 3800, Australia
| | - Jianrong Xia
- School of Environmental Science and Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
27
|
Seasonal mixed layer depth shapes phytoplankton physiology, viral production, and accumulation in the North Atlantic. Nat Commun 2021; 12:6634. [PMID: 34789722 PMCID: PMC8599477 DOI: 10.1038/s41467-021-26836-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 10/20/2021] [Indexed: 12/03/2022] Open
Abstract
Seasonal shifts in phytoplankton accumulation and loss largely follow changes in mixed layer depth, but the impact of mixed layer depth on cell physiology remains unexplored. Here, we investigate the physiological state of phytoplankton populations associated with distinct bloom phases and mixing regimes in the North Atlantic. Stratification and deep mixing alter community physiology and viral production, effectively shaping accumulation rates. Communities in relatively deep, early-spring mixed layers are characterized by low levels of stress and high accumulation rates, while those in the recently shallowed mixed layers in late-spring have high levels of oxidative stress. Prolonged stratification into early autumn manifests in negative accumulation rates, along with pronounced signatures of compromised membranes, death-related protease activity, virus production, nutrient drawdown, and lipid markers indicative of nutrient stress. Positive accumulation renews during mixed layer deepening with transition into winter, concomitant with enhanced nutrient supply and lessened viral pressure. Phytoplankton are important primary producers. Here the authors investigate phytoplankton physiological changes associated with bloom phases and mixing regimes in the North Atlantic, finding that stratification and deep mixing shape accumulation rates by altering physiology and viral production.
Collapse
|
28
|
Chen G, Li Y, Jin C, Wang J, Wang L, Wu J. Physiological and Morphological Responses of Hydroponically Grown Pear Rootstock Under Phosphorus Treatment. FRONTIERS IN PLANT SCIENCE 2021; 12:696045. [PMID: 34858445 PMCID: PMC8631779 DOI: 10.3389/fpls.2021.696045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 10/25/2021] [Indexed: 06/13/2023]
Abstract
Phosphorus (P) is an essential macronutrient for the growth and development of fruit trees, playing an important role in photosynthesis, nucleic acid synthesis, and enzyme activity regulation. The plasticity of plant phenotypic has been investigated in diverse species under conditions of P-deficiency or P-excess. Based on these researches, P level fluctuations in different species result in different characteristics of the response. Nevertheless, little is known about the response of pear seedling rootstock (Pyrus betulifolia Bunge) to the changing of P levels. To explore the effects of different levels of P on the growth of pear seedling rootstock, we performed the hydroponic assays to determine and analyze the biological indexes including growth parameters, photosynthetic rate, root and shoot morphological traits, and concentrations of macro- and micronutrients. The results show that either deficiency or excess of P inhibited the growth and development of pear seedling rootstock. Root growth (down 44.8%), photosynthetic rate (down 59.8%), and acid phosphatase (ACP) activity (down 44.4%) were inhibited under the P-deficiency conditions (0mM), compared with normal P conditions (1mM). On the other hand, dark green leaves, suppression of root elongation (down 18.8%), and photosynthetic rate (down 25%) were observed under regimes of excessive P, compared with normal P conditions (1mM). Furthermore, the root concentration of not only P, but also those of other mineral nutrients were affected by either P treatment. In brief, these results indicated that a careful choice of P fertilizer supply is crucial to ensuring normal growth and development of pear seedling rootstock.
Collapse
Affiliation(s)
- Guodong Chen
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Yang Li
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Cong Jin
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Jizhong Wang
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Li Wang
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Juyou Wu
- College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
29
|
Fattore N, Bellan A, Pedroletti L, Vitulo N, Morosinotto T. Acclimation of photosynthesis and lipids biosynthesis to prolonged nitrogen and phosphorus limitation in Nannochloropsis gaditana. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
30
|
Time lapse synchrotron IR chemical imaging for observing the acclimation of a single algal cell to CO 2 treatment. Sci Rep 2021; 11:13246. [PMID: 34168226 PMCID: PMC8225881 DOI: 10.1038/s41598-021-92657-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 04/21/2021] [Indexed: 11/08/2022] Open
Abstract
Algae are the main primary producers in aquatic environments and therefore of fundamental importance for the global ecosystem. Mid-infrared (IR) microspectroscopy is a non-invasive tool that allows in principle studying chemical composition on a single-cell level. For a long time, however, mid-infrared (IR) imaging of living algal cells in an aqueous environment has been a challenge due to the strong IR absorption of water. In this study, we employed multi-beam synchrotron radiation to measure time-resolved IR hyperspectral images of individual Thalassiosira weissflogii cells in water in the course of acclimation to an abrupt change of CO2 availability (from 390 to 5000 ppm and vice versa) over 75 min. We used a previously developed algorithm to correct sinusoidal interference fringes from IR hyperspectral imaging data. After preprocessing and fringe correction of the hyperspectral data, principal component analysis (PCA) was performed to assess the spatial distribution of organic pools within the algal cells. Through the analysis of 200,000 spectra, we were able to identify compositional modifications associated with CO2 treatment. PCA revealed changes in the carbohydrate pool (1200-950 cm[Formula: see text]), lipids (1740, 2852, 2922 cm[Formula: see text]), and nucleic acid (1160 and 1201 cm[Formula: see text]) as the major response of exposure to elevated CO2 concentrations. Our results show a local metabolism response to this external perturbation.
