1
|
Sánchez-Porro C, Aghdam EM, Montazersaheb S, Tarhriz V, Kazemi E, Amoozegar MA, Ventosa A, Hejazi MS. Marinobacter azerbaijanicus sp. nov., a moderately halophilic bacterium from Urmia Lake, Iran. Int J Syst Evol Microbiol 2024; 74. [PMID: 38568082 DOI: 10.1099/ijsem.0.006308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
A novel moderately halophilic, Gram-stain-negative and facultatively anaerobic bacterium, designated as strain TBZ242T, was isolated from water of Urmia Lake in the Azerbaijan region of Iran. The cells were found to be rod-shaped and motile by a single polar flagellum, producing circular and yellowish colonies. The strain could grow in the presence of 0.5-10 % (w/v) NaCl (optimum, 2.5-5 %). The temperature and pH ranges for growth were 15-45 °C (optimum 30 °C) and pH 7.0-11.0 (optimum pH 8.0) on marine agar. The 16S rRNA gene sequence analysis revealed that strain TBZ242T belonged to the genus Marinobacter, showing the highest similarities to Marinobacter algicola DG893T (98.8 %), Marinobacter vulgaris F01T (98.8 %), Marinobacter salarius R9SW1T (98.5 %), Marinobacter panjinensis PJ-16T (98.4 %), Marinobacter orientalis W62T (98.0 %) and Marinobacter denitrificans JB2H27T (98.0 %). The 16S rRNA and core-genome phylogenetic trees showed that strain TBZ242T formed a distinct branch, closely related to a subclade accommodating M. vulgaris, M. orientalis, M. panjinensis, M. denitrificans, M. algicola, M. salarius and M. iranensis, within the genus Marinobacter. Average nucleotide identity and digital DNA-DNA hybridization values between strain TBZ242T and the type strains of the related species of Marinobacter were ≤85.0 and 28.6 %, respectively, confirming that strain TBZ242T represents a distinct species. The major cellular fatty acids of strain TBZ242T were C16 : 0 and C16 : 1 ω7c/C16 : 1 ω6c and the quinone was ubiquinone Q-9. The genomic DNA G+C content of strain TBZ242T is 57.2 mol%. Based on phenotypic, chemotaxonomic and genomic data, strain TBZ242T represents a novel species within the genus Marinobacter, for which the name Marinobacter azerbaijanicus sp. nov. is proposed. The type strain is TBZ242T (= CECT 30649T = IBRC-M 11466T). Genomic fragment recruitment analysis showed that this species prefers aquatic saline environments with intermediate salinities, being detected on metagenomic databases of Lake Meyghan (Iran) with 5 and 18 % salinity, respectively.
Collapse
Affiliation(s)
- Cristina Sánchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Elnaz Mehdizadeh Aghdam
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Cardiovascular Center of Excellence, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Elham Kazemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, Sevilla, Spain
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
2
|
Rafieyan S, Amoozegar MA, Makzum S, Salimi-Ashtiani M, Nikou MM, Ventosa A, Sanchez-Porro C. Marinobacter iranensis sp. nov., a slightly halophilic bacterium from a hypersaline lake. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889849 DOI: 10.1099/ijsem.0.006083] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
A novel halophilic bacterium, strain 71-iT, was isolated from Inche-Broun hypersaline lake in Golestan province, in the north of Iran. It was a Gram-stain-negative, non-endospore forming, rod-shaped bacterium. It grew at 4-40 °C (optimum 30 °C), pH 6.0-11.0 (optimum pH 7.5) and with 0.5-15 % (w/v) NaCl [optimum 3 % (w/v) NaCl]. The results of phylogenetic analyses based on the 16S rRNA gene sequence comparison indicated its affiliation to the genus Marinobacter and the low percentage of identity with the most closely related species (97.5 %), indicated its placement as a novel species within this genus. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) analyses of this strain against closely related species confirmed its condition of novel taxon. On the other hand, the percentage of the average amino acid identity (AAI) affiliated strain 71-iT within the genus Marinobacter. The DNA G+C content of this isolate was 57.7 mol%. The major fatty acids were C16 : 0 and C16 : 1ω7c and/or C16 : 1 ω6c. Ubiquinone-9 was the major isoprenoid quinone and diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) were the main polar lipids of this strain. On the basis of the phylogenomic and phenotypic (including chemotaxonomic) features, we propose strain 71-iT (= IBRC M 11023T = CECT 30160T = LMG 29252T) as the type strain of a novel species within the genus Marinobacter, with the name Marinobacter iranensis sp. nov. Genomic detections of this strain in various metagenomic databases indicate that it is a relatively abundant species in environments with low salinities (approximately 5 % salinity), but not in hypersaline habitats with high salt concentrations.
