1
|
Pornpanom P, Valkiūnas G, Paudel S. Morphological and molecular characterization of avian trypanosomes in domestic chickens ( Gallus gallus domesticus) in Southeast Asia and review of the parasite morphometry in different avian hosts. Avian Pathol 2025:1-9. [PMID: 39902493 DOI: 10.1080/03079457.2025.2462628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/26/2024] [Accepted: 01/30/2025] [Indexed: 02/05/2025]
Abstract
RESEARCH HIGHLIGHTS The prevalence of trypanosomes in chickens is high.The first report of Trypanosoma avium in chickens with evidence of species identification.The first report of morphological and molecular characteristics of Trypanosoma calmettei.A cheap and quick buffy coat method is helpful for screening trypanosomes.
Collapse
Affiliation(s)
- Pornchai Pornpanom
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat, Thailand
- Informatics Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat, Thailand
| | | | - Surya Paudel
- Department of Infectious Diseases and Public Health, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, People's Republic of China
| |
Collapse
|
2
|
Kernif T, Medrouh B, Eddaikra N, Oury B, Holzmuller P, Sereno D. Ticks as vectors of Trypanosomatidae with medical or veterinary interest: Insights and implications from a comprehensive systematic review and meta-analysis. Heliyon 2024; 10:e40895. [PMID: 39759380 PMCID: PMC11698932 DOI: 10.1016/j.heliyon.2024.e40895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 01/07/2025] Open
Abstract
Since the 20th century, numerous studies have detected or isolated parasites from the Trypanosomatidae family in various tick species. However, the status of ticks as vectors for medically or veterinary significant Trypanosoma and Leishmania remains unclear. We conducted a systematic review and meta-analysis to provide new insights into the potential vector status of these pathogens, which have significant medical and veterinary implications. We searched three databases (PubMed, Google Scholar, and Web of Science) from 1912 to June 30, 2023, resulting in 94 papers included in the qualitative analysis and 86 papers in the quantitative analysis. All identified field studies were conducted in endemic areas and investigated the presence of Trypanosoma and Leishmania parasites, DNA, or antigens in ticks. We recorded a pooled prevalence of Trypanosomatidae detection in ticks at 15.48 % [7.99-24.61 %], with significant variations depending on the year, detection method, and geographical area. Most of the infected tick species belonged to the genera Amblyomma, Hyalomma, Ixodes, and Rhipicephalus. Experimental laboratory work on transmission routes demonstrated potential vector competence in both the Argasidae and Ixodidae tick families. Although our systematic review and meta-analysis provide compelling evidence of the natural infection of ticks by Trypanosomatidae parasites, along with some evidence of non-traditional transmission routes, they do not offer conclusive evidence regarding the role of ticks as biological or mechanical vectors for Trypanosomatidae species of veterinary and medical interest. This highlights the urgent need for additional investigations to address this point.
Collapse
Affiliation(s)
- Tahar Kernif
- Laboratory of Parasitic Eco-Epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algiers, Algeria
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), GoInsect: Infectiology and Entomology Research Group, Montpellier, France
| | - Bachir Medrouh
- Research Centre for Agropastoralism, Djelfa, 17000, Algeria
| | - Naouel Eddaikra
- Laboratory of Parasitic Eco-Epidemiology and Population Genetics, Pasteur Institute of Algeria, Dely-Brahim, Algiers, Algeria
| | - Bruno Oury
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), GoInsect: Infectiology and Entomology Research Group, Montpellier, France
| | - Philippe Holzmuller
- UMR ASTRE, CIRAD, INRAE, University of Montpellier (I-MUSE), Montpellier, France
| | - Denis Sereno
- UMR INTERTRYP, IRD, CIRAD, University of Montpellier (I-MUSE), GoInsect: Infectiology and Entomology Research Group, Montpellier, France
| |
Collapse
|
3
|
Musa S, Altenburger C, Vázquez RM, Woog F, Mackenstedt U. Parasite airlines: mapping the distribution and transmission of avian blood parasites in migratory birds. Int J Parasitol 2024; 54:635-648. [PMID: 38942166 DOI: 10.1016/j.ijpara.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/30/2024] [Accepted: 06/22/2024] [Indexed: 06/30/2024]
Abstract
During their journeys, migratory birds encounter a wider range of parasites than residents, transporting them over vast distances. While some parasites are widely distributed, transmission is not inevitable and depends on the presence of competent arthropod vectors as well as parasite compatibility with native bird species. Distinguishing between parasite distribution and transmission areas is crucial for monitoring and assessing risks to native bird species, as distribution areas, with the appropriate conditions, could become potential transmission areas. In this study, blood samples from 455 reed-living birds of the genera Acrocephalus, Locustella, and Emberiza, collected in the nature reserve "Die Reit" in Hamburg, Germany were screened, targeting haemosporidian parasites, trypanosomes, and filarioid nematodes. Determination of migratory bird age was employed to ascertain the transmission area of the detected parasites. Transmission areas were determined, based on information provided by resident and juvenile birds as well as findings in competent vectors. Long-distance migratory birds of the genus Acrocephalus showed a higher prevalence and diversity of blood parasites compared with partially migratory birds such as Emberiza schoeniclus. Notably, an age-dependent difference in parasite prevalence was observed in Acrocephalus spp., but not in E. schoeniclus. Nematodes were absent in all examined bird species. Proposed transmission areas were identified for nine haemosporidian lineages, showing three different types of transmission area, either with limited transmission in Europe or Africa, or active transmission in both regions.
Collapse
Affiliation(s)
- Sandrine Musa
- University of Hohenheim, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany.
| | | | | | - Friederike Woog
- State Museum of Natural History, Rosenstein 1, 70191 Stuttgart, Germany
| | - Ute Mackenstedt
- University of Hohenheim, Emil-Wolff-Str. 34, 70599 Stuttgart, Germany
| |
Collapse
|
4
|
Duarte RG, Jardim THA, Paulino PG, Dias RJP, Rossi MF, D Agosto M, Peixoto MP, Guedes Junior DS, Gonçalves NP, Massard CL, Santos HA. Molecular diversity and polyparasitism of avian trypanosomes in the Brazilian Atlantic Rainforest. AN ACAD BRAS CIENC 2024; 96:e20230629. [PMID: 38922254 DOI: 10.1590/0001-3765202420230629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 11/16/2023] [Indexed: 06/27/2024] Open
Abstract
The current study proposes to investigate the diversity and phylogeny of trypanosomes parasitizing wild birds from the Brazilian Atlantic Forest. Cytological examination was carried out by light microscopy of blood smears and positive birds were selected for amplification of the 18S rDNA sequence through PCR. The resulting amplicons were subjected to purification, cloning, and sequencing analysis. Phylogenetic reconstruction was conducted, including all avian trypanosomes representative's lineages. A total of ten bird samples from species of Turdus flavipes (N=1/12), T. albicollis (N=1/8), Tachyphonus coronatus (N=6/121), Thamnophilus caerulescens (N=1/22) and Synallaxis spixi (N=1/8) were positive for Trypanosoma spp. In the six specimens of T. coronatus, five distinct lineages of Trypanosoma spp. 18S-rRNA were observed in ninety sequences obtained, and using the strategy of cloning independent PCR, it was possible to observe that two of them were related to T. avium (JB01/JB02), and three were closed related to T. bennetti (JB03/ JB04/JB05). Addionaly, all fifteen sequences obtained from T. caerulescens/ S. spixi/T. flavipes/T. albicollis were identical. The present research is the first study to access molecular diversity and polyparasitism by avian trypanosomes in Brazil. The current research exhibits the wide genetic variability in avian trypanosomes and its non-specific relationship with its avian hosts.