Collapse
|
31
|
Lovio-Fragoso JP, de Jesús-Campos D, López-Elías JA, Medina-Juárez LÁ, Fimbres-Olivarría D, Hayano-Kanashiro C. Biochemical and Molecular Aspects of Phosphorus Limitation in Diatoms and Their Relationship with Biomolecule Accumulation. BIOLOGY 2021; 10:biology10070565. [PMID: 34206287 PMCID: PMC8301168 DOI: 10.3390/biology10070565] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/31/2021] [Accepted: 06/09/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Phosphorus (P) is a key nutrient involved in the transfer of energy and the synthesis of several cellular components. It has been reported that P limitation in diatoms induces the synthesis of biomolecules and the accumulation of storage compounds, such as pigments, carbohydrates and lipids, with diverse biological activities, which can be used in diverse biotechnological applications. However, the molecular and biochemical mechanisms related to how diatoms cope with P deficiency are not clear, and research into this has been limited to a few species. The integration of results obtained from omics sciences could provide a broad understanding of the response of diatoms to P limitation, and the information obtained could help to solve challenges such as biomass production, by-products yield and genetic improvement of strains. Abstract Diatoms are the most abundant group of phytoplankton, and their success lies in their significant adaptation ability to stress conditions, such as nutrient limitation. Phosphorus (P) is a key nutrient involved in the transfer of energy and the synthesis of several cellular components. Molecular and biochemical mechanisms related to how diatoms cope with P deficiency are not clear, and research into this has been limited to a few species. Among the molecular responses that have been reported in diatoms cultured under P deficient conditions is the upregulation of genes encoding enzymes related to the transport, assimilation, remobilization and recycling of this nutrient. Regarding biochemical responses, due to the reduction of the requirements for carbon structures for the synthesis of proteins and phospholipids, more CO2 is fixed than is consumed by the Calvin cycle. To deal with this excess, diatoms redirect the carbon flow toward the synthesis of storage compounds such as triacylglycerides and carbohydrates, which are excreted as extracellular polymeric substances. This review aimed to gather all current knowledge regarding the biochemical and molecular mechanisms of diatoms related to managing P deficiency in order to provide a wider insight into and understanding of their responses, as well as the metabolic pathways affected by the limitation of this nutrient.
Collapse
|
32
|
Avilan L, Lebrun R, Puppo C, Citerne S, Cuiné S, Li‐Beisson Y, Menand B, Field B, Gontero B. ppGpp influences protein protection, growth and photosynthesis in Phaeodactylum tricornutum. THE NEW PHYTOLOGIST 2021; 230:1517-1532. [PMID: 33595847 PMCID: PMC8252717 DOI: 10.1111/nph.17286] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 02/08/2021] [Indexed: 05/08/2023]
Abstract
Chloroplasts retain elements of a bacterial stress response pathway that is mediated by the signalling nucleotides guanosine penta- and tetraphosphate ((p)ppGpp). In the model flowering plant Arabidopsis, ppGpp acts as a potent regulator of plastid gene expression and influences photosynthesis, plant growth and development. However, little is known about ppGpp metabolism or its evolution in other photosynthetic eukaryotes. Here, we studied the function of ppGpp in the diatom Phaeodactylum tricornutum using transgenic lines containing an inducible system for ppGpp accumulation. We used these lines to investigate the effects of ppGpp on growth, photosynthesis, lipid metabolism and protein expression. We demonstrate that ppGpp accumulation reduces photosynthetic capacity and promotes a quiescent-like state with reduced proliferation and ageing. Strikingly, using nontargeted proteomics, we discovered that ppGpp accumulation also leads to the coordinated upregulation of a protein protection response in multiple cellular compartments. Our findings highlight the importance of ppGpp as a fundamental regulator of chloroplast function across different domains of life, and lead to new questions about the molecular mechanisms and roles of (p)ppGpp signalling in photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Luisana Avilan
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
- Centre for Enzyme InnovationSchool of Biological SciencesInstitute of Biological and Biomedical SciencesUniversity of PortsmouthPortsmouthPO1 2DYUK
| | - Regine Lebrun
- Plate‐forme ProtéomiqueMarseille Protéomique (MaP)IMM FR 3479, 31 Chemin Joseph AiguierMarseille13009France
| | - Carine Puppo
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| | - Sylvie Citerne
- Institut Jean‐Pierre BourginINRAEAgroParisTechUniversité Paris‐SaclayVersailles78000France
| | - Stephane Cuiné
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Yonghua Li‐Beisson
- CEA, CNRS, UMR7265 BIAMCEA CadaracheAix‐Marseille UnivSaint‐Paul‐lez Durance13108France
| | - Benoît Menand
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Ben Field
- CEA, CNRS, UMR7265 BIAMAix‐Marseille UnivMarseille13009France
| | - Brigitte Gontero
- CNRSBIPUMR 7281IMM FR 3479Aix Marseille Univ31 Chemin Joseph AiguierMarseille13009France
| |
Collapse
|
33
|
Perera IA, Abinandan S, R Subashchandrabose S, Venkateswarlu K, Naidu R, Megharaj M. Microalgal-bacterial consortia unveil distinct physiological changes to facilitate growth of microalgae. FEMS Microbiol Ecol 2021; 97:6105210. [PMID: 33476378 DOI: 10.1093/femsec/fiab012] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 01/19/2021] [Indexed: 01/05/2023] Open
Abstract
Physiological changes that drive the microalgal-bacterial consortia are poorly understood so far. In the present novel study, we initially assessed five morphologically distinct microalgae for their ability in establishing consortia in Bold's basal medium with a bacterial strain, Variovorax paradoxus IS1, all isolated from wastewaters. Tetradesmus obliquus IS2 and Coelastrella sp. IS3 were further selected for gaining insights into physiological changes, including those of metabolomes in consortia involving V. paradoxus IS1. The distinct parameters investigated were pigments (chlorophyll a, b, and carotenoids), reactive oxygen species (ROS), lipids and metabolites that are implicated in major metabolic pathways. There was a significant increase (>1.2-fold) in pigments, viz., chlorophyll a, b and carotenoids, decrease in ROS and an enhanced lipid yield (>2-fold) in consortia than in individual cultures. In addition, the differential regulation of cellular metabolites such as sugars, amino acids, organic acids and phytohormones was distinct among the two microalgal-bacterial consortia. Our results thus indicate that the selected microalgal strains, T. obliquus IS2 and Coelastrella sp. IS3, developed efficient consortia with V. paradoxus IS1 by effecting the required physiological changes, including metabolomics. Such microalgal-bacterial consortia could largely be used in wastewater treatment and for production of value-added metabolites.
