1
|
Wu P, Zhang Y, Shan Q, Wang Z, Cheng S, Wang L, Liu B, Li W, Chen Z, Luo J, Liang Y. The investigation of the mechanism underlying variations in oxidative stress tolerance of Lacticaseibacillus paracasei resulting from fermentation methods through endogenous CRISPR-Cas9 editing methodology. Food Microbiol 2025; 127:104697. [PMID: 39667861 DOI: 10.1016/j.fm.2024.104697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 11/28/2024] [Accepted: 11/28/2024] [Indexed: 12/14/2024]
Abstract
The probiotic effects of lactic acid bacteria make them widely used in human and animal breeding industry. However, the presence of oxidative stress during the production and application process can cause bacterial damage or even death, significantly compromising the functionality of probiotics. Despite its potential for broader application scenarios that could provide a more comprehensive understanding of bacteria's internal adaptation strategies, there is a lack of research investigating oxidative stress from the perspective of culture methods. In this study, the tolerance to oxidative stress was compared between bacteria cultivated through solid-state fermentation (SSF) and liquid-state fermentation (LSF), and the physiological and transcriptional disparities between these two bacterial strains were investigated. Additionally, a novel and efficient gene editing method was developed to elucidate the genetic basis underlying these differences in tolerance. The results demonstrated a significantly higher tolerance to oxidative stress in SSF bacteria compared to LSF bacteria, along with a stronger capacity for maintaining intracellular microenvironment stability and the activity of key metabolic enzymes. It is noteworthy that the bacteria from SSF significantly enhance the transport of carbohydrate substances and facilitate intracellular metabolic flow. Gene editing experiments have confirmed the crucial role of genes glpF and glpO in regulating the glycerol metabolism pathway, which is essential for enhancing the tolerance of bacteria from SSF to oxidative stress. Based on these findings, the mechanism underlying the disparity in oxidative stress tolerance resulting from different culture methods has been summarized. Furthermore, investigation into different culture modes has revealed that moderate oxygen levels during cultivation significantly influence variation in bacterial tolerance to oxidative stress. Importantly, these variations are species-specific and depend on the ecological niche distribution of Lactobacilli. These findings elucidate a novel mechanism by which Lacticaseibacillus paracasei Zhang tolerates oxidative stress, and also suggest that distinct cultivation and processing methods should be tailored based on the specific Lactobacilli groups to achieve optimal application effects in production.
Collapse
Affiliation(s)
- Pengyu Wu
- Henan Key Laboratory of Industrial Microbial Resources and Fermentation Technology, Nanyang Institute of Technology, Nanyang, Henan, 473004, China; School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China.
| | - Yutian Zhang
- Zhangzhongjing School of Traditional Chinese Medicine, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Qiantong Shan
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Ziyang Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Shuang Cheng
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Laiyou Wang
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Bingbing Liu
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Wenhuan Li
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Zhenmin Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiancheng Luo
- School of Biological and Chemical Engineering, Nanyang Institute of Technology, Nanyang, 473004, China
| | - Yunxiang Liang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
2
|
Ma C, Liu Q, Zhang S, Qu A, Liu Q, Lv J, Pang X. Lactobacillus Kefir M20 Adaptation to Bile Salts: A Novel Pathway for Cholesterol Reduction. Foods 2024; 13:3380. [PMID: 39517164 PMCID: PMC11545005 DOI: 10.3390/foods13213380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/14/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
(1) Background: This study investigated the impact of in vitro adaptations to acid and bile stress on the cholesterol-lowering activity of the probiotic Lactobacillus kefir M20. (2) Methods: Lactobacillus kefir M20 was extracted from fermented dairy products in Xinjiang, China, and isolated using MRS medium. The lactic acid bacteria were cultured for stress resistance to acid and bile salts and then gavaged into mice for animal experiments. (3) Results: The adaptation to bile stress treatment resulted in a notable enhancement of the cholesterol-lowering capacity of Lactobacillus kefir M20, with reductions of 16.5% and 33.1% in total and non-HDL cholesterol, respectively, compared to the untreated strain. Furthermore, the daily fecal total bile acid excretion was 9.2, 5.4 and 5.0 times higher in the M20-BSA group compared to the HC, M20 and M20-ASA groups, respectively. (4) Conclusions: This study suggests that targeted probiotics have the potential for application in the next generation of functional foods and probiotic formulations aimed at combating hypercholesterolemia.
Collapse
Affiliation(s)
- Changlu Ma
- College of Food and Bio-Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (C.M.); (A.Q.); (Q.L.)
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.L.); (S.Z.); (J.L.)
| | - Qichen Liu
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.L.); (S.Z.); (J.L.)
| | - Shuwen Zhang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.L.); (S.Z.); (J.L.)
| | - Ailing Qu
- College of Food and Bio-Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (C.M.); (A.Q.); (Q.L.)
| | - Qing Liu
- College of Food and Bio-Engineering, Beijing Vocational College of Agriculture, Beijing 102442, China; (C.M.); (A.Q.); (Q.L.)
| | - Jiaping Lv
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.L.); (S.Z.); (J.L.)
| | - Xiaoyang Pang
- Institute of Food Science and Technology, Chinese Academy of Agricultural Science, Beijing 100193, China; (Q.L.); (S.Z.); (J.L.)
| |
Collapse
|
3
|
Hoang PH, Nguyen MT, Ngo HTT, Chu NH, Ha PT, Bui HG, To LH. Enhancement of Bioactive Compounds and Survival of Lactobacillus acidophilus Grown in the Omega-6, -7 Riched Cyanobacteria Spirulina platensis. Curr Microbiol 2024; 81:380. [PMID: 39340578 DOI: 10.1007/s00284-024-03865-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024]
Abstract
Lactobacillus acidophilus is a probiotic commonly used in aquaculture to enhance the growth and immune system of aquatic species through the synthesis of various enzymes, and antimicrobial compounds like lactic acid. Traditional method of growing L. acidophilus involes using the De Man-Rogosa-Sharpe (MRS) medium. However, L. acidophilus belongs to a non-spore forming group, which make it vulnerable to stress conditions, especially during the usage process. Therefore, the present study aimed to improve the survival rate, antibacterial activity, and enrich the polyunsaturated fatty acids (PUFAs) content of L. acidophilus LB when cultured in an algae-supplemented medium, thus increasing its benefits in aquaculture applications. Using different algae biomass species as an alternative to MRS medium for the growth of L. acidophilus LB, the results showed that Spirulina platensis promoted the highest density of L. acidophilus LB. When grown in (S. platensis + glucose) medium, L. acidophilus LB produced the highest lactic acid concentration of 18.24 ± 2.43 mg/mL and survived in extreme conditions such as 4% NaCl, pH 1.0-2.0, and 50 ºC, and inhibited 99.82 ± 0.24% of Vibrio parahaemolyticus population after 2 days of treatment. Additionally, it was observed that the PUFAs content, specifically omega-6, and -7, also increased in the fermentation mixture as compared to the control sample. These findings highlighted the potential of utilizing the cyanobacteria S. platensis as an alternative, eco-friendly growth substance for L. acidophilus LB to enhance its bioactivity and viability under extreme conditions.
Collapse
Affiliation(s)
- Phuong Ha Hoang
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam.
| | - Minh T Nguyen
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Hoai Thu T Ngo
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Nhat Huy Chu
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Phuong Thu Ha
- Institute of Materials Science, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Huong Giang Bui
- Institute of Biotechnology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay District, Hanoi, 100000, Vietnam
| | - Linh Hang To
- University of Adelaide, (Adelaide) 230 North Tce, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Iorizzo M, Di Martino C, Letizia F, Crawford TW, Paventi G. Production of Conjugated Linoleic Acid (CLA) by Lactiplantibacillus plantarum: A Review with Emphasis on Fermented Foods. Foods 2024; 13:975. [PMID: 38611281 PMCID: PMC11012127 DOI: 10.3390/foods13070975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 04/14/2024] Open
Abstract
The term Conjugated Linoleic Acid (CLA) refers generically to a class of positional and geometric conjugated dienoic isomers of linoleic acid. Among the isomers of linoleic acid cis9, trans11-CLA (c9, t11-CLA) and trans10, cis12-CLA (t10, c12-CLA) are found to be biologically active isomers, and they occur naturally in milk, dairy products and meat from ruminants. In addition, some vegetables and some seafoods have also been reported to contain CLA. Although the CLA levels in these natural sources are insufficient to confer the essential health benefits, anti-carcinogenic or anti-cancer effects are of current interest. In the rumen, CLA is an intermediate of isomerization and the biohydrogenation process of linoleic acid to stearic acid conducted by ruminal microorganisms. In addition to rumen bacteria, some other bacteria, such as Propionibacterium, Bifidobacterium and some lactic acid bacteria (LAB) are also capable of producing CLA. In this regard, Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) has demonstrated the ability to produce CLA isomers from linoleic acid by multiple enzymatic activities, including hydration, dehydration, and isomerization. L. plantarum is one of the most versatile species of LAB and the bacterium is widely used in the food industry as a microbial food culture. Thus, in this review we critically analyzed the literature produced in the last ten years with the aim to highlight the potentiality as well as the optimal conditions for CLA production by L. plantarum. Evidence was provided suggesting that the use of appropriate strains of L. plantarum, as a starter or additional culture in the production of some fermented foods, can be considered a critical factor in the design of new CLA-enriched functional foods.
Collapse
Affiliation(s)
- Massimo Iorizzo
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Catello Di Martino
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | - Francesco Letizia
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| | | | - Gianluca Paventi
- Department of Agricultural, Environmental and Food Sciences, University of Molise, Via De Sanctis, 86100 Campobasso, Italy; (M.I.); (F.L.); (G.P.)
| |
Collapse
|
5
|
Cong B, Zhang H, Li S, Liu S, Lin J, Deng A, Liu W, Yang Y. Taxonomic Identification of the Arctic Strain Nocardioides Arcticus Sp. Nov. and Global Transcriptomic Analysis in Response to Hydrogen Peroxide Stress. Int J Mol Sci 2023; 24:13943. [PMID: 37762246 PMCID: PMC10531085 DOI: 10.3390/ijms241813943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/02/2023] [Accepted: 09/03/2023] [Indexed: 09/29/2023] Open
Abstract
Microorganisms living in polar regions rely on specialized mechanisms to adapt to extreme environments. The study of their stress adaptation mechanisms is a hot topic in international microbiology research. In this study, a bacterial strain (Arc9.136) isolated from Arctic marine sediments was selected to implement polyphasic taxonomic identification based on factors such as genetic characteristics, physiological and biochemical properties, and chemical composition. The results showed that strain Arc9.136 is classified to the genus Nocardioides, for which the name Nocardioides arcticus sp. nov. is proposed. The ozone hole over the Arctic leads to increased ultraviolet (UV-B) radiation, and low temperatures lead to increased dissolved content in seawater. These extreme environmental conditions result in oxidative stress, inducing a strong response in microorganisms. Based on the functional classification of significantly differentially expressed genes under 1 mM H2O2 stress, we suspect that Arc9.136 may respond to oxidative stress through the following strategies: (1) efficient utilization of various carbon sources to improve carbohydrate transport and metabolism; (2) altering ion transport and metabolism by decreasing the uptake of divalent iron (to avoid the Fenton reaction) and increasing the utilization of trivalent iron (to maintain intracellular iron homeostasis); (3) increasing the level of cell replication, DNA repair, and defense functions, repairing DNA damage caused by H2O2; (4) and changing the composition of lipids in the cell membrane and reducing the sensitivity of lipid peroxidation. This study provides insights into the stress resistance mechanisms of microorganisms in extreme environments and highlights the potential for developing low-temperature active microbial resources.