Collapse
Affiliation(s)
- Rodrigo G Duarte
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Talys Henrique A Jardim
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Patrícia G Paulino
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Roberto J P Dias
- Universidade Federal de Juiz de Fora/UFJF, Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Mariana F Rossi
- Universidade Federal de Juiz de Fora/UFJF, Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Marta D Agosto
- Universidade Federal de Juiz de Fora/UFJF, Instituto de Ciências Biológicas, Departamento de Zoologia, Rua José Lourenço Kelmer, s/n, São Pedro, 36036-900 Juiz de Fora, MG, Brazil
| | - Maristela P Peixoto
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Parasitologia Animal, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Daniel S Guedes Junior
- Fundação Oswaldo Cruz/FIOCRUZ, Instituto de Tecnologia em Imunobiológicos, Departamento de Controle de Qualidade, Av. Brasil, 4365, Manguinhos, 21040-090 Rio de Janeiro, RJ, Brazil
| | - Natalia P Gonçalves
- Fundação Oswaldo Cruz/FIOCRUZ, Instituto de Tecnologia em Imunobiológicos, Departamento de Controle de Qualidade, Av. Brasil, 4365, Manguinhos, 21040-090 Rio de Janeiro, RJ, Brazil
| | - Carlos L Massard
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Parasitologia Animal, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| | - Huarrisson A Santos
- Universidade Federal Rural do Rio de Janeiro/UFRRJ, Instituto de Veterinária, Departamento de Epidemiologia e Saúde Pública, BR 465, Km 07, 23897-000 Seropédica, RJ, Brazil
| |
Collapse
|
5
|
Boonchuay K, Thomrongsuwannakij T, Chagas CRF, Pornpanom P. Prevalence and Diversity of Blood Parasites ( Plasmodium, Leucocytozoon and Trypanosoma) in Backyard Chickens ( Gallus gallus domesticus) Raised in Southern Thailand. Animals (Basel) 2023; 13:2798. [PMID: 37685062 PMCID: PMC10486576 DOI: 10.3390/ani13172798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 09/01/2023] [Indexed: 09/10/2023] Open
Abstract
Avian malaria and leucocytozoonosis can cause fatal diseases, whereas avian trypanosomiasis is reported to be harmless in chickens. Backyard chickens can be infected by several pathogens, including blood parasites, that may shed to industrial poultry production, with a consequently higher economic impact. This study aimed to investigate the presence of several blood parasites (Plasmodium, Leucocytozoon and Trypanosoma) in backyard chickens raised in Southern Thailand, using PCR-based detection and microscopic methods. From June 2021 to June 2022, 57 backyard chickens were sampled. Fresh thin blood smears were prepared from 11 individuals, and buffy coat smears were prepared from 55 of them. Both thin blood smears and buffy coat smears were used for microscopic analysis. Two nested PCR protocols that amplify a fragment of cytochrome b (cytb) and small subunit rRNA (SSU rRNA) genes were used to identify Haemosporida and Trypanosoma parasites, respectively. The number of positive samples was higher with the application of nested PCR than when buffy coat smears were used. Three new Plasmodium lineages (GALLUS47-49) and thirteen Leucocytozoon lineages (GALLUS50-62) were found. Trophozoites, meronts and gametocytes of Plasmodium gallinaceum (GALLUS01) were present in one thin blood smear. All thin blood smears revealed Leucocytozoon infections, but only three samples were a single infection. These three samples revealed the presence of fusiform host cell-parasite complexes, of which the morphological features resembled those of Leucocytozoon macleani (possible synonym is Leucocytozoon sabrazesi), while the cytb showed that this parasite is closely related to the lineage GALLUS06-07, described as Leucocytozoon schouteni. The Trypanosoma prevalence was 33.33%; it was present in only one of the thin blood smears, and it resembles Trypanosoma calmettei. This study showed the prevalence of a high diversity of Plasmodium (64.91%) and Leucocytozoon (89.47%) in Thai chickens. Both nested-PCR and buffy coat smear can be used as the diagnostic tool for the testing of Plasmodium, Leucocytozoon and Trypanosoma for parasitic control in backyard chickens and poultry farms. The information on the parasite species that can be found in chickens raised in Southern Thailand was also considered as the baseline information for further study.
Collapse
Affiliation(s)
- Kanpapat Boonchuay
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (K.B.); (T.T.)
| | | | | | - Pornchai Pornpanom
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; (K.B.); (T.T.)
- Informatics Innovation Center of Excellence, Walailak University, Nakhon Si Thammarat 80160, Thailand
- One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
6
|
Santolíková A, Brzoňová J, Čepička I, Svobodová M. Avian Louse Flies and Their Trypanosomes: New Vectors, New Lineages and Host–Parasite Associations. Microorganisms 2022; 10:microorganisms10030584. [PMID: 35336159 PMCID: PMC8948672 DOI: 10.3390/microorganisms10030584] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 02/04/2023] Open
Abstract
Louse flies (Hippoboscidae) are permanent ectoparasites of birds and mammals. They have a cosmopolitan distribution with more than 200 described species. The aim of this study was to reveal host–vector–parasite associations between louse flies, birds, and trypanosomes. A total of 567 louse fly specimens belonging to 7 species were collected from birds at several localities in Czechia, including the rare species Ornithophila metallica and Ornithoica turdi. There was a significant difference in the occurrence of Ornithomya avicularia and Ornithomya fringillina on bird hosts according to their migratory status, O. fringillina being found more frequently on long-distance migrants. Trypanosomes were found in four species, namely, Ornithomya avicularia, O. fringillina, O. biloba, and Ornithoica turdi; the later three species are identified in this paper as natural trypanosome vectors for the first time. The prevalence of trypanosomes ranged between 5 and 19%, the highest being in O. biloba and the lowest being in O. fringillina. Phylogenetic analysis of the SSU rRNA gene revealed that a vast majority of trypanosomes from hippoboscids belong to the avian T. corvi/culicavium group B. Four new lineages were revealed in group B, with louse flies being probable vectors for some of these trypanosome lineages. We also confirmed the transcontinental distribution of several trypanosome lineages. Our results show that hippoboscids of several genera are probable vectors of avian trypanosomes.
Collapse
Affiliation(s)
- Anežka Santolíková
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
- Correspondence: (A.S.); (M.S.)
| | - Jana Brzoňová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, CZ, 128 44 Prague, Czech Republic;
- Correspondence: (A.S.); (M.S.)
| |
Collapse
|
7
|
Brotánková A, Fialová M, Čepička I, Brzoňová J, Svobodová M. Trypanosomes of the Trypanosoma theileri Group: Phylogeny and New Potential Vectors. Microorganisms 2022; 10:microorganisms10020294. [PMID: 35208749 PMCID: PMC8880487 DOI: 10.3390/microorganisms10020294] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 01/27/2023] Open
Abstract
Trypanosomes belonging to Trypanosoma theileri group are mammalian blood parasites with keds and horse fly vectors. Our aim is to study to vector specificity of T. theileri trypanosomes. During our bloodsucking Diptera survey, we found a surprisingly high prevalence of T. theileri trypanosomes in mosquitoes (154/4051). Using PCR and gut dissections, we detected trypanosomes of T. theileri group mainly in Aedes mosquitoes, with the highest prevalence in Ae. excrucians (22%), Ae. punctor (21%), and Ae. cantans/annulipes (10%). Moreover, T. theileri group were found in keds and blackflies, which were reported as potential vectors for the first time. The vectorial capacity was confirmed by experimental infections of Ae. aegypti using our isolates from mosquitoes; sand fly Phlebotomus perniciosus supported the development of trypanosomes as well. Infection rates were high in both vectors (47–91% in mosquitoes, 65% in sandflies). Furthermore, metacyclic stages of T. theileri trypanosomes were observed in the gut of infected vectors; these putative infectious forms were found in the urine of Ae. aegypti after a second bloodmeal. On the contrary, Culex pipiens quinquefasciatus was refractory to experimental infections. According to a phylogenetic analysis of the 18S rRNA gene, our trypanosomes belong into three lineages, TthI, ThII, and a lineage referred to as here a putative lineage TthIII. The TthI lineage is transmitted by Brachycera, while TthII and ThIII include trypanosomes from Nematocera. In conclusion, we show that T. theileri trypanosomes have a wide range of potential dipteran vectors, and mosquitoes and, possibly, sandflies serve as important vectors.