Collapse
Affiliation(s)
- Isiri Adhiwarie Perera
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Sudharsanam Abinandan
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Suresh R Subashchandrabose
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Kadiyala Venkateswarlu
- Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515003, Andhra Pradesh, India
| | - Ravi Naidu
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia.,Cooperative Research Centre for Contamination Assessment and Remediation of Environment (CRC CARE), The University of Newcastle, ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
34
|
Jin X, Gong S, Yang B, Wu J, Li T, Wu H, Wu H, Xiang W. Transcriptomic analysis for phosphorus limitation-induced β-glucans accumulation in Chlorella sorokiniana SCSIO 46784 during the early phase of growth. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
35
|
Li Z, Li W, Zhang Y, Hu Y, Sheward R, Irwin AJ, Finkel ZV. Dynamic Photophysiological Stress Response of a Model Diatom to Ten Environmental Stresses. JOURNAL OF PHYCOLOGY 2021; 57:484-495. [PMID: 32945529 DOI: 10.1111/jpy.13072] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/25/2020] [Accepted: 08/31/2020] [Indexed: 06/11/2023]
Abstract
Stressful environmental conditions can induce many different acclimation mechanisms in marine phytoplankton, resulting in a range of changes in their photophysiology. Here we characterize the common photophysiological stress response of the model diatom Thalassiosira pseudonana to ten environmental stressors and identify diagnostic responses to particular stressors. We quantify the magnitude and temporal trajectory of physiological parameters including the functional absorption cross-section of PSII (σPSII ), quantum efficiency of PSII, non-photochemical quenching (NPQ), cell volume, Chl a, and carotenoid (Car) content in response to nutrient starvation (nitrogen (N), phosphorus (P), silicon (Si), and iron (Fe)), changes in temperature, irradiance, pH, and reactive oxygen species (ROS) over 5 time points (0, 2, 6, 24, 72 h). We find changes in conditions: temperature, irradiance, and ROS, often result in the most rapid changes in photophysiological parameters (<2 h), and in some cases are followed by recovery. In contrast, nutrient starvation (N, P, Si, Fe) often has slower (6-72 h) but ultimately larger magnitude effects on many photophysiological parameters. Diagnostic changes include large increases in cell volume under Si-starvation, very large increases in NPQ under P-starvation, and large decreases in the σPSII under high light. The ultimate goal of this analysis is to facilitate and enhance the interpretation of fluorescence data and our understanding of phytoplankton photophysiology from laboratory and field studies.
Collapse
Affiliation(s)
- Zhengke Li
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Wei Li
- College of Life and Environmental Sciences, Huangshan University, Huangshan, 245041, China
| | - Yong Zhang
- College of Environmental Science and Engineering, Fujian Normal University, Fujian, 350007, China
| | - Yingyu Hu
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Rosie Sheward
- Institute of Geosciences, Goethe-University Frankfurt, Frankfurt am Main, 60438, Germany
| | - Andrew J Irwin
- Department of Mathematics & Statistics, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| | - Zoe V Finkel
- Department of Oceanography, Dalhousie University, 1355 Oxford St, Halifax, NS, B3H 4R2, Canada
| |
Collapse
|
36
|
Yang L, Zhang Y. Effects of atrazine and its two major derivatives on the photosynthetic physiology and carbon sequestration potential of a marine diatom. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111359. [PMID: 32961490 DOI: 10.1016/j.ecoenv.2020.111359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
As one of the most commonly used and frequently detected herbicides in the coastal seawater, the ecotoxicity of atrazine to phytoplankton has been well demonstrated. However, little attention has been paid to the ecotoxicity of its two major hydrolysates (desisopropylatrazine (DIA) and desethylatrazine (DEA)), which are also widely distributed in natural seawater. Here we present a comprehensive analysis of the photosynthetic physiology and chromophoric dissolved organic matter (CDOM) characteristics of the diatom Phaeodactylum tricornutum Pt-1 (CCMP 2561) under atrazine, DIA and DEA stress, respectively. The results showed that both atrazine and the two derivatives had significant negative effects on the concentration of chlorophyll a, maximum quantum efficiency (Fv/Fm) and relative electron transport rates (rETR) of P. tricornutum Pt-1. Furthermore, the CDOM pattern released by P. tricornutum Pt-1 cells also changed significantly after 7-day exposure. Compared with the control group, the fluorescence intensity (3D-EEM spectra) of protein-like components was obviously lower, while that of the humic acid-like components was higher. The findings of this study indicate that the ecotoxicity of atrazine might have been underestimated in previous investigations: both atrazine and its two major derivatives are not only phototoxic to microalgae but also influence the carbon sequestration potential in the coastal seawater.
Collapse
Affiliation(s)
- Liqiang Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
37
|
Ahmad A, Tiwari A, Srivastava S. A Genome-Scale Metabolic Model of Thalassiosira pseudonana CCMP 1335 for a Systems-Level Understanding of Its Metabolism and Biotechnological Potential. Microorganisms 2020; 8:microorganisms8091396. [PMID: 32932853 PMCID: PMC7563145 DOI: 10.3390/microorganisms8091396] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/31/2020] [Accepted: 08/07/2020] [Indexed: 01/27/2023] Open
Abstract
Thalassiosira pseudonana is a transformable and biotechnologically promising model diatom with an ability to synthesise nutraceuticals such as fucoxanthin and store a significant amount of polyglucans and lipids including omega-3 fatty acids. While it was the first diatom to be sequenced, a systems-level analysis of its metabolism has not been done yet. This work presents first comprehensive, compartmentalized, and functional genome-scale metabolic model of the marine diatom Thalassiosira pseudonana CCMP 1335, which we have termed iThaps987. The model includes 987 genes, 2477 reactions, and 2456 metabolites. Comparison with the model of another diatom Phaeodactylum tricornutum revealed presence of 183 unique enzymes (belonging primarily to amino acid, carbohydrate, and lipid metabolism) in iThaps987. Model simulations showed a typical C3-type photosynthetic carbon fixation and suggested a preference of violaxanthin-diadinoxanthin pathway over violaxanthin-neoxanthin pathway for the production of fucoxanthin. Linear electron flow was found be active and cyclic electron flow was inactive under normal phototrophic conditions (unlike green algae and plants), validating the model predictions with previous reports. Investigation of the model for the potential of Thalassiosira pseudonana CCMP 1335 to produce other industrially useful compounds suggest iso-butanol as a foreign compound that can be synthesized by a single-gene addition. This work provides novel insights about the metabolism and potential of the organism and will be helpful to further investigate its metabolism and devise metabolic engineering strategies for the production of various compounds.