Collapse
Affiliation(s)
- Shokufeh Rafieyan
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Mohammad Ali Amoozegar
- Extremophiles Laboratory, Department of Microbiology, Faculty of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran, Iran
| | - Somaye Makzum
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Mahsa Salimi-Ashtiani
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Mahdi Moshtaghi Nikou
- Microorganisms Bank, Iranian Biological Resource Centre (IBRC), ACECR Tehran-Iran, Tehran, Iran
| | - Antonio Ventosa
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| | - Cristina Sanchez-Porro
- Department of Microbiology and Parasitology, Faculty of Pharmacy, University of Sevilla, 41012 Sevilla, Spain
| |
Collapse
|
3
|
Arsenic Pollution and Anaerobic Arsenic Metabolizing Bacteria in Lake Van, the World's Largest Soda Lake. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111900. [PMID: 36431035 PMCID: PMC9694729 DOI: 10.3390/life12111900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/10/2022] [Accepted: 11/12/2022] [Indexed: 11/17/2022]
Abstract
Arsenic is responsible for water pollution in many places around the world and presents a serious health risk for people. Lake Van is the world's largest soda lake, and there are no studies on seasonal arsenic pollution and arsenic-resistant bacteria. We aimed to determine the amount of arsenic in the lake water and sediment, to isolate arsenic-metabolizing anaerobic bacteria and their identification, and determination of arsenic metabolism. Sampling was done from 7.5 m to represent the four seasons. Metal contents were determined by using ICP-MS. Pure cultures were obtained using the Hungate technique. Growth characteristics of the strains were determined at different conditions as well as at arsenate and arsenite concentrations. Molecular studies were also carried out for various resistance genes. Our results showed that Lake Van's total arsenic amount changes seasonally. As a result of 16S rRNA sequencing, it was determined that the isolates were members of 8 genera with arsC resistance genes. In conclusion, to sustain water resources, it is necessary to prevent chemical and microorganism-based pollution. It is thought that the arsenic-resistant bacteria obtained as a result of this study will contribute to the solution of environmental arsenic pollution problems, as they are the first data and provide the necessary basic data for the bioremediation studies of arsenic from contaminated environmental habitats. At the same time, the first data that will contribute to the creation of the seasonal arsenic map of Lake Van are obtained.
Collapse
|
4
|
Cooper ZS, Rapp JZ, Shoemaker AMD, Anderson RE, Zhong ZP, Deming JW. Evolutionary Divergence of Marinobacter Strains in Cryopeg Brines as Revealed by Pangenomics. Front Microbiol 2022; 13:879116. [PMID: 35733954 PMCID: PMC9207381 DOI: 10.3389/fmicb.2022.879116] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
Marinobacter spp. are cosmopolitan in saline environments, displaying a diverse set of metabolisms that allow them to competitively occupy these environments, some of which can be extreme in both salinity and temperature. Here, we introduce a distinct cluster of Marinobacter genomes, composed of novel isolates and in silico assembled genomes obtained from subzero, hypersaline cryopeg brines, relic seawater-derived liquid habitats within permafrost sampled near Utqiaġvik, Alaska. Using these new genomes and 45 representative publicly available genomes of Marinobacter spp. from other settings, we assembled a pangenome to examine how the new extremophile members fit evolutionarily and ecologically, based on genetic potential and environmental source. This first genus-wide genomic analysis revealed that Marinobacter spp. in general encode metabolic pathways that are thermodynamically favored at low temperature, cover a broad range of organic compounds, and optimize protein usage, e.g., the Entner–Doudoroff pathway, the glyoxylate shunt, and amino acid metabolism. The new isolates contributed to a distinct clade of subzero brine-dwelling Marinobacter spp. that diverged genotypically and phylogenetically from all other Marinobacter members. The subzero brine clade displays genomic characteristics that may explain competitive adaptations to the extreme environments they inhabit, including more abundant membrane transport systems (e.g., for organic substrates, compatible solutes, and ions) and stress-induced transcriptional regulatory mechanisms (e.g., for cold and salt stress) than in the other Marinobacter clades. We also identified more abundant signatures of potential horizontal transfer of genes involved in transcription, the mobilome, and a variety of metabolite exchange systems, which led to considering the importance of this evolutionary mechanism in an extreme environment where adaptation via vertical evolution is physiologically rate limited. Assessing these new extremophile genomes in a pangenomic context has provided a unique view into the ecological and evolutionary history of the genus Marinobacter, particularly with regard to its remarkable diversity and its opportunism in extremely cold and saline environments.
Collapse
Affiliation(s)
- Zachary S. Cooper
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
- *Correspondence: Zachary S. Cooper, , orcid.org/0000-0001-6515-7971
| | - Josephine Z. Rapp
- Department of Biochemistry, Microbiology and Bioinformatics, Université Laval, Québec, QC, Canada
- Center for Northern Studies (CEN), Université Laval, Québec, QC, Canada
- Institute of Integrative Biology and Systems (IBIS), Université Laval, Québec, QC, Canada
| | - Anna M. D. Shoemaker
- Department of Earth Sciences, Montana State University, Bozeman, MT, United States
| | - Rika E. Anderson
- Department of Biology, Carleton College, Northfield, MN, United States
| | - Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States
- Department of Microbiology, Ohio State University, Columbus, OH, United States
- Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W. Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
- Astrobiology Program, University of Washington, Seattle, WA, United States
| |
Collapse
|
5
|
Salinity Impact on Composition and Activity of Nitrate-Reducing Fe(II)-Oxidizing Microorganisms in Saline Lakes. Appl Environ Microbiol 2022; 88:e0013222. [PMID: 35499328 DOI: 10.1128/aem.00132-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate-reducing Fe(II)-oxidizing (NRFeOx) microorganisms contribute to nitrogen, carbon, and iron cycling in freshwater and marine ecosystems. However, NRFeOx microorganisms have not been investigated in hypersaline lakes, and their identity, as well as their activity in response to salinity, is unknown. In this study, we combined cultivation-based most probable number (MPN) counts with Illumina MiSeq sequencing to analyze the abundance and community compositions of NRFeOx microorganisms enriched from five lake sediments with different salinities (ranging from 0.67 g/L to 346 g/L). MPN results showed that the abundance of NRFeOx microorganisms significantly (P < 0.05) decreased with increasing lake salinity, from 7.55 × 103 to 8.09 cells/g dry sediment. The community composition of the NRFeOx enrichment cultures obtained from the MPNs differed distinctly among the five lakes and clustered with lake salinity. Two stable enrichment cultures, named FeN-EHL and FeN-CKL, were obtained from microcosm incubations of sediment from freshwater Lake Erhai and hypersaline Lake Chaka. The culture FeN-EHL was dominated by genus Gallionella (68.4%), while the culture FeN-CKL was dominated by genus Marinobacter (71.2%), with the former growing autotrophically and the latter requiring an additional organic substrate (acetate) and Fe(II) oxidation, caused to a large extent by chemodenitrification [reaction of nitrite with Fe(II)]. Short-range ordered Fe(III) (oxyhydr)oxides were the product of Fe(II) oxidation, and the cells were partially attached to or encrusted by the formed iron minerals in both cultures. In summary, different types of interactions between Fe(II) and nitrate-reducing bacteria may exist in freshwater and hypersaline lakes, i.e., autotrophic NRFeOx and chemodenitrification in freshwater and hypersaline environments, respectively. IMPORTANCE NRFeOx microorganisms are globally distributed in various types of environments and play a vital role in iron transformation and nitrate and heavy metal removal. However, most known NRFeOx microorganisms were isolated from freshwater and marine environments, while their identity and activity under hypersaline conditions remain unknown. Here, we demonstrated that salinity may affect the abundance, identity, and nutrition modes of NRFeOx microorganisms. Autotrophy was only detectable in a freshwater lake but not in the saline lake investigated. We enriched a mixotrophic culture capable of nitrate-reducing Fe(II) oxidation from hypersaline lake sediments. However, Fe(II) oxidation was probably caused by abiotic nitrite reduction (chemodenitrification) rather than by a biologically mediated process. Consequently, our study suggests that in hypersaline environments, Fe(II) oxidation is largely caused by chemodentrification initiated by nitrite formation by chemoheterotrophic bacteria, and additional experiments are needed to demonstrate whether or to what extent Fe(II) is enzymatically oxidized.
Collapse
|
6
|
Dewangan NK, Tran N, Wang-Reed J, Conrad JC. Bacterial aggregation assisted by anionic surfactant and calcium ions. SOFT MATTER 2021; 17:8474-8482. [PMID: 34586147 DOI: 10.1039/d1sm00479d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We identify factors leading to aggregation of bacteria in the presence of a surfactant using absorbance and microscopy. Two marine bacteria, Marinobacter hydrocarbonoclasticus SP17 and Halomonas titanicae Bead 10BA, formed aggregates of a broad size distribution in synthetic sea water in the presence of an anionic surfactant, dioctyl sodium sulfosuccinate (DOSS). Both DOSS at high concentrations and calcium ions were necessary for aggregate formation, but DOSS micelles were not required for aggregation. Addition of proteinase K but not DNase1 eliminated aggregate formation over two hours. Finally, swimming motility also enhanced aggregate formation.
Collapse
Affiliation(s)
- Narendra K Dewangan
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| | - Nhi Tran
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| | - Jing Wang-Reed
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| | - Jacinta C Conrad
- William A. Brookshire Department of Chemical and Biomolecular Engineering, University of Houston, Houston, TX, 77204-4004, USA.
| |
Collapse
|
7
|
Rapp JZ, Sullivan MB, Deming JW. Divergent Genomic Adaptations in the Microbiomes of Arctic Subzero Sea-Ice and Cryopeg Brines. Front Microbiol 2021; 12:701186. [PMID: 34367102 PMCID: PMC8339730 DOI: 10.3389/fmicb.2021.701186] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/29/2021] [Indexed: 11/16/2022] Open
Abstract
Subzero hypersaline brines are liquid microbial habitats within otherwise frozen environments, where concentrated dissolved salts prevent freezing. Such extreme conditions presumably require unique microbial adaptations, and possibly altered ecologies, but specific strategies remain largely unknown. Here we examined prokaryotic taxonomic and functional diversity in two seawater-derived subzero hypersaline brines: first-year sea ice, subject to seasonally fluctuating conditions; and ancient cryopeg, under relatively stable conditions geophysically isolated in permafrost. Overall, both taxonomic composition and functional potential were starkly different. Taxonomically, sea-ice brine communities (∼105 cells mL–1) had greater richness, more diversity and were dominated by bacterial genera, including Polaribacter, Paraglaciecola, Colwellia, and Glaciecola, whereas the more densely inhabited cryopeg brines (∼108 cells mL–1) lacked these genera and instead were dominated by Marinobacter. Functionally, however, sea ice encoded fewer accessory traits and lower average genomic copy numbers for shared traits, though DNA replication and repair were elevated; in contrast, microbes in cryopeg brines had greater genetic versatility with elevated abundances of accessory traits involved in sensing, responding to environmental cues, transport, mobile elements (transposases and plasmids), toxin-antitoxin systems, and type VI secretion systems. Together these genomic features suggest adaptations and capabilities of sea-ice communities manifesting at the community level through seasonal ecological succession, whereas the denser cryopeg communities appear adapted to intense bacterial competition, leaving fewer genera to dominate with brine-specific adaptations and social interactions that sacrifice some members for the benefit of others. Such cryopeg genomic traits provide insight into how long-term environmental stability may enable life to survive extreme conditions.
Collapse
Affiliation(s)
- Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, WA, United States
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, Ohio State University, Columbus, OH, United States.,Department of Microbiology, Ohio State University, Columbus, OH, United States.,Department of Civil, Environmental and Geodetic Engineering, Ohio State University, Columbus, OH, United States.,Center of Microbiome Science, Ohio State University, Columbus, OH, United States
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Chen M, Qin Y, Deng F, Zhou H, Wang R, Li P, Liu Y, Jiang L. Illumina MiSeq sequencing reveals microbial community succession in salted peppers with different salinity during preservation. Food Res Int 2021; 143:110234. [PMID: 33992347 DOI: 10.1016/j.foodres.2021.110234] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 02/08/2021] [Accepted: 02/14/2021] [Indexed: 12/26/2022]
Abstract
Chopped pepper is one of the traditional fermented pepper products in China. At present, the industrial production method is mainly to preserve the peppers with high salt about 1 year, and then make the product after desalination and seasoning when it is processed. However, the composition and succession of the bacterial community involved in the long-term preservation of salted pepper was complex. In this study, Illumina Miseq sequencing technology was used to reveal the succession in the bacterial community structure of different salted pepper within 10 months of preservation. The results showed that Firmicutes and Proteobacteria were dominant bacteria in all samples at the Phylum level. At the Genus level, among fresh unsalted capsicum, Fructobacillus (44.66%), Enterobacteriaceae unclassified (26.78%), Leuconostoc (12.04%) and Lactococcus (8.45%) had relatively high abundance. Enterobacteriaceae unclassified, Lactobacillus, Marinospirillum and Halomonas were identified as the main dominant bacteria in the samples with 6%-12% (w/w) salinity, and Enterobacteriaceae unclassified mainly appeared in the early stage of preservation. In 15% and 18%(w/w) salinity samples, with the increase of preservation time, the dominant genus was changed from Enterobacteriaceae unclassified to Chromohalobacterter, Tetragenococcus, Halomonas, Halovibrio, etc., while the relative abundance of Lactobacillus remained at an extremely low level. The bacterial structure of 6% (w/w) salinity samples changed significantly during preservation, while the distribution in PCoA analysis of salinity samples of 9% was similar to that of 12%. In the high-salinity samples (15%-18%), the composition of the community was highly similar in 0-6 months, but the composition changed significantly with the increase of the preservation time and the growth of halophilic bacteria (p < 0.01). Pearson correlation analysis was used to investigate that Lactobacillus exhibited a negative correlation with salinity (p < 0.01). And the salinity had a positive correlation with both the species richness and evenness in the samples, which might be the key factor for the change of the microbial community.
Collapse
Affiliation(s)
- Mengjuan Chen
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China
| | - Yeyou Qin
- Hunan tantanxiang Biotechnology Co., Ltd, Changsha 410128, People's Republic of China
| | - Fangming Deng
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, People's Republic of China
| | - Hui Zhou
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, People's Republic of China
| | - Rongrong Wang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, People's Republic of China
| | - Pao Li
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, People's Republic of China
| | - Yang Liu
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, People's Republic of China
| | - Liwen Jiang
- College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, People's Republic of China; Hunan Provincial Key Laboratory of Food Science and Biotechnology, Changsha 410128, People's Republic of China.
| |
Collapse
|
9
|
Marinobacter halodurans sp. nov., a halophilic bacterium isolated from sediment of a salt flat. Int J Syst Evol Microbiol 2020; 70:6294-6300. [DOI: 10.1099/ijsem.0.004530] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, aerobic, cream-coloured, marine bacterium, with rod-shaped cells, designated strain YJ-S3-2T, was isolated from salt flat sediment of Yongyu-do, Republic of Korea. YJ-S3-2T grew at pH 5.0–9.0 (optimum pH 7.0), 4–45 °C (optimum 30 °C) and with 1–18 % (w/v) NaCl (optimum 6 %). The results of 16S rRNA gene sequence analysis indicated that YJ-S3-2T was closely related to
Marinobacter segnicrescens
SS011B1-4T (97.0 %) followed by, '
Marinobacter nanhaiticus
' D15-8W (96.7 %),
Marinobacter bryozoorum
50-11T (96.7 %),
Marinobacter koreensis
DSMZ 179240T T (96.5 %) and
Marinobacter bohaiensis
T17T (96.5 %). The average nucleotide identity (ANI) and the genome to genome distance calculator (GGDC) estimate values between YJ-S3-2T and related type strains were 73.7–79.8 and 19.9–22.5 %, and also 73.5 and 20.7 % with
Marinobacter hydrocarbonoclasticus
. YJ-S3-2T was characterized as having Q-9 as the predominant respiratory quinone and the principal fatty acids (>10 %) were C16 : 0 (22.3 %), summed feature 9 (C17 : 1iso ω9c/C16 : 0 10-methyl, 13.8 %) and 3 (C16 : 1ω7c/C16 : 1ω6c, 11.9 %). The polar lipids consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and two unidentified phospholipids. The DNA G+C content of YJ-S3-2T is 60.9 mol%. On the basis of the polyphasic taxonomic evidence presented in this study, YJ-S3-2T should be classified as representing a novel species within the genus
Marinobacter
, for which name Marinobacter halodurans sp. nov. is proposed, with the type strain YJ-S3-2T (=KACC 19883T=KCTC 62937T=JCM 33109T).
Collapse
|
10
|
Zhong ZP, Rapp JZ, Wainaina JM, Solonenko NE, Maughan H, Carpenter SD, Cooper ZS, Jang HB, Bolduc B, Deming JW, Sullivan MB. Viral Ecogenomics of Arctic Cryopeg Brine and Sea Ice. mSystems 2020; 5:e00246-20. [PMID: 32546670 PMCID: PMC7300359 DOI: 10.1128/msystems.00246-20] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 05/24/2020] [Indexed: 01/09/2023] Open
Abstract
Arctic regions, which are changing rapidly as they warm 2 to 3 times faster than the global average, still retain microbial habitats that serve as natural laboratories for understanding mechanisms of microbial adaptation to extreme conditions. Seawater-derived brines within both sea ice (sea-ice brine) and ancient layers of permafrost (cryopeg brine) support diverse microbes adapted to subzero temperatures and high salinities, yet little is known about viruses in these extreme environments, which, if analogous to other systems, could play important evolutionary and ecosystem roles. Here, we characterized viral communities and their functions in samples of cryopeg brine, sea-ice brine, and melted sea ice. Viral abundance was high in cryopeg brine (1.2 × 108 ml-1) and much lower in sea-ice brine (1.3 × 105 to 2.1 × 105 ml-1), which roughly paralleled the differences in cell concentrations in these samples. Five low-input, quantitative viral metagenomes were sequenced to yield 476 viral populations (i.e., species level; ≥10 kb), only 12% of which could be assigned taxonomy by traditional database approaches, indicating a high degree of novelty. Additional analyses revealed that these viruses: (i) formed communities that differed between sample type and vertically with sea-ice depth; (ii) infected hosts that dominated these extreme ecosystems, including Marinobacter, Glaciecola, and Colwellia; and (iii) encoded fatty acid desaturase (FAD) genes that likely helped their hosts overcome cold and salt stress during infection, as well as mediated horizontal gene transfer of FAD genes between microbes. Together, these findings contribute to understanding viral abundances and communities and how viruses impact their microbial hosts in subzero brines and sea ice.IMPORTANCE This study explores viral community structure and function in remote and extreme Arctic environments, including subzero brines within marine layers of permafrost and sea ice, using a modern viral ecogenomics toolkit for the first time. In addition to providing foundational data sets for these climate-threatened habitats, we found evidence that the viruses had habitat specificity, infected dominant microbial hosts, encoded host-derived metabolic genes, and mediated horizontal gene transfer among hosts. These results advance our understanding of the virosphere and how viruses influence extreme ecosystems. More broadly, the evidence that virally mediated gene transfers may be limited by host range in these extreme habitats contributes to a mechanistic understanding of genetic exchange among microbes under stressful conditions in other systems.
Collapse
Affiliation(s)
- Zhi-Ping Zhong
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Josephine Z Rapp
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - James M Wainaina
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | | | | | - Shelly D Carpenter
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Zachary S Cooper
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Ho Bin Jang
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Benjamin Bolduc
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
| | - Jody W Deming
- School of Oceanography, University of Washington, Seattle, Washington, USA
| | - Matthew B Sullivan
- Byrd Polar and Climate Research Center, The Ohio State University, Columbus, Ohio, USA
- Department of Microbiology, The Ohio State University, Columbus, Ohio, USA
- Department of Civil, Environmental and Geodetic Engineering, The Ohio State University, Columbus, Ohio, USA
- Center of Microbiome Science, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
11
|
Li G, Wang S, Gai Y, Liu X, Lai Q, Shao Z. Marinobacter changyiensis, sp. nov., isolated from offshore sediment. Int J Syst Evol Microbiol 2020; 70:3004-3011. [PMID: 32320379 DOI: 10.1099/ijsem.0.004118] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
An aerobic, Gram-stain-negative bacterium, designated CLL7-20T, was isolated from a marine sediment sample from offshore of Changyi, Shandong Province, China. Cells of strain CLL7-20T were rod-shaped, motile with one or more polar flagella, and grew optimally at pH 7.0, at 28 °C and with 3 % (w/v) NaCl. The principal fatty acids of strain CLL7-20T were C16 : 0 and summed feature 3 (C16 : 1 ω7c/C16 : 1 ω6c). The main polar lipids of strain CLL7-20T were phosphatidylethanolamine (PE), phosphatidylglycerol (PG), diphosphatidylglycerol (DPG) and an unidentified aminolipid (AL). Strain CLL7-20T contained Q-9 as the major respiratory quinone. The G+C content of its genomic DNA was 56.2 mol%. Phylogenetically, strain CLL7-20T branched within the genus Marinobacter, with M. daqiaonensis YCSA40T being its closest phylogenetic relative (96.7 % 16S rRNA gene sequence similarity), followed by M. sediminum R65T (96.6 %). Average nucleotide identity and in silico DNA-DNA hybridization values between strain CLL7-20T and the closest related reference strains were 73.2% and 19.8 %, respectively. On the basis of its phenotypic, phylogenetic and chemotaxonomic characteristics, we suggest that strain CLL7-20T (=MCCC 1A14855T=KCTC 72664T) is the type strain of a novel species in the genus Marinobacter, for which the name Marinobacter changyiensis sp. nov. is proposed. Based on the genomic analysis, siderophore genes were found from strain CLL7-20T, which indicate its potential as a promising alternative to chemical fertilizers in iron-limitated environments such as saline soils.
Collapse
Affiliation(s)
- Guangyu Li
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
| | - Shanshan Wang
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Yingbao Gai
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Xiupian Liu
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Qiliang Lai
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
| | - Zongze Shao
- Key Laboratory of Marine Biogenetic Resources, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, PR China
- Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Xiamen, PR China
| |
Collapse
|
12
|
Zhang MX, Li AZ, Wu Q, Yao Q, Zhu HH. Marinobacter denitrificans sp. nov., isolated from marine sediment of southern Scott Coast, Antarctica. Int J Syst Evol Microbiol 2020; 70:2918-2924. [PMID: 32213256 DOI: 10.1099/ijsem.0.004120] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
A novel bacterium, designated JB02H27T, was isolated from marine sediment collected from the southern Scott Coast, Antarctica. Cells were Gram-stain-negative, facultatively anaerobic, polar-flagellated and motile rods. Growth occurred at 4-45 °C, at pH 7.0-9.0 and with 3-25 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain JB02H27T consistently fell within the genus Marinobacter and formed a clade together with Marinobacter algicola DG893T (98.8 % similarity), Marinobacter confluentis KCTC 42705T (98.4 %), Marinobacter salarius R9SW1T (98.4%) and Marinobacter halotolerans CP12T (97.9 %), which were subsequently used as reference strains for comparisons of phenotypic and chemotaxonomic characteristics. Average nucleotide identity values between strain JB02H27T and the four related type strains were 80.9, 76.6, 81.9 and 76.3 %, respectively. The major fatty acids were summed feature 3, C16 : 0, C18 : 1 ω9c and C16 : 0 N alcohol. The polar lipids included phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, and an unidentified phospholipid, aminolipid, aminophospholipid and glycolipids. The sole respiratory quinone was ubiquinone-9. The DNA G+C content was 56.9 mol%. Based on the genomic, phylogenetic, phenotypic and chemotaxonomic analysis, we propose that strain JB02H27T represents a novel species of the genus Marinobacter, for which the name Marinobacter denitrificans sp. nov. is proposed. The type strain is JB02H27T (=GDMCC 1.1528T=KCTC 62941T).
Collapse
Affiliation(s)
- Ming-Xia Zhang
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - An-Zhang Li
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qingping Wu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou 510642, PR China
| | - Hong-Hui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Microbial Culture Collection Center (GDMCC), Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| |
Collapse
|
13
|
Glamoclija M, Ramirez S, Sirisena K, Widanagamage I. Subsurface Microbial Ecology at Sediment-Groundwater Interface in Sulfate-Rich Playa; White Sands National Monument, New Mexico. Front Microbiol 2019; 10:2595. [PMID: 31781077 PMCID: PMC6861310 DOI: 10.3389/fmicb.2019.02595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/25/2019] [Indexed: 01/23/2023] Open
Abstract
The hypersaline sediment and groundwater of playa lake, Lake Lucero, at the White Sands National Monument in New Mexico were examined for microbial community composition, geochemical gradients, and mineralogy during the dry season along a meter and a half depth profile of the sediment vs. the groundwater interface. Lake Lucero is a highly dynamic environment, strongly characterized by the capillary action of the groundwater, the extreme seasonality of the climate, and the hypersalinity. Sediments are predominantly composed of gypsum with minor quartz, thenardite, halite, quartz, epsomite, celestine, and clays. Geochemical analysis has revealed the predominance of nitrates over ammonium in all of the analyzed samples, indicating oxygenated conditions throughout the sediment column and in groundwater. Conversely, the microbial communities are primarily aerobic, gram-negative, and are largely characterized by their survival adaptations. Halophiles and oligotrophs are ubiquitous for all the samples. The very diverse communities contain methanogens, phototrophs, heterotrophs, saprophytes, ammonia-oxidizers, sulfur-oxidizers, sulfate-reducers, iron-reducers, and nitrifiers. The microbial diversity varied significantly between groundwater and sediment samples as their temperature adaptation inferences that revealed potential psychrophiles inhabiting the groundwater and thermophiles and mesophiles being present in the sediment. The dynamism of this environment manifests in the relatively even character of the sediment hosted microbial communities, where significant taxonomic distinctions were observed. Therefore, sediment and groundwater substrates are considered as separate ecological entities. We hope that the variety of the discussed playa environments and the microorganisms may be considered a useful terrestrial analog providing valuable information to aid future astrobiological explorations.
Collapse
Affiliation(s)
- Mihaela Glamoclija
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Steven Ramirez
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States
| | - Kosala Sirisena
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Geophysical Laboratory, Carnegie Institution of Washington, Washington, DC, United States.,Department of Environmental Technology, Faculty of Technology, University of Colombo, Colombo, Sri Lanka
| | - Inoka Widanagamage
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, United States.,Department of Geology and Geological Engineering, The University of Mississippi, Oxford, MS, United States
| |
Collapse
|
14
|
Liu Q, Xamxidin M, Sun C, Cheng H, Meng FX, Wu YH, Wang CS, Xu XW. Marinobacter fuscus sp. nov., a marine bacterium of Gammaproteobacteria isolated from surface seawater. Int J Syst Evol Microbiol 2018; 68:3156-3162. [DOI: 10.1099/ijsem.0.002956] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Qian Liu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Maripat Xamxidin
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Cong Sun
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
- 2College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou 310018, PR China
| | - Hong Cheng
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Fan-Xu Meng
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Yue-Hong Wu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Chun-Sheng Wang
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| | - Xue-Wei Xu
- 1Key Laboratory of Marine Ecosystem and Biogeochemistry, Second Institute of Oceanography, State Oceanic Administration, Hangzhou 310012, PR China
| |
Collapse
|
15
|
Changes in bacterial and archaeal communities during the concentration of brine at the graduation towers in Ciechocinek spa (Poland). Extremophiles 2017; 22:233-246. [PMID: 29260386 PMCID: PMC5847177 DOI: 10.1007/s00792-017-0992-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/08/2017] [Indexed: 11/15/2022]
Abstract
This study evaluates the changes in bacterial and archaeal community structure during the gradual evaporation of water from the brine (extracted from subsurface Jurassic deposits) in the system of graduation towers located in Ciechocinek spa, Poland. The communities were assessed with 16S rRNA gene sequencing (MiSeq, Illumina) and microscopic methods. The microbial cell density determined by direct cell count was at the order of magnitude of 107 cells/mL. It was found that increasing salt concentration was positively correlated with both the cell counts, and species-level diversity of bacterial and archaeal communities. The archaeal community was mostly constituted by members of the phylum Euryarchaeota, class Halobacteria and was dominated by Halorubrum-related sequences. The bacterial community was more diverse, with representatives of the phyla Proteobacteria and Bacteroidetes as the most abundant. The proportion of Proteobacteria decreased with increasing salt concentration, while the proportion of Bacteroidetes increased significantly in the more concentrated samples. Representatives of the genera Idiomarina, Psychroflexus, Roseovarius, and Marinobacter appeared to be tolerant to changes of salinity. During the brine concentration, the relative abundances of Sphingobium and Sphingomonas were significantly decreased and the raised contributions of genera Fabibacter and Fodinibius were observed. The high proportion of novel (not identified at 97% similarity level) bacterial reads (up to 42%) in the 16S rRNA gene sequences indicated that potentially new bacterial taxa inhabit this unique environment.
Collapse
|
16
|
Han JR, Ling SK, Yu WN, Chen GJ, Du ZJ. Marinobacter salexigens sp. nov., isolated from marine sediment. Int J Syst Evol Microbiol 2017; 67:4595-4600. [PMID: 28945532 DOI: 10.1099/ijsem.0.002337] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium, designated as strain HJR7T, was isolated from a marine sediment sample collected from the coastal area of Weihai, China (121° 57' E, 37° 29' N). Cells were Gram-stain-negative, facultative anaerobic, non-motile and rod-shaped. The temperature, pH and NaCl ranges for growth were determined as 4-40 °C, pH 6.5-9.5 and 0.5-15.0 % (w/v), respectively. Phylogenetic analysis based on the 16S rRNA gene sequences indicated that strain HJR7T belongs to the genus Marinobacter in the family Alteromonadaceae. The most closely related species were Marinobacter aromaticivorans (97.6 % 16S rRNA gene sequence similarity) and Marinobacter maritimus (97.3 % similarity). Ubiquinone 9 (Q-9) was the only respiratory quinone detected in strain HJR7T. The major fatty acids of strain HJR7T were C12 : 0, C16 : 0, C16 : 0 N alcohol, C18 : 1ω9c and C18 : 3ω6, 9, 12c. The major polar lipids were phosphatidylglycerol, phosphatidylethanolamine, and an unidentified phospholipid. The DNA G+C content of strain HJR7T was 53.7 mol%. On the basis of phylogenetic, genotypic, phenotypic, and chemotaxonomic analyses, strain HJR7T represents a novel species within the genus Marinobacter, for which the name Marinobacter salexigens sp. nov. is proposed. The type strain is HJR7T (=KCTC 52545T=MCCC 1H00176T).
Collapse
Affiliation(s)
- Ji-Ru Han
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Si-Kai Ling
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Wen-Nan Yu
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Guan-Jun Chen
- College of Marine Science, Shandong University, Weihai 264209, PR China
| | - Zong-Jun Du
- College of Marine Science, Shandong University, Weihai 264209, PR China.,Joint Research Laboratory for Microbial Oceanography, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266061, PR China
| |
Collapse
|
17
|
Oves M, Qari HA, Felemban NM, Khan MZ, Rehan ZA, Ismail IMI. Marinobacter lipolyticus from Red Sea for lipase production and modulation of silver nanomaterials for anti-candidal activities. IET Nanobiotechnol 2017; 11:403-410. [PMID: 28530189 PMCID: PMC8676228 DOI: 10.1049/iet-nbt.2016.0104] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/19/2016] [Accepted: 09/23/2016] [Indexed: 11/19/2022] Open
Abstract
In this study, the bacterial strain CEES 33 was isolated from the coastal area of the Red Sea, Jeddah, Kingdom of Saudi Arabia. The bacterium isolate was identified and characterized by using biochemical and molecular methods. The isolate CEES 33 has been identified as Gram-negative rod shaped and cream pigmented spherical colonies. It also demonstrated a positive result for nitrate reduction, oxidase, catalase, citrate utilization, lipase and exopolysaccharide production. Strain CEES 33 was characterized at the molecular level by partial 16S rRNA sequencing and it has been identified as Marinobacter lipolyticus (EMBL|LN835275.1). The lipolytic activity of the isolate was also observed 2.105 nkatml-1. Furthermore, the bacterial aqueous extract was used for green synthesis of silver nanoparticles (AgNPs), which was further confirmed by UV-visible spectra (430 nm), XRD and SEM analysis. Moreover, the biological functional group that involved in AgNPs synthesis was confirmed by FTIR spectra. The biological activities of AgNPs were also investigated, which showed a significant growth inhibition of Candida albicans with 16 ± 2 mm zone of inhibition at 10 μg dose/wells. Therefore, bacterium Marinobacter lipolyticus might be used in future for lipase production and nanoparticles fabrication for biomedical application, to control fungal diseases caused by C. albicans.
Collapse
Affiliation(s)
- Mohammad Oves
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia.
| | - Huda A Qari
- Department of Biological Science, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Nadeen M Felemban
- Center of Excellence in Environmental Studies, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Mohammad Z Khan
- Department of Chemistry, Division Industrial Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Zulfiqar A Rehan
- Center of Excellence in Desalination Technology, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| | - Iqbal M I Ismail
- Department of Chemistry, King Abdulaziz University, Jeddah 21589, Kingdom of Saudi Arabia
| |
Collapse
|
18
|
Kim JO, Lee HJ, Han SI, Whang KS. Marinobacter halotolerans sp. nov., a halophilic bacterium isolated from a saltern crystallizing pond. Int J Syst Evol Microbiol 2016; 67:460-465. [PMID: 27902258 DOI: 10.1099/ijsem.0.001653] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, moderately halophilic, motile bacterium, designated strain CP12T, was isolated from a crystallizing pond of a saltern of the Yellow Sea in Korea. Cells of strain CP12T were non-spore-forming rods and produced whitish-yellow colonies. Growth was observed at 10-37 °C (optimum 37 °C), at pH 6.0-9.0 (optimum pH 7.0), and in the presence of 0.5-20 % (w/v) NaCl (optimum 3 %). Phylogenetic analysis based on the 16S rRNA gene sequence revealed that strain CP12T was closely related to Marinobacter flavimaris SW-145T (98.4 % 16S rRNA gene sequence similarity), Marinobacter algicola DG893T (98.2 %), Marinobacter adhaerens HP15T (98.2 %), Marinobacter salsuginis SD-14BT (97.9 %), Marinobacter salarius R9SW1T (97.6 %) and Marinobacter lipolyticus SM19T (97.1 %). DNA-DNA hybridization studies showed values lower than 18.6 % between strain CP12T and any of these species. The predominant respiratory isoprenoid quinone was ubiquinone-9 and the major cellular fatty acids of strain CP12T were C16 : 0, C12 : 0 3-OH, C12 : 0, Summed feature 3, C16 : 0 10-methyl and C18 : 1ω9c. On the basis of phenotypic properties, and phylogenetic and chemotaxonomic data, it is evident that strain CP12T represents a novel species of the genus Marinobacter, for which the name Marinobacter halotolerans sp. nov. is proposed. The type strain is CP12T (=KACC 18381T=NBRC 110910T).
Collapse
Affiliation(s)
- Ju-Ok Kim
- Department of Microbial & Nano Materials, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Hyo-Jin Lee
- Institute of Microbial Ecology & Resources, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Song-Ih Han
- Department of Microbial & Nano Materials, Mokwon University, Daejeon 302-729, Republic of Korea
| | - Kyung-Sook Whang
- Institute of Microbial Ecology & Resources, Mokwon University, Daejeon 302-729, Republic of Korea.,Department of Microbial & Nano Materials, Mokwon University, Daejeon 302-729, Republic of Korea
| |
Collapse
|
19
|
Complete genome of Marinobacter psychrophilus strain 20041(T) isolated from sea-ice of the Canadian Basin. Mar Genomics 2016; 28:1-3. [PMID: 26908308 DOI: 10.1016/j.margen.2016.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 11/21/2022]
Abstract
Marinobacter psychrophilus strain 20041(T) was isolated from sea-ice of the Canadian Basin. Here we report the complete sequence of the 3.9-Mb genome of this strain. The complete genome sequence will facilitate the study of the physiology and evolution of Marinobacter species.
Collapse
|
20
|
Park S, Kim S, Kang CH, Jung YT, Yoon JH. Marinobacter confluentis sp. nov., a lipolytic bacterium isolated from a junction between the ocean and a freshwater lake. Int J Syst Evol Microbiol 2015; 65:4873-4879. [DOI: 10.1099/ijsem.0.000659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-stain-negative, motile, aerobic and rod-shaped bacterium, designated HJM-18T, was isolated from the place where the ocean and a freshwater lake meet at Hwajinpo, South Korea, and subjected to a taxonomic study using a polyphasic approach. Strain HJM-18T grew optimally at 30 °C, at pH 7.0–8.0 and in the presence of 1.0–3.0 % (w/v) NaCl. Phylogenetic trees based on 16S rRNA gene sequences showed that strain HJM-18T belonged to the genus Marinobacter. Strain HJM-18T exhibited 16S rRNA gene sequence similarity values of 97.05–98.22 % to the type strains of Marinobacter algicola, Marinobacter flavimaris, Marinobacter adhaerens, Marinobacter salarius, Marinobacter salsuginis, Marinobacter guineae and Marinobacter gudaonensis and of 93.21–96.98 % to the type strains of the other species of the genus Marinobacter. Strain HJM-18T contained Q-9 as the predominant ubiquinone and summed feature 3 (C16 : 1ω7c and/or C16 : 1ω6c), C16 : 0 and C18 : 1ω9c as the major fatty acids. The major polar lipids detected in strain HJM-18T were phosphatidylethanolamine, phosphatidylglycerol and one unidentified aminophospholipid. The DNA G+C content was 58 mol% and the mean DNA–DNA relatedness values with the type strains of the seven phylogenetically related species of the genus Marinobacter were 10–27 %. Differential phenotypic properties, together with phylogenetic and genetic distinctiveness, revealed that strain HJM-18T is separated from recognized species of the genus Marinobacter. On the basis of the data presented, strain HJM-18T represents a novel species of the genus Marinobacter, for which the name Marinobacter confluentis sp. nov. is proposed. The type strain is HJM-18T ( = KCTC 42705T = NBRC 111223T).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Sona Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| | - Chul-Hyung Kang
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
- University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
- University of Science and Technology (UST), 113 Gwahak-ro, Yuseong-gu, Daejeon, South Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, South Korea
| |
Collapse
|