Collapse
Affiliation(s)
- Anna Brotánková
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
- Correspondence: (A.B.); (J.B.)
| | - Magdaléna Fialová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic;
| | - Jana Brzoňová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
- Correspondence: (A.B.); (J.B.)
| | - Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, Vinicna 7, 128 44 Prague, Czech Republic; (M.F.); (M.S.)
| |
Collapse
|
8
|
Reinhold JM, Chandrasegaran K, Oker H, Crespo JE, Vinauger C, Lahondère C. Species-Specificity in Thermopreference and CO 2-Gated Heat-Seeking in Culex Mosquitoes. INSECTS 2022; 13:92. [PMID: 35055936 PMCID: PMC8779787 DOI: 10.3390/insects13010092] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
Combining thermopreference (Tp) and CO2-gated heat-seeking assays, we studied the thermal preferendum and response to thermal cues in three Culex mosquito species exhibiting differences in native habitat and host preference (e.g., biting cold and/or warm-blooded animals). Results show that these species differ in both Tp and heat-seeking behavior. In particular, we found that Culex territans, which feed primarily on cold-blood hosts, did not respond to heat during heat-seeking assays, regardless of the CO2 concentration, but exhibited an intermediate Tp during resting. In contrast, Cx. quinquefasciatus, which feeds on warm blooded hosts, sought the coolest locations on a thermal gradient and responded only moderately to thermal stimuli when paired with CO2 at higher concentrations. The third species, Cx. tarsalis, which has been shown to feed on a wide range of hosts, responded to heat when paired with high CO2 levels and exhibited a high Tp. This study provides the first insights into the role of heat and CO2 in the host seeking behavior of three disease vectors in the Culex genus and highlights differences in preferred resting temperatures.
Collapse
Affiliation(s)
- Joanna M. Reinhold
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.M.R.); (K.C.); (H.O.); (C.V.)
| | - Karthikeyan Chandrasegaran
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.M.R.); (K.C.); (H.O.); (C.V.)
| | - Helen Oker
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.M.R.); (K.C.); (H.O.); (C.V.)
| | - José E. Crespo
- Laboratorio de Entomología Experimental—Grupo de Ecología Térmica en Insectos (GETI), Instituto de Ecología, Genética y Evolución, CONICET—Universidad de Buenos Aires, Buenos Aires C1428EGA, Argentina;
| | - Clément Vinauger
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.M.R.); (K.C.); (H.O.); (C.V.)
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Chloé Lahondère
- Department of Biochemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA; (J.M.R.); (K.C.); (H.O.); (C.V.)
- The Fralin Life Science Institute, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Center of Emerging, Zoonotic and Arthropod-borne Pathogens, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- The Global Change Center, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
9
|
Complete Life Cycle of Trypanosoma thomasbancrofti, an Avian Trypanosome Transmitted by Culicine Mosquitoes. Microorganisms 2021; 9:microorganisms9102101. [PMID: 34683422 PMCID: PMC8539158 DOI: 10.3390/microorganisms9102101] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 09/27/2021] [Accepted: 09/29/2021] [Indexed: 11/17/2022] Open
Abstract
Avian trypanosomes are cosmopolitan and common protozoan parasites of birds; nevertheless, knowledge of their life cycles and vectors remains incomplete. Mosquitoes have been confirmed as vectors of Trypanosoma culicavium and suggested as vectors of T. thomasbancrofti; however, transmission has been experimentally confirmed only for the former species. This study aims to confirm the experimental transmission of T. thomasbancrofti to birds and its localization in vectors. Culex pipiens were fed on blood using four strains of T. thomasbancrofti, isolated from vectors and avian hosts; all strains established infections, and three of them were able to develop high infection rates in mosquitoes. The infection rate of the culicine isolates was 5–28% for CUL15 and 48–81% for CUL98, 67–92% for isolate OF19 from hippoboscid fly, while the avian isolate PAS343 ranged between 48% and 92%, and heavy infections were detected in 90% of positive females. Contrary to T. culicavium, trypanosomes were localized in the hindgut, where they formed rosettes with the occurrence of free epimastigotes in the hindgut and midgut during late infections. Parasites occurred in urine droplets produced during mosquito prediuresis. Transmission to birds was achieved by the ingestion of mosquito guts containing trypanosomes and via the conjunctiva. Bird infection was proven by blood cultivation and xenodiagnosis; mature infections were present in the dissected guts of 24–26% of mosquitoes fed on infected birds. The prevalence of T. thomasbancrofti in vectors in nature and in avian populations is discussed in this paper. This study confirms the vectorial capacity of culicine mosquitoes for T. thomasbancrofti, a trypanosome related to T. avium, and suggests that prediuresis might be an effective mode of trypanosome transmission.
Collapse
|
10
|
Frolov AO, Kostygov AY, Yurchenko V. Development of Monoxenous Trypanosomatids and Phytomonads in Insects. Trends Parasitol 2021; 37:538-551. [PMID: 33714646 DOI: 10.1016/j.pt.2021.02.004] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 11/30/2022]
Abstract
In this review, we summarize the current data on development of monoxenous trypanosomatids and phytomonads in various insects. Of these, Diptera and Hemiptera are the main host groups, and, consequently, most available information concerns their parasites. Within the insect body, the midgut and hindgut are the predominant colonization sites; in addition, some trypanosomatids can invade the foregut, Malpighian tubules, hemolymph, and/or salivary glands. Differences in the intestinal structure and biology of the host determine the variety of parasites' developmental and transmission strategies. Meanwhile, similar mechanisms are used by unrelated trypanosomatids, reflecting the limited range of options to achieve the same goal.
Collapse
Affiliation(s)
- Alexander O Frolov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia.
| | - Alexei Y Kostygov
- Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia; Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic; Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
11
|
Kostygov AY, Karnkowska A, Votýpka J, Tashyreva D, Maciszewski K, Yurchenko V, Lukeš J. Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses. Open Biol 2021; 11:200407. [PMID: 33715388 PMCID: PMC8061765 DOI: 10.1098/rsob.200407] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.
Collapse
Affiliation(s)
- Alexei Y. Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
| | - Anna Karnkowska
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Jan Votýpka
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Daria Tashyreva
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Kacper Maciszewski
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Julius Lukeš
- Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| |
Collapse
|
12
|
DE LA Torre GM, Campião KM. Bird habitat preferences drive hemoparasite infection in the Neotropical region. Integr Zool 2021; 16:755-768. [PMID: 33452842 DOI: 10.1111/1749-4877.12515] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The role that the environment plays in vector-borne parasite infection is one of the central factors for understanding disease dynamics. We assessed how Neotropical bird foraging strata and habitat preferences determine infection by parasites of the genera Haemoproteus, Plasmodium, Leucocytozoon, and Trypanosoma and filarioids, and tested for phylogenetic signal in these host-parasite associations. We performed extensive searches of the scientific literature and created a database of hemoparasite surveys. We collected data on host body mass, foraging strata, habitat preference, and migratory status, and tested if host ecological traits predict each hemoparasite occurrence and prevalence using a phylogenetic Bayesian framework. Species of Plasmodium tend to infect birds from tropical forests while birds from altitudinal environments are likely to be infected by species of Leucocytozoon. The probability of a bird being infected by filarioid or Trypanosoma is higher in lowland forests. Bird species that occur in anthropic environments and dry habitats of tropical latitudes are more susceptible to infection by species of Haemoproteus. Host foraging strata is also influential and bird species that forage in the mid-high and canopy strata are more prone to infection by species of Haemoproteus and filarioids. We also identified phylogenetic signal for host-parasite associations with the probability of infection of Neotropical birds by any hemoparasite being more similar among more closely related species. We provided a useful framework to identify environments that correlate with hemoparasite infection, which is also helpful for detecting areas with potential suitability for hemoparasite infection due to land conversion and climate change.