Collapse
Affiliation(s)
- Ahmad Ahmad
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India;
- Department of Biotechnology, Noida International University (NIU), Noida 203201, India
| | - Archana Tiwari
- Department of Biotechnology, Noida International University (NIU), Noida 203201, India
- Correspondence: (A.T.); (S.S.); Tel.: +91-958-264-9114 (A.T.); +91-11-2674-1361 (S.S.)
| | - Shireesh Srivastava
- Systems Biology for Biofuel Group, International Centre for Genetic Engineering and Biotechnology (ICGEB), New Delhi 110067, India;
- Correspondence: (A.T.); (S.S.); Tel.: +91-958-264-9114 (A.T.); +91-11-2674-1361 (S.S.)
| |
Collapse
|
38
|
Andersson B, Godhe A, Filipsson HL, Rengefors K, Berglund O. Differences in metal tolerance among strains, populations, and species of marine diatoms - Importance of exponential growth for quantification. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 226:105551. [PMID: 32707232 DOI: 10.1016/j.aquatox.2020.105551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/20/2020] [Accepted: 06/16/2020] [Indexed: 05/21/2023]
Abstract
Strains of microalgae vary in traits between species and populations due to adaptation or stochastic processes. Traits of individual strains may also vary depending on the acclimatization state and external forces, such as abiotic stress. In this study we tested how metal tolerance differs among marine diatoms at three organizational levels: species, populations, and strains. At the species level we compared two pelagic Baltic Sea diatoms (Skeletonema marinoi and Thalassiosira baltica). We found that the between-species differences in tolerance (EC50) to the biologically active metals (Cu, Co, Ni, and Zn) was similar to that within-species. In contrast, the two species differed significantly in tolerance towards the non-essential metals, Ag (three-fold higher in T. baltica), Pb and Cd (two and three-fold higher in S. marinoi). At the population level, we found evidence that increased tolerance against Cu and Co (17 and 41 % higher EC50 on average, respectively) had evolved in a S. marinoi population subjected to historical mining activity. On a strain level we demonstrate how the growth phase of cultures (i.e., cellular densities above exponential growth) modulated dose-response relationships to Ag, Cd, Co, Cu, and Zn. Specifically, the EC50's were reduced by 10-60 % in non-exponentially growing S. marinoi (strain RO5AC), depending on metal. For the essential metals these differences were often larger than the average differences between the two species and populations. Consequently, without careful experimental design, interactions between nutrient limitation and metal stress may interfere with detection of small, but evolutionary and ecologically important, differences in tolerance between microalgae. To avoid such artifacts, we outline a semi-continuous cultivation approach that maintains, and empirically tests, that exponential growth is achieved. We argue that such an approach is essential to enable comparison of population or strain differences in tolerance using dose-response tests on cultures of microalgae.
Collapse
Affiliation(s)
- Björn Andersson
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden.
| | - Anna Godhe
- Department of Marine Sciences, University of Gothenburg, Göteborg, Sweden
| | | | | | - Olof Berglund
- Department of Biology, Lund University, Lund, Sweden
| |
Collapse
|
39
|
Huang B, Mimouni V, Lukomska E, Morant-Manceau A, Bougaran G. Carbon Partitioning and Lipid Remodeling During Phosphorus and Nitrogen Starvation in the Marine Microalga Diacronema lutheri (Haptophyta). JOURNAL OF PHYCOLOGY 2020; 56:908-922. [PMID: 32215912 DOI: 10.1111/jpy.12995] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
The domesticated marine microalga Diacronema lutheri is of great interest for producing various highly valuable molecules like lipids, particularly long-chain polyunsaturated fatty acids (LC-PUFA). In this study, we investigated the impact of phosphorus (P) and nitrogen (N) starvation on growth, carbon fixation (photosynthetic activity) and partitioning, and membrane lipid remodeling in this alga during batch culture. Our results show that the photosynthetic machinery was similarly affected by P and N stress. Under N starvation, we observed a much lower photosynthetic rate and biomass productivity. The degradation and re-use of cellular N-containing compounds contributed to triacylglycerol (TAG) accumulation. On the other hand, P-starved cells maintained pigment content and a carbon partitioning pattern more similar to the control, ensuring a high biomass. Betaine lipids constitute the major compounds of non-plastidial membranes, which are rich in eicosapentaenoic (EPA) and docosahexaenoic (DHA) acids. Under P and N starvations, EPA was transferred from the recycling of membrane polar lipids, most likely contributing to TAG accumulation.
Collapse
Affiliation(s)
- Bing Huang
- Laboratoire Mer, Molécules, Santé (IUML - FR 3473 CNRS), UFR Sciences et Techniques, Le Man Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 09, France
| | - Virginie Mimouni
- Laboratoire Mer, Molécules, Santé (IUML - FR 3473 CNRS), IUT de Laval, Département Génie Biologique, Le Mans Université, 52 rue des Docteurs Calmette et Guérin, 53020, Laval Cedex 9, France
| | - Ewa Lukomska
- Laboratoire Physiologie et Biotechnologie des Algues, IFREMER, rue de l'Ile d'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| | - Annick Morant-Manceau
- Laboratoire Mer, Molécules, Santé (IUML - FR 3473 CNRS), UFR Sciences et Techniques, Le Man Université, Avenue Olivier Messiaen, 72085, Le Mans Cedex 09, France
| | - Gaël Bougaran
- Laboratoire Physiologie et Biotechnologie des Algues, IFREMER, rue de l'Ile d'Yeu, BP 21105, 44311, Nantes Cedex 03, France
| |
Collapse
|
40
|
Pinel ISM, Kim LH, Proença Borges VR, Farhat NM, Witkamp GJ, van Loosdrecht MCM, Vrouwenvelder JS. Effect of phosphate availability on biofilm formation in cooling towers. BIOFOULING 2020; 36:800-815. [PMID: 32883093 DOI: 10.1080/08927014.2020.1815011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Phosphate limitation has been suggested as a preventive method against biofilms. P-limited feed water was studied as a preventive strategy against biofouling in cooling towers (CTs). Three pilot-scale open recirculating CTs were operated in parallel for five weeks. RO permeate was fed to the CTs (1) without supplementation (reference), (2) with supplementation by biodegradable carbon (P-limited) and (3) with supplementation of all nutrients (non-P-limited). The P-limited water contained ≤10 µg PO4 l-1. Investigating the CT-basins and coupons showed that P-limited water (1) did not prevent biofilm formation and (2) resulted in a higher volume of organic matter per unit of active biomass compared with the other CTs. Exposure to external conditions and cycle of concentration were likely factors that allowed a P concentration sufficient to cause extensive biofouling despite being the limiting compound. In conclusion, phosphate limitation in cooling water is not a suitable strategy for CT biofouling control.
