1
|
Martinez-Trujillo J. Why do primates have view cells instead of place cells? Trends Cogn Sci 2025; 29:226-229. [PMID: 39765412 DOI: 10.1016/j.tics.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 03/08/2025]
Abstract
Hippocampal place cells that encode the spatial location of an individual during navigation are widely reported in rodents. However, studies in primates have instead reported hippocampal cells that encode views of the environment. Evolutionary adaptations for navigating during night and day may explain the divergence of hippocampal representations between species.
Collapse
Affiliation(s)
- Julio Martinez-Trujillo
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A5B7; Department of Psychiatry, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A5B7; Department of Clinical Neurological Sciences, Schulich School of Medicine and Dentistry, Western University, London, Ontario, Canada, N6A5B7.
| |
Collapse
|
2
|
Leopold DA. The big mixup: Neural representation during natural modes of primate visual behavior. Curr Opin Neurobiol 2024; 88:102913. [PMID: 39214044 PMCID: PMC11392606 DOI: 10.1016/j.conb.2024.102913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
The primate brain has evolved specialized visual capacities to navigate complex physical and social environments. Researchers studying cortical circuits underlying these capacities have traditionally favored the use of simplified tasks and brief stimulus presentations in order to isolate cognitive variables with tight experimental control. As a result, operational theories about visual brain function have come to emphasize feature detection, hierarchical stimulus encoding, top-down task modulation, and functional segregation in distinct cortical areas. Recently, however, experimental paradigms combining natural behavior with electrophysiological recordings have begun to offer a distinctly different portrait of how the brain takes in and analyzes its visual surroundings. The present article reviews recent work in this area, highlighting some of the more surprising findings in domains of social vision and spatial navigation along with shifts in thinking that have begun to emanate from this approach.
Collapse
Affiliation(s)
- David A Leopold
- Section on Cognitive Neurophysiology and Imaging, Systems Neurodevelopment Laboratory, National Institute of Mental Health, Bethesda, MD 20892, USA; National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA.
| |
Collapse
|
3
|
Ashtari M, Bennett J, Leopold DA. Central visual pathways affected by degenerative retinal disease before and after gene therapy. Brain 2024; 147:3234-3246. [PMID: 38538211 PMCID: PMC11370797 DOI: 10.1093/brain/awae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 02/09/2024] [Accepted: 02/20/2024] [Indexed: 09/04/2024] Open
Abstract
Genetic diseases affecting the retina can result in partial or complete loss of visual function. Leber's congenital amaurosis (LCA) is a rare blinding disease, usually inherited in an autosomally recessive manner, with no cure. Retinal gene therapy has been shown to improve vision in LCA patients caused by mutations in the RPE65 gene (LCA2). However, little is known about how activity in central visual pathways is affected by the disease or by subsequent gene therapy. Functional MRI (fMRI) was used to assess retinal signal transmission in cortical and subcortical visual structures before and 1 year after retinal intervention. The fMRI paradigm consisted of 15-s blocks of flickering (8 Hz) black and white checkerboards interleaved with 15 s of blank (black) screen. Visual activation in the brain was assessed using the general linear model, with multiple comparisons corrected using the false discovery rate method. Response to visual stimulation through untreated eyes of LCA2 patients showed heightened fMRI responses in the superior colliculus and diminished activities in the lateral geniculate nucleus (LGN) compared to controls, indicating a shift in the patients' visual processing towards the retinotectal pathway. Following gene therapy, stimuli presented to the treated eye elicited significantly stronger fMRI responses in the LGN and primary visual cortex, indicating some re-engagement of the geniculostriate pathway (GS) pathway. Across patients, the post-treatment LGN fMRI responses correlated significantly with performance on a clinical test measuring light sensitivity. Our results demonstrate that the low vision observed in LCA2 patients involves a shift in visual processing toward the retinotectal pathway, and that gene therapy partially reinstates visual transmission through the GS pathway. This selective boosting of retinal output through the GS pathway and its correlation to improved visual performance, following several years of degenerative retinal disease, is striking. However, while retinal gene therapy and other ocular interventions have given hope to RPE65 patients, it may take years before development of therapies tailored to treat the diseases in other low vision patients are available. Our demonstration of a shift toward the retinotectal pathway in these patients may spur the development of new tools and rehabilitation strategies to help maximize the use of residual visual abilities and augment experience-dependent plasticity.
Collapse
Affiliation(s)
- Manzar Ashtari
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean Bennett
- Center for Advanced Retinal and Ocular Therapeutics (CAROT), University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David A Leopold
- Laboratory of Neuropsychology, National Institute of Mental Health, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
4
|
Piza DB, Corrigan BW, Gulli RA, Do Carmo S, Cuello AC, Muller L, Martinez-Trujillo J. Primacy of vision shapes behavioral strategies and neural substrates of spatial navigation in marmoset hippocampus. Nat Commun 2024; 15:4053. [PMID: 38744848 PMCID: PMC11093997 DOI: 10.1038/s41467-024-48374-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
The role of the hippocampus in spatial navigation has been primarily studied in nocturnal mammals, such as rats, that lack many adaptations for daylight vision. Here we demonstrate that during 3D navigation, the common marmoset, a new world primate adapted to daylight, predominantly uses rapid head-gaze shifts for visual exploration while remaining stationary. During active locomotion marmosets stabilize the head, in contrast to rats that use low-velocity head movements to scan the environment as they locomote. Pyramidal neurons in the marmoset hippocampus CA3/CA1 regions predominantly show mixed selectivity for 3D spatial view, head direction, and place. Exclusive place selectivity is scarce. Inhibitory interneurons are predominantly mixed selective for angular head velocity and translation speed. Finally, we found theta phase resetting of local field potential oscillations triggered by head-gaze shifts. Our findings indicate that marmosets adapted to their daylight ecological niche by modifying exploration/navigation strategies and their corresponding hippocampal specializations.
Collapse
Affiliation(s)
- Diego B Piza
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
| | - Benjamin W Corrigan
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Biology, Faculty of Science, York University, Toronto, ON, Canada
| | | | - Sonia Do Carmo
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| | - Lyle Muller
- Robarts Research Institute, Western University, London, ON, Canada
- Department of Applied Mathematics, Western University, London, ON, Canada
| | - Julio Martinez-Trujillo
- Schulich School of Medicine and Dentistry, Western University, London, ON, Canada.
- Robarts Research Institute, Western University, London, ON, Canada.
- Department of Physiology and Pharmacology, Western University, London, ON, Canada.
- Department of Psychiatry, Western University, London, ON, Canada.
- Department of Clinical Neurological Sciences, Western University, London, ON, Canada.
| |
Collapse
|
5
|
Reiner A, Medina L, Abellan A, Deng Y, Toledo CA, Luksch H, Vega-Zuniga T, Riley NB, Hodos W, Karten HJ. Neurochemistry and circuit organization of the lateral spiriform nucleus of birds: A uniquely nonmammalian direct pathway component of the basal ganglia. J Comp Neurol 2024; 532:e25620. [PMID: 38733146 PMCID: PMC11090467 DOI: 10.1002/cne.25620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 03/24/2024] [Accepted: 04/16/2024] [Indexed: 05/13/2024]
Abstract
We used diverse methods to characterize the role of avian lateral spiriform nucleus (SpL) in basal ganglia motor function. Connectivity analysis showed that SpL receives input from globus pallidus (GP), and the intrapeduncular nucleus (INP) located ventromedial to GP, whose neurons express numerous striatal markers. SpL-projecting GP neurons were large and aspiny, while SpL-projecting INP neurons were medium sized and spiny. Connectivity analysis further showed that SpL receives inputs from subthalamic nucleus (STN) and substantia nigra pars reticulata (SNr), and that the SNr also receives inputs from GP, INP, and STN. Neurochemical analysis showed that SpL neurons express ENK, GAD, and a variety of pallidal neuron markers, and receive GABAergic terminals, some of which also contain DARPP32, consistent with GP pallidal and INP striatal inputs. Connectivity and neurochemical analysis showed that the SpL input to tectum prominently ends on GABAA receptor-enriched tectobulbar neurons. Behavioral studies showed that lesions of SpL impair visuomotor behaviors involving tracking and pecking moving targets. Our results suggest that SpL modulates brainstem-projecting tectobulbar neurons in a manner comparable to the demonstrated influence of GP internus on motor thalamus and of SNr on tectobulbar neurons in mammals. Given published data in amphibians and reptiles, it seems likely the SpL circuit represents a major direct pathway-type circuit by which the basal ganglia exerts its motor influence in nonmammalian tetrapods. The present studies also show that avian striatum is divided into three spatially segregated territories with differing connectivity, a medial striato-nigral territory, a dorsolateral striato-GP territory, and the ventrolateral INP motor territory.
Collapse
Affiliation(s)
- Anton Reiner
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Loreta Medina
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Antonio Abellan
- Department of Experimental Medicine, Universitat de Lleida, Lleida, Spain
- Laboratory of Evolutionary and Developmental Neurobiology, Lleida’s Institute for Biomedical Research-Dr. Pifarré Foundation (IRBLleida), Lleida, Catalonia, Spain
| | - Yunping Deng
- Department of Anatomy and Neurobiology, The University of Tennessee Health Science Center, Memphis, TN 38163
| | - Claudio A.B. Toledo
- Neuroscience Research Nucleus, Universidade Cidade de Sao Paulo, Sao Paulo 65057-420, Brazil
| | - Harald Luksch
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
| | - Tomas Vega-Zuniga
- School of Life Sciences, Technische Universität München, Freising-Weihenstephan, Germany
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Nell B. Riley
- Department of Psychology, University of Maryland College Park 20742-4411
| | - William Hodos
- Department of Psychology, University of Maryland College Park 20742-4411
| | - Harvey J. Karten
- Department of Neurosciences, University of California San Diego, San Diego, CA 92093-0608
| |
Collapse
|
6
|
Liao CC, Gabi M, Qi HX, Kaas JH. The postnatal development of retinal projections in strepsirrhine galagos (Otolemur garnettii). J Comp Neurol 2024; 532:e25565. [PMID: 38047381 PMCID: PMC10922899 DOI: 10.1002/cne.25565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 11/13/2023] [Accepted: 11/17/2023] [Indexed: 12/05/2023]
Abstract
Here, we describe the postnatal development of retinal projections in galagos. Galagos are of special interest as they represent the understudied strepsirrhine branch (galagos, pottos, lorises, and lemurs) of the primate radiations. The projections of both eyes were revealed in each galago by injecting red or green cholera toxin subunit B (CTB) tracers into different eyes of galagos ranging from postnatal day 5 to adult. In the dorsal lateral geniculate nucleus, the magnocellular, parvocellular, and koniocellular layers were clearly labeled and identified by having inputs from the ipsilateral or contralateral eye at all ages. In the superficial layers of the superior colliculus, the terminations from the ipsilateral eye were just ventral to those from the contralateral eye at all ages. Other terminations at postnatal day 5 and later were in the pregeniculate nucleus, the accessory optic system, and the pretectum. As in other primates, a small retinal projection terminated in the posterior part of the pulvinar, which is known to project to the temporal visual cortex. This small projection from both eyes was most apparent on day 5 and absent in mature galagos. A similar reduction over postnatal maturation has been reported in marmosets, leading to the speculation that early retinal inputs to the pulvinar are responsible for the activation and early maturation of the middle temporal visual area, MT.
Collapse
Affiliation(s)
- Chia-Chi Liao
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Mariana Gabi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Hui-Xin Qi
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| | - Jon H Kaas
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
7
|
Liu J, He Y, Lavoie A, Bouvier G, Liu BH. A direction-selective cortico-brainstem pathway adaptively modulates innate behaviors. Nat Commun 2023; 14:8467. [PMID: 38123558 PMCID: PMC10733370 DOI: 10.1038/s41467-023-42910-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 10/25/2023] [Indexed: 12/23/2023] Open
Abstract
Sensory cortices modulate innate behaviors through corticofugal projections targeting phylogenetically-old brainstem nuclei. However, the principles behind the functional connectivity of these projections remain poorly understood. Here, we show that in mice visual cortical neurons projecting to the optic-tract and dorsal-terminal nuclei (NOT-DTN) possess distinct response properties and anatomical connectivity, supporting the adaption of an essential innate eye movement, the optokinetic reflex (OKR). We find that these corticofugal neurons are enriched in specific visual areas, and they prefer temporo-nasal visual motion, matching the direction bias of downstream NOT-DTN neurons. Remarkably, continuous OKR stimulation selectively enhances the activity of these temporo-nasally biased cortical neurons, which can efficiently promote OKR plasticity. Lastly, we demonstrate that silencing downstream NOT-DTN neurons, which project specifically to the inferior olive-a key structure in oculomotor plasticity, impairs the cortical modulation of OKR and OKR plasticity. Our results unveil a direction-selective cortico-brainstem pathway that adaptively modulates innate behaviors.
Collapse
Affiliation(s)
- Jiashu Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Yingtian He
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Andreanne Lavoie
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada
| | - Guy Bouvier
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France
| | - Bao-Hua Liu
- Department of Biology, University of Toronto Mississauga, Mississauga, ON, L5L 1C6, Canada.
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, M5S 3G5, Canada.
| |
Collapse
|
8
|
Stepniewska I, Kaas JH. The dorsal stream of visual processing and action-specific domains in parietal and frontal cortex in primates. J Comp Neurol 2023; 531:1897-1908. [PMID: 37118872 PMCID: PMC10611900 DOI: 10.1002/cne.25489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/30/2023]
Abstract
This review summarizes our findings obtained from over 15 years of research on parietal-frontal networks involved in the dorsal stream of cortical processing. We have presented considerable evidence for the existence of similar, partially independent, parietal-frontal networks involved in specific motor actions in a number of primates. These networks are formed by connections between action-specific domains representing the same complex movement evoked by electrical microstimulation. Functionally matched domains in the posterior parietal (PPC) and frontal (M1-PMC) motor regions are hierarchically related. M1 seems to be a critical link in these networks, since the outputs of M1 are essential to the evoked behavior, whereas PPC and PMC mediate complex movements mostly via their connections with M1. Thus, lesioning or deactivating M1 domains selectively blocks matching PMC and PPC domains, while having limited impact on other domains. When pairs of domains are stimulated together, domains within the same parietal-frontal network (matching domains) are cooperative in evoking movements, while they are mainly competitive with other domains (mismatched domains) within the same set of cortical areas. We propose that the interaction of different functional domains in each cortical region (as well as in striatum) occurs mainly via mutual suppression. Thus, the domains at each level are in competition with each other for mediating one of several possible behavioral outcomes.
Collapse
Affiliation(s)
- Iwona Stepniewska
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| | - Jon H. Kaas
- Department of Psychology, Vanderbilt University, Nashville, TN 37240
| |
Collapse
|
9
|
Scott JE. The macroevolutionary dynamics of activity pattern in mammals: Primates in context. J Hum Evol 2023; 184:103436. [PMID: 37741141 DOI: 10.1016/j.jhevol.2023.103436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 08/30/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023]
Abstract
Activity pattern has played a prominent role in discussions of primate evolutionary history. Most primates are either diurnal or nocturnal, but a small number are active both diurnally and nocturnally. This pattern-cathemerality-also occurs at low frequency across mammals. Using a large sample of mammalian species, this study evaluates two macroevolutionary hypotheses proposed to explain why cathemerality is less common than diurnality and nocturnality: 1) that cathemeral lineages have higher extinction probabilities (differential diversification) and 2) that transitions out of cathemerality are more frequent, making it a less persistent state (differential state persistence). Rates of speciation, extinction, and transition between character states were estimated using hidden-rates models applied to a phylogenetic tree containing 3013 mammals classified by activity pattern. The models failed to detect consistent differences in diversification dynamics among activity patterns, but there is strong support for differential state persistence. Transition rates out of cathemerality tend to be much higher than transition rates out of nocturnality. Transition rates out of diurnality are similar to those for cathemerality in most clades, with two important exceptions: diurnality is unusually persistent in anthropoid primates and sciurid rodents. These two groups combine very low rates of transition out of diurnality with high speciation rates. This combination has no parallels among cathemeral lineages, explaining why diurnality has become more common than cathemerality in mammals. Similarly, the combination of rates found in anthropoids is sufficient to explain the low relative frequency of cathemerality in primates, making it unnecessary to appeal to high extinction probabilities in cathemeral lineages in this clade. These findings support the hypothesis that the distribution of activity patterns across mammals has been influenced primarily by differential state persistence, whereas the effect of differential diversification appears to have been more idiosyncratic.
Collapse
Affiliation(s)
- Jeremiah E Scott
- Department of Medical Anatomical Sciences, College of Osteopathic Medicine of the Pacific, Western University of Health Sciences, Pomona, CA 91766, USA.
| |
Collapse
|
10
|
Pan D, Wang Z, Chen Y, Cao J. Melanopsin-mediated optical entrainment regulates circadian rhythms in vertebrates. Commun Biol 2023; 6:1054. [PMID: 37853054 PMCID: PMC10584931 DOI: 10.1038/s42003-023-05432-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 10/09/2023] [Indexed: 10/20/2023] Open
Abstract
Melanopsin (OPN4) is a light-sensitive protein that plays a vital role in the regulation of circadian rhythms and other nonvisual functions. Current research on OPN4 has focused on mammals; more evidence is needed from non-mammalian vertebrates to fully assess the significance of the non-visual photosensitization of OPN4 for circadian rhythm regulation. There are species differences in the regulatory mechanisms of OPN4 for vertebrate circadian rhythms, which may be due to the differences in the cutting variants, tissue localization, and photosensitive activation pathway of OPN4. We here summarize the distribution of OPN4 in mammals, birds, and teleost fish, and the classical excitation mode for the non-visual photosensitive function of OPN4 in mammals is discussed. In addition, the role of OPN4-expressing cells in regulating circadian rhythm in different vertebrates is highlighted, and the potential rhythmic regulatory effects of various neuropeptides or neurotransmitters expressed in mammalian OPN4-expressing ganglion cells are summarized among them.
Collapse
Affiliation(s)
- Deng Pan
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Zixu Wang
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Yaoxing Chen
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China
| | - Jing Cao
- Laboratory of Anatomy of Domestic Animals, National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary Medicine, China Agricultural University, Haidian, 100193, Beijing, China.
| |
Collapse
|
11
|
Brenner JM, Beltramo R, Gerfen CR, Ruediger S, Scanziani M. A genetically defined tecto-thalamic pathway drives a system of superior-colliculus-dependent visual cortices. Neuron 2023; 111:2247-2257.e7. [PMID: 37172584 PMCID: PMC10524301 DOI: 10.1016/j.neuron.2023.04.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 02/13/2023] [Accepted: 04/17/2023] [Indexed: 05/15/2023]
Abstract
Cortical responses to visual stimuli are believed to rely on the geniculo-striate pathway. However, recent work has challenged this notion by showing that responses in the postrhinal cortex (POR), a visual cortical area, instead depend on the tecto-thalamic pathway, which conveys visual information to the cortex via the superior colliculus (SC). Does POR's SC-dependence point to a wider system of tecto-thalamic cortical visual areas? What information might this system extract from the visual world? We discovered multiple mouse cortical areas whose visual responses rely on SC, with the most lateral showing the strongest SC-dependence. This system is driven by a genetically defined cell type that connects the SC to the pulvinar thalamic nucleus. Finally, we show that SC-dependent cortices distinguish self-generated from externally generated visual motion. Hence, lateral visual areas comprise a system that relies on the tecto-thalamic pathway and contributes to processing visual motion as animals move through the environment.
Collapse
Affiliation(s)
- Joshua M Brenner
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Riccardo Beltramo
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA; University of Cambridge, Cambridge, UK
| | | | - Sarah Ruediger
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
| | - Massimo Scanziani
- Department of Physiology, University of California, San Francisco, San Francisco, CA, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
12
|
Clark W, Rose J. Avian brain: A scanning beam of attention in the pigeon 'superior colliculus'. Curr Biol 2023; 33:R16-R18. [PMID: 36626855 DOI: 10.1016/j.cub.2022.11.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The superior colliculus is important for spatial attention across vertebrates. A new study in pigeons discovered a mechanism of attention: electric fields traveling across the optic tectum, which could be thought of as the avian version of the mammalian superior colliculus.
Collapse
Affiliation(s)
- William Clark
- Neural Basis of Learning, Department of Psychology, Ruhr University, Bochum, Germany.
| | - Jonas Rose
- Neural Basis of Learning, Department of Psychology, Ruhr University, Bochum, Germany.
| |
Collapse
|
13
|
Pusch R, Clark W, Rose J, Güntürkün O. Visual categories and concepts in the avian brain. Anim Cogn 2023; 26:153-173. [PMID: 36352174 PMCID: PMC9877096 DOI: 10.1007/s10071-022-01711-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 10/19/2022] [Accepted: 10/25/2022] [Indexed: 11/11/2022]
Abstract
Birds are excellent model organisms to study perceptual categorization and concept formation. The renewed focus on avian neuroscience has sparked an explosion of new data in the field. At the same time, our understanding of sensory and particularly visual structures in the avian brain has shifted fundamentally. These recent discoveries have revealed how categorization is mediated in the avian brain and has generated a theoretical framework that goes beyond the realm of birds. We review the contribution of avian categorization research-at the methodical, behavioral, and neurobiological levels. To this end, we first introduce avian categorization from a behavioral perspective and the common elements model of categorization. Second, we describe the functional and structural organization of the avian visual system, followed by an overview of recent anatomical discoveries and the new perspective on the avian 'visual cortex'. Third, we focus on the neurocomputational basis of perceptual categorization in the bird's visual system. Fourth, an overview of the avian prefrontal cortex and the prefrontal contribution to perceptual categorization is provided. The fifth section outlines how asymmetries of the visual system contribute to categorization. Finally, we present a mechanistic view of the neural principles of avian visual categorization and its putative extension to concept learning.
Collapse
Affiliation(s)
- Roland Pusch
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - William Clark
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Jonas Rose
- Neural Basis of Learning, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany
| | - Onur Güntürkün
- Biopsychology, Faculty of Psychology, Ruhr University Bochum, 44780, Bochum, Germany.
| |
Collapse
|
14
|
Correia I, Gomes BDF, Villalobos F, Ferrari SF, Gouveia SF. Lessons from comparative primatology for understanding trait covariation and diversity in evolutionary ecology. Mamm Rev 2022. [DOI: 10.1111/mam.12307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isadora Correia
- Graduate Program in Ecology and Conservation Universidade Federal de Sergipe 49100‐000 São Cristóvão Sergipe Brazil
| | | | - Fabricio Villalobos
- Evolutionary Biology Network Instituto de Ecología A.C. ‐ INECOL, Xalapa Veracruz Mexico
| | - Stephen F. Ferrari
- Department of Ecology Universidade Federal de Sergipe São Cristóvão Sergipe Brazil
| | - Sidney F. Gouveia
- Department of Ecology Universidade Federal de Sergipe São Cristóvão Sergipe Brazil
| |
Collapse
|
15
|
Schaeffer DJ, Gilbert KM, Bellyou M, Silva AC, Everling S. Frontoparietal connectivity as a product of convergent evolution in rodents and primates: functional connectivity topologies in grey squirrels, rats, and marmosets. Commun Biol 2022; 5:986. [PMID: 36115876 PMCID: PMC9482620 DOI: 10.1038/s42003-022-03949-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
Robust frontoparietal connectivity is a defining feature of primate cortical organization. Whether mammals outside the primate order, such as rodents, possess similar frontoparietal functional connectivity organization is a controversial topic. Previous work has primarily focused on comparing mice and rats to primates. However, as these rodents are nocturnal and terrestrial, they rely much less on visual input than primates. Here, we investigated the functional cortical organization of grey squirrels which are diurnal and arboreal, thereby better resembling primate ecology. We used ultra-high field resting-state fMRI data to compute and compare the functional connectivity patterns of frontal regions in grey squirrels (Sciurus carolinensis), rats (Rattus norvegicus), and marmosets (Callithrix jacchus). We utilized a fingerprinting analysis to compare interareal patterns of functional connectivity from seeds across frontal cortex in all three species. The results show that grey squirrels, but not rats, possess a frontoparietal connectivity organization that resembles the connectivity pattern of marmoset lateral prefrontal cortical areas. Since grey squirrels and marmosets have acquired an arboreal way of life but show no common arboreal ancestor, the expansion of the visual system and the formation of a frontoparietal connectivity architecture might reflect convergent evolution driven by similar ecological niches in primates and tree squirrels.
Collapse
Affiliation(s)
- David J Schaeffer
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Kyle M Gilbert
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Miranda Bellyou
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - Afonso C Silva
- Department of Neurobiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, ON, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, ON, Canada
| |
Collapse
|
16
|
Abstract
The nervous system is a product of evolution. That is, it was constructed through a long series of modifications, within the strong constraints of heredity, and continuously subjected to intense selection pressures. As a result, the organization and functions of the brain are shaped by its history. We believe that this fact, underappreciated in contemporary systems neuroscience, offers an invaluable aid for helping us resolve the brain's mysteries. Indeed, we think that the consideration of evolutionary history ought to take its place alongside other intellectual tools used to understand the brain, such as behavioural experiments, studies of anatomical structure and functional characterization based on recordings of neural activity. In this introduction, we argue for the importance of evolution by highlighting specific examples of ways that evolutionary theory can enhance neuroscience. The rest of the theme issue elaborates this point, emphasizing the conservative nature of neural evolution, the important consequences of specific transitions that occurred in our history, and the ways in which considerations of evolution can shed light on issues ranging from specific mechanisms to fundamental principles of brain organization. This article is part of the theme issue ‘Systems neuroscience through the lens of evolutionary theory’.
Collapse
Affiliation(s)
- Paul Cisek
- Department of Neuroscience, University of Montréal, 2960 chemin de la tour, local 1107 Montréal, QC H3T 1J4 Canada
| | - Benjamin Y Hayden
- Department of Neuroscience, Department of Biomedical Engineering, and Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|