Collapse
Affiliation(s)
- Bailin Cong
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Hui Zhang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; (H.Z.); (Y.Y.)
| | - Shuang Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China;
| | - Shenghao Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Jing Lin
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Aifang Deng
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Wenqi Liu
- First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China; (S.L.); (J.L.); (A.D.); (W.L.)
| | - Yan Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266100, China; (H.Z.); (Y.Y.)
| |
Collapse
|
6
|
Ta HP, Clarisse C, Maes E, Yamakawa N, Guérardel Y, Krzewinski F, Zarzycka W, Touboul D, Girardeau A, Fonseca F, Kermarrec A, Viau M, Riaublanc A, Ropers MH. Membrane lipid composition of Carnobacterium maltaromaticum CNCM I-3298, a highly cryoresistant lactic bacterium. Chem Phys Lipids 2023; 255:105326. [PMID: 37414116 DOI: 10.1016/j.chemphyslip.2023.105326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
The growing consumption of fermented products has led to an increasing demand for lactic acid bacteria (LAB), especially for LAB tolerant to freezing/thawing conditions. Carnobacterium maltaromaticum is a psychrotrophic and freeze-thawing resistant lactic acid bacterium. The membrane is the primary site of damage during the cryo-preservation process and requires modulation to improve cryoresistance. However, knowledge about the membrane structure of this LAB genus is limited. We presented here the first study of the membrane lipid composition of C. maltaromaticum CNCM I-3298 including the polar heads and the fatty acid compositions of each lipid family (neutral lipids, glycolipids, phospholipids). The strain CNCM I-3298 is principally composed of glycolipids (32%) and phospholipids (55%). About 95% of glycolipids are dihexaosyldiglycerides while less than 5% are monohexaosyldiglycerides. The disaccharide chain of dihexaosyldiglycerides is composed of α-Gal(1-2)-α-Glc chain, evidenced for the first time in a LAB strain other than Lactobacillus strains. Phosphatidylglycerol is the main phospholipid (94%). All polar lipids are exceptionally rich in C18:1 (from 70% to 80%). Regarding the fatty acid composition, C. maltaromaticum CNCM I-3298 is an atypical bacterium within the genus Carnobacterium due to its high C18:1 proportion but resemble the other Carnobacterium strains as they mostly do not contain cyclic fatty acids.
Collapse
Affiliation(s)
- H P Ta
- INRAE, BIA, F-44316 Nantes, France.
| | - C Clarisse
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - E Maes
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - N Yamakawa
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, US 41-UAR 2014-PLBS, F-59000 Lille, France
| | - Y Guérardel
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France; Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - F Krzewinski
- Univ. Lille, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| | - W Zarzycka
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - D Touboul
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France
| | - A Girardeau
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | - F Fonseca
- Université Paris-Saclay, INRAE, AgroParisTech, UMR SayFood, F-91120 Palaiseau, France
| | | | - M Viau
- INRAE, BIA, F-44316 Nantes, France
| | | | | |
Collapse
|
7
|
Choi YM, Choi DH, Lee YQ, Koduru L, Lewis NE, Lakshmanan M, Lee DY. Mitigating biomass composition uncertainties in flux balance analysis using ensemble representations. Comput Struct Biotechnol J 2023; 21:3736-3745. [PMID: 37547082 PMCID: PMC10400880 DOI: 10.1016/j.csbj.2023.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/04/2023] [Accepted: 07/19/2023] [Indexed: 08/08/2023] Open
Abstract
The biomass equation is a critical component in genome-scale metabolic models (GEMs): it is used as the de facto objective function in flux balance analysis (FBA). This equation accounts for the quantities of all known biomass precursors that are required for cell growth based on the macromolecular and monomer compositions measured at certain conditions. However, it is often reported that the macromolecular composition of cells could change across different environmental conditions and thus the use of the same single biomass equation in FBA, under multiple conditions, is questionable. Herein, we first investigated the qualitative and quantitative variations of macromolecular compositions of three representative host organisms, Escherichia coli, Saccharomyces cerevisiae and Cricetulus griseus, across different environmental/genetic variations. While macromolecular building blocks such as RNA, protein, and lipid composition vary notably, changes in fundamental biomass monomer units such as nucleotides and amino acids are not appreciable. We also observed that flux predictions through FBA is quite sensitive to macromolecular compositions but not the monomer compositions. Based on these observations, we propose ensemble representations of biomass equation in FBA to account for the natural variation of cellular constituents. Such ensemble representations of biomass better predicted the flux through anabolic reactions as it allows for the flexibility in the biosynthetic demands of the cells. The current study clearly highlights that certain component of the biomass equation indeed vary across different conditions, and the ensemble representation of biomass equation in FBA by accounting for such natural variations could avoid inaccuracies that may arise from in silico simulations.
Collapse
Affiliation(s)
- Yoon-Mi Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), Singapore
| | - Dong-Hyuk Choi
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Yi Qing Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
| | - Lokanand Koduru
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), Singapore
| | - Nathan E. Lewis
- Departments of Pediatrics and Bioengineering, University of California, La Jolla, San Diego, USA
| | - Meiyappan Lakshmanan
- Bioprocessing Technology Institute (BTI), Agency for Science, Technology and Research (A⁎STAR), Singapore
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, and Centre for Integrative Biology and Systems medicinE (IBSE), Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Dong-Yup Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon-si, Gyeonggi-do, Republic of Korea
- Bitwinners Pte. Ltd., Singapore
| |
Collapse
|
8
|
Kathiriya MR, Vekariya YV, Hati S. Understanding the Probiotic Bacterial Responses Against Various Stresses in Food Matrix and Gastrointestinal Tract: A Review. Probiotics Antimicrob Proteins 2023:10.1007/s12602-023-10104-3. [PMID: 37347421 DOI: 10.1007/s12602-023-10104-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/02/2023] [Indexed: 06/23/2023]
Abstract
Probiotic bacteria are known to have ability to tolerate inhospitable conditions experienced during food preparation, food storage, and gastrointestinal tract of consumer. As probiotics are living cells, they are adversely affected by the harsh environment of the carrier matrix as well as low pH, bile salts, oxidative stress, osmotic pressure, and commensal microflora of the host. To overcome the unfavorable environments, many probiotics switch on the cell-mediated protection mechanisms, which helps them to survive, acclimatize and remain operational in the harsh circumstances. In this review, we provide comprehensive understanding on the different stresses experienced by the probiotic when added in carrier food as well as during human gastrointestinal tract transit. Under such situation how these health beneficial bacteria protect themselves by activation of several defense systems and get adapted to the lethal environments.
Collapse
Affiliation(s)
- Mital R Kathiriya
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Yogesh V Vekariya
- Department. of Dairy Engineering, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India
| | - Subrota Hati
- Department of Dairy Microbiology, SMC College of Dairy Science, Kamdhenu University, Anand-388110, Gujarat, India.
| |
Collapse
|
9
|
Wang X, Cong R, Li A, Wang W, Zhang G, Li L. Transgenerational effects of intertidal environment on physiological phenotypes and DNA methylation in Pacific oysters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:162112. [PMID: 36764539 DOI: 10.1016/j.scitotenv.2023.162112] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 11/16/2022] [Accepted: 02/04/2023] [Indexed: 06/18/2023]
Abstract
Climate change and intensifying human activity are posing serious threats to marine organisms. The fluctuating intertidal zone forms a miniature ecosystem of a rapidly changing environment for studying biological adaptation. Transgenerational plasticity (TGP), an evolutionary phenomenon in which parental experience influences offspring phenotypes, provides an avenue for adaptation, but the molecular mechanism was poorly understood in marine molluscs. In this study, wild Pacific oysters (Crassostrea gigas), which were collected from intertidal zones, were used to conduct two-generation breeding in a subtidal area combined with a heat shock experiment in the laboratory to investigate the intertidal environment-induced TGP under temperate subtidal condition and thermally exposed condition, respectively. We showed that TGP could influence the physiological phenotypes related to the status of oxidation and energy in non-stress-exposed subtidal offspring for at least two generations. Genomic DNA methylation exhibited heritable divergence between intertidal and subtidal oysters, and 1655 (or 42.83 %) differentially methylated genes (DMGs) in F0 were continuously reserved to F2, which may mediate physiological TGP by participating in biological processes including macromolecule metabolism, cellular responses to stress, and the positive regulation of molecular function, especially fatty acid metabolism. The intertidal experience also influenced the thermal plasticity of physiological phenotypes within and across generations. Totally, 320 (or 14.74 %) specific thermal response DMGs in the intertidal F0 generation were identified in F1 and F2, participating in pathways including carbohydrate, lipid, and energy metabolism, signal transduction, and the organismal immune system, which suggested transgenerational intertidal effect mediated by these genes could positively contribute to stress adaptation and had potential applications for aquaculture. This study demonstrates an epigenetic mechanism for TGP in stress adaptation in marine molluscs, and provides new avenues to improve the stress adaptation for marine resource conservation and aquaculture.
Collapse
Affiliation(s)
- Xinxing Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Rihao Cong
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Ao Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Wei Wang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Guofan Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China
| | - Li Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao 266071, China.
| |
Collapse
|
10
|
Kikukawa H, Nagao T, Ota M, Takashima S, Kitaguchi K, Yanase E, Maeda S, Hara KY. Production of a selective antibacterial fatty acid against Staphylococcus aureus by Bifidobacterium strains. MICROBIOME RESEARCH REPORTS 2023; 2:4. [PMID: 38045611 PMCID: PMC10688799 DOI: 10.20517/mrr.2022.24] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 12/05/2023]
Abstract
Aims: C16 monounsaturated fatty acid (C16:1) show antibacterial activity against Staphylococcus aureus, a pathogen associated with various diseases such as atopic dermatitis and bacteremia, while the compound does not exhibit antibacterial activity against Staphylococcus epidermidis, an epidermal commensal that inhibits the growth of S. aureus. In this study, we aimed to find bifidobacterial strains with the ability to produce C16:1 and to find a practical manner to utilize C16:1-producing strains in industry. Methods: Various Bifidobacterium strains were screened for their content of C16:1. The chemical identity of C16:1 produced by a selected strain was analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS). Medium components that affect the C16:1 content of the selected strain were investigated. Antibacterial activity against staphylococci was compared between the authentic C16:1 isomers and total fatty acids (TFA) extracted from the selected strain. Results: B. adolescentis 12451, B. adolescentis 12-111, B. boum JCM 1211, and Bifidobacterium sp. JCM 7042 showed high C16:1 content among the tested strains. TFA extracted from Bifidobacterium sp. JCM 7042 contained C16:1 at 2.3% as the fatty acid constituent (2.4 mg/L of broth). Through GC-MS and LC-MS analyses, the C16:1 synthesized by Bifidobacterium sp. JCM 7042 was identified as 7-cis-hexadecenoic acid (7-cis-C16:1). The authentic 7-cis-C16:1 showed strong and selective antibacterial activity against S. aureus, similar to 6-cis-C16:1, with a minimum inhibitory concentration (MIC) of < 10 µg/mL. Components that increase C16:1 productivity were not found in the MRS and TOS media; however, Tween 80 was shown to considerably reduce the C16:1 ratio in TFA. Antibacterial activity against S. aureus was observed when the TFA extracted from Bifidobacterium sp. JCM 7042 contained high level of 7-cis-C16:1 (6.1% in TFA) but not when it contained low level of 7-cis-C16:1 (0.1% in TFA). Conclusion: The fatty acid, 7-cis-C16:1, which can selectively inhibit the S. aureus growth, is accumulated in TFA of several bifidobacteria. The TFA extracted from cultured cells of Bifidobacterium sp. JCM 7042 demonstrated antibacterial activity. From a practical viewpoint, our findings are important for developing an efficient method to produce novel skin care cosmetics, functional dairy foods, and other commodities.