Collapse
Affiliation(s)
- Ingrid S M Pinel
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Lan Hee Kim
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vitor R Proença Borges
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nadia M Farhat
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Geert-Jan Witkamp
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Johannes S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
41
|
Azizan A, Maulidiani M, R. R, Shaari K, Ismail IS, Nagao N, Abas F. Mass Spectrometry-Based Metabolomics Combined with Quantitative Analysis of the Microalgal Diatom ( Chaetoceros calcitrans). Mar Drugs 2020; 18:md18080403. [PMID: 32751412 PMCID: PMC7459737 DOI: 10.3390/md18080403] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/07/2020] [Accepted: 04/14/2020] [Indexed: 11/16/2022] Open
Abstract
Although many metabolomics studies of higher land plant species have been conducted, similar studies of lower nonland plant species, which include microalgae, are still developing. The present study represents an attempt to characterize the metabolic profile of a microalgal diatom Chaetoceros calcitrans, by applying high-resolution mass spectrometry detection, via Q-ExactiveTM Plus Orbitrap mass spectrometry. The results showed that 54 metabolites of various classes were tentatively identified. Experimentally, the chloroform and acetone extracts were clearly distinguished from other solvent extracts in chemometric regression analysis using PLS, showing the differences in the C. calcitrans metabolome between the groups. In addition, specific metabolites were evaluated, which supported the finding of antioxidant and anti-inflammatory activities. This study also provides data on the quantitative analysis of four carotenoids based on the identification results. Therefore, these findings could serve as a reliable tool for identifying and quantifying the metabolome that could reflect the metabolic activities of C. calcitrans.
Collapse
Affiliation(s)
- Awanis Azizan
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
| | - M. Maulidiani
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Faculty of Science and Marine Environment, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia
| | - Rudiyanto R.
- Faculty of Fisheries and Food Science, Universiti Malaysia Terengganu, Kuala Nerus 21030, Terengganu, Malaysia;
| | - Khozirah Shaari
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Intan Safinar Ismail
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Norio Nagao
- Laboratory of Marine Biotechnology, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia;
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (A.A.); (M.M.); (K.S.); (I.S.I.)
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
- Correspondence: ; Tel.: +603-97698343
| |
Collapse
|
42
|
Mausz MA, Segovia M, Larsen A, Berger SA, Egge JK, Pohnert G. High CO 2 concentration and iron availability determine the metabolic inventory in an Emiliania huxleyi-dominated phytoplankton community. Environ Microbiol 2020; 22:3863-3882. [PMID: 32656913 DOI: 10.1111/1462-2920.15160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/08/2020] [Indexed: 11/27/2022]
Abstract
Ocean acidification (OA), a consequence of anthropogenic carbon dioxide (CO2 ) emissions, strongly impacts marine ecosystems. OA also influences iron (Fe) solubility, affecting biogeochemical and ecological processes. We investigated the interactive effects of CO2 and Fe availability on the metabolome response of a natural phytoplankton community. Using mesocosms we exposed phytoplankton to ambient (390 μatm) or future CO2 levels predicted for the year 2100 (900 μatm), combined with ambient (4.5 nM) or high (12 nM) dissolved iron (dFe). By integrating over the whole phytoplankton community, we assigned functional changes based on altered metabolite concentrations. Our study revealed the complexity of phytoplankton metabolism. Metabolic profiles showed three stages in response to treatments and phytoplankton dynamics. Metabolome changes were related to the plankton group contributing respective metabolites, explaining bloom decline and community succession. CO2 and Fe affected metabolic profiles. Most saccharides, fatty acids, amino acids and many sterols significantly correlated with the high dFe treatment at ambient pCO2 . High CO2 lowered the abundance of many metabolites irrespective of Fe. However, sugar alcohols accumulated, indicating potential stress. We demonstrate that not only altered species composition but also changes in the metabolic landscape affecting the plankton community may change as a consequence of future high-CO2 oceans.
Collapse
Affiliation(s)
- Michaela A Mausz
- Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany.,Leibniz Institute for Natural Product Research and Infection Biology, Hans Knöll Institute (HKI), Beutenbergstr. 11a, Jena, 07745, Germany.,School of Life Sciences, The University of Warwick, Gibbet Hill Campus, Coventry, CV4 7AL, United Kingdom
| | - María Segovia
- Department of Ecology, Faculty of Sciences, University of Málaga, Bulevar Louis Pasteur s/n, Málaga, 29071, Spain
| | - Aud Larsen
- NORCE Norwegian Research Centre AS, Nygårdsgaten 112, Bergen, 5038, Norway.,Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway
| | - Stella A Berger
- Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway.,Department of Experimental Limnology, Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Alte Fischerhütte 2, Stechlin, 16775, Germany
| | - Jorun K Egge
- Department of Biology, University of Bergen, Thormøhlensgaten 53A/B, Bergen, 5020, Norway
| | - Georg Pohnert
- Department for Bioorganic Analytics, Friedrich Schiller University Jena, Lessingstr. 8, Jena, 07743, Germany
| |
Collapse
|
43
|
Jauffrais T, LeKieffre C, Schweizer M, Jesus B, Metzger E, Geslin E. Response of a kleptoplastidic foraminifer to heterotrophic starvation: photosynthesis and lipid droplet biogenesis. FEMS Microbiol Ecol 2020; 95:5427914. [PMID: 30947330 DOI: 10.1093/femsec/fiz046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/02/2019] [Indexed: 01/21/2023] Open
Abstract
The aim of this work is to document the complex nutritional strategy developed by kleptoplastic intertidal foraminifera. We study the mixotrophic ability of a common intertidal foraminifer, Elphidium williamsoni, by (i) investigating the phylogenetic identity of the foraminiferal kleptoplasts, (ii) following their oxygenic photosynthetic capacity and (iii) observing the modification in cellular ultrastructural features in response to photoautotrophic conditions. This was achieved by coupling molecular phylogenetic analyses and TEM observations with non-destructive measurements of kleptoplast O2 production over a 15-day experimental study. Results show that the studied E. williamsoni actively selected kleptoplasts mainly from pennate diatoms and had the ability to produce oxygen, up to 13.4 nmol O2 cell-1 d-1, from low to relatively high irradiance over at least 15 days. Ultrastructural features and photophysiological data showed significant differences over time, the number of lipid droplets, residual bodies and the dark respiration increased; whereas, the number of kleptoplasts decreased accompanied by a minor decrease of the photosynthetic rate. These observations suggest that in E. williamsoni kleptoplasts might provide extra carbon storage through lipid droplets synthesis and highlight the complexity of E. williamsoni feeding strategy and the necessity of further dedicated studies regarding mechanisms developed by kleptoplastidic foraminifera for carbon partitioning and storage.