Collapse
Affiliation(s)
- Gabriel Massaccesi DE LA Torre
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil.,Programa de Pós-graduação em Ecologia e Conservação, Universidade Federal do Paraná, Curitiba, Brazil
| | - Karla Magalhães Campião
- Biological Interactions, Departamento de Zoologia, Universidade Federal do Paraná, Curitiba, Brazil
| |
Collapse
|
13
|
Galen SC, Borner J, Perkins SL, Weckstein JD. Phylogenomics from transcriptomic "bycatch" clarify the origins and diversity of avian trypanosomes in North America. PLoS One 2020; 15:e0240062. [PMID: 33031471 PMCID: PMC7544035 DOI: 10.1371/journal.pone.0240062] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/17/2020] [Indexed: 12/04/2022] Open
Abstract
The eukaryotic blood parasite genus Trypanosoma includes several important pathogens of humans and livestock, but has been understudied in wildlife broadly. The trypanosomes that infect birds are in particular need of increased attention, as these parasites are abundant and globally distributed, yet few studies have addressed their evolutionary origins and diversity using modern molecular and analytical approaches. Of specific interest are the deep evolutionary relationships of the avian trypanosomes relative to the trypanosome species that are pathogenic in humans, as well as their species level diversity in regions where they have been understudied such as North America. Here, we address these unresolved areas of study using phylogenomic data for two species of avian trypanosomes that were isolated as “bycatch” from host transcriptome assemblies, as well as a large 18S DNA barcode sequence dataset that includes 143 novel avian Trypanosoma 18S sequences from North America. Using a phylogenomic approach, we find that the avian trypanosomes are nested within a clade of primarily mammalian trypanosomes that includes the human pathogen Trypanosoma cruzi, and are paraphyletic with respect to the ruminant trypanosome Trypanosoma theileri. DNA barcode sequences showed that T. avium and an unidentified small, non-striated trypanosome that was morphologically similar to T. everetti are each represented by highly abundant and divergent 18S haplotypes in North America. Community-level sampling revealed that additional species-level Trypanosoma lineages exist in this region. We compared the newly sequenced DNA barcodes from North America to a global database, and found that avian Trypanosoma 18S haplotypes generally exhibited a marked lack of host specificity with at least one T. avium haplotype having an intercontinental distribution. This highly abundant T. avium haplotype appears to have a remarkably high dispersal ability and cosmopolitan capacity to evade avian host immune defenses, which warrant further study.
Collapse
MESH Headings
- Animals
- Bayes Theorem
- Biological Evolution
- Birds/genetics
- Birds/parasitology
- Contig Mapping
- DNA Barcoding, Taxonomic
- DNA, Protozoan/chemistry
- DNA, Protozoan/metabolism
- Databases, Factual
- Haplotypes
- Humans
- North America
- Phylogeny
- RNA, Ribosomal, 18S/chemistry
- RNA, Ribosomal, 18S/classification
- RNA, Ribosomal, 18S/metabolism
- Transcriptome
- Trypanosoma/classification
- Trypanosoma/genetics
- Trypanosoma/pathogenicity
- Trypanosoma cruzi/classification
Collapse
Affiliation(s)
- Spencer C. Galen
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
- Biology Department, University of Scranton, Scranton, PA, United States of America
- * E-mail:
| | - Janus Borner
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
- Institute of Evolutionary Ecology and Conservation Genomics, University of Ulm, Ulm, Germany
| | - Susan L. Perkins
- Sackler Institute for Comparative Genomics, American Museum of Natural History, New York, NY, United States of America
- Division of Science, The City College of New York, New York, NY, United States of America
| | - Jason D. Weckstein
- Department of Ornithology, Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
- Department of Biodiversity, Earth, and Environmental Science, Drexel University, Philadelphia, PA, United States of America
| |
Collapse
|
14
|
Bernotienė R, Iezhova TA, Bukauskaitė D, Chagas CRF, Kazak M, Valkiūnas G. Development of Trypanosoma everetti in Culicoides biting midges. Acta Trop 2020; 210:105555. [PMID: 32473117 DOI: 10.1016/j.actatropica.2020.105555] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/20/2022]
Abstract
Trypanosoma species (Trypanosomatida, Kinetoplastea) are almost exclusively heteroxenous flagellated parasites, which have been extensively studied as the causative agents of severe trypanosomiasis in humans and domestic animals. However, the biology of avian trypanosomes remains insufficiently known, particularly in wildlife, despite information that some species might be pathogenic and affect the fitness of intensively infected individuals. Avian trypanosomes are cosmopolitans. Due to regular bird seasonal migrations, this host-parasite system might provide new insight for better understanding mechanisms of transcontinental dispersal of pathogens, their ecological plasticity, specificity and speciation. Trypanosoma everetti parasitizes numerous bird species globally, but data on its biology are scarce and its vectors remain unknown. This study aimed to test experimentally whether widespread Culicoides (Diptera: Ceratopogonidae) biting midges are susceptible to infection with this parasite. Two common house martins Delichon urbicum and two sedge warblers Acrocephalus schoenobaenus naturally infected with T. everetti were caught in the wild after arrival from African wintering grounds. Laboratory reared Culicoides nubeculosus and wild-caught Culicoides impunctatus biting midges were exposed by allowing them to take infected blood meals. The experimentally infected and control insects were maintained in the laboratory and dissected at intervals to follow the development of the parasite. Infections were determined using microscopic examination and PCR-based testing. Four closely related haplotypes of T. everetti were found, and each was present in different individual parasite-donor birds. These parasites readily developed and produced metacyclic trypomastigotes in C. nubeculosus and C. impunctatus biting midges. Molecular characterisation of T. everetti was developed. According to Bayesian phylogenetic analysis using a DNA fragment encoding 18S rRNA, the five species of small avian trypanosomes were closely related. Wild caught Culicoides biting midges were also collected and screened for the presence of natural infections. In all, 6.8% of wild-caught biting midges belonging to five Culicoides species were PCR-positive for kinetoplastids, including Trypanosoma species. Culicoides biting midges are readily susceptible and likely naturally transmit avian trypanosomes and thus, should be targeted in epidemiology research of avian trypanosomiasis.
Collapse
|
15
|
Correa JP, Bacigalupo A, Yefi-Quinteros E, Rojo G, Solari A, Cattan PE, Botto-Mahan C. Trypanosomatid Infections among Vertebrates of Chile: A Systematic Review. Pathogens 2020; 9:E661. [PMID: 32824290 PMCID: PMC7460458 DOI: 10.3390/pathogens9080661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/08/2020] [Accepted: 08/14/2020] [Indexed: 01/05/2023] Open
Abstract
We present a review on the natural infection by trypanosomatids of nonhuman vertebrates in Chile, aiming to synthesize and update the knowledge on the diversity of trypanosomatids infecting native and alien vertebrate species. To this end, we conducted a systematic review of literature records published from 1900 to April 2020 on four databases, focusing on the 21 genera of trypanosomatids and Chile. The methods and findings of our review have been based on the preferred reporting items for systematic reviews and meta-analysis (prisma) checklist. We found 29,756 records but only 71 presented relevant information for this review. Overall, there are only two reported trypanosomatid genera infecting vertebrate species in Chile, the genera Trypanosoma and Leishmania. The former is mostly represented by Trypanosoma cruzi (90% of the total records) and to a much lesser extent by Trypanosoma avium, Trypanosoma humboldti, Trypanosoma lewisi, and a couple of unidentified trypanosomatids. A total of 25 mammals have been reported as being infected by T. cruzi, including 14 native and 11 alien species from Orders Artiodactyla, Carnivora, Chiroptera, Didelphimorphia, Lagomorpha, Perissodactyla, and Rodentia. Extensive screening studies using new analytical tools are necessary to grasp the whole potential diversity of trypanosomatid species infecting vertebrates in Chile.
Collapse
Affiliation(s)
- Juana P. Correa
- Facultad de Medicina Veterinaria, Universidad San Sebastián, Concepción 4080871, Chile;
| | - Antonella Bacigalupo
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow G12 8QQ, UK;
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (E.Y.-Q.); (P.E.C.)
| | - Esteban Yefi-Quinteros
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (E.Y.-Q.); (P.E.C.)
| | - Gemma Rojo
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (G.R.); (A.S.)
- Instituto de Ciencias Agroalimentarias, Animales y Ambientales (ICA3), Universidad de O’Higgins, San Fernando 3070000, Chile
| | - Aldo Solari
- Programa de Biología Celular y Molecular, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago 8380000, Chile; (G.R.); (A.S.)
| | - Pedro E. Cattan
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago 8820808, Chile; (E.Y.-Q.); (P.E.C.)
| | - Carezza Botto-Mahan
- Departamento de Ciencias Ecológicas, Facultad de Ciencias, Universidad de Chile, Santiago 7800003, Chile
| |
Collapse
|
16
|
Trypanosomatids Detected in the Invasive Avian Parasite Philornis downsi (Diptera: Muscidae) in the Galapagos Islands. INSECTS 2020; 11:insects11070422. [PMID: 32659927 PMCID: PMC7411904 DOI: 10.3390/insects11070422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 11/17/2022]
Abstract
Alien insect species may present a multifaceted threat to ecosystems into which they are introduced. In addition to the direct damage they may cause, they may also bring novel diseases and parasites and/or have the capacity to vector microorganisms that are already established in the ecosystem and are causing harm. Damage caused by ectoparasitic larvae of the invasive fly, Philornisdownsi (Dodge and Aitken) to nestlings of endemic birds in the Galapagos Islands is well documented, but nothing is known about whether this fly is itself associated with parasites or pathogens. In this study, diagnostic molecular methods indicated the presence of insect trypanosomatids in P. downsi; to our knowledge, this is the first record of insect trypanosomatids associated with Philornis species. Phylogenetic estimates and evolutionary distances indicate these species are most closely related to the Crithidia and Blastocrithidia genera, which are not currently reported in the Galapagos Islands. The prevalence of trypanosomatids indicates either P. downsi arrived with its own parasites or that it is a highly suitable host for trypanosomatids already found in the Galapagos Islands, or both. We recommend further studies to determine the origin of the trypanosomatid infections to better evaluate threats to endemic fauna of the Galapagos Islands.
Collapse
|
17
|
Morphological and molecular characterization of avian trypanosomes in raptors from Thailand. Parasitol Res 2019; 118:2419-2429. [PMID: 31230161 DOI: 10.1007/s00436-019-06379-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 06/10/2019] [Indexed: 10/26/2022]
Abstract
From September 2012 to May 2018, blood samples from 364 raptors (mostly adults) were collected and screened for trypanosomes and haemosporidians by microscopic examination and nested polymerase chain reactions (PCR). Trypanosoma spp. were identified in 15 birds from eight different species. Light microscopy revealed 14 cases of infection with Trypanosoma cf. corvi, including one each in black-shouldered kite (Elanus caeruleus, n = 49), Brahminy kite (Haliastur indus, n = 50), and spotted owlet (SO, Athene brama, n = 27); two mountain hawk-eagles (Spizaetus nipalensis, n = 3); and three each in Asian barred owlets (ABO, Glaucidium cuculoides, n = 27), barn owls (BO, Tyto alba, n = 65) and collared scops owls (CSO, Otus lettia, n = 41). In addition, one case of infection with T. avium was identified in an oriental scops owl (OSO, Otus sunia, n = 2). All infected raptors showed very low parasitemia levels. The PCR detected more three positives in one CSO, one Japanese sparrowhawk (Accipiter gularis), and one OSO. The sensitivity and specificity of the PCR method were 93.3% and 99.1%, respectively. The overall infection rate was very low (4.9%). The highest infection rate was recorded in cold-dry season (9.9%). Coinfection of Plasmodium with trypanosomes was found in all three ABOs. Coinfection with Haemoproteus spp. was found in one BO, three CSOs, and one SO. Coinfection with Haemoproteus spp. and Leucocytozoon danilewskyi was found in the OSO. Microfilarias were detected in one ABO and one CSO. The ultrastructure of trypomastigotes of T. cf. corvi in an ABO revealed fine structures. All small subunit ribosomal RNA (SSU rRNA) sequences belong to two clades: T. avium and T. corvi-culicavium complex/group. SSU rRNA gene amplification was not successful in one BO. The raptors with trypanosome infections showed normal hematological values and healthy appearance. Furthermore, this is the first report of T. avium in a nocturnal raptor from Thailand.
Collapse
|
18
|
Krige AS, Thompson RCA, Clode PL. 'Hang on a Tick' - Are Ticks Really the Vectors for Australian Trypanosomes? Trends Parasitol 2019; 35:596-606. [PMID: 31229455 DOI: 10.1016/j.pt.2019.05.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 11/27/2022]
Abstract
Trypanosomes are global blood parasites that infect a wide range of vertebrate hosts. Several species of Trypanosoma cause disease in humans and domesticated animals, and the majority are transmitted between hosts by haematophagous invertebrate vectors. Ticks have long been speculated as vectors for Australian trypanosomes. Recent studies using advanced molecular techniques have refocused attention on these arthropods, and whilst they have renewed discussions about Trypanosoma species and their vectors, these reports have simultaneously led to premature conclusions concerning the role of ticks as vectors. Here the controversy surrounding ticks as trypanosome vectors is discussed. We highlight the unanswered questions concerning the role played by ticks in trypanosome transmission and suggest future approaches to resolving these key knowledge gaps.
Collapse
Affiliation(s)
- Anna-Sheree Krige
- UWA School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia.
| | - R C Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch, Western Australia, 6150, Australia
| | - Peta L Clode
- UWA School of Biological Sciences, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia; Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, Australia
| |
Collapse
|
19
|
Correlates of blood parasitism in a threatened marshland passerine: infection by kinetoplastids of the genus Trypanosoma is related to landscape metrics of habitat edge. Parasitology 2019; 146:1036-1046. [PMID: 31064439 DOI: 10.1017/s0031182019000350] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In birds, vector-borne parasites invading the bloodstream are important agents of disease, affect fitness and shape population viability, thus being of conservation interest. Here, we molecularly identified protozoan blood parasites in two populations of the threatened Aquatic Warbler Acrocephalus paludicola, a migratory passerine nesting in open marsh. We explored whether prevalence and lineage diversity of the parasites vary by population and whether infection status is explained by landscape metrics of habitat edge and individual traits (body mass, fat score, wing length and sex). Aquatic Warblers were infected by genera Plasmodium, Leucocytozoon and Trypanosoma, with seven, one and four lineages, and 29.9, 0.7 and 12.5% prevalence, respectively. No Haemoproteus infections were detected. Prevalence did not vary between the populations, but lineage diversity was higher in Polesie than in Biebrza for all the lineages pooled and for Plasmodium. Infection by Trypanosoma decreased with patch core area and increased with density of habitat edge. Infection status was not predicted by the individual traits. Our study is the first to show an association between edge-related landscape features and blood parasitism in an open habitat bird. This finding will support informed conservation measures for avian species of the globally shrinking marshland and other treeless habitats.
Collapse
|
20
|
Schoener ER, Harl J, Himmel T, Fragner K, Weissenböck H, Fuehrer HP. Protozoan parasites in Culex pipiens mosquitoes in Vienna. Parasitol Res 2019; 118:1261-1269. [PMID: 30783859 PMCID: PMC6426983 DOI: 10.1007/s00436-019-06219-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/17/2019] [Indexed: 11/30/2022]
Abstract
Avian malaria (Plasmodium spp.) and kinetoplastid (Trypanosoma spp.) parasites are common vector-borne pathogens in birds worldwide; however, knowledge about vector competence of different mosquito species is currently lacking. For a pilot project examining vector competence of mosquitoes of the Culex pipiens complex and Culex torrentium for protozoan parasites in the city of Vienna, 316 individual mosquitoes were sampled in the months June–August 2017 around the campus of the Veterinary University of Vienna. Since vector competence for avian Plasmodium can only be ascertained by finding infectious sporozoites in mosquito salivary glands, special emphasis was on examining these, or at least insect thoraxes, which contain the salivary glands. After species identification, the mosquitoes were processed in three different ways to determine the best method of visually detecting protozoan parasites in salivary glands: (1) microscopic examination of individual, fixed and Giemsa-stained salivary glands, (2) microscopic examination of stained sections of individually fixed and embedded mosquito thoraxes and (3) stained sections of individual whole insects. Material from all three groups was also subjected to PCR to detect avian haemosporidian and trypanosomatid parasite DNA. PCR was performed on all 316 collected mosquitoes, with 37 pools (n = 2–10) of 263 individuals and 53 single individuals in all together 90 PCR reactions. Avian Plasmodium was found in 18 (20%) and trypanosomatid parasites were found in 10 (11.1%) of the examined samples and pools yielded a higher proportion of positives than did individual samples. Six different species of protozoan parasites were identified, namely Plasmodium vaughani SYAT05 which was the most common, P. elongatum GRW6, P. relictum SGS1, Trypanosoma avium, T. culicavium and Crithidia dedva. Seventy-seven mosquito salivary glands were dissected and stained with Giemsa solution. Of these, one (1.3%) featured sporozoites and one (1.3%) trypanosomatid parasites. While the trypanosomes were identified as T. avium, the avian Plasmodium species were present in a mixed infection with P. vaughani SYAT05 as the dominant species. In conclusion, mosquitoes of the Culex pipiens complex are very likely vectors of different avian Plasmodium and Trypanosoma species and PCR was the most successful and reliable method for parasite detection in mosquito samples, delivering higher rates and more accurate results. The visual detection of parasite stages in the salivary glands was more difficult and only a few specimens were detected using Giemsa stain and chromogenic in situ hybridization. For further studies on vector competence of different protozoan parasites in mosquitoes, the use of PCR-based methods would be preferable.
Collapse
Affiliation(s)
- Ellen R Schoener
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria.
| | - Josef Harl
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Tanja Himmel
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Karin Fragner
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Herbert Weissenböck
- Institute of Pathology and Forensic Veterinary Medicine, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Veterinaerplatz 1, 1210, Vienna, Austria
| |
Collapse
|
21
|
Adeleye OE, Ale JM, Sogebi EOA, Durotoye LA, Adeleye AI, Adeyemi SO, Olukunle JO. Effects of Trypanosoma brucei brucei infection and diminazene aceturate administration on the blood pressure, heart rate, and temperature of Wistar albino rats. J Basic Clin Physiol Pharmacol 2018; 29:265-269. [PMID: 29570449 DOI: 10.1515/jbcpp-2017-0201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 12/16/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND This study was carried out to determine the blood pressure changes in experimentally Trypanosoma brucei brucei-infected Wistar albino rats and diminazene aceturate-treated rats. METHODS Twenty-four rats were purchased and divided into four groups consisting of six rats each. Control group (CON) received 0.5 mL of distilled water, i.m., infected but not treated group (INF) received 2×106 trypanosome/mL i.m., infected but diminazene aceturate-treated group (INFDIM) received 2×106 trypanosome/mL, 3.5 mg/kg, i.m.) and non-infected but diminazene aceturate-treated group (DIM) received 3.5 mg/kg, i.m. and served as negative control. The blood pressures were measured using a CODA 2® non-invasive blood pressure monitor (Kent Scientific, USA). The results were compiled and statistical analysis was done with significance set at p≥0.05. RESULTS The values of the blood pressure readings of the Trypanosoma-infected INF (137.0±2.0 mmHg) and diminazene-treated rats INFDIM (125.0±7.5 mmHg) when compared to the control group (168.0±3.0 mmHg) were significantly lower (p≤0.05) at the end of day 7. The heart rate was also significantly reduced in the INF (403.5±1.5 beats/min) and DIM (445.0±24 beats/min) groups of rats when compared with the control group (613.0±2.0 beats/min) at the end of day 8. CONCLUSION The findings indicate the significant reduction in blood pressure and heart rates during Trypanosoma brucei brucei infection and with diminazene aceturate administration. Hence, caution should be exercised when treating trypanosome-infected patients with diminazene aceturate.
Collapse
Affiliation(s)
- Olushola Emmanuel Adeleye
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Jude Makinde Ale
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Emmanuella Olubanke Amope Sogebi
- Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Ladoke A Durotoye
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | - Adenike Iyabo Adeleye
- Veterinary Teaching Hospital, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, Nigeria
| | | | - Johnny Olufemi Olukunle
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine, Federal University of Agriculture, Abeokuta, Ogun State, A234, Nigeria, Phone +2348101846078
| |
Collapse
|
22
|
Schoener E, Uebleis SS, Cuk C, Nawratil M, Obwaller AG, Zechmeister T, Lebl K, Rádrová J, Zittra C, Votýpka J, Fuehrer HP. Trypanosomatid parasites in Austrian mosquitoes. PLoS One 2018; 13:e0196052. [PMID: 29672618 PMCID: PMC5908168 DOI: 10.1371/journal.pone.0196052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 04/05/2018] [Indexed: 11/19/2022] Open
Abstract
Trypanosomatid flagellates have not been studied in Austria in any detail. In this study, specific nested PCR, targeted on the ribosomal small subunit, was used to determine the occurrence and diversity of trypanosomatids in wild-caught mosquitoes sampled across Eastern Austria in the years 2014-2015. We collected a total of 29,975 mosquitoes of 19 species divided in 1680 pools. Of these, 298 (17.7%), representing 12 different mosquito species, were positive for trypanosomatid DNA. In total, seven trypanosomatid spp. were identified (three Trypanosoma, three Crithidia and one Herpetomonas species), with the highest parasite species diversity found in the mosquito host Coquillettidia richiardii. The most frequent parasite species belonged to the mammalian Trypanosoma theileri/cervi species complex (found in 105 pools; 6.3%). The avian species T. culicavium (found in 69 pools; 4.1%) was only detected in mosquitoes of the genus Culex, which corresponds to their preference for avian hosts. Monoxenous trypanosomatids of the genus Crithidia and Herpetomonas were found in 20 (1.3%) mosquito pools. One third (n = 98) of the trypanosomatid positive mosquito pools carried more than one parasite species. This is the first large scale study of trypanosomatid parasites in Austrian mosquitoes and our results are valuable in providing an overview of the diversity of these parasites in Austria.
Collapse
Affiliation(s)
- Ellen Schoener
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Sarah Susanne Uebleis
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claudia Cuk
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michaela Nawratil
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Adelheid G. Obwaller
- Federal Ministry of Defence and Sports, Division of Science, Research and Development, Vienna, Austria
| | | | - Karin Lebl
- Institute for Veterinary Public Health, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Carina Zittra
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
- Institute of Parasitology, Biology Centre of Czech Academy of Sciences, České Budĕjovice, Czechia
| | - Hans-Peter Fuehrer
- Institute of Parasitology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria
| |
Collapse
|
23
|
Haemoparasites of the pied flycatcher: inter-population variation in the prevalence and community composition. Parasitology 2017; 145:912-919. [PMID: 29113599 DOI: 10.1017/s0031182017001913] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The prevalence and community composition of haemoparasites can substantially differ among avian host populations, which may lead to different selection pressures. Therefore, information about these parameters is crucial for understanding, e.g. the inter-population variation in host life history traits. Here, we molecularly screened a population of a long-distance migrant, the pied flycatcher Ficedula hypoleuca, from central Poland for the presence of three genera of blood parasites: Haemoproteus, Plasmodium and Trypanosoma. The infection rate in this population was the highest for haemosporidians (86·8%) and one of the highest for trypanosomes (39·7%) among the thus far screened breeding populations of this species. The haemosporidian community was composed of six Haemoproteus/Plasmodium lineages, and the trypanosome community - 4 species and a parasite assigned to genus level. Trypanosomes were dominated by T. culicavium, a recently described species, corroborating the prediction that insectivorous songbirds are vertebrate hosts of this parasite. Host sex and age did not explain variation in infection incidence except for the higher trypanosome infection rates in males. A comparison of the study population with three other breeding populations previously screened molecularly for haemosporidians showed some geographic differences. This study confirms the importance of examining local parasite communities across a host distribution range.
Collapse
|
24
|
Cooper C, Thompson RCA, Botero A, Kristancic A, Peacock C, Kirilak Y, Clode PL. A comparative molecular and 3-dimensional structural investigation into cross-continental and novel avian Trypanosoma spp. in Australia. Parasit Vectors 2017; 10:234. [PMID: 28499405 PMCID: PMC5427604 DOI: 10.1186/s13071-017-2173-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/03/2017] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Molecular and structural information on avian Trypanosoma spp. throughout Australia is limited despite their intrinsic value in understanding trypanosomatid evolution, diversity, and structural biology. In Western Australia tissue samples (n = 429) extracted from 93 birds in 25 bird species were screened using generic PCR primers to investigate the diversity of Trypanosoma spp. To investigate avian trypanosome structural biology the first 3-dimensional ultrastructural models of a Trypanosoma spp. (Trypanosoma sp. AAT) isolated from a bird (currawong, Strepera spp.) were generated using focussed ion beam milling combined with scanning electron microscopy (FIB-SEM). RESULTS Here, we confirm four intercontinental species of avian trypanosomes in native Australian birds, and identify a new avian Trypanosoma. Trypanosome infection was identified in 18 birds from 13 different bird species (19%). A single new genotype was isolated and found to be closely related to T. culicavium (Trypanosoma sp. CC2016 B002). Other Trypanosoma spp. identified include T. avium, T. culicavium, T. thomasbancrofti, Trypanosoma sp. TL.AQ.22, Trypanosoma sp. AAT, and an uncharacterised Trypanosoma sp. (group C-III sensu Zidková et al. (Infect Genet Evol 12:102-112, 2012)), all previously identified in Australia or other continents. Serially-sectioning Trypanosoma sp. AAT epimastigotes using FIB-SEM revealed the disc-shaped kinetoplast pocket attached perpendicular to the branching mitochondrion. Additionally, the universal minicircle sequence within the kinetoplast DNA and the associated binding protein were determined in Trypanosoma sp. AAT. CONCLUSIONS These results indicate that bird trypanosomes are relatively conserved across continents, while being locally diverse, which supports the hypothesis that bird trypanosomes exist as fewer species than described in the literature. Evidence exists that avian Trypanosoma spp. are infecting mammals and could be transmitted by haemadipsid leeches. Trypanosoma sp. AAT is most likely a separate species currently found only in Australia and the first 3-dimentional ultrastructural analysis of an avian trypanosome provides interesting information on their morphology and organelle arrangement.
Collapse
Affiliation(s)
- Crystal Cooper
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 Australia
| | - R. C. Andrew Thompson
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
| | - Adriana Botero
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
| | - Amanda Kristancic
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150 Australia
| | - Christopher Peacock
- Marshall Centre, School of Pathology and Laboratory and Medical Sciences, University of Western Australia, Crawley, WA 6009 Australia
- Telethon Kids Institute, 100 Roberts Rd, Subiaco, WA 6008 Australia
| | - Yaowanuj Kirilak
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 Australia
| | - Peta L. Clode
- Centre for Microscopy, Characterisation and Analysis, The University of Western Australia, Crawley, WA 6009 Australia
| |
Collapse
|
25
|
Svobodová M, Dolnik OV, Čepička I, Rádrová J. Biting midges (Ceratopogonidae) as vectors of avian trypanosomes. Parasit Vectors 2017; 10:224. [PMID: 28482865 PMCID: PMC5423023 DOI: 10.1186/s13071-017-2158-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 04/25/2017] [Indexed: 12/04/2022] Open
Abstract
Background Although avian trypanosomes are widespread parasites, the knowledge of their vectors is still incomplete. Despite biting midges (Diptera: Ceratopogonidae) are considered as potential vectors of avian trypanosomes, their role in transmission has not been satisfactorily elucidated. Our aim was to clarify the potential of biting midges to sustain the development of avian trypanosomes by testing their susceptibility to different strains of avian trypanosomes experimentally. Moreover, we screened biting midges for natural infections in the wild. Results Laboratory-bred biting midges Culicoides nubeculosus were highly susceptible to trypanosomes from the Trypanosoma bennetti and T. avium clades. Infection rates reached 100%, heavy infections developed in 55–87% of blood-fed females. Parasite stages from the insect gut were infective for birds. Moreover, midges could be infected after feeding on a trypanosome-positive bird. Avian trypanosomes can thus complete their cycle in birds and biting midges. Furthermore, we succeeded to find infected blood meal-free biting midges in the wild. Conclusions Biting midges are probable vectors of avian trypanosomes belonging to T. bennetti group. Midges are highly susceptible to artificial infections, can be infected after feeding on birds, and T. bennetti-infected biting midges (Culicoides spp.) have been found in nature. Moreover, midges can be used as model hosts producing metacyclic avian trypanosome stages infective for avian hosts.
Collapse
Affiliation(s)
- Milena Svobodová
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic.
| | - Olga V Dolnik
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| | - Ivan Čepička
- Department of Zoology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University, 12844, Prague 2, Czech Republic
| |
Collapse
|
26
|
Obame-Nkoghe J, Leroy EM, Paupy C. Diversity and role of cave-dwelling hematophagous insects in pathogen transmission in the Afrotropical region. Emerg Microbes Infect 2017; 6:e20. [PMID: 28400590 PMCID: PMC5457679 DOI: 10.1038/emi.2017.6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 01/28/2023]
Abstract
The progressive anthropization of caves for food resources or economic purposes increases human exposure to pathogens that naturally infect cave-dwelling animals. The presence of wild or domestic animals in the immediate surroundings of caves also may contribute to increasing the risk of emergence of such pathogens. Some zoonotic pathogens are transmitted through direct contact, but many others require arthropod vectors, such as blood-feeding insects. In Africa, hematophagous insects often play a key role in the epidemiology of many pathogens; however, their ecology in cave habitats remains poorly known. During the last decades, several investigations carried out in Afrotropical caves suggested the medical and veterinary importance particularly of insect taxa of the Diptera order. Therefore, the role of some of these insects as vectors of pathogens that infect cave-dwelling vertebrates has been studied. The present review summarizes these findings, brings insights into the diversity of cave-dwelling hematophagous Diptera and their involvement in pathogen transmission, and finally discusses new challenges and future research directions.
Collapse
Affiliation(s)
- Judicaël Obame-Nkoghe
- Laboratoire MIVEGEC, UMR 224-5290 CNRS-IRD-UM, IRD Montpellier, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,Centre International de Recherches Médicales de Franceville (CIRMF), BP 769 Franceville, Gabon
| | - Eric-Maurice Leroy
- Laboratoire MIVEGEC, UMR 224-5290 CNRS-IRD-UM, IRD Montpellier, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,Centre International de Recherches Médicales de Franceville (CIRMF), BP 769 Franceville, Gabon
| | - Christophe Paupy
- Laboratoire MIVEGEC, UMR 224-5290 CNRS-IRD-UM, IRD Montpellier, 911, Avenue Agropolis, BP 64501, 34394 Montpellier Cedex 5, France.,Centre International de Recherches Médicales de Franceville (CIRMF), BP 769 Franceville, Gabon
| |
Collapse
|
27
|
Deforestation does not affect the prevalence of a common trypanosome in African birds. Acta Trop 2016; 162:222-228. [PMID: 27421797 DOI: 10.1016/j.actatropica.2016.07.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2016] [Revised: 07/03/2016] [Accepted: 07/11/2016] [Indexed: 01/28/2023]
Abstract
In spite of numerous reports of avian Trypanosoma spp. in birds throughout the world, patterns of the distribution and prevalence of these blood parasites remains insufficiently understood. It is clear that spatial heterogeneity influences parameters of parasite distributions in natural populations, but data regarding avian trypanosomes are scarce. Using microscopy and molecular diagnostic methods, we analysed the variation of prevalence of avian Trypanosoma parasites in two widespread African bird species, the yellow-whiskered greenbul Andropadus latirostris and the olive sunbird Cyanomitra olivacea. In all, 353 birds were captured in pristine forests and agroforest sites in Cameroon and Ghana. Overall, the prevalence of avian trypanosomes was 51.3%. Five morphospecies were reported (Trypanosoma everetti, T. anguiformis, T. avium, T. naviformis, T. ontarioensis). Trypanosoma everetti predominated, representing 98% of all Trypanosoma spp. reports, and it was present in both avian hosts. The prevalence of T. everetti was significantly less in the yellow-whiskered greenbul (19%) than olive sunbird (83%), and the same pattern of prevalence was reported in these avian hosts at different study sites. We found no interaction between sites and the prevalence of T. everetti. For both avian hosts, the prevalence did not differ significantly between pristine forests and agroforests. This indicates the same pattern of transmission at sites with different levels of deforestation and suggests that spatial heterogeneity related to deforestation does not affect the prevalence of avian Trypanosoma infections. It is likely that host-related factors, but not environmental conditions favour or reduce these parasite infections in forests of sub-Saharan Africa. Microscopic and PCR-based diagnostics showed the same sensitivity in diagnostics of T. everetti. We discuss the implications of these findings for the epidemiology of avian trypanosomiasis in natural populations.
Collapse
|
28
|
Abstract
Hosts frequently harbour multiple parasite infections, yet patterns of parasite co-occurrence are poorly documented in nature. In this study, we asked whether two common avian blood parasites, one haemosporidian and one trypanosome, affect each other's occurrence in individuals of a single host species. We used molecular genotyping to survey protozoan parasites in the peripheral blood of yellow-breasted chats (Aves: Passeriformes [Parulidae]: Icteria virens) from the Ozarks of Southern Missouri. We also determined whether single and co-infections differently influence white blood cell and polychromatic erythrocyte counts, the latter being a measure of regenerative anaemia. We found a positive association between the haemosporidian and trypanosome parasites, such that infection by one increases the probability that an individual host is infected by the other. Adult individuals were more likely than juveniles to exhibit haemosporidian infection, but co-infections and single trypanosome infections were not age-related. We found evidence of pathogenicity of trypanosomes in that infected individuals exhibited similar levels of regenerative anaemia as birds infected with haemosporidian parasites of the genus Plasmodium. Counts of white blood cells did not differ with respect to infection status.
Collapse
|
29
|
Cooper C, Clode PL, Peacock C, Thompson RCA. Host-Parasite Relationships and Life Histories of Trypanosomes in Australia. ADVANCES IN PARASITOLOGY 2016; 97:47-109. [PMID: 28325373 DOI: 10.1016/bs.apar.2016.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Trypanosomes constitute a group of flagellate protozoan parasites responsible for a number of important, yet neglected, diseases in both humans and livestock. The most significantly studied include the causative agents of African sleeping sickness (Trypanosoma brucei) and Chagas disease (Trypanosoma cruzi) in humans. Much of our knowledge about trypanosome host-parasite relationships and life histories has come from these two human pathogens. Recent investigations into the diversity and life histories of wildlife trypanosomes in Australia highlight that there exists a great degree of biological and behavioural variation within and between trypanosomes. In addition, the genetic relationships between some Australian trypanosomes show that they are unexpectedly more closely related to species outside Australia than within it. These findings have led to a growing focus on the importance of understanding parasites occurring naturally in wildlife to (1) better document parasite biodiversity, (2) determine evolutionary relationships and degree of host specificity, (3) understand host-parasite interactions and the role of parasites in the natural ecosystem and (4) identify biosecurity issues of emerging disease in both wildlife and human populations. Here we review what is known about the diversity, life histories, host-parasite interactions and evolutionary relationships of trypanosomes in Australian wildlife. In this context, we focus upon the genetic proximity of key Australian species to the pathogenic T. cruzi and discuss similarities in their biology and behaviour that present a potential risk of human disease transmission by Australian vectors and wildlife.
Collapse
Affiliation(s)
- C Cooper
- The University of Western Australia, Crawley, WA, Australia
| | - P L Clode
- The University of Western Australia, Crawley, WA, Australia
| | - C Peacock
- The University of Western Australia, Crawley, WA, Australia; Telethon Kids Institute, Subiaco, WA, Australia
| | | |
Collapse
|
30
|
Intercontinental distribution of a new trypanosome species from Australian endemic Regent Honeyeater (Anthochaera phrygia). Parasitology 2016; 143:1012-25. [PMID: 27001623 DOI: 10.1017/s0031182016000329] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Establishing a health screening protocol is fundamental for successful captive breeding and release of wildlife. The aim of this study was to undertake a parasitological survey focusing on the presence of trypanosomes in a cohort of Regent Honeyeaters, Anthochaera phrygia, syn. Xanthomyza phrygia (Aves: Passeriformes) that are part of the breeding and reintroduction programme carried out in Australia. We describe a new blood parasite, Trypanosoma thomasbancrofti sp. n. (Kinetoplastida: Trypanosomatidae) with prevalence of 24·4% (20/81) in a captive population in 2015. The sequence of the small subunit rRNA gene (SSU rDNA) and kinetoplast ultrastructure of T. thomasbancrofti sp. n. are the key differentiating characteristics from other Trypanosoma spp. T. thomasbancrofti sp. n. is distinct from Trypanosoma cf. avium found in sympatric Noisy Miners (Manorina melanocephala). The SSU rDNA comparison suggests an intercontinental distribution of T. thomasbancrofti sp. n. and Culex mosquitoes as a suspected vector. Currently, no information exists on the effect of T. thomasbancrofti sp. n. on its hosts; however, all trypanosome-positive birds remain clinically healthy. This information is useful in establishing baseline health data and screening protocols, particularly prior to release to the wild.
Collapse
|
31
|
Votýpka J, Rádrová J, Skalický T, Jirků M, Jirsová D, Mihalca AD, D'Amico G, Petrželková KJ, Modrý D, Lukeš J. A tsetse and tabanid fly survey of African great apes habitats reveals the presence of a novel trypanosome lineage but the absence of Trypanosoma brucei. Int J Parasitol 2015. [PMID: 26219672 DOI: 10.1016/j.ijpara.2015.06.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Tsetse and tabanid flies transmit several Trypanosoma species, some of which are human and livestock pathogens of major medical and socioeconomic impact in Africa. Recent advances in molecular techniques and phylogenetic analyses have revealed a growing diversity of previously unidentified tsetse-transmitted trypanosomes potentially pathogenic to livestock and/or other domestic animals as well as wildlife, including African great apes. To map the distribution, prevalence and co-occurrence of known and novel trypanosome species, we analyzed tsetse and tabanid flies collected in the primary forested part of the Dzanga-Sangha Protected Areas, Central African Republic, which hosts a broad spectrum of wildlife including primates and is virtually devoid of domestic animals. Altogether, 564 tsetse flies and 81 tabanid flies were individually screened for the presence of trypanosomes using 18S rRNA-specific nested PCR. Herein, we demonstrate that wildlife animals are parasitized by a surprisingly wