1
|
Hietanen E, Koivu MKA, Susi P. Cytolytic Properties and Genome Analysis of Rigvir ® Oncolytic Virotherapy Virus and Other Echovirus 7 Isolates. Viruses 2022; 14:525. [PMID: 35336934 PMCID: PMC8949920 DOI: 10.3390/v14030525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 01/19/2023] Open
Abstract
Rigvir® is a cell-adapted, oncolytic virotherapy enterovirus, which derives from an echovirus 7 (E7) isolate. While it is claimed that Rigvir® causes cytolytic infection in several cancer cell lines, there is little molecular evidence for its oncolytic and oncotropic potential. Previously, we genome-sequenced Rigvir® and five echovirus 7 isolates, and those sequences are further analyzed in this paper. A phylogenetic analysis of the full-length data suggested that Rigvir® was most distant from the other E7 isolates used in this study, placing Rigvir® in its own clade at the root of the phylogeny. Rigvir® contained nine unique mutations in the viral capsid proteins VP1-VP4 across the whole data set, with a structural analysis showing six of the mutations concerning residues with surface exposure on the cytoplasmic side of the viral capsid. One of these mutations, E/Q/N162G, was located in the region that forms the contact interface between decay-accelerating factor (DAF) and E7. Rigvir® and five other isolates were also subjected to cell infectivity assays performed on eight different cell lines. The used cell lines contained both cancer and non-cancer cell lines for observing Rigvir®'s claimed properties of being both oncolytic and oncotropic. Infectivity assays showed that Rigvir® had no discernable difference in the viruses' oncolytic effect when compared to the Wallace prototype or the four other E7 isolates. Rigvir® was also seen infecting non-cancer cell lines, bringing its claimed effect of being oncotropic into question. Thus, we conclude that Rigvir®'s claim of being an effective treatment against multiple different cancers is not warranted under the evidence presented here. Bioinformatic analyses do not reveal a clear mechanism that could elucidate Rigvir®'s function at a molecular level, and cell infectivity tests do not show a discernable difference in either the oncolytic or oncotropic effect between Rigvir® and other clinical E7 isolates used in the study.
Collapse
Affiliation(s)
- Eero Hietanen
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (E.H.); (M.K.A.K.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
| | - Marika K. A. Koivu
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (E.H.); (M.K.A.K.)
- Turku Doctoral Programme of Molecular Medicine, University of Turku, 20520 Turku, Finland
- Turku Bioscience Centre, University of Turku, 20520 Turku, Finland
| | - Petri Susi
- Institute of Biomedicine, University of Turku, 20520 Turku, Finland; (E.H.); (M.K.A.K.)
| |
Collapse
|
2
|
Lema C, Torres C, Van der Sanden S, Cisterna D, Freire MC, Gómez RM. Global phylodynamics of Echovirus 30 revealed differential behavior among viral lineages. Virology 2019; 531:79-92. [PMID: 30856485 DOI: 10.1016/j.virol.2019.02.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 02/16/2019] [Accepted: 02/16/2019] [Indexed: 01/03/2023]
Abstract
Echovirus 30 (E30) is an important causative agent of aseptic meningitis worldwide. Despite this, the global and regional dispersion patterns, especially in South America, are still largely unknown. We performed an in-depth analysis of global E30 population dynamics, by using the VP1 sequences of 79 strains isolated in Argentina, between 1998 and 2012, and 856 sequences from GenBank. Furthermore, the 3Dpol regions of 329 sequences were analyzed to study potential recombination events. E30 evolution was characterized by co-circulation and continuous replacement of lineages over time, where four lineages appear to circulate at present and another four lineages appear to have stopped circulating. Five lineages showed a global distribution, whereas three other lineages had a more restricted circulation pattern. Strains isolated in South America belong to lineages E and F. Analysis of the 3Dpol region of Argentinean strains indicated that recombination events occurred in both lineages.
Collapse
Affiliation(s)
- Cristina Lema
- Neurovirosis Service at Virology Department, INEI-ANLIS, Dr. Carlos G. Malbran Institute, Argentina.
| | - Carolina Torres
- Faculty of Pharmacy and Biochemistry, University of Buenos Aires, Argentina
| | | | - Daniel Cisterna
- Neurovirosis Service at Virology Department, INEI-ANLIS, Dr. Carlos G. Malbran Institute, Argentina
| | - María Cecilia Freire
- Neurovirosis Service at Virology Department, INEI-ANLIS, Dr. Carlos G. Malbran Institute, Argentina
| | - Ricardo M Gómez
- Institute of Biotechnology and Molecular Biology, CONICET-UNLP, 1900 La Plata, Argentina.
| |
Collapse
|
3
|
Hietanen E, Smura T, Hakanen M, Chansaenroj J, Merilahti P, Nevalainen J, Pandey S, Koskinen S, Tripathi L, Poovorawan Y, Pursiheimo J, Susi P. Genome Sequences of RIGVIR Oncolytic Virotherapy Virus and Five Other Echovirus 7 Isolates. GENOME ANNOUNCEMENTS 2018; 6:e00317-18. [PMID: 29700151 PMCID: PMC5920193 DOI: 10.1128/genomea.00317-18] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 03/24/2018] [Indexed: 12/14/2022]
Abstract
We report here the nearly complete Illumina-sequenced consensus genome sequences of six isolates of echovirus 7 (E7), including oncolytic virotherapy virus RIGVIR and the Wallace prototype. Amino acid identities within the coding region were highly conserved across all isolates, ranging from 95.31% to 99.73%.
Collapse
Affiliation(s)
- Eero Hietanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Teemu Smura
- Medicum, University of Helsinki, Helsinki, Finland
| | - Marika Hakanen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jira Chansaenroj
- Institute of Biomedicine, University of Turku, Turku, Finland
- Center of Excellence in Clinical Virology, Department of Paediatrics, Chulalongkorn University, Bangkok, Thailand
| | - Pirjo Merilahti
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| | | | - Sunita Pandey
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Satu Koskinen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Lav Tripathi
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Yong Poovorawan
- Center of Excellence in Clinical Virology, Department of Paediatrics, Chulalongkorn University, Bangkok, Thailand
| | - Juha Pursiheimo
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Petri Susi
- Institute of Biomedicine, University of Turku, Turku, Finland
- Turku University Hospital, Turku, Finland
| |
Collapse
|
4
|
Echovirus 7 associated with hand, foot, and mouth disease in mainland China has undergone a recombination event. Arch Virol 2015; 160:1291-5. [PMID: 25680567 PMCID: PMC4412592 DOI: 10.1007/s00705-015-2350-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Accepted: 01/24/2015] [Indexed: 02/06/2023]
Abstract
To investigate the evolution of echovirus 7 (Echo7) strains and the relationship between Echo7 strains and the prototype strain Wallace, phylogenetic analysis of Echo7 strains prevailing in mainland China was performed. The Echo7 strain, DH22G/JS/2012 was isolated from a 32-month-old boy who was clinically diagnosed with HFMD. The complete genome sequence of this isolate was determined after the virus was propagated in cell culture. Phylogenetic analysis showed that the subgroups B1 and C1 prevailed in mainland China from 1998 to 2012 and that the subgroup B2 began to circulate in mainland China in 2009. The result of Simplot analysis showed that the Echo7 strain DH22G/JS/2012 is a recombinant coxsackievirus B4 (CVB4) that circulated in mainland China in 2010.
Collapse
|
5
|
Recombination among human non-polio enteroviruses: implications for epidemiology and evolution. Virus Genes 2014; 50:177-88. [PMID: 25537948 DOI: 10.1007/s11262-014-1152-y] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Accepted: 12/01/2014] [Indexed: 12/21/2022]
Abstract
Human enteroviruses (EV) belong to the Picornaviridae family and are among the most common viruses infecting humans. They consist of up to 100 immunologically and genetically distinct types: polioviruses, coxsackieviruses A and B, echoviruses, and the more recently characterized 43 EV types. Frequent recombinations and mutations in enteroviruses have been recognized as the main mechanisms for the observed high rate of evolution, thus enabling them to rapidly respond and adapt to new environmental challenges. The first signs of genetic exchanges between enteroviruses came from polioviruses many years ago, and since then recombination has been recognized, along with mutations, as the main cause for reversion of vaccine strains to neurovirulence. More recently, non-polio enteroviruses became the focus of many studies, where recombination was recognized as a frequent event and was correlated with the appearance of new enterovirus lineages and types. The accumulation of multiple inter- and intra-typic recombination events could also explain the series of successive emergences and disappearances of specific enterovirus types that could in turn explain the epidemic profile of circulation of several types. This review focuses on recombination among human non-polio enteroviruses from all four species (EV-A, EV-B, EV-C, and EV-D) and discusses the recombination effects on enterovirus epidemiology and evolution.
Collapse
|
6
|
Lowry K, Woodman A, Cook J, Evans DJ. Recombination in enteroviruses is a biphasic replicative process involving the generation of greater-than genome length 'imprecise' intermediates. PLoS Pathog 2014; 10:e1004191. [PMID: 24945141 PMCID: PMC4055744 DOI: 10.1371/journal.ppat.1004191] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 05/02/2014] [Indexed: 01/29/2023] Open
Abstract
Recombination in enteroviruses provides an evolutionary mechanism for acquiring extensive regions of novel sequence, is suggested to have a role in genotype diversity and is known to have been key to the emergence of novel neuropathogenic variants of poliovirus. Despite the importance of this evolutionary mechanism, the recombination process remains relatively poorly understood. We investigated heterologous recombination using a novel reverse genetic approach that resulted in the isolation of intermediate chimeric intertypic polioviruses bearing genomes with extensive duplicated sequences at the recombination junction. Serial passage of viruses exhibiting such imprecise junctions yielded progeny with increased fitness which had lost the duplicated sequences. Mutations or inhibitors that changed polymerase fidelity or the coalescence of replication complexes markedly altered the yield of recombinants (but did not influence non-replicative recombination) indicating both that the process is replicative and that it may be possible to enhance or reduce recombination-mediated viral evolution if required. We propose that extant recombinants result from a biphasic process in which an initial recombination event is followed by a process of resolution, deleting extraneous sequences and optimizing viral fitness. This process has implications for our wider understanding of ‘evolution by duplication’ in the positive-strand RNA viruses. The rapid evolution of most positive-sense RNA viruses enables them to escape immune surveillance and adapt to new hosts. Genetic variation arises due to their error-prone RNA polymerases and by recombination of viral genomes in co-infected cells. We have developed a novel approach to analyse the poorly understood mechanism of recombination using a poliovirus model system. We characterised the initial viable recombinants and demonstrate the majority are longer than genome length due to an imprecise crossover event that duplicates part of the genome. These viruses are unfit, but rapidly lose the duplicated material and regain full fitness upon serial passage, a process we term resolution. We show this is a replicative recombination process by modifying the fidelity of the viral polymerase, or replication complex coalescence, using methods that have no influence on a previously reported, less efficient, non-replicative recombination mechanism. We conclude that recombination is a biphasic process involving separate generation and resolution events. These new insights into an important evolutionary mechanism have implications for our understanding of virus evolution through partial genome duplication, they suggest ways in which recombination might be modified and provides an approach that may be exploited to analyse recombination in other RNA viruses.
Collapse
Affiliation(s)
- Kym Lowry
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Andrew Woodman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Jonathan Cook
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - David J. Evans
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
- * E-mail:
| |
Collapse
|
7
|
Peng J, Yang F, Xiong Z, Guo J, Du J, Hu Y, Jin Q. Sensitive and rapid detection of viruses associated with hand foot and mouth disease using multiplexed MALDI-TOF analysis. J Clin Virol 2012. [PMID: 23194776 DOI: 10.1016/j.jcv.2012.10.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Human enterovirus (HEV) is the major cause of hand foot and mouth disease (HFMD). A powerful method for detecting HEVs associated with HFMD can provide results in a clinically relevant time frame. However, the limitations of the current enterovirus test make it difficult to identify multiple genotypes on the first pass. OBJECTIVE To develop a more sensitive and easy applicable assay for detecting 18 HFMD-associated HEV serotypes in multiplex PCR products. STUDY DESIGN : A total of 241 clinical specimens were collected from HFMD patients during the 2010 outbreak in China. These samples were tested by DNA sequencing and MassARRAY analysis, respectively. RESULTS Analysis of a dilution series of plasmids revealed the detection limit per PCR reaction for the MassARRAY method was one copy for the tested HEVs. We compared results from 241 samples to those of the sequence analysis of the VP1 gene. The MassARRAY method detected all samples found positive by consensus PCR and sequencing method. Comparison of the results of MassARRAY and the DNA sequencing method found concordant results for 225 (93.4%) of the 241 samples. In 14 (5.8%) samples, the MassARRAY method detected multiple types, whereas the DNA sequencing method detected a single type. In another 2 (0.8%) samples, the MassARRAY method detected single types, whereas the DNA sequencing method detected no HEV. CONCLUSIONS The MassARRAY assay is a highly sensitive and accurate method for the type-specific detection of 18 HEVs in HFMD and is a powerful complement to current detection methods.
Collapse
Affiliation(s)
- Junping Peng
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, PR China
| | | | | | | | | | | | | |
Collapse
|
8
|
Thao NTT, Ngoc NTK, Tú PV, Thúy TT, Cardosa MJ, McMinn PC, Phuektes P. Development of a multiplex polymerase chain reaction assay for simultaneous identification of human enterovirus 71 and coxsackievirus A16. J Virol Methods 2010; 170:134-9. [PMID: 20863857 PMCID: PMC2995219 DOI: 10.1016/j.jviromet.2010.09.017] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 09/09/2010] [Accepted: 09/13/2010] [Indexed: 11/20/2022]
Abstract
Human enterovirus 71 (HEV71) and coxsackievirus A16 (CVA16) are two major aetiological agents of hand, foot and mouth disease (HFMD) in children. Recently there have been several large outbreaks of HFMD in Vietnam and the Asia-Pacific region. In this study, a multiplex RT-PCR assay was developed in order to detect simultaneously HEV71, CVA16 and other human enteroviruses. Enterovirus detection was performed with a mixture of three pairs of oligonucleotide primers: one pair of published primers for amplifying all known enterovirus genomes and two new primer pairs specific for detection of the VP1 genes of HEV71 and CVA16. Enterovirus isolates, CVA16 and HEV71 strains identified previously from patients with HFMD were examined to evaluate the sensitivity and specificity of the multiplex RT-PCR assay. The assay was then applied to the direct detection of these viruses in clinical specimens obtained from HFMD cases identified at Children's Hospital Number 2, Ho Chi Minh City, Vietnam. The multiplex RT-PCR assay showed 100% specificity in screening for enteroviruses and in identifying HEV71 and CVA16. Similar results were obtained when using the multiplex RT-PCR assay to screen for enteroviruses and to identify HEV71 and CVA16 in clinical specimens obtained from HFMD cases identified at the hospital. This multiplex RT-PCR assay is a rapid, sensitive and specific assay for the diagnosis of HEV71 or CVA16 infection in cases of HFMD and is also potentially useful for molecular epidemiological investigations.
Collapse
Affiliation(s)
- Nguyen Thi Thanh Thao
- Pasteur Institute of Ho Chi Minh City, 167 Pasteur Street, District 3, Ho Chi Minh City, Viet Nam
| | | | | | | | | | | | | |
Collapse
|
9
|
Blomqvist S, Klemola P, Kaijalainen S, Paananen A, Simonen ML, Vuorinen T, Roivainen M. Co-circulation of coxsackieviruses A6 and A10 in hand, foot and mouth disease outbreak in Finland. J Clin Virol 2010; 48:49-54. [DOI: 10.1016/j.jcv.2010.02.002] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 01/29/2010] [Accepted: 02/03/2010] [Indexed: 11/30/2022]
|
10
|
Full-genome sequence analysis of a multirecombinant echovirus 3 strain isolated from sewage in Greece. J Clin Microbiol 2010; 48:1513-9. [PMID: 20129960 DOI: 10.1128/jcm.00475-09] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
An echovirus 3 (Echo3) strain (strain LR31G7) was isolated from a sewage treatment plant in Greece in 2005. Full-genome molecular, phylogenetic, and SimPlot analyses were conducted in order to reveal the evolutionary pathways of the isolate. Nucleotide and phylogenetic analyses of part of the VP1 genomic region revealed that the isolated strain correlates with Echo3 strains isolated during the same year in France and Japan, implying that the same virus circulated in Europe and Asia. LR31G7 was found to be a recombinant that shares the 3' part of its genome with an Echo25 strain isolated from asymptomatic infants in Norway in 2003. Nucleotide and SimPlot analyses of the VP1-2A junction, where the recombination was located, revealed the exact recombination breakpoint (nucleotides 3357 to 3364). Moreover, there is evidence that recombination events had occurred in 3B-3D region in the evolutionary history of the isolate. Our study indicates that recombination events play major roles in enterovirus evolution and that the circulation of multirecombinant strains with unknown properties could be potentially dangerous for public health.
Collapse
|
11
|
Evolutionary genetics of human enterovirus 71: origin, population dynamics, natural selection, and seasonal periodicity of the VP1 gene. J Virol 2010; 84:3339-50. [PMID: 20089660 DOI: 10.1128/jvi.01019-09] [Citation(s) in RCA: 189] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Human enterovirus 71 (EV-71) is one of the major etiologic causes of hand, foot, and mouth disease (HFMD) among young children worldwide, with fatal instances of neurological complications becoming increasingly common. Global VP1 capsid sequences (n = 628) sampled over 4 decades were collected and subjected to comprehensive evolutionary analysis using a suite of phylogenetic and population genetic methods. We estimated that the common ancestor of human EV-71 likely emerged around 1941 (95% confidence interval [CI], 1929 to 1952), subsequently diverging into three genogroups: B, C, and the now extinct genogroup A. Genealogical analysis revealed that diverse lineages of genogroup B and C (subgenogroups B1 to B5 and C1 to C5) have each circulated cryptically in the human population for up to 5 years before causing large HFMD outbreaks, indicating the quiescent persistence of EV-71 in human populations. Estimated phylogenies showed a complex pattern of spatial structure within well-sampled subgenogroups, suggesting endemicity with occasional lineage migration among locations, such that past HFMD epidemics are unlikely to be linked to continuous transmission of a single strain of virus. In addition, rises in genetic diversity are correlated with the onset of epidemics, driven in part by the emergence of novel EV-71 subgenogroups. Using subgenogroup C1 as a model, we observe temporal strain replacement through time, and we investigate the evidence for positive selection at VP1 immunogenic sites. We discuss the consequences of the evolutionary dynamics of EV-71 for vaccine design and compare its phylodynamic behavior with that of influenza virus.
Collapse
|
12
|
Wang HM, Liang PH. Picornaviral 3C protease inhibitors and the dual 3C protease/coronaviral 3C-like protease inhibitors. Expert Opin Ther Pat 2010; 20:59-71. [PMID: 20021285 DOI: 10.1517/13543770903460323] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Picornaviruses are small non-enveloped RNA viruses with genomic RNA of 7500 - 8000 nucleotides, whereas coronaviruses (CoV) are RNA viruses with larger genome of 27 - 32 kb. Both types of viruses translate their genetic information into polyprotein precursors that are processed by virally encoded 3C proteases (3C(pro)) and 3C-like proteases (3CL(pro)), respectively, to generate functional viral proteins. The most studied human rhinoviruses (HRV) belonging to picornaviridae family are the main etiologic agents of the common cold. Due to lack of effective drugs, 3C(pro) has served as an excellent target for anti-viral intervention and considerable efforts have been made in the development of inhibitors. Interestingly, the inhibitors of 3C(pro) cannot inhibit 3CL(pro) potently without modification due to subtle differences in their active-site structures, but a group of common inhibitors against 3C(pro) and 3CL(pro) were found recently. AREAS COVERED IN THIS REVIEW The inhibitors against 3C(pro) reported in the literatures and patents, with a focus on those inhibiting HRV and the dual picornaviral 3C(pro)/coronaviral 3CL(pro) inhibitors, are summarized in this review. WHAT THE READERS WILL GAIN Readers will rapidly gain an overview of the individual and dual 3C(pro) inhibitors and the structural basis for discriminating them. TAKE HOME MESSAGE In the future, more selective potent inhibitors against each protease and dual inhibitors against both proteases can be further developed to treat the diseases caused by picornaviruses and CoV.
Collapse
Affiliation(s)
- Hui-Min Wang
- Kaohsiung Medical University, Center of Excellence for Environmental Medicine, Department of Fragrance and Cosmetic Science, Kaohsiung 80708, Taiwan, ROC.
| | | |
Collapse
|
13
|
Abstract
Virology is a branch of biological science dealing with the study of viruses, and medical virology focuses on the study and control of diseases due to viruses that is of medical importance. The development of medical virology in Malaysia has its beginning in the Institute for Medical Research (IMR), following the establishment of the Division of Medical Zoology and Virus Research in the institute on 23 March 1953. The second institution in the country to establish diagnostic and research work in medical virology was Department of Medical Microbiology, Faculty of Medicine, University Malaya. This was followed by University Kebangsaan Malaysia, University Sains Malaysia and University of Sarawak Malaysia. The National Public Health Laboratory (NPHL) is the latest institution to establish a laboratory in 2003 for virus isolation and services to support country surveillance and outbreak investigation of infectious diseases due to viruses. In the field of medical virology, Malaysia contributed substantially in the areas of virus diagnostic services, development and research ranging from survey and documentation on the existence and prevalence of viruses causing diseases in Malaysia, clinical presentation and epidemiological features of virus diseases, evaluation of new diagnostic tests to pathogenesis of viral diseases. Malaysia contributed to the discoveries of at least 12 new viruses in the world. ASEAN plus Three (China, Japan, Republic of Korea) Emerging Infectious Programme was established to overcome the challenges and impact of emerging and re-emerging infectious diseases in this region. Malaysia as the co-ordinator of the laboratory component of the programme, contributed to strengthen the regional laboratory capability, capacity, laboratory-based surveillance and networking. The future of medical virology in Malaysia in terms of integration of diagnostic, reference and research to support the country’s need will be enhanced and strengthened with the on-going development of the National Centre for Disease Control and Prevention (CDC Malaysia) which also incorporates a futuristic Special Diagnostic and Reference Laboratory.
Collapse
Affiliation(s)
- Kaw Bing Chua
- Makmal Kesihatan Awam Kebangsaan, Kementerian Kesihatan, Lot 1853, Kg. Melayu, 47000 Sungai Buloh, Selangor Malaysia
| |
Collapse
|
14
|
Abstract
Globally, echovirus 30 (E30) is one of the most frequently identified enteroviruses and a major cause of meningitis. Despite its wide distribution, little is known about its transmission networks or the dynamics of its recombination and geographical spread. To address this, we have conducted an extensive molecular epidemiology and evolutionary study of E30 isolates collected over 8 years from a geographically wide sample base (11 European countries, Asia, and Australia). 3Dpol sequences fell into several distinct phylogenetic groups, interspersed with other species B serotypes, enabling E30 isolates to be classified into 38 recombinant forms (RFs). Substitutions in VP1 and 3Dpol regions occurred predominantly at synonymous sites (ratio of nonsynonymous to synonymous substitutions, 0.05) with VP1 showing a rapid substitution rate of 8.3 x 10(-3) substitutions per site per year. Recombination frequency was tightly correlated with VP1 divergence; viruses differing by evolutionary distances of >0.1 (or 6 years divergent evolution) almost invariably (>97%) had different 3Dpol groups. Frequencies of shared 3Dpol groups additionally correlated with geographical distances, with Europe and South Asia showing turnover of entirely distinct virus populations. Population turnover of E30 was characterized by repeated cycles of emergence, dominance, and disappearance of individual RFs over periods of 3 to 5 years, although the existence and nature of evolutionary selection underlying these population replacements remain unclear. The occurrence of frequent "sporadic" recombinants embedded within VP1 groupings of other RFs and the much greater number of 3Dpol groups than separately identifiable VP1 lineages suggest frequent recombination with an external diverse reservoir of non-E30 viruses.
Collapse
|
15
|
Weinzierl AO, Rudolf D, Maurer D, Wernet D, Rammensee HG, Stevanović S, Klingel K. Identification of HLA-A*01- and HLA-A*02-restricted CD8+ T-cell epitopes shared among group B enteroviruses. J Gen Virol 2008; 89:2090-2097. [PMID: 18753217 DOI: 10.1099/vir.0.2008/000711-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute enteroviral infections ranging from meningitis, pancreatitis to myocarditis are common and normally well controlled by the host immune system comprising virus-specific CD8+ cytotoxic T lymphocytes (CTL). However, in some patients enteroviruses and especially coxsackieviruses of group B are capable of inducing severe chronic forms of diseases such as chronic myocarditis. Currently, it is not known whether divergences in the CTL-related immune response may contribute to the different outcome and course of enterovirus myocarditis. A pre-requisite for the study of CTL reactions in patients with acute and chronic myocarditis is the identification of CTL epitopes. In order to define dominant enterovirus CTL epitopes, we have screened, by using gamma interferon (IFN-gamma) ELISPOT, 62 HLA-A*01- and 59 HLA-A*02-positive healthy blood donors for pre-existing CTL reactions against 12 HLA-A*01 and 20 HLA-A*02 predicted CTL epitopes derived from coxsackieviruses of group B. Positive CTL reactions were verified by FACS analysis in a combined major histocompatibility complex-tetramer IFN-gamma staining. A total of 14.8% of all donors reacted against one of the three identified epitopes MLDGHLIAFDY, YGDDVIASY or GIIYIIYKL. The HLA-A*02-restricted epitope ILMNDQEVGV was recognized by 25% of all tested blood donors. For this peptide, we could demonstrate specific granzyme B secretion, a strong cytolytic potential and endogenous processing. All four epitopes were homologous in 36-92% of group B enteroviruses, providing a strong basis for monitoring the divergence of T-cell-based immune responses in enterovirus-induced acute and chronic diseases.
Collapse
Affiliation(s)
- Andreas O Weinzierl
- Department of Molecular Pathology, University of Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Despina Rudolf
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Dominik Maurer
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Dorothee Wernet
- Institute of Clinical and Experimental Transfusion Medicine, University of Tübingen, Otfried-Müller-Str. 4/1, 72076 Tübingen, Germany
| | - Hans-Georg Rammensee
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Stefan Stevanović
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Karin Klingel
- Department of Molecular Pathology, University of Tübingen, Liebermeisterstraße 8, 72076 Tübingen, Germany
| |
Collapse
|
16
|
Russo DH, Luchs A, Machado BC, Carmona RDC, Timenetsky MDCS. Echovirus 4 associated to hand, foot and mouth disease. Rev Inst Med Trop Sao Paulo 2007; 48:197-9. [PMID: 17119674 DOI: 10.1590/s0036-46652006000400004] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2005] [Accepted: 04/27/2006] [Indexed: 11/22/2022] Open
Abstract
Hand, foot and mouth disease (HFMD) is a contagious enteroviral infection occurring primarily in children and characterized by vesicular palmoplantar eruptions and erosive stomatitis. Echovirus 4 (EV-4) has been commonly associated with aseptic meningitis. The association of HFMD with EV-4 has not been reported previously. Two samples of a 14-month child who presented mild fever, sores in the mouth, rash with blisters on the palm of hands and soles of feet were sent to Enteric Viruses Laboratory of Adolfo Lutz Institute. Clinical samples were inoculated in three different cell lines, and those which presented cytopathic effect (CPE), were submitted to Indirect Immunofluorescence Assay (IFA) and "one step" RT-PCR. Agarose gel electrophoresis from RT-PCR product, showed a product with 437 bp, which is characteristic of Enterovirus group. Echovirus 4 was identified by IFA. Although HFMD is a viral infection associated mainly with Enterovirus 71 (HEV-71) and Coxsackievirus A16 (CV-A16), our results demonstrate a diversity of serotype related to HFMD and stress the importance of epidemiological surveillance to this disease and its complications.
Collapse
Affiliation(s)
- Denise Hage Russo
- Enteric Viruses Laboratory, Adolfo Lutz Institute, São Paulo, SP, Brazil.
| | | | | | | | | |
Collapse
|
17
|
Simmonds P, Welch J. Frequency and dynamics of recombination within different species of human enteroviruses. J Virol 2007; 80:483-93. [PMID: 16352572 PMCID: PMC1317522 DOI: 10.1128/jvi.80.1.483-493.2006] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enteroviruses are members of the family Picornaviridae that cause widespread infections in human and other mammalian populations. Enteroviruses are genetically and antigenically highly variable, and recombination within and between serotypes contributes to their genetic diversity. To investigate the dynamics of the recombination process, sequence phylogenies between three regions of the genome (VP4, VP1, and 3Dpol) were compared among species A and B enterovirus variants detected in a human population-based survey in Scotland between 2000 and 2001, along with contemporary virus isolates collected in the same geographical region. This analysis used novel bioinformatic methods to quantify phylogenetic compatibility and correlations with serotype assignments of evolutionary trees constructed for different regions of the enterovirus genome. Species B enteroviruses showed much more frequent, time-correlated recombination events than those found for species A, despite the equivalence in population sampling, concordant with a linkage analysis of previously characterized enterovirus sequences obtained over longer collection periods. An analysis of recombination among complete genome sequences by computation of a phylogenetic compatibility matrix (PCM) demonstrated sharply defined boundaries between the VP2/VP3/VP1 block and sequences to either side in phylogenetic compatibility. The PCM also revealed equivalent or frequently greater degrees of incompatibility between different parts within the nonstructural region (2A-3D), indicating the occurrence of extensive recombination events in the past evolution of this part of the genome. Together, these findings provide new insights into the dynamics of species A and B enterovirus recombination and evolution and into the contribution of structured sampling to documenting reservoirs, emergence, and spread of novel recombinant forms in human populations.
Collapse
Affiliation(s)
- Peter Simmonds
- Virus Evolution Group, Centre for Infectious Diseases, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, United Kingdom.
| | | |
Collapse
|
18
|
Rentz AC, Libbey JE, Fujinami RS, Whitby FG, Byington CL. Investigation of treatment failure in neonatal echovirus 7 infection. Pediatr Infect Dis J 2006; 25:259-62. [PMID: 16511392 DOI: 10.1097/01.inf.0000202071.38484.93] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We describe a case of fatal neonatal enteroviral infection caused by echovirus 7. Multiple treatments, including specific antiviral therapy, were attempted and failed. Studies of the viral isolate, maternal plasma, intravenous immunoglobulin preparations and pleconaril were performed to identify potential causes for treatment failure.
Collapse
MESH Headings
- Antiviral Agents/therapeutic use
- Enterovirus B, Human/classification
- Enterovirus B, Human/drug effects
- Enterovirus B, Human/genetics
- Enterovirus Infections/drug therapy
- Enterovirus Infections/immunology
- Enterovirus Infections/virology
- Fatal Outcome
- Female
- Humans
- Immunoglobulins, Intravenous/therapeutic use
- Immunologic Factors/therapeutic use
- Infant, Newborn
- Infant, Premature
- Infant, Premature, Diseases/drug therapy
- Infant, Premature, Diseases/immunology
- Infant, Premature, Diseases/virology
- Molecular Sequence Data
- Oxadiazoles/therapeutic use
- Oxazoles
- Sequence Analysis, DNA
- Treatment Failure
Collapse
Affiliation(s)
- Alison C Rentz
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, UT, USA.
| | | | | | | | | |
Collapse
|
19
|
Siafakas N, Papaventsis D, Levidiotou-Stefanou S, Vamvakopoulos NC, Markoulatos P. Classification and Structure of Echovirus 5′-UTR Sequences. Virus Genes 2005; 31:293-306. [PMID: 16175335 DOI: 10.1007/s11262-005-3244-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2005] [Revised: 02/15/2005] [Accepted: 04/21/2005] [Indexed: 11/25/2022]
Abstract
Enteroviruses are classified into two genetic clusters on the basis of 5'-UTR and all echoviruses (ECV) are classified together with coxsackie B viruses (CBV), coxsackie A viruses (CAV) types 2-10, 12, 14 and 16, and enteroviruses (EV) 68, 69, 71 and 73. During the present study, 5'-UTR-derived sequences constituting the largest part of the Internal Ribosome Entry Site (IRES) of ECVs were studied with respect to their possible secondary structures, which were predicted following the phenomenon of "covariance", i.e. the existence of evolutionary pressure in favour of structural conservation in the light of nucleotide sequence variability. In this and previous studies, no correlation between overall 5'-UTR identity and the currently recognised Human Enterovirus species was found, implying that notwithstanding their divergent protein-encoding regions, these species are free to exchange 5'-UTRs by recombination. Secondary structure features which are known to be highly conserved amongst enteroviruses and specifically the GNRA tetraloop in secondary structure domain IV, involved in long-term tertiary interactions and loop B in secondary structure domain V with an as yet unknown function were also conserved in ECVs. In contrast, the C(NANCCA)G motif, which is considered to be important in virus transcription and translation, was not conserved in all ECVs and sequence patterns observed in other enterovirus groups and rhinoviruses were recorded.
Collapse
Affiliation(s)
- Nikolaos Siafakas
- Department of Biochemistry and Biotechnology, University of Thessaly, 26 Ploutonos and Aeolou str, 41221, Larissa, Greece
| | | | | | | | | |
Collapse
|
20
|
Oberste MS, Maher K, Michele SM, Belliot G, Uddin M, Pallansch MA. Enteroviruses 76, 89, 90 and 91 represent a novel group within the species Human enterovirus A. J Gen Virol 2005; 86:445-451. [PMID: 15659764 DOI: 10.1099/vir.0.80475-0] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Molecular methods have enabled the rapid identification of new enterovirus (EV) serotypes that would have been untypable using existing neutralizing antisera. Nineteen strains of four new EV types termed EV76 (11 isolates), EV89 (two isolates), EV90 (four isolates) and EV91 (two isolates), isolated from clinical specimens from patients in France (one isolate) and Bangladesh (18 isolates), are described. Nucleotide sequences encoding the VP1 capsid protein (882–888 nt) are less than 65 % identical to the homologous sequences of the recognized human EV serotypes, but within each group the sequences are more than 78 % identical. The deduced amino acid sequences of the complete capsid (P1) region are more than 94 % identical within type but less than 76 % identical to those of the recognized serotypes. For both VP1 and P1, the 19 isolates are monophyletic by type with respect to all other EV serotypes. Using the proposed molecular typing scheme, these data support their identification as four new types within the species Human enterovirus A (HEV-A). In almost all cases, the VP1 sequences were more similar to those of some simian EVs than to the human EVs. Partial 3D sequences of all 19 isolates also clustered within HEV-A; they were monophyletic as a group, but not by type, suggesting that recombination has occurred among viruses of these four types. Partial 3D sequences were more closely related to those of simian EVs than to human viruses in HEV-A. These results suggest that the four new types may represent a new subgroup within HEV-A, in addition to the existing human and simian subgroups.
Collapse
Affiliation(s)
- M Steven Oberste
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Kaija Maher
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Suzanne M Michele
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Gaël Belliot
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| | - Moyez Uddin
- Institute of Public Health, Dhaka, Bangladesh
| | - Mark A Pallansch
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, 1600 Clifton Road NE, Mailstop G-17, Atlanta, GA 30333, USA
| |
Collapse
|
21
|
Abstract
Enteroviruses, members of the Picornaviridae family, comprise a large (over 70 serotypes) group of viruses that are ubiquitous in nature, infect different species and cause a wide range of diseases. Human enteroviruses were recently classified into five species, human enterovirus A-D and poliovirus. Recombination has long been known to be an important property of poliovirus genetics. Recently, several publications demonstrated that recombination is extremely frequent also in non-polio enteroviruses, and allows independent evolution of enterovirus genome fragments even on a microevolutionary scale. Prototype enterovirus strains were shown to have complex phylogenetic relations, and almost all modern enterovirus isolates turned out to be recombinants compared with the prototype strains. Recombination takes place strictly between members of the same species, and usually spares the capsid-encoding genome region. Therefore, it can be concluded that the enterovirus species exist as a worldwide reservoir of genetic material comprising a limited quantity of capsid gene sets defining a finite number of serotypes and a range of non-structural genes that recombine frequently to produce new virus variants. This new model of enterovirus genetics helps to explain the failure of previous attempts to connect serotype and disease profile in non-polio enteroviruses, and seriously questions existing typing approaches that are based solely on the capsid-encoding genome region. It remains to be determined what role recombination plays in the emergence of new enterovirus variants and in the macroevolution of animal enteroviruses and viruses of the picorna-like supergroup.
Collapse
Affiliation(s)
- Alexander N Lukashev
- Chumakov Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow, Russia.
| |
Collapse
|
22
|
Shih S, Chen S, Hakimelahi GH, Liu H, Tseng C, Shia K. Selective human enterovirus and rhinovirus inhibitors: An overview of capsid-binding and protease-inhibiting molecules. Med Res Rev 2004; 24:449-74. [PMID: 15170592 PMCID: PMC7168432 DOI: 10.1002/med.10067] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The absence of effective vaccines for most viral infections highlights an urgent necessity for the design and development of effective antiviral drugs. Due to the advancement in virology since the late 1980s, several key events in the viral life cycle have been well delineated and a number of molecular targets have been validated, culminating in the emergence of many new antiviral drugs in recent years. Inhibitors against enteroviruses and rhinoviruses, responsible for about half of the human common colds, are currently under active investigation. Agents targeted at either viral protein 1 (VP1), a relatively conserved capsid structure mediating viral adsorption/uncoating process, or 3C protease, which is highly conserved among different serotypes and essential for viral replication, are of great potential to become antipicornavirus drugs.
Collapse
Affiliation(s)
- Shin‐Ru Shih
- School of Medical Technology, Chang Gung University, Taoyuan 333, Taiwan, ROC
| | - Shu‐Jen Chen
- Taigen Biotechnology, 7F, 138 Shin Ming Road, Taipei 114, Taiwan, ROC
| | | | - Hsing‐Jang Liu
- Department of Chemistry, National Tsing Hua University, Hsinchu 300, Taiwan, ROC
| | - Chen‐Tso Tseng
- Taigen Biotechnology, 7F, 138 Shin Ming Road, Taipei 114, Taiwan, ROC
| | - Kak‐Shan Shia
- Taigen Biotechnology, 7F, 138 Shin Ming Road, Taipei 114, Taiwan, ROC
| |
Collapse
|
23
|
Oberste MS, Maher K, Pallansch MA. Evidence for frequent recombination within species human enterovirus B based on complete genomic sequences of all thirty-seven serotypes. J Virol 2004; 78:855-67. [PMID: 14694117 PMCID: PMC368751 DOI: 10.1128/jvi.78.2.855-867.2004] [Citation(s) in RCA: 202] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The species Human enterovirus B (HEV-B) in the family Picornaviridae consists of coxsackievirus A9; coxsackieviruses B1 to B6; echoviruses 1 to 7, 9, 11 to 21, 24 to 27, and 29 to 33; and enteroviruses 69 and 73. We have determined complete genome sequences for the remaining 22 HEV-B serotypes whose sequences were not represented in public databases and analyzed these in conjunction with previously available complete sequences in GenBank. Members of HEV-B were monophyletic relative to all other human enterovirus species in all regions of the genome except in the 5'-nontranslated region (NTR), where they are known to cluster with members of HEV-A. Within HEV-B, phylogenies constructed from the structural (P1) and nonstructural regions of the genome (P2 and P3) are incongruent, suggesting that recombination had occurred. Similarity plots and bootscanning analysis across the complete genome identified multiple sites at which the phylogeny of a given strain's sequence shifted, indicating potential recombination points. These points are distributed in the 5'-NTR and throughout P2 and P3, but no sites with >80% bootstrap support were identified within the capsid. Individual sequence comparisons and phylogenetic analyses suggest that members of HEV-B have recombined with one another on multiple occasions, resulting in a complex mosaic of sequences derived from multiple parental viruses in the nonstructural regions of the genome. We conclude that RNA recombination is a common mechanism for enterovirus evolution and that recombination within the nonstructural regions of the genome (P2 and P3) has been observed only among members of the same species.
Collapse
Affiliation(s)
- M Steven Oberste
- Respiratory and Enteric Viruses Branch, Division of Viral and Rickettsial Diseases, National Center for Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30333, USA.
| | | | | |
Collapse
|
24
|
Lukashev AN, Lashkevich VA, Koroleva GA, Ilonen J, Hinkkanen AE. Recombination in uveitis-causing enterovirus strains. J Gen Virol 2004; 85:463-470. [PMID: 14769904 DOI: 10.1099/vir.0.19469-0] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The complete nucleotide sequences of three human echovirus (EV) 11 strains and one EV19 strain, all of which caused outbreaks of enterovirus uveitis (EU), a new infant disease first identified in 1980 in Siberia, were determined. One EV11 strain which caused an outbreak of sepsis-like disease in Hungary was also sequenced. All four EV11 strains were mosaic recombinants of the prototype EV11 strain Gregory, with their non-structural coding regions and 5′ NTRs being more similar to other prototype enteroviruses (EV1, EV9). However, this finding is probably a feature of all circulating enterovirus strains and may not be related to their altered virulence. A full genome sequence comparison of the three subtypes of EU-causing strains excludes the role of recent recombination in their emergence, and points to their independent emergence.
Collapse
Affiliation(s)
- A N Lukashev
- Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FIN-20521 Turku, Finland
- Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow 142782, Russia
| | - V A Lashkevich
- Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow 142782, Russia
| | - G A Koroleva
- Institute of Poliomyelitis and Viral Encephalitides RAMS, Moscow 142782, Russia
| | - J Ilonen
- Department of Virology, University of Turku, Kiinamyllynkatu 13, FIN-20520 Turku, Finland
| | - A E Hinkkanen
- Department of Biochemistry and Pharmacy, Åbo Akademi University, PO Box 66, FIN-20521 Turku, Finland
| |
Collapse
|
25
|
Lukashev AN, Lashkevich VA, Ivanova OE, Koroleva GA, Hinkkanen AE, Ilonen J. Recombination in circulating enteroviruses. J Virol 2003; 77:10423-31. [PMID: 12970427 PMCID: PMC228507 DOI: 10.1128/jvi.77.19.10423-10431.2003] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Recombination is a well-known phenomenon for enteroviruses. However, the actual extent of recombination in circulating nonpoliovirus enteroviruses is not known. We have analyzed the phylogenetic relationships in four genome regions, VP1, 2A, 3D, and the 5' nontranslated region (NTR), of 40 enterovirus B strains (coxsackie B viruses and echoviruses) representing 11 serotypes and isolated in 1981 to 2002 in the former Soviet Union states. In the VP1 region, strains of the same serotype expectedly grouped with their prototype strain. However, as early as the 2A region, phylogenetic grouping differed significantly from that in the VP1 region and indicated recombination within the 2A region. Moreover, in the 5' NTR and 3D region, only 1 strain of 40 grouped with its prototype strain. Instead, we observed a major group in both the 5' NTR and the 3D region that united most (in the 5' NTR) or all (in the 3D region) of the strains studied, regardless of the serotype. Subdivision within that major group in the 3D region correlated with the time of virus isolation but not with the serotype. Therefore, we conclude that a majority, if not all, circulating enterovirus B strains are recombinants relative to the prototype strains, isolated mostly in the 1950s. Moreover, the ubiquitous recombination has allowed different regions of the enterovirus genome to evolve independently. Thus, a novel model of enterovirus genetics is proposed: the enterovirus genome is a stable symbiosis of genes, and enterovirus species consist of a finite set of capsid genes responsible for different serotypes and a continuum of nonstructural protein genes that seem to evolve in a relatively independent manner.
Collapse
|
26
|
Avellón A, Casas I, Trallero G, Pérez C, Tenorio A, Palacios G. Molecular analysis of echovirus 13 isolates and aseptic meningitis, Spain. Emerg Infect Dis 2003; 9:934-41. [PMID: 12967490 PMCID: PMC3020609 DOI: 10.3201/eid0908.030080] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Echovirus 13 (EV13), considered rare, was reported worldwide in 2000, mostly related to aseptic meningitis outbreaks. In Spain, 135 EV13 isolates were identified. The genetic relationships between 64 representative strains from Spain and other reported isolates from the United States, Germany, Italy, Japan, and Sweden were described by analyzing the partial sequence of the major capsid protein (VP1) gene. The strains from Spain were clearly identified as EV13 (79.5% similarity with the EV13 reference strain) and were grouped phylogenetically into two different clusters (by origination on either the Iberian Peninsula or Canary Islands). Isolates from Germany from 2000 clustered with the Canary Islands group. The isolates from other countries obtained before 2000 were genetically distant. Changes in EV13 coding sequence involved several differences in the C-terminal extreme of the VP1 protein. Part of the neutralizing antigenic site III has been described in this genome region in poliovirus and swine vesicular disease virus.
Collapse
Affiliation(s)
- Ana Avellón
- Instituto de Salud Carlos III, Madrid, Spain.
| | | | | | | | | | | |
Collapse
|
27
|
McMinn PC. An overview of the evolution of enterovirus 71 and its clinical and public health significance. FEMS Microbiol Rev 2002; 26:91-107. [PMID: 12007645 DOI: 10.1111/j.1574-6976.2002.tb00601.x] [Citation(s) in RCA: 573] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Since its discovery in 1969, enterovirus 71 (EV71) has been recognised as a frequent cause of epidemics of hand-foot-and-mouth disease (HFMD) associated with severe neurological sequelae in a small proportion of cases. There has been a significant increase in EV71 epidemic activity throughout the Asia-Pacific region since 1997. Recent HFMD epidemics in this region have been associated with a severe form of brainstem encephalitis associated with pulmonary oedema and high case-fatality rates. The emergence of large-scale epidemic activity in the Asia-Pacific region has been associated with the circulation of three genetic lineages that appear to be undergoing rapid evolutionary change. Two of these lineages (B3 and B4) have not been described previously and appear to have arisen from an endemic focus in equatorial Asia, which has served as a source of virus for HFMD epidemics in Malaysia, Singapore and Australia. The third lineage (C2) has previously been identified [Brown, B.A. et al. (1999) J. Virol. 73, 9969-9975] and was primarily responsible for the large HFMD epidemic in Taiwan during 1998. As EV71 appears not to be susceptible to newly developed antiviral agents and a vaccine is not currently available, control of EV71 epidemics through high-level surveillance and public health intervention needs to be maintained and extended throughout the Asia-Pacific region. Future research should focus on (1) understanding the molecular genetics of EV71 virulence, (2) identification of the receptor(s) for EV71, (3) development of antiviral agents to ameliorate the severity of neurological disease and (4) vaccine development to control epidemics. Following the successful experience of the poliomyelitis control programme, it may be possible to control EV71 epidemics if an effective live-attenuated vaccine is developed.
Collapse
Affiliation(s)
- Peter C McMinn
- Division of Virology, TVW Telethon Institute for Child Health Research, 100 Roberts Road, Subiaco, WA 6008, Australia.
| |
Collapse
|