Collapse
Affiliation(s)
- Thierry Jauffrais
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France.,Ifremer, RBE/LEAD, 101 Promenade Roger Laroque, 98897 Nouméa, New Caledonia, France
| | - Charlotte LeKieffre
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| | - Magali Schweizer
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| | - Bruno Jesus
- EA2160, Laboratoir Mer Molécules Santé, 2 rue de la Houssinière, Université de Nantes, 4433 Nantes Cedex 1, France
| | - Edouard Metzger
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| | - Emmanuelle Geslin
- UMR CNRS 6112 LPG-BIAF, Bio-Indicateurs Actuels et Fossiles, Université d'Angers, 2 Boulevard Lavoisier, 49045 Angers CEDEX 1, France
| |
Collapse
|
44
|
Nasser NA, Patterson RT, Galloway JM, Falck H. Intra-lake response of Arcellinida (testate lobose amoebae) to gold mining-derived arsenic contamination in northern Canada: Implications for environmental monitoring. PeerJ 2020; 8:e9054. [PMID: 32411528 PMCID: PMC7204876 DOI: 10.7717/peerj.9054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 04/03/2020] [Indexed: 11/20/2022] Open
Abstract
Arcellinida (testate lobose amoebae) were examined from 40 near-surface sediment samples (top 0.5 cm) from two lakes impacted by arsenic (As) contamination associated with legacy gold mining in subarctic Canada. The objectives of the study are two folds: quantify the response of Arcellinida to intra-lake variability of As and other physicochemical controls, and evaluate whether the impact of As contamination derived from two former gold mines, Giant Mine (1938–2004) and Tundra Mine (1964–1968 and 1983–1986), on the Arcellinida distribution in both lakes is comparable or different. Cluster analysis and nonmetric multidimensional scaling (NMDS) were used to identify Arcellinida assemblages in both lakes, and redundancy analysis (RDA) was used to quantify the relationship between the assemblages, As, and other geochemical and sedimentological parameters. Cluster analysis and NMDS revealed four distinct arcellinidan assemblages in Frame Lake (assemblages 1–4) and two in Hambone Lake (assemblages 5 and 6): (1) Extreme As Contamination (EAC) Assemblage; (2) High calcium (HC) Assemblage; (3) Moderate As Contamination (MAC) assemblages; (4) High Nutrients (HN) Assemblage; (5) High Diversity (HD) Assemblage; and (6) Centropyxis aculeata (CA) Assemblage. RDA analysis showed that the faunal structure of the Frame Lake assemblages was controlled by five variables that explained 43.2% of the total faunal variance, with As (15.8%), Olsen phosphorous (Olsen-P; 10.5%), and Ca (9.5%) being the most statistically significant (p < 0.004). Stress-tolerant arcellinidan taxa were associated with elevated As concentrations (e.g., EAC and MAC; As concentrations range = 145.1–1336.6 mg kg−1; n = 11 samples), while stress-sensitive taxa thrived in relatively healthier assemblages found in substrates with lower As concentrations and higher concentrations of nutrients, such as Olsen-P and Ca (e.g., HC and HM; As concentrations range = 151.1–492.3 mg kg−1; n = 14 samples). In contrast, the impact of As on the arcellinidan distribution was not statistically significant in Hambone Lake (7.6%; p-value = 0.152), where the proportion of silt (24.4%; p-value = 0.005) and loss-on-ignition-determined minerogenic content (18.5%; p-value = 0.021) explained a higher proportion of the total faunal variance (58.4%). However, a notable decrease in arcellinidan species richness and abundance and increase in the proportions of stress-tolerant fauna near Hambone Lake’s outlet (e.g., CA samples) is consistent with a spatial gradient of higher sedimentary As concentration near the outlet, and suggests a lasting, albeit weak, As influence on Arcellinida distribution in the lake. We interpret differences in the influence of sedimentary As concentration on Arcellinida to differences in the predominant As mineralogy in each lake, which is in turn influenced by differences in ore-processing at the former Giant (roasting) and Tundra mines (free-milling).
Collapse
Affiliation(s)
- Nawaf A Nasser
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
| | - R Timothy Patterson
- Ottawa-Carleton Geoscience Centre and Department of Earth Sciences, Carleton University, Ottawa, ON, Canada
| | - Jennifer M Galloway
- Geological Survey of Canada (GSC)/Commission géologique du Canada, Natural Resources Canada (NRCan)/Ressources naturelles Canada (RNCan), Calgary, AB, Canada.,Aarhus Institute of Advanced Studies (AIAS), Aarhus University, Aarhus, Denmark
| | - Hendrik Falck
- Northwest Territories Geological Survey, Yellowknife, NT, Canada
| |
Collapse
|
45
|
Koelmel JP, Napolitano MP, Ulmer CZ, Vasiliou V, Garrett TJ, Yost RA, Prasad MNV, Godri Pollitt KJ, Bowden JA. Environmental lipidomics: understanding the response of organisms and ecosystems to a changing world. Metabolomics 2020; 16:56. [PMID: 32307636 DOI: 10.1007/s11306-020-01665-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/13/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND Understanding the interaction between organisms and the environment is important for predicting and mitigating the effects of global phenomena such as climate change, and the fate, transport, and health effects of anthropogenic pollutants. By understanding organism and ecosystem responses to environmental stressors at the molecular level, mechanisms of toxicity and adaptation can be determined. This information has important implications in human and environmental health, engineering biotechnologies, and understanding the interaction between anthropogenic induced changes and the biosphere. One class of molecules with unique promise for environmental science are lipids; lipids are highly abundant and ubiquitous across nearly all organisms, and lipid profiles often change drastically in response to external stimuli. These changes allow organisms to maintain essential biological functions, for example, membrane fluidity, as they adapt to a changing climate and chemical environment. Lipidomics can help scientists understand the historical and present biofeedback processes in climate change and the biogeochemical processes affecting nutrient cycles. Lipids can also be used to understand how ecosystems respond to historical environmental changes with lipid signatures dating back to hundreds of millions of years, which can help predict similar changes in the future. In addition, lipids are direct targets of environmental stressors, for example, lipids are easily prone to oxidative damage, which occurs during exposure to most toxins. AIM OF REVIEW This is the first review to summarize the current efforts to comprehensively measure lipids to better understand the interaction between organisms and their environment. This review focuses on lipidomic applications in the arenas of environmental toxicology and exposure assessment, xenobiotic exposures and health (e.g., obesity), global climate change, and nutrient cycles. Moreover, this review summarizes the use of and the potential for lipidomics in engineering biotechnologies for the remediation of persistent compounds and biofuel production. KEY SCIENTIFIC CONCEPT With the preservation of certain lipids across millions of years and our ever-increasing understanding of their diverse biological roles, lipidomic-based approaches provide a unique utility to increase our understanding of the contemporary and historical interactions between organisms, ecosystems, and anthropogenically-induced environmental changes.
Collapse
Affiliation(s)
- Jeremy P Koelmel
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Michael P Napolitano
- CSS, Inc., under contract to National Oceanic and Atmospheric Administration, National Centers for Coastal Ocean Science, Hollings Marine Laboratory, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Candice Z Ulmer
- National Institute of Standards and Technology, Hollings Marine Laboratory, 331 Ft. Johnson Road, Charleston, SC, 29412, USA
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - Timothy J Garrett
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Richard A Yost
- Department of Chemistry, University of Florida, 125 Buckman Drive, Gainesville, FL, 32611, USA
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - M N V Prasad
- Department of Plant Sciences, University of Hyderabad, Hyderabad, Telangana, 500046, India
| | - Krystal J Godri Pollitt
- Department of Environmental Health Sciences, School of Public Health, Yale University, New Haven, CT, 06510, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, 1333 Center Drive, Gainesville, FL, 32610, USA.
| |
Collapse
|
46
|
Bartual A, Hernanz-Torrijos M, Sala I, Ortega MJ, González-García C, Bolado-Penagos M, López-Urrutia A, Romero-Martínez L, Lubián LM, Bruno M, Echevarría F, García CM. Types and Distribution of Bioactive Polyunsaturated Aldehydes in a Gradient from Mesotrophic to Oligotrophic Waters in the Alborán Sea (Western Mediterranean). Mar Drugs 2020; 18:E159. [PMID: 32178402 PMCID: PMC7143741 DOI: 10.3390/md18030159] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/03/2020] [Accepted: 03/07/2020] [Indexed: 01/19/2023] Open
Abstract
Polyunsaturated aldehydes (PUAs) are bioactive molecules suggested as chemical defenses and infochemicals. In marine coastal habitats, diatoms reach high PUA production levels during bloom episodes. Two fractions of PUA can usually be analyzed: pPUA obtained via artificial breakage of collected phytoplankton cells and dissolved PUA already released to the environment (dPUA). In nature, resource supply arises as a main environmental controlling factor of PUA production. In this work, we monitored the vertical distribution and daily variation of pPUA associated with large-size phytoplankton and dPUA, at three sites located in the Alborán Sea from mesotrophic to oligotrophic waters. The results corroborate the presence of large-size PUA producers in oligotrophic and mesotrophic waters with a significant (58%-85%) diatom biomass. In addition to diatoms, significant correlations between pPUA production and dinoflagellate and silicoflagellate abundance were observed. 2E,4E/Z-Heptadienal was the most abundant aldehyde at the three sites with higher values (17.1 fg·cell-1) at the most oligotrophic site. 2E,4E/Z-Decadienal was the least abundant aldehyde, decreasing toward the oligotrophic site. For the first time, we describe the daily fluctuation of pPUA attributable to cellular physiological state and not exclusively to taxonomical composition. Our results demonstrate the persistence of threshold levels of dPUA deep in the water column, as well as the different chromatographic profiles of dPUA compared with pPUA. We propose different isomerization processes that alter the chemical structure of the released PUAs with unknown effects on their stability, biological function, and potential bioactivity.
Collapse
Affiliation(s)
- Ana Bartual
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - María Hernanz-Torrijos
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Iria Sala
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - María J. Ortega
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
| | - Cristina González-García
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510 Cádiz, Spain;
| | - Marina Bolado-Penagos
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Angel López-Urrutia
- Instituto Español de Oceanografía (IEO), Centro Oceanográfico de Gijón, 33212 Gijón, Asturias, Spain;
| | - Leonardo Romero-Martínez
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Luís M. Lubián
- Departamento de Ecología y Gestión Costera, Instituto de Ciencias Marinas de Andalucía (ICMAN-CSIC), Puerto Real, 11510 Cádiz, Spain;
| | - Miguel Bruno
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Fidel Echevarría
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| | - Carlos M. García
- Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain; (M.H.-T.); (I.S.); (M.J.O.); (M.B.-P.); (M.B.); (F.E.); (C.M.G.)
- Instituto Universitario de Investigaciones Marinas (INMAR), Campus de Excelencia Internacional del Mar (CEI-MAR), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain;
| |
Collapse
|
47
|
Kumar Sharma A, Mühlroth A, Jouhet J, Maréchal E, Alipanah L, Kissen R, Brembu T, Bones AM, Winge P. The Myb-like transcription factor phosphorus starvation response (PtPSR) controls conditional P acquisition and remodelling in marine microalgae. THE NEW PHYTOLOGIST 2020; 225:2380-2395. [PMID: 31598973 DOI: 10.1111/nph.16248] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 09/29/2019] [Indexed: 05/10/2023]
Abstract
Phosphorus (P) is one of the limiting macronutrients for algal growth in marine environments. Microalgae have developed adaptation mechanisms to P limitation that involve remodelling of internal phosphate resources and accumulation of lipids. Here, we used in silico analyses to identify the P-stress regulator PtPSR (Phaeodactylum tricornutum phosphorus starvation response) in the diatom P. tricornutum. ptpsr mutant lines were generated using gene editing and characterised by various molecular, genetics and biochemical tools. PtPSR belongs to a clade of Myb transcription factors that are conserved in stramenopiles and distantly related to plant P-stress regulators. PtPSR bound specifically to a conserved cis-regulatory element found in the regulatory region of P-stress-induced genes. ptpsr knockout mutants showed reduction in cell growth under P limitation. P-stress responses were impaired in ptpsr mutants compared with wild-type, including reduced induction of P-stress response genes, near to complete loss of alkaline phosphatase activity and reduced phospholipid degradation. We conclude that PtPSR is a key transcription factor influencing P scavenging, phospholipid remodelling and cell growth in adaptation to P stress in diatoms.
Collapse
Affiliation(s)
- Amit Kumar Sharma
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Alice Mühlroth
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Juliette Jouhet
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38000, Grenoble, France
| | - Eric Maréchal
- Laboratoire de Physiologie Cellulaire Végétale, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Institut National de la Recherche Agronomique, Université Grenoble Alpes, 38000, Grenoble, France
| | - Leila Alipanah
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Ralph Kissen
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Tore Brembu
- Department of Biotechnology and Food Science, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Atle M Bones
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| | - Per Winge
- Cell, Molecular Biology and Genomics Group, Department of Biology, Norwegian University of Science and Technology, 7491, Trondheim, Norway
| |
Collapse
|
48
|
Fu H, Uchimiya M, Gore J, Moran MA. Ecological drivers of bacterial community assembly in synthetic phycospheres. Proc Natl Acad Sci U S A 2020; 117:3656-3662. [PMID: 32015111 PMCID: PMC7035482 DOI: 10.1073/pnas.1917265117] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In the nutrient-rich region surrounding marine phytoplankton cells, heterotrophic bacterioplankton transform a major fraction of recently fixed carbon through the uptake and catabolism of phytoplankton metabolites. We sought to understand the rules by which marine bacterial communities assemble in these nutrient-enhanced phycospheres, specifically addressing the role of host resources in driving community coalescence. Synthetic systems with varying combinations of known exometabolites of marine phytoplankton were inoculated with seawater bacterial assemblages, and communities were transferred daily to mimic the average duration of natural phycospheres. We found that bacterial community assembly was predictable from linear combinations of the taxa maintained on each individual metabolite in the mixture, weighted for the growth each supported. Deviations from this simple additive resource model were observed but also attributed to resource-based factors via enhanced bacterial growth when host metabolites were available concurrently. The ability of photosynthetic hosts to shape bacterial associates through excreted metabolites represents a mechanism by which microbiomes with beneficial effects on host growth could be recruited. In the surface ocean, resource-based assembly of host-associated communities may underpin the evolution and maintenance of microbial interactions and determine the fate of a substantial portion of Earth's primary production.
Collapse
Affiliation(s)
- He Fu
- Department of Marine Sciences, University of Georgia, Athens, GA 30602
| | - Mario Uchimiya
- Department of Marine Sciences, University of Georgia, Athens, GA 30602
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602
| | - Jeff Gore
- Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, GA 30602;
| |
Collapse
|
49
|
Thangaraj S, Giordano M, Sun J. Comparative Proteomic Analysis Reveals New Insights Into the Common and Specific Metabolic Regulation of the Diatom Skeletonema dohrnii to the Silicate and Temperature Availability. FRONTIERS IN PLANT SCIENCE 2020; 11:578915. [PMID: 33224167 PMCID: PMC7674209 DOI: 10.3389/fpls.2020.578915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/28/2020] [Indexed: 05/12/2023]
Abstract
Silicate (Si) and temperature are essential drivers for diatom growth and development in the ocean. Response of diatoms to these particular stress has been investigated; however, their common and specific responses to regulate intracellular development and growth are not known. Here, we investigated the combination of physiological characteristics and comparative proteomics of the diatom Skeletonema dohrnii grown in silicate- and temperature-limited conditions. Results show that cell carbon and lipid quotas were higher at lower-temperature cells, whereas cellular phosphate was higher in cells grown with lower Si. In silicate-limited cells, nitrate transporters were downregulated and resulted in lower nitrate assimilation, whereas the phosphate transporters and its assimilation were reduced in lower-temperature conditions. In photosynthesis, lower silicate caused impact in the linear electron flow and NADPH production, whereas cycling electron transport and ATP production were affected by the lower temperature. Concerning cell cycle, imbalances in the translation process were observed in lower-silicate cells, whereas impact in the transcription mechanism was observed in lower-temperature cells. However, proteins associated with carbon fixation and photorespiration were downregulated in both stress conditions, while the carbohydrate and lipid synthesis proteins were upregulated. Our results showed new insights into the common and specific responses on the proteome and physiology of S. dohrnii to silicate and temperature limitation, providing particular nutrient (Si)- and temperature-dependent mechanisms in diatoms.
Collapse
Affiliation(s)
- Satheeswaran Thangaraj
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China
| | - Mario Giordano
- Dipartimento di Scienze della Vita e dell’Ambiente, Università Politecnica delle Marche, Ancona, Italy
| | - Jun Sun
- College of Marine Science and Technology, China University of Geosciences (Wuhan), Wuhan, China
- *Correspondence: Jun Sun,
| |
Collapse
|
50
|
Yang L, Li H, Zhang Y, Jiao N. Environmental risk assessment of triazine herbicides in the Bohai Sea and the Yellow Sea and their toxicity to phytoplankton at environmental concentrations. ENVIRONMENT INTERNATIONAL 2019; 133:105175. [PMID: 31629173 DOI: 10.1016/j.envint.2019.105175] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/04/2019] [Accepted: 09/08/2019] [Indexed: 06/10/2023]
Abstract
Herbicides have been increasingly used worldwide and a large amount of herbicide residue eventually enters the ocean via groundwater or surface run-off every year. However, the global coastal pollution status of herbicides and their negative impact on marine life (especially phytoplankton) in natural environmental concentrations are poorly understood except for few special environments (e.g. the Great Barrier Reef, Australia). Our field investigation of the distribution of ten triazine herbicides in the Bohai Sea and the Yellow Sea of China revealed that the concentrations of triazine herbicides exceeded the "No Observed Effect Concentrations" for phytoplankton. Their total concentrations could be as high as 6.61 nmol L-1. Based on the concentration addition model, the toxicity of herbicide homologues is usually cumulative, and the combined toxicity of these ten triazine herbicides could cause 13.2% inhibition on the chlorophyll a fluorescence intensity of a representative diatom species Phaeodactylum tricornutum Pt-1, which corresponds roughly to the toxicity of atrazine in an equivalent concentration of 14.08 nmol L-1. Atrazine in this equivalent-effect concentration could greatly inhibit the growth of cells, the maximum quantum efficiency of photosystem II (Fv/Fm), and nutrient absorption of Phaeodactylum tricornutum Pt-1. Transcriptome analysis revealed that multiple metabolic pathways (Calvin cycle, tricarboxylic acid (TCA) cycle, glycolysis/gluconeogenesis, etc.) related with photosynthesis and carbon metabolism were greatly disturbed, which might ultimately influence the primary productivity of coastal waters. Moreover, with the values of its bioaccumulation factor ranging from 69.6 to 118.9, atrazine was found to be accumulated in algal cells, which indicates that herbicide pollution might eventually affect the marine food web and even threaten the seafood safety of human beings.
Collapse
Affiliation(s)
- Liqiang Yang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Hongmei Li
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Yongyu Zhang
- Key Laboratory of Biofuels, Shandong Provincial Key Laboratory of Energy Genetics, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361101, China
| |
Collapse
|