Collapse
Affiliation(s)
- Hiroshi Kikukawa
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| | - Toshihiro Nagao
- Research Division of Biomaterials and Commodity Chemicals, Osaka Research Institute of Industrial Science and Technology, Osaka 536-8553, Japan
| | - Mitsuki Ota
- Graduate School of Natural Science and Technology, Gifu University, Gifu 501-1193, Japan
| | - Shigeo Takashima
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu 501-1193, Japan
| | - Kohji Kitaguchi
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Emiko Yanase
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Sadatoshi Maeda
- The United Graduate School of Veterinary Sciences, Gifu University, Gifu 501-1193, Japan
| | - Kiyotaka Y. Hara
- Graduate Division of Nutritional and Environmental Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
- School of Food and Nutritional Sciences, University of Shizuoka, Shizuoka 422-8526, Japan
| |
Collapse
|
11
|
Grgić I, Cetinić KA, Karačić Z, Previšić A, Rožman M. Fate and effects of microplastics in combination with pharmaceuticals and endocrine disruptors in freshwaters: Insights from a microcosm experiment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160387. [PMID: 36427730 DOI: 10.1016/j.scitotenv.2022.160387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/03/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Microplastic contamination of freshwater ecosystems has become an increasing environmental concern. To advance the hazard assessment of microplastics, we conducted a microcosm experiment in which we exposed a simplified aquatic ecosystem consisting of moss and caddisflies to microplastics (polyethylene, polystyrene and polypropylene) and pharmaceuticals and personal care products (1H-benzotriazole, bisphenol A, caffeine, gemfibrozil, ketoprofen, methylparaben, estriol, diphenhydramine, tris (1-chloro-2-propyl) phosphate) over the course of 60 days. We monitored the flux of microplastics within the microcosm, as well as the metabolic and total protein variation of organisms. This study offers evidence highlighting the capacity of moss to act as a sink for free-floating microplastics in freshwater environments. Moss is also shown to serve as a source and pathway for microplastic particles to enter aquatic food webs via caddisflies feeding off of the moss. Although most ingested microparticles were eliminated between caddisflies life stages, a small fraction of microplastics was transferred from aquatic to terrestrial ecosystem by emergence. While moss exhibited a mild response to microplastic stress, caddisflies ingesting microplastics showed stress comparable to that caused by exposure to pharmaceuticals. The molecular responses that the stressors triggered were tentatively identified and related to phenotypic responses, such as the delayed development manifested through the delayed emergence of caddisflies exposed to stress. Overall, our study provides valuable insights into the adverse effects of microplastics on aquatic species, compares the impacts of microplastics on freshwater biota to those of pharmaceuticals and endocrine disrupting compounds, and demonstrates the role aquatic organisms have in redistributing microplastics between aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | | | - Ana Previšić
- Department of Biology, Zoology, Faculty of Science, University of Zagreb, Zagreb, Croatia.
| | | |
Collapse
|
12
|
Allelopathic inhibition effects and mechanism of phenolic acids to Microcystis aeruginosa. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:45388-45397. [PMID: 36705822 DOI: 10.1007/s11356-022-24992-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 12/22/2022] [Indexed: 01/28/2023]
Abstract
Allelochemicals are essential agents for the biological control of harmful blooms. It is crucial to identify efficient algal suppressors and understand their mechanisms. This study reports the inhibition of Microcystis aeruginosa growth by 6 phenolic acids derived from plants' secondary metabolites. The inhibitory effect of phenolic acids was significantly influenced by exposure dose and phenolic acid species. Caffeic acid has the most efficient algal inhibition ability (96 h-EC50 of 5.8 mg/L). In contrast, the other 5 analogs (cinnamic acid, p-coumaric acid, 3-hydroxycinnamic acid, ferulic acid, and isoferulic acid) showed a weak inhibition effect or promotion effect with the exposure dose of 5-100 mg/L. ROS and chlorophyll a content tests combined with metabolomics analysis revealed that caffeic acid could induce the ROS accumulation of M. aeruginosa. They mainly disturbed nucleotide, amino acid, and fatty acid metabolism, leading to the downregulation of most metabolites, including toxins of microcystin LR and cyanopeptolin A, and the precursors of some unpleasant terpenoids. It has been suggested that caffeic acid is an effective agent for controlling M. aeruginosa blooms.
Collapse
|
13
|
Rao NS, Ermann Lundberg L, Tomasson J, Tullberg C, Brink DP, Palmkron SB, van Niel EWJ, Håkansson S, Carlquist M. Non-inhibitory levels of oxygen during cultivation increase freeze-drying stress tolerance in Limosilactobacillus reuteri DSM 17938. Front Microbiol 2023; 14:1152389. [PMID: 37125176 PMCID: PMC10140318 DOI: 10.3389/fmicb.2023.1152389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/22/2023] [Indexed: 05/02/2023] Open
Abstract
The physiological effects of oxygen on Limosilactobacillus reuteri DSM 17938 during cultivation and the ensuing properties of the freeze-dried probiotic product was investigated. On-line flow cytometry and k-means clustering gating was used to follow growth and viability in real time during cultivation. The bacterium tolerated aeration at 500 mL/min, with a growth rate of 0.74 ± 0.13 h-1 which demonstrated that low levels of oxygen did not influence the growth kinetics of the bacterium. Modulation of the redox metabolism was, however, seen already at non-inhibitory oxygen levels by 1.5-fold higher production of acetate and 1.5-fold lower ethanol production. A significantly higher survival rate in the freeze-dried product was observed for cells cultivated in presence of oxygen compared to absence of oxygen (61.8% ± 2.4% vs. 11.5% ± 4.3%), coinciding with a higher degree of unsaturated fatty acids (UFA:SFA ratio of 10 for air sparged vs. 3.59 for N2 sparged conditions.). Oxygen also resulted in improved bile tolerance and boosted 5'nucleotidase activity (370 U/L vs. 240 U/L in N2 sparged conditions) but lower tolerance to acidic conditions compared bacteria grown under complete anaerobic conditions which survived up to 90 min of exposure at pH 2. Overall, our results indicate the controlled supply of oxygen during production may be used as means for probiotic activity optimization of L. reuteri DSM 17938.
Collapse
Affiliation(s)
- Nikhil Seshagiri Rao
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
- *Correspondence: Nikhil Seshagiri Rao,
| | - Ludwig Ermann Lundberg
- The Department of Molecular Sciences, Uppsala BioCenter, Swedish University of Agricultural Sciences, Uppsala, Sweden
- BioGaia, SE-103 64, Stockholm, Sweden
| | | | - Cecilia Tullberg
- Division of Biotechnology, Department of Chemistry, Lund University, Lund, Sweden
| | - Daniel P. Brink
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Shuai Bai Palmkron
- Department of Food Technology, Engineering and Nutrition, Department of Chemistry, Lund University, Lund, Sweden
| | - Ed W. J. van Niel
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
| | - Sebastian Håkansson
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
- BioGaia, SE-241 38, Eslöv, Sweden
| | - Magnus Carlquist
- Division of Applied Microbiology, Department of Chemistry, Lund University, Lund, Sweden
- Magnus Carlquist,
| |
Collapse
|
14
|
Shabayek S, Abdellah AM, Salah M, Ramadan M, Fahmy N. Alterations of the vaginal microbiome in healthy pregnant women positive for group B Streptococcus colonization during the third trimester. BMC Microbiol 2022; 22:313. [PMID: 36544085 PMCID: PMC9769055 DOI: 10.1186/s12866-022-02730-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Streptococcus agalactiae or group B Streptococcus (GBS) asymptomatically colonizes the genitourinary tracts of up to 30% of pregnant women. Globally, GBS is an important cause of neonatal morbidity and mortality. GBS has recently been linked to adverse pregnancy outcomes. The potential interactions between GBS and the vaginal microbiome composition remain poorly understood. In addition, little is known about the vaginal microbiota of pregnant Egyptian women. RESULTS Using V3-V4 16S rRNA next-generation sequencing, we examined the vaginal microbiome in GBS culture-positive pregnant women (22) and GBS culture-negative pregnant women (22) during the third trimester in Ismailia, Egypt. According to the alpha-diversity indices, the vaginal microbiome of pregnant GBS culture-positive women was significantly more diverse and less homogenous. The composition of the vaginal microbiome differed significantly based on beta-diversity between GBS culture-positive and culture-negative women. The phylum Firmicutes and the family Lactobacillaceae were significantly more abundant in GBS-negative colonizers. In contrast, the phyla Actinobacteria, Tenericutes, and Proteobacteria and the families Bifidobacteriaceae, Mycoplasmataceae, Streptococcaceae, Corynebacteriaceae, Staphylococcaceae, and Peptostreptococcaceae were significantly more abundant in GBS culture-positive colonizers. On the genus and species levels, Lactobacillus was the only genus detected with significantly higher relative abundance in GBS culture-negative status (88%), and L. iners was the significantly most abundant species. Conversely, GBS-positive carriers exhibited a significant decrease in Lactobacillus abundance (56%). In GBS-positive colonizers, the relative abundance of the genera Ureaplasma, Gardnerella, Streptococcus, Corynebacterium, Staphylococcus, and Peptostreptococcus and the species Peptostreptococcus anaerobius was significantly higher. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to the metabolism of cofactors and vitamins, phosphatidylinositol signaling system, peroxisome, host immune system pathways, and host endocrine system were exclusively enriched among GBS culture-positive microbial communities. However, lipid metabolism KEGG pathways, nucleotide metabolism, xenobiotics biodegradation and metabolism, genetic information processing pathways associated with translation, replication, and repair, and human diseases (Staphylococcus aureus infection) were exclusively enriched in GBS culture-negative communities. CONCLUSIONS Understanding how perturbations of the vaginal microbiome contribute to pregnancy complications may result in the development of alternative, targeted prevention strategies to prevent maternal GBS colonization. We hypothesized associations between inferred microbial function and GBS status that would need to be confirmed in larger cohorts.
Collapse
Affiliation(s)
- Sarah Shabayek
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| | - Asmaa M. Abdellah
- grid.33003.330000 0000 9889 5690Department of Obstetrics and Gynecology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohammed Salah
- grid.440879.60000 0004 0578 4430Department of Microbiology and Immunology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Mohammed Ramadan
- grid.411303.40000 0001 2155 6022Department of Microbiology and Immunology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt
| | - Nora Fahmy
- grid.33003.330000 0000 9889 5690Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
15
|
Zhang M, Wu N, Fan Y, Xu C, Luo J, Wang Y, Yu K, Wang M. Proteomic Profiling and Stress Response in Pediococcus acidilactici under Acetic Acid. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12708-12721. [PMID: 36125361 DOI: 10.1021/acs.jafc.2c04160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lactic acid bacteria are indispensable functional microorganisms for cereal vinegar brewing, but cell activities are inhibited by the dominant acetic acid stress. Herein, an acetic-acid-tolerant strain isolated previously was identified as Pediococcus acidilactici, which also exhibited good resistance to other stresses during vinegar brewing. Proteomics analysis evidenced that differentially expressed proteins involved in the glycolysis and gluconeogenesis pathway, pyruvate metabolism, and sugar phosphotransferase system were all downregulated. Meanwhile, saturation of fatty acids and antioxidant enzymes was strengthened. The effects of several proteins on the resistance of P. acidilactici and Lactobacillus lactis relied on the types of strain and stress. AccA and AcpP participating in fatty acid metabolism and biosynthesis and Mnc related to stress response were found to protect cells by modifying fatty acid compositions and reinforcing the antioxidant defense system. Our works deepen the mechanisms of P. acidilactici under acetic acid and offer targets for engineering cell tolerance.
Collapse
Affiliation(s)
- Menghan Zhang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Nan Wu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yaqi Fan
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Chaoye Xu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - JianMei Luo
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Yuxuan Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Kaihui Yu
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| | - Min Wang
- Key Laboratory of Industrial Fermentation Microbiology (Tianjin University of Science and Technology), Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, People's Republic of China
| |
Collapse
|
16
|
Bryukhanov AL, Klimko AI, Netrusov AI. Antioxidant Properties of Lactic Acid Bacteria. Microbiology (Reading) 2022. [DOI: 10.1134/s0026261722601439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Investigating Differential Expressed Genes of Limosilactobacillus reuteri LR08 Regulated by Soybean Protein and Peptides. Foods 2022; 11:foods11091251. [PMID: 35563974 PMCID: PMC9105380 DOI: 10.3390/foods11091251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/24/2022] [Accepted: 04/24/2022] [Indexed: 02/01/2023] Open
Abstract
Soybean protein and peptides have the potential to promote the growth of Lactobacillus, but the mechanisms involved are not well understood. The purpose of this study is to investigate differentially expressed genes (DEGs) of Limosilactobacillus reuteri (L. reuteri) LR08 responding to soybean protein and peptides using transcriptome. The results showed that both digested protein (dpro) and digested peptides (dpep) could enhance a purine biosynthesis pathway which could provide more nucleic acid and ATP for bacteria growth. Moreover, dpep could be used instead of dpro to promote the ABC transporters, especially the genes involved in the transportation of various amino acids. Interestingly, dpro and dpep played opposite roles in modulating DEGs from the acc and fab gene families which participate in fatty acid biosynthesis. These not only provide a new direction for developing nitrogen-sourced prebiotics in the food industry but could also help us to understand the fundamental mechanism of the effects of dpro and dpep on their growth and metabolisms and provides relevant evidence for further investigation.
Collapse
|
18
|
Ding R, Li M, Zou Y, Wang Y, Yan C, Zhang H, Wu R, Wu J. Effect of normal and strict anaerobic fermentation on physicochemical quality and metabolomics of yogurt. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2021.101368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
19
|
Turek K, Wszołek M. Effect of walnut oil on the fatty acid content of probiotic kefir produced either with kefir grains or kefir starter cultures. Int Dairy J 2022. [DOI: 10.1016/j.idairyj.2021.105290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
20
|
Wang X, Zhang L, Chen H, Wang P, Yin Y, Jin J, Xu J, Wen J. Rational Proteomic Analysis of a New Domesticated Klebsiella pneumoniae x546 Producing 1,3-Propanediol. Front Microbiol 2021; 12:770109. [PMID: 34899654 PMCID: PMC8662357 DOI: 10.3389/fmicb.2021.770109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
In order to improve the capability of Klebsiella pneumoniae to produce an important chemical raw material, 1,3-propanediol (1,3-PDO), a new type of K. pneumoniae x546 was obtained by glycerol acclimation and subsequently was used to produce 1,3-PDO. Under the control of pH value using Na+ pH neutralizer, the 1,3-PDO yield of K. pneumoniae x546 in a 7.5-L fermenter was 69.35 g/L, which was 1.5-fold higher than the original strain (45.91 g/L). After the addition of betaine, the yield of 1,3-PDO reached up to 74.44 g/L at 24 h, which was 40% shorter than the original fermentation time of 40 h. To study the potential mechanism of the production improvement of 1,3-PDO, the Tandem Mass Tags (TMT) technology was applied to investigate the production of 1,3-PDO in K. pneumoniae. Compared with the control group, 170 up-regulated proteins and 291 down-regulated proteins were identified. Through Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis, it was found that some proteins [such as homoserine kinase (ThrB), phosphoribosylglycinamide formyltransferase (PurT), phosphoribosylaminoimidazolesuccinocarboxamide synthase (PurC), etc.] were involved in the fermentation process, whereas some other proteins (such as ProX, ProW, ProV, etc.) played a significant role after the addition of betaine. Moreover, combined with the metabolic network of K. pneumoniae during 1,3-PDO, the proteins in the biosynthesis of 1,3-PDO [such as DhaD, DhaK, lactate dehydrogenase (LDH), BudC, etc.] were analyzed. The process of 1,3-PDO production in K. pneumoniae was explained from the perspective of proteome for the first time, which provided a theoretical basis for genetic engineering modification to improve the yield of 1,3-PDO. Because of the use of Na+ pH neutralizer in the fermentation, the subsequent environmental pollution treatment cost was greatly reduced, showing high potential for industry application in the future.
Collapse
Affiliation(s)
- Xin Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Department of Chemistry, National University of Singapore, Singapore, Singapore.,Institute of Materials Research and Engineering, Singapore, Singapore
| | - Lin Zhang
- Dalian Petrochemical Research Institute of Sinopec, Dalian, China
| | - Hong Chen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Pan Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ying Yin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jiaqi Jin
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Jianwei Xu
- Department of Chemistry, National University of Singapore, Singapore, Singapore.,Institute of Materials Research and Engineering, Singapore, Singapore
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
21
|
Pezzoni M, De Troch M, Pizarro RA, Costa CS. Homeophasic Adaptation in Response to UVA Radiation in Pseudomonas aeruginosa: Changes of Membrane Fatty Acid Composition and Induction of desA and desB Expression. Photochem Photobiol 2021; 98:886-893. [PMID: 34695237 DOI: 10.1111/php.13548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 10/22/2021] [Indexed: 11/27/2022]
Abstract
In bacteria, exposure to changes in environmental conditions can alter membrane fluidity, thereby affecting its essential functions in cell physiology. To adapt to these changes, bacteria maintain appropriate fluidity by varying the composition of the fatty acids of membrane phospholipids, a phenomenon known as homeophasic adaptation. In Pseudomonas aeruginosa, this response is achieved mainly by two mechanisms of fatty acid desaturation: the FabA-FabB and DesA-DesB systems. This study analyzed the effect of ultraviolet-A (UVA) radiation-the major fraction of solar UV radiation reaching the Earth's surface-on the homeophasic process. The prototypical strain PAO1 was grown under sublethal UVA doses or in the dark, and the profiles of membrane fatty acids were compared at early logarithmic, logarithmic and stationary growth phases. In the logarithmic growth phase, it was observed that growth under sublethal UVA doses induced the expression of the desaturase-encoding genes desA and desB and increased the proportion of unsaturated fatty acids; in addition, membrane fluidity could also increase, as suggested by the indices used as indicators of this parameter. The opposite effect was observed in the stationary growth phase. These results demonstrate the relevant role of UVA on the homeophasic response at transcriptional level.
Collapse
Affiliation(s)
- Magdalena Pezzoni
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | | | - Ramón A Pizarro
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| | - Cristina S Costa
- Departamento de Radiobiología, Comisión Nacional de Energía Atómica, San Martin, Argentina
| |
Collapse
|
22
|
Cyclopropane Fatty Acids are Important for Salmonella enterica serovar Typhimurium Virulence. Infect Immun 2021; 90:e0047921. [PMID: 34662213 DOI: 10.1128/iai.00479-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A variety of eubacteria, plants and protozoa can modify membrane lipids by cyclopropanation, which is reported to modulate membrane permeability and fluidity. The ability to cyclopropanate membrane lipids has been associated with resistance to oxidative stress in Mycobacterium tuberculosis, organic solvent stress in Escherichia coli, and acid stress in E. coli and Salmonella. In bacteria, the cfa gene encoding cyclopropane fatty acid (CFA) synthase is induced during the stationary phase of growth. In the present study we constructed a cfa mutant of Salmonella enterica serovar Typhimurium 14028s (S. Typhimurium) and determined the contribution of CFA-modified lipids to stress resistance and virulence in mice. Cyclopropane fatty acid content was quantified in wild-type and cfa mutant S. Typhimurium. CFA levels in a cfa mutant were greatly reduced compared to wild-type, indicating that CFA synthase is the major enzyme responsible for cyclopropane modification of lipids in Salmonella. S. Typhimurium cfa mutants were more sensitive to extreme acid pH, the protonophore CCCP, and hydrogen peroxide, compared to wild-type. In addition, cfa mutants exhibited reduced viability in murine macrophages and could be rescued by addition of the NADPH phagocyte oxidase inhibitor diphenyleneiodonium (DPI) chloride. S. Typhimurium lacking cfa was also attenuated for virulence in mice. These observations indicate that CFA modification of lipids makes an important contribution to Salmonella virulence.
Collapse
|
23
|
Wang KH, Zheng DH, Yuan GQ, Lin W, Li QQ. A yceI Gene Involves in the Adaptation of Ralstonia solanacearum to Methyl Gallate and Other Stresses. Microorganisms 2021; 9:microorganisms9091982. [PMID: 34576877 PMCID: PMC8472277 DOI: 10.3390/microorganisms9091982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/16/2022] Open
Abstract
Ralstonia solanacearum is a plant-pathogenic bacterium causing plant bacterial wilt, and can be strongly inhibited by methyl gallate (MG). Our previous transcriptome sequencing of MG-treated R. solanacearum showed that the yceI gene AVT05_RS03545 of Rs-T02 was up-regulated significantly under MG stress. In this study, a deletion mutant (named DM3545) and an over-expression strain (named OE3545) for yceI were constructed to confirm this hypothesis. No significant difference was observed among the growth of wild-type strain, DM3545 and OE3545 strains without MG treatment. Mutant DM3545 showed a lower growth ability than that of the wild type and OE3545 strains under MG treatment, non-optimal temperature, or 1% NaCl. The ability of DM3545 for rhizosphere colonization was lower than that of the wild-type and OE3545 strains. The DM3545 strain showed substantially reduced virulence toward tomato plants than its wild-type and OE3545 counterpart. Moreover, DM3545 was more sensitive to MG in plants than the wild-type and OE3545 strains. These results suggest that YceI is involved in the adaptability of R. solanacearum to the presence of MG and the effect of other tested abiotic stresses. This protein is also possibly engaged in the virulence potential of R. solanacearum.
Collapse
Affiliation(s)
| | | | | | | | - Qi-Qin Li
- Correspondence: (D.-H.Z.); (Q.-Q.L.)
| |
Collapse
|
24
|
Maltseva AL, Varfolomeeva MA, Ayanka RV, Gafarova ER, Repkin EA, Pavlova PA, Shavarda AL, Mikhailova NA, Granovitch AI. Linking ecology, morphology, and metabolism: Niche differentiation in sympatric populations of closely related species of the genus Littorina ( Neritrema). Ecol Evol 2021; 11:11134-11154. [PMID: 34429908 PMCID: PMC8366845 DOI: 10.1002/ece3.7901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 05/08/2021] [Accepted: 06/22/2021] [Indexed: 12/03/2022] Open
Abstract
Divergence of ecological niches in phylogenetically closely related species indicates the importance of ecology in speciation, especially for sympatric species are considered. Such ecological diversification provides an advantage of alleviating interspecies competition and promotes more efficient exploitation of environmental resources, thus being a basis for ecological speciation. We analyzed a group of closely related species from the subgenus Neritrema (genus Littorina, Caenogastropoda) from the gravel-bouldery shores. In two distant sites at the Barents and Norwegian Sea, we examined the patterns of snail distribution during low tide (quantitative sampling stratified by intertidal level, presence of macrophytes, macrophyte species, and position on them), shell shape and its variability (geometric morphometrics), and metabolic characteristics (metabolomic profiling). The studied species diversified microbiotopes, which imply an important role of ecological specification in the recent evolution of this group. The only exception to this trend was the species pair L. arcana / L. saxatilis, which is specifically discussed. The ecological divergence was accompanied by differences in shell shape and metabolomic characteristics. Significant differences were found between L. obtusata versus L. fabalis and L. saxatilis / L. arcana versus L. compressa both in shell morphology and in metabolomes. L. saxatilis demonstrated a clear variability depending on intertidal level which corresponds to a shift in conditions within the occupied microhabitat. Interestingly, the differences between L. arcana (inhabiting the upper intertidal level) and L. compressa (inhabiting the lower one) were analogous to those between the upper and lower fractions of L. saxatilis. No significant level-dependent changes were found between the upper and lower fractions of L. obtusata, most probably due to habitat amelioration by fucoid macroalgae. All these results are discussed in the contexts of the role of ecology in speciation, ecological niche dynamics and conservatism, and evolutionary history of the Neritrema species.
Collapse
Affiliation(s)
- Arina L Maltseva
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Marina A Varfolomeeva
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Roman V Ayanka
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Elizaveta R Gafarova
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Egor A Repkin
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Polina A Pavlova
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| | - Alexei L Shavarda
- Department of Analytical Phytochemistry Komarov Botanical Institute St. Petersburg Russia
- Research Park Centre for Molecular and Cell Technologies St. Petersburg State University St. Petersburg Russia
| | - Natalia A Mikhailova
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
- Centre of Cell Technologies Institute of Cytology Russian Academy of Sciences St. Petersburg Russia
| | - Andrei I Granovitch
- Department of Invertebrate Zoology St. Petersburg State University St. Petersburg Russia
| |
Collapse
|
25
|
Turek K, Wszołek M. Comparative study of walnut and Camelina sativa oil as a functional components for the unsaturated fatty acids and conjugated linoleic acid enrichment of kefir. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111681] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
26
|
Alves E, Ntungwe EN, Gregório J, Rodrigues LM, Pereira-Leite C, Caleja C, Pereira E, Barros L, Aguilar-Vilas MV, Rosado C, Rijo P. Characterization of Kefir Produced in Household Conditions: Physicochemical and Nutritional Profile, and Storage Stability. Foods 2021; 10:1057. [PMID: 34064868 PMCID: PMC8150857 DOI: 10.3390/foods10051057] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 11/27/2022] Open
Abstract
Kefir, a traditional fermented food, has numerous health benefits due to its unique chemical composition, which is reflected in its excellent nutritional value. Physicochemical and microbial composition of kefir obtained from fermented milk are influenced by the type of the milk, grain to milk ratio, time and temperature of fermentation, and storage conditions. It is crucial that kefir characteristics are maintained during storage since continuous metabolic activities of residual kefir microbiota may occur. This study aimed to examine the nutritional profile of kefir produced in traditional in use conditions by fermentation of ultra-high temperature pasteurized (UHT) semi-skimmed cow milk using argentinean kefir grains and compare the stability and nutritional compliance of freshly made and refrigerated kefir. Results indicate that kefir produced under home use conditions maintains the expected characteristics with respect to the physicochemical parameters and composition, both after fermentation and after refrigerated storage. This work further contributes to the characterization of this food product that is so widely consumed around the world by focusing on kefir that was produced in a typical household setting.
Collapse
Affiliation(s)
- Emília Alves
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain;
| | - Epole N. Ntungwe
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain;
| | - João Gregório
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
| | - Luis M. Rodrigues
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
| | - Catarina Pereira-Leite
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- LAQV, REQUIMTE, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Cristina Caleja
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (E.P.); (L.B.)
| | - Eliana Pereira
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (E.P.); (L.B.)
| | - Lillian Barros
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal; (C.C.); (E.P.); (L.B.)
| | - M. Victorina Aguilar-Vilas
- Department of Biomedical Sciences, Faculty of Pharmacy, University of Alcalá, Carretera Madrid-Barcelona, Km 33.100, 28805 Alcalá de Henares, Madrid, Spain;
| | - Catarina Rosado
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
| | - Patrícia Rijo
- CBIOS—Research Center for Biosciences & Health Technologies, Universidade Lusófona’s, Campo Grande 376, 1749-024 Lisboa, Portugal; (E.A.); (E.N.N.); (J.G.); (L.M.R.); (C.P.-L.)
- Instituto de Investigação do Medicamento (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, 1649-003 Lisboa, Portugal
| |
Collapse
|
27
|
Campbell JA, Gaydos NJ, Egolf SR, Watson S. Fate of <i>Escherichia coli</i> O157:H7, <i>Salmonella</i> spp., and <i>Listeria monocytogenes</i> During Curing and Drying of Beef Bresaola. MEAT AND MUSCLE BIOLOGY 2021. [DOI: 10.22175/mmb.11621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
28
|
Monedeiro F, Railean-Plugaru V, Monedeiro-Milanowski M, Pomastowski P, Buszewski B. Metabolic Profiling of VOCs Emitted by Bacteria Isolated from Pressure Ulcers and Treated with Different Concentrations of Bio-AgNPs. Int J Mol Sci 2021; 22:4696. [PMID: 33946710 PMCID: PMC8124631 DOI: 10.3390/ijms22094696] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Revised: 04/22/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Considering the advent of antibiotic resistance, the study of bacterial metabolic behavior stimulated by novel antimicrobial agents becomes a relevant tool to elucidate involved adaptive pathways. Profiling of volatile metabolites was performed to monitor alterations of bacterial metabolism induced by biosynthesized silver nanoparticles (bio-AgNPs). Escherichia coli, Enterococcus faecalis, Klebsiella pneumoniae and Proteus mirabilis were isolated from pressure ulcers, and their cultures were prepared in the presence/absence of bio-AgNPs at 12.5, 25 and 50 µg mL-1. Headspace solid phase microextraction associated to gas chromatography-mass spectrometry was the employed analytical platform. At the lower concentration level, the agent promoted positive modulation of products of fermentation routes and bioactive volatiles, indicating an attempt of bacteria to adapt to an ongoing suppression of cellular respiration. Augmented response of aldehydes and other possible products of lipid oxidative cleavage was noticed for increasing levels of bio-AgNPs. The greatest concentration of agent caused a reduction of 44 to 80% in the variety of compounds found in the control samples. Pathway analysis indicated overall inhibition of amino acids and fatty acids routes. The present assessment may provide a deeper understanding of molecular mechanisms of bio-AgNPs and how the metabolic response of bacteria is untangled.
Collapse
Affiliation(s)
- Fernanda Monedeiro
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Viorica Railean-Plugaru
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Maciej Monedeiro-Milanowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Paweł Pomastowski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
| | - Bogusław Buszewski
- Interdisciplinary Centre of Modern Technologies, Nicolaus Copernicus University in Toruń, 4 Wileńska St., 87-100 Toruń, Poland; (F.M.); (V.R.-P.); (M.M.-M.); (P.P.)
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina St., 87-100 Toruń, Poland
| |
Collapse
|
29
|
Zhang H, Wang Q, Liu H, Kong B, Chen Q. In vitro growth performance, antioxidant activity and cell surface physiological characteristics of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6 stressed at different NaCl concentrations. Food Funct 2021; 11:6376-6386. [PMID: 32613220 DOI: 10.1039/c9fo02309g] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
This study investigated the impact of NaCl concentrations on the growth performance, antioxidant activity, and cell surface physiological characteristics of Pediococcus pentosaceus R1 and Lactobacillus fermentum R6. The growth of the two strains was significantly inhibited by 4 and 6% NaCl and stagnated at 8% NaCl (P < 0.05). Compared with the control, both strains showed higher acid-producing activity, antioxidant activity and autoaggregation ability at 2 or 4% NaCl. A lower cell surface hydrophobicity of the two strains was observed with increased NaCl concentrations. High NaCl concentrations resulted in cell surface damage and deformation and even slowed the proliferation of the strains, and led to significant shifts in amide A and amide III groups in proteins and the C-H stretching of >CH2 in fatty acids (P < 0.05). In summary, appropriate NaCl concentrations (2 and 4%) improved the antioxidant activity of the two strains, while the higher NaCl concentrations (6%) decreased their antioxidant activity, which may be due to the associated changes in the cell surface structural properties of the two strains.
Collapse
Affiliation(s)
- Huan Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | | | | | | | | |
Collapse
|
30
|
Ibarruri J, Cebrián M, Hernández I. Valorisation of fruit and vegetable discards by fungal submerged and solid-state fermentation for alternative feed ingredients production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111901. [PMID: 33434763 DOI: 10.1016/j.jenvman.2020.111901] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 10/09/2020] [Accepted: 12/22/2020] [Indexed: 06/12/2023]
Abstract
The present research describes an integral strategy for valorisation of fruit and vegetable discards (FVd) in feeding application, using solid-state fermentation (SSF) and submerged fermentation (SmF), for both solid and liquid fractions obtained during these by-products handle and processing, using a strain of Rhizopus sp. After SSF, fermented biomass had 1.9 times higher protein content (up to 20.2 ± 1.7% DM) than the original mass and an improved amino acid (AA) profile (45.7 ± 1.8% essential AAs). Fatty acid (FA) profile was also modified during fermentation process, with higher monounsaturated (MUFA) and lower polyunsaturated fatty acid (PUFA) percentage in the final product compared with initial substrate. Phenolic compound concentration was double in final biomass than in initial substrate (up to 8.9 ± 1.5 mg GAE/g DM) and fermented product had higher antioxidant activity (DPPH reduction of 81.3 ± 7.7% and TEAC of 3.6 ± 0.3 mg/g DM). Compared with previously reported results, fruit complementation with vegetables increased the available nitrogen and resulted in higher biomass production. The fruit and vegetable leachate (FVL) obtained by centrifugation was treated by SmF and led, per liter of substrate, to 10.6 ± 1.4 g of fungal biomass and 3.3 g protein after 7 days of fermentation. Obtained fungal biomass was rich in PUFAs (27.1 ± 7.2% of total FA) and had an AA profile comparable to soybean meal, with 45.3 ± 1.5% of essential amino acids (EAA). In conclusion, results demonstrate that combined solid and liquid fermentation is a successful strategy for FVd valorisation to produce valuable alternative feed ingredient due to their high protein and the well-balanced lipid content and amino acid profile.
Collapse
Affiliation(s)
- Jone Ibarruri
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain.
| | - Marta Cebrián
- AZTI, Food Research, Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Bizkaia, Astondo Bidea, Edificio 609, 48160, Derio, Bizkaia, Spain
| | - Igor Hernández
- Universidad Del País Vasco/ Euskal Herriko Unibertsitatea, Facultad de Farmacia, Paseo de La Facultad 7, 01006, Vitoria-Gasteiz, Spain
| |
Collapse
|
31
|
Effect of high levels of CO2 and O2 on membrane fatty acid profile and membrane physiology of meat spoilage bacteria. Eur Food Res Technol 2021. [DOI: 10.1007/s00217-020-03681-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThe membrane is the major protective barrier separating the cell from the environment and is thus important for bacteria to survive environmental stress. This study investigates changes in membrane lipid compositions and membrane physiology of meat spoiling bacteria in response to high CO2 (30%) and O2 (70%) concentrations, as commonly used for modified atmosphere packaging of meat. Therefore, the fatty acid profile as well as membrane fluidity, permeability and cell surface were determined and correlated to the genomic settings of five meat spoiling bacteria Brochothrix (B.) thermosphacta, Carnobacterium (C.) divergens, C. maltaromaticum, Leuconostoc (L.) gelidum subsp. gelidum and L. gelidum subsp. gasicomitatum cultivated under different gas atmospheres. We identified different genomic potentials for fatty acid adaptations, which were in accordance with actual measured changes in the fatty acid composition for each species in response to CO2 and/or O2, e.g., an increase in saturated, iso and cyclopropane fatty acids. Even though fatty acid changes were species-specific, the general physiological responses were similar, comprising a decreased membrane permeability and fluidity. Thus, we concluded that meat spoiling bacteria facilitate a change in membrane fatty acids upon exposure to O2 and CO2, what leads to alteration of membrane fluidity and permeability. The observed adaptations might contribute to the resistance of meat spoilers against detrimental effects of the gases O2 and CO2 and thus help to explain their ability to grow under different modified atmospheres. Furthermore, this study provides fundamental knowledge regarding the impact of fatty acid changes on important membrane properties of bacteria.
Collapse
|
32
|
Walczak-Skierska J, Złoch M, Pauter K, Pomastowski P, Buszewski B. Lipidomic analysis of lactic acid bacteria strains by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. J Dairy Sci 2020; 103:11062-11078. [PMID: 33041037 DOI: 10.3168/jds.2020-18753] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022]
Abstract
Analysis by MALDI-TOF mass spectrometry and gas chromatography-mass spectrometry was used to characterize the lipid profile of 3 lactic acid bacteria strains. By gas chromatography coupled with mass spectrometry, 23 fatty acids were identified. Dominant acids were palmitic (C16:0), oleic (C18:1), and α-linoleic acid (C18:3n-3) for Lactobacillus paracasei; for Lactococcus lactis they were palmitic (C16:0), gondoic (C20:1), myristoleic (C14:1), and eicosadienoic acid (C20:2), respectively; and in the case of Lactobacillus curvatus were C18:1, C18:2n-6, and C16:0, respectively. The effect of the medium on fatty acid composition was also determined. In addition, the fatty acid profile was also compared using MALDI MS analysis. The MALDI-TOF MS was used for qualitative analysis and identification of bacterial lipids. Phosphatidylglycerol, phosphatidylethanolamine, phosphatidylinositol, phosphatidylcholine, triacylglycerols, and ceramides were the most abundant species in lactic acid bacteria. One hundred different combinations of fatty acids in polar and nonpolar lipids have been identified, including 11 phospholipids (18 phosphatidylglycerol, 16 phosphatidylethanolamine, 10 phosphatidylinositol, 8 phosphatidylcholine, 4 lyso-phosphatidylethanolamine, 3 lyso-phosphatidylcholine, 3 phosphatidylserine, 1 lyso-phosphatidic acid, 1 lyso-phosphatidylglycerol, 1 lyso-phoshatidylinositol, and 1 phosphatidic acid), 23 triacylglycerols, 9 ceramides, and 2 sphingomyelin. The most abundant fatty acids identified were C16:0, C16:1, C18:0, and C18:3. Obtained lipid profiles allowed to distinguish the tested bacterial strains.
Collapse
Affiliation(s)
- Justyna Walczak-Skierska
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Michał Złoch
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland
| | - Katarzyna Pauter
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| | - Paweł Pomastowski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland.
| | - Bogusław Buszewski
- Centre for Modern Interdisciplinary Technologies, Nicolaus Copernicus University in Toruń, Wileńska 4, 87-100 Toruń, Poland; Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, 87-100 Toruń, Poland
| |
Collapse
|
33
|
Panwar H, Rokana N, Aparna SV, Kaur J, Singh A, Singh J, Singh KS, Chaudhary V, Puniya AK. Gastrointestinal stress as innate defence against microbial attack. J Appl Microbiol 2020; 130:1035-1061. [PMID: 32869386 DOI: 10.1111/jam.14836] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/09/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022]
Abstract
The human gastrointestinal (GI) tract has been bestowed with the most difficult task of protecting the underlying biological compartments from the resident commensal flora and the potential pathogens in transit through the GI tract. It has a unique environment in which several defence tactics are at play while maintaining homeostasis and health. The GI tract shows myriad number of environmental extremes, which includes pH variations, anaerobic conditions, nutrient limitations, elevated osmolarity etc., which puts a check to colonization and growth of nonfriendly microbial strains. The GI tract acts as a highly selective barrier/platform for ingested food and is the primary playground for balance between the resident and uninvited organisms. This review focuses on antimicrobial defense mechanisms of different sections of human GI tract. In addition, the protective mechanisms used by microbes to combat the human GI defence systems are also discussed. The ability to survive this innate defence mechanism determines the capability of probiotic or pathogen strains to confer health benefits or induce clinical events respectively.
Collapse
Affiliation(s)
- H Panwar
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - N Rokana
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - S V Aparna
- Department of Dairy Microbiology, College of Dairy Science and Technology, Kerala Veterinary and Animal Science University, Mannuthy, Thrissur, India
| | - J Kaur
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - A Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - J Singh
- Department of Dairy Microbiology, College of Dairy Science and Technology, Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, Punjab, India
| | - K S Singh
- Structure and Function of Proteins, Helmholtz Centre for Infection Research, Braunschweig, Germany
| | - V Chaudhary
- Department of Microbiology, Punjab Agriculture University, Ludhiana, Punjab, India
| | - A K Puniya
- Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, India
| |
Collapse
|
34
|
Аbdulinа DR, Iutynska GO, Purish LM. Fatty acid composition of sulfate-reducing bacteria isolated from technogenic ecotopes. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.04.103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
35
|
Fei YY, Bhat JA, Gai JY, Zhao TJ. Global Transcriptome Profiling of Enterobacter Strain NRS-1 in Response to Hydrogen Peroxide Stress Treatment. Appl Biochem Biotechnol 2020; 191:1638-1652. [PMID: 32198600 DOI: 10.1007/s12010-020-03313-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 03/12/2020] [Indexed: 10/24/2022]
Abstract
Microbes are often subjected to oxidative stress in nature that badly affects their growth rate and viability. Although the response of microbes against oxidative stress has been characterized at the chemical, physiological, and molecular levels, the mechanism of gene-regulation network adaptations of bacteria in response to oxidative stress remains largely unknown. In this study, transcriptomic profiling of glyphosate-tolerant Enterobacter strain NRS-1 was analyzed under 9 mM H2O2 stress using RNA-seq and qRT-PCR. The lag period in the growth of NRS-1 was very short compared with wild-type strain under H2O2 treatment. A total of 113 genes are identified as differentially expressed genes (DEGs) under H2O2 that include 38 upregulated and 75 downregulated transcripts. But not any genes regulated by major oxidative regulons, viz., oxyR, soxR, rpoS, perR, ohrR, and σв, have been reported in DEGs, hence potentially reflecting that specific changes have occurred in NRS-1 for adaptation to oxidative stress. Based on the functions of the DEGs, six elements namely formate dehydrogenase, processes associated with iron ions, repair programs, multidrug resistance, antioxidant defense, and energy generation (mqo, sdhC) might have contributed for stress tolerance in NRS-1. These elements are proposed to form a molecular network explaining gene response of NRS-1 to stress, and ensure global cell protection and growth recovery of NRS-1. These findings enrich the view of gene regulation in bacteria in response to H2O2 oxidative stress.
Collapse
Affiliation(s)
- Yun-Yan Fei
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China
| | - Javaid Akhter Bhat
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China
| | - Jun-Yi Gai
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China
| | - Tuan-Jie Zhao
- Soybean Research Institute, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu, People's Republic of China.
- National Center for Soybean Improvement, Nanjing Agricultural University, Weigang 1 Hao, Xuanwu District, Nanjing, 210095, Jiangsu Province, People's Republic of China.
- National Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing, 210095, People's Republic of China.
- Key Laboratory of Biology and Genetic Improvement of Soybean, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
36
|
Liang S, Jiang W, Song Y, Zhou SF. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Lactobacillus delbrueckii Submitted to Adaptive Laboratory Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7660-7669. [PMID: 32603099 DOI: 10.1021/acs.jafc.0c00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To decrease d-lactic acid production cost, sugarcane molasses and soybean meal, low-cost agro-industrial wastes, were selected as feedstock. First, sugarcane molasses was used directly by Lactobacillus delbrueckii S-NL31, and the nutrients were released from soybean meal by protease hydrolysis. Subsequently, to ensure intensive substrate utilization and enhanced d-lactic acid production from sugarcane molasses and soybean meal, adaptation of L. delbrueckii S-NL31 to substrates was performed through adaptive laboratory evolution. After two-phase adaptive laboratory evolution, the evolved strain L. delbrueckii S-NL31-CM3-SBM with improved cell growth and d-lactic acid production on sugarcane molasses and soybean meal was obtained. To decipher the potential reasons for improved fermentation performance, a metabolomics-based approach was developed to profile the differences of intracellular metabolism between initial and evolved strain. The in-depth analysis elucidated how the key factors exerted influence on d-lactic acid biosynthesis. The results revealed that the enhancement of glycolysis pathway and cofactor supply was directly associated with increased lactic acid production, and the reinforcement of pentose phosphate pathway, amino acid metabolism, and oleic acid uptake improved cell survival and growth. These might be the main reasons for significantly improved d-lactic acid production by adaptive laboratory evolution. Finally, fed-batch simultaneous enzymatic hydrolysis of soybean meal and fermentation process by evolved strain resulted in d-lactic acid levels of 112.3 g/L, with an average production efficiency of 2.4 g/(L × h), a yield of 0.98 g/g sugar, and optical purity of 99.6%. The results show the applicability of d-lactic acid production in L. delbrueckii fed on agro-industrial wastes through adaptive laboratory evolution.
Collapse
Affiliation(s)
- Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Yibo Song
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
37
|
Wang C, Ren X, Yu C, Wang J, Wang L, Zhuge X, Liu X. Physiological and Transcriptional Responses of Streptomyces albulus to Acid Stress in the Biosynthesis of ε-Poly-L-lysine. Front Microbiol 2020; 11:1379. [PMID: 32636829 PMCID: PMC7317143 DOI: 10.3389/fmicb.2020.01379] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
Streptomyces albulus has commercially been used for the production of ε-poly-L-lysine (ε-PL), a natural food preservative, where acid stress is inevitably encountered in the biosynthesis process. To elucidate the acid tolerance response (ATR), a comparative physiology and transcriptomic analysis of S. albulus M-Z18 at different environmental pH (5.0, 4.0, and 3.0) was carried out. In response to acid stress, cell envelope regulated the membrane fatty acid composition and chain length to reduce damage. Moreover, intracellular pH homeostasis was maintained by increasing H+-ATPase activity and intracellular ATP and amino acid (mainly arginine, glutamate, aspartate and lysine) concentrations. Transcriptional analysis based on RNA-sequencing indicated that acid stress aroused global changes and the differentially expressed genes involved in transcriptional regulation, stress-response protein, transporter, cell envelope, secondary metabolite biosynthesis, DNA and RNA metabolism and ribosome subunit. Consequently, the ATR of S. albulus was preliminarily proposed. Notably, it is indicated that the biosynthesis of ε-PL is also a response mechanism for S. albulus to combat acid stress. These results provide new insights into the ATR of S. albulus and will contribute to the production of ε-PL via adaptive evolution or metabolic engineering.
Collapse
Affiliation(s)
- Chenying Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xidong Ren
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Chao Yu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Junming Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Li Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| | - Xin Zhuge
- Process Development Department, IntellectiveBio Co., Ltd., Suzhou, China
| | - Xinli Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China.,Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
| |
Collapse
|
38
|
Min B, Kim K, Li V, Cho S, Kim H. Changes in Cell Membrane Fatty Acid Composition of Streptococcus thermophilus in Response to Gradually Increasing Heat Temperature. J Microbiol Biotechnol 2020; 30:739-748. [PMID: 32482940 PMCID: PMC9745660 DOI: 10.4014/jmb.1912.12053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/28/2020] [Indexed: 12/15/2022]
Abstract
In this study, a method of heat adaptation was implemented in an attempt to increase the upper thermal threshold of two Streptococcus thermophilus found in South Korea and identified the alterations in membrane fatty acid composition to adaptive response to heat. In order to develop heat tolerant lactic acid bacteria, heat treatment was continuously applied to bacteria by increasing temperature from 60°C until the point that no surviving cell was detected. Our results indicated significant increase in heat tolerance of heat-adapted strains compared to the wild type (WT) strains. In particular, the survival ratio of basically low heat-tolerant strain increased even more. In addition, the strains with improved heat tolerance acquired cross protection, which improved their survival ratio in acid, bile salts and osmotic conditions. A relation between heat tolerance and membrane fatty acid composition was identified. As a result of heat adaptation, the ratio of unsaturated to saturated fatty acids (UFA/SFA) and C18:1 relative concentration were decreased. C6:0 in only heatadapted strains and C22:0 in only the naturally high heat tolerant strain were detected. These results support the hypothesis, that the consequent increase of SFA ratio is a cellular response to environmental stresses such as high temperatures, and it is able to protect the cells from acid, bile salts and osmotic conditions via cross protection. This study demonstrated that the increase in heat tolerance can be utilized as a mean to improve bacterial tolerance against various environmental stresses.
Collapse
Affiliation(s)
- Bonggyu Min
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Kkotnim Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Vladimir Li
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 0886, Republic of Korea
| | - Seoae Cho
- C&K genomics Inc., C-1008, H businesspark, Seoul 08826, Republic of Korea
| | - Heebal Kim
- Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 0886, Republic of Korea
- C&K genomics Inc., C-1008, H businesspark, Seoul 08826, Republic of Korea
| |
Collapse
|
39
|
Mbye M, Baig MA, AbuQamar SF, El-Tarabily KA, Obaid RS, Osaili TM, Al-Nabulsi AA, Turner MS, Shah NP, Ayyash MM. Updates on understanding of probiotic lactic acid bacteria responses to environmental stresses and highlights on proteomic analyses. Compr Rev Food Sci Food Saf 2020; 19:1110-1124. [PMID: 33331686 DOI: 10.1111/1541-4337.12554] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 12/15/2022]
Abstract
Probiotics are defined as live microorganisms that improve the health of the host when administered in adequate quantities. Nonetheless, probiotics encounter extreme environmental conditions during food processing or along the gastrointestinal tract. This review discusses different environmental stresses that affect probiotics during food preparation, storage, and along the alimentary canal, including high temperature, low temperature, low and alkaline pH, oxidative stress, high hydrostatic pressure, osmotic pressure, and starvation. The understanding of how probiotics deal with environmental stress and thrive provides useful information to guide the selection of the strains with enhanced performance in specific situations, in food processing or during gastrointestinal transit. In most cases, multiple biological functions are affected upon exposure of the cell to environmental stress. Sensing of sublethal environmental stress can allow for adaptation processes to occur, which can include alterations in the expression of specific proteins.
Collapse
Affiliation(s)
- Mustapha Mbye
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Mohd Affan Baig
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| | - Synan F AbuQamar
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE
| | - Khaled A El-Tarabily
- Department of Biology, College of Science, United Arab Emirates University (UAEU), Al Ain, UAE.,Khalifa Center for Genetic Engineering and Biotechnology, United Arab Emirates University (UAEU), Al-Ain, UAE.,College of Science, Health, Engineering and Education, Murdoch University, Murdoch, Western Australia, Australia
| | - Reyad S Obaid
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE
| | - Tareq M Osaili
- Department of Clinical Nutrition and Dietetics, College of Health Sciences, University of Sharjah, Sharjah, UAE.,Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas A Al-Nabulsi
- Department of Nutrition and Food Technology, Jordan University of Science and Technology, Irbid, Jordan
| | - Mark S Turner
- School of Agriculture and Food Sciences, the University of Queensland (UQ), Brisbane, Queensland, Australia
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, the University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Mutamed M Ayyash
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University (UAEU), Al Ain, 15551, UAE
| |
Collapse
|
40
|
Senizza A, Rocchetti G, Callegari ML, Lucini L, Morelli L. Linoleic acid induces metabolic stress in the intestinal microorganism Bifidobacterium breve DSM 20213. Sci Rep 2020; 10:5997. [PMID: 32265475 PMCID: PMC7138814 DOI: 10.1038/s41598-020-62897-w] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Accepted: 02/27/2020] [Indexed: 02/04/2023] Open
Abstract
Despite clinical and research interest in the health implications of the conjugation of linoleic acid (LA) by bifidobacteria, the detailed metabolic pathway and physiological reasons underlying the process remain unclear. This research aimed to investigate, at the molecular level, how LA affects the metabolism of Bifidobacterium breve DSM 20213 as a model for the well-known LA conjugation phenotype of this species. The mechanisms involved and the meaning of the metabolic changes caused by LA to B. breve DSM 20213 are unclear due to the lack of comprehensive information regarding the responses of B. breve DSM 20213 under different environmental conditions. Therefore, for the first time, an untargeted metabolomics-based approach was used to depict the main changes in the metabolic profiles of B. breve DSM 20213. Both supervised and unsupervised statistical methods applied to the untargeted metabolomic data allowed confirming the metabolic changes of B. breve DSM 20213 when exposed to LA. In particular, alterations to the amino-acid, carbohydrate and fatty-acid biosynthetic pathways were observed at the stationary phase of growth curve. Among others, significant up-regulation trends were detected for aromatic (such as tyrosine and tryptophan) and sulfur amino acids (i.e., methionine and cysteine). Besides confirming the conjugation of LA, metabolomics suggested a metabolic reprogramming during the whole growth curve and an imbalance in redox status following LA exposure. Such redox stress resulted in the down-accumulation of peroxide scavengers such as low-molecular-weight thiols (glutathione- and mycothiol-related compounds) and ascorbate precursors, together with the up-accumulation of oxidized (hydroxy- and epoxy-derivatives) forms of fatty acids. Consistently, growth was reduced and the levels of the oxidative stress marker malondialdehyde were higher in LA-exposed B. breve DSM 20213 than in the control.
Collapse
Affiliation(s)
- Alice Senizza
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Gabriele Rocchetti
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| | - Maria Luisa Callegari
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
- Centre for Research on Biotechnology (CRB), Università Cattolica del Sacro Cuore, via Milano 24, 26100, Cremona, Italy
| | - Luigi Lucini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy.
| | - Lorenzo Morelli
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, via Emilia Parmense 84, 29122, Piacenza, Italy
| |
Collapse
|
41
|
Siroli L, Braschi G, Rossi S, Gottardi D, Patrignani F, Lanciotti R. Lactobacillus paracasei A13 and High-Pressure Homogenization Stress Response. Microorganisms 2020; 8:E439. [PMID: 32244939 PMCID: PMC7143770 DOI: 10.3390/microorganisms8030439] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/17/2022] Open
Abstract
Sub-lethal high-pressure homogenization treatments applied to Lactobacillus paracasei A13 demonstrated to be a useful strategy to enhance technological and functional properties without detrimental effects on the viability of this strain. Modification of membrane fatty acid composition is reported to be the main regulatory mechanisms adopted by probiotic lactobacilli to counteract high-pressure stress. This work is aimed to clarify and understand the relationship between the modification of membrane fatty acid composition and the expression of genes involved in fatty acid biosynthesis in Lactobacillus paracasei A13, before and after the application of different sub-lethal hyperbaric treatments. Our results showed that Lactobacillus paracasei A13 activated a series of reactions aimed to control and stabilize membrane fluidity in response to high-pressure homogenization treatments. In fact, the production of cyclic fatty acids was counterbalanced by the unsaturation and elongation of fatty acids. The gene expression data indicate an up-regulation of the genes accA, accC, fabD, fabH and fabZ after high-pressure homogenization treatment at 150 and 200 MPa, and of fabK and fabZ after a treatment at 200 MPa suggesting this regulation of the genes involved in fatty acids biosynthesis as an immediate response mechanism adopted by Lactobacillus paracasei A13 to high-pressure homogenization treatments to balance the membrane fluidity. Although further studies should be performed to clarify the modulation of phospholipids and glycoproteins biosynthesis since they play a crucial role in the functional properties of the probiotic strains, this study represents an important step towards understanding the response mechanisms of Lactobacillus paracasei A13 to sub-lethal high-pressure homogenization treatments.
Collapse
Affiliation(s)
- Lorenzo Siroli
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Giacomo Braschi
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Samantha Rossi
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Davide Gottardi
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
| | - Francesca Patrignani
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| | - Rosalba Lanciotti
- Department of Agricultural and Food Sciences, University of Bologna, p.zza Goidanich 60, 47521 Cesena, Italy; (L.S.); (G.B.); (S.R.); (D.G.); (R.L.)
- Interdepartmental Center for Industrial Agri-food Research, University of Bologna, Piazza Goidanich 60, 47521 Cesena, Italy
| |
Collapse
|
42
|
Mendonça AA, da Silva PKN, Calazans TLS, de Souza RB, Elsztein C, de Morais Junior MA. Gene regulation of the Lactobacillus vini in response to industrial stress in the fuel ethanol production. Microbiol Res 2020; 236:126450. [PMID: 32146295 DOI: 10.1016/j.micres.2020.126450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/25/2020] [Accepted: 02/27/2020] [Indexed: 02/06/2023]
Abstract
The industrial ethanol fermentation imposes several stresses to microorganisms. However, some bacterial species are well adapted and manage to endure these harmful conditions. Lactobacillus vini is one of the most found bacteria in these environments, indicating the existence of efficient tolerance mechanisms. In view of this premise, the present study aimed to describe the tolerance of L. vini to several stressing agents encounter in industrial environments and the genetic components of the stress response. In general, L. vini showed significant tolerance to stressors commonly found in fuel-ethanol fermentations, and only doses higher than normally reached in processes restrained its growth. The lag phase and the growth rate were the most responsive kinetic parameter affected. Gene expression analysis revealed that uspII gene positively responded to all conditions tested, a typical profile of a general stress response gene. In addition, the results also revealed aspects of regulatory modules of co-expressed genes responding to different stresses, and also the similarities of response mechanism with basis in common cellular damages. Altogether, these data contribute to uncover the factors that could favour L. vini in the industrial fermentation which could be shared with other well adapted species and reports the first stress response genes in this bacterium.
Collapse
Affiliation(s)
| | | | | | | | - Carolina Elsztein
- Department of Genetics, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
43
|
Zhang Z, Zhang W, Bi Y, Han Y, Zong Y, Prusky D. Cuminal Inhibits Trichothecium roseum Growth by Triggering Cell Starvation: Transcriptome and Proteome Analysis. Microorganisms 2020; 8:E256. [PMID: 32075192 PMCID: PMC7074788 DOI: 10.3390/microorganisms8020256] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 02/06/2020] [Accepted: 02/11/2020] [Indexed: 12/20/2022] Open
Abstract
Trichothecium roseum is a harmful postharvest fungus causing serious damage, together with the secretion of insidious mycotoxins, on apples, melons, and other important fruits. Cuminal, a predominant component of Cuminum cyminum essential oil has proven to successfully inhibit the growth of T. roseum in vitro and in vivo. Electron microscopic observations revealed cuminal exposure impaired the fungal morphology and ultrastructure, particularly the plasmalemma. Transcriptome and proteome analysis was used to investigate the responses of T. roseum to exposure of cuminal. In total, 2825 differentially expressed transcripts (1516 up and 1309 down) and 225 differentially expressed proteins (90 up and 135 down) were determined. Overall, notable parts of these differentially expressed genes functionally belong to subcellular localities of the membrane system and cytosol, along with ribosomes, mitochondria and peroxisomes. According to the localization analysis and the biological annotation of these genes, carbohydrate and lipids metabolism, redox homeostasis, and asexual reproduction were among the most enriched gene ontology (GO) terms. Biological pathway enrichment analysis showed that lipids and amino acid degradation, ATP-binding cassette transporters, membrane reconstitution, mRNA surveillance pathway and peroxisome were elevated, whereas secondary metabolite biosynthesis, cell cycle, and glycolysis/gluconeogenesis were down regulated. Further integrated omics analysis showed that cuminal exposure first impaired the polarity of the cytoplasmic membrane and then triggered the reconstitution and dysfunction of fungal plasmalemma, resulting in handicapped nutrient procurement of the cells. Consequently, fungal cells showed starvation stress with limited carbohydrate metabolism, resulting a metabolic shift to catabolism of the cell's own components in response to the stress. Additionally, these predicaments brought about oxidative stress, which, in collaboration with the starvation, damaged certain critical organelles such as mitochondria. Such degeneration, accompanied by energy deficiency, suppressed the biosynthesis of essential proteins and inhibited fungal growth.
Collapse
Affiliation(s)
- Zhong Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Wenting Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Ye Han
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization, The 12 Volcani Center, Beit Dagan 50200, Israel
| |
Collapse
|
44
|
Potential of Yarrowia lipolytica and Debaryomyces hansenii strains to produce high quality food ingredients based on cricket powder. Lebensm Wiss Technol 2020. [DOI: 10.1016/j.lwt.2019.108866] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Qiao Y, Liu G, Lv X, Fan X, Zhang Y, Meng L, Ai M, Feng Z. Metabolic Pathway Profiling in Intracellular and Extracellular Environments of Streptococcus thermophilus During pH-Controlled Batch Fermentations. Front Microbiol 2020; 10:3144. [PMID: 32038577 PMCID: PMC6990133 DOI: 10.3389/fmicb.2019.03144] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 12/29/2019] [Indexed: 12/31/2022] Open
Abstract
Elucidating the metabolite profiles during the growth of Streptococcus thermophilus is beneficial for understanding its growth characteristics. The changes in the intracellular and extracellular concentrations of carbohydrates, nucleotides, amino sugars, nucleoside sugars, fatty acids, and amino acids, as well as their metabolites over time, were investigated by metabolomics technology. Most metabolites of nucleotides were highly accumulated in the intracellular environment after the mid-exponential phase. Increases in the intracellular unsaturated fatty acids and N-acetyl-glucosamine and N-acetyl-muramoate recycling provided potential evidence that cell envelope remodeling occurred after the mid-exponential phase. At the later fermentation stages, potentially functional metabolite produced by glycine was highly accumulated in the intracellular environment. Additionally, potential toxic metabolites produced by phenylalanine and tyrosine could not be excreted into the extracellular environment in a timely basis. The accumulation of large amounts of these metabolites might be the primary cause of the overconsumption of amino acids and influence the growth of S. thermophilus.
Collapse
Affiliation(s)
- Yali Qiao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Gefei Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuepeng Lv
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Xuejing Fan
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Yanjiao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Li Meng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Mingzhi Ai
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, Harbin, China
| |
Collapse
|
46
|
Yang H, Yang L, Zhang J, Li H, Tu Z, Wang X. Exploring functional core bacteria in fermentation of a traditional Chinese food, Aspergillus-type douchi. PLoS One 2019; 14:e0226965. [PMID: 31887171 PMCID: PMC6936781 DOI: 10.1371/journal.pone.0226965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 12/09/2019] [Indexed: 12/03/2022] Open
Abstract
Douchi is a type of traditional Chinese flavoring food that has been used for thousands of years and is produced by multispecies solid-state fermentation. However, the correlation between the flavor, the microbiota, and the functional core microbiota in Aspergillus-type douchi fermentation remains unclear. In this study, Illumina MiSeq sequencing and chromatography were used to investigate the bacterial community and flavor components in Aspergillus-type douchi fermentation. The dominant phyla were Firmicutes, Proteobacteria, and Actinobacteria, and the dominant genera were Weissella, Bacillus, Anaerosalibacter, Lactobacillus, Staphylococcus, and Enterococcus. A total of 58 flavor components were detected during fermentation, including two alcohols, 14 esters, five pyrazines, three alkanes, four aldehydes, three phenols, six acids, and five other compounds. Bidirectional orthogonal partial least square modeling showed that Corynebacterium_1, Lactococcus, Atopostipes, Peptostreptococcus, norank_o__AKYG1722, Truepera, Gulosibacter, norank_f__Actinomycetaceae, and unclassified_f__Rhodobacteraceae are the functional core microbiota responsible for the formation of the flavor components during douchi fermentation. This is the first study to investigate the functional core microbiota in douchi fermentation using Illumina MiSeq sequencing and chromatographic techniques. Our findings extend our understanding of the relationships between flavor, the microbiota, and the functional core microbiota during Aspergillus-type douchi fermentation.
Collapse
Affiliation(s)
- Huilin Yang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Lin Yang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Ju Zhang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Hao Li
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Zongcai Tu
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
| | - Xiaolan Wang
- Key Lab of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, Jiangxi Normal University, Nanchang, China
- * E-mail:
| |
Collapse
|
47
|
Gaucher F, Kponouglo K, Rabah H, Bonnassie S, Ossemond J, Pottier S, Jardin J, Briard-Bion V, Marchand P, Blanc P, Jeantet R, Jan G. Propionibacterium freudenreichii CIRM-BIA 129 Osmoadaptation Coupled to Acid-Adaptation Increases Its Viability During Freeze-Drying. Front Microbiol 2019; 10:2324. [PMID: 31681198 PMCID: PMC6797830 DOI: 10.3389/fmicb.2019.02324] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/23/2019] [Indexed: 12/12/2022] Open
Abstract
Propionibacterium freudenreichii is a beneficial bacterium with documented effects on the gut microbiota and on inflammation. Its presence within the animal and human intestinal microbiota was correlated with immunomodulatory effects, mediated by both propionibacterial surface components and by secreted metabolites. It is widely implemented, both in the manufacture of fermented dairy products such as Swiss-type cheeses, and in the production of probiotic food complements, under the form of freeze-dried powders. The bottleneck of this drying process consists in the limited survival of bacteria during drying and storage. Protective pre-treatments have been applied to other bacteria and may, in a strain-dependent manner, confer enhanced resistance. However, very little information was yet published on P. freudenreichii adaptation to freeze-drying. In this report, an immunomodulatory strain of this probiotic bacterium was cultured under hyperosmotic constraint in order to trigger osmoadaptation. This adaptation was then combined with acid or thermal pre-treatment. Such combination led to accumulation of key stress proteins, of intracellular compatible solute glycine betaine, to modulation of the propionibacterial membrane composition, and to enhanced survival upon freeze-drying. This work opens new perspectives for efficient production of live and active probiotic propionibacteria.
Collapse
Affiliation(s)
- Floriane Gaucher
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bioprox, Levallois-Perret, France
| | | | - Houem Rabah
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Bba, Pôle Agronomique Ouest, Régions Bretagne et Pays de la Loire, Rennes, France
| | - Sylvie Bonnassie
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
- Université de Rennes I, Rennes, France
| | | | - Sandrine Pottier
- CNRS, ISCR – UMR 6226, PRISM, BIOSIT – UMS 3480 Université de Rennes I, Rennes, France
| | | | | | | | | | | | - Gwénaël Jan
- UMR STLO, Agrocampus Ouest, INRA, Rennes, France
| |
Collapse
|
48
|
Bacteria for Butanol Production: Bottlenecks, Achievements and Prospects. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2019. [DOI: 10.22207/jpam.13.3.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Metabolomic profiling of oxalate-degrading probiotic Lactobacillus acidophilus and Lactobacillus gasseri. PLoS One 2019; 14:e0222393. [PMID: 31545840 PMCID: PMC6756784 DOI: 10.1371/journal.pone.0222393] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 08/28/2019] [Indexed: 12/12/2022] Open
Abstract
Oxalate, a ubiquitous compound in many plant-based foods, is absorbed through the intestine and precipitates with calcium in the kidneys to form stones. Over 80% of diagnosed kidney stones are found to be calcium oxalate. People who form these stones often experience a high rate of recurrence and treatment options remain limited despite decades of dedicated research. Recently, the intestinal microbiome has become a new focus for novel therapies. Studies have shown that select species of Lactobacillus, the most commonly included genus in modern probiotic supplements, can degrade oxalate in vitro and even decrease urinary oxalate in animal models of Primary Hyperoxaluria. Although the purported health benefits of Lactobacillus probiotics vary significantly between species, there is supporting evidence for their potential use as probiotics for oxalate diseases. Defining the unique metabolic properties of Lactobacillus is essential to define how these bacteria interact with the host intestine and influence overall health. We addressed this need by characterizing and comparing the metabolome and lipidome of the oxalate-degrading Lactobacillus acidophilus and Lactobacillus gasseri using ultra-high-performance liquid chromatography-high resolution mass spectrometry. We report many species-specific differences in the metabolic profiles of these Lactobacillus species and discuss potential probiotic relevance and function resulting from their differential expression. Also described is our validation of the oxalate-degrading ability of Lactobacillus acidophilus and Lactobacillus gasseri, even in the presence of other preferred carbon sources, measuring in vitro 14C-oxalate consumption via liquid scintillation counting.
Collapse
|
50
|
Fonseca F, Pénicaud C, Tymczyszyn EE, Gómez-Zavaglia A, Passot S. Factors influencing the membrane fluidity and the impact on production of lactic acid bacteria starters. Appl Microbiol Biotechnol 2019; 103:6867-6883. [DOI: 10.1007/s00253-019-10002-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 06/25/2019] [Accepted: 06/27/2019] [Indexed: 01/09/2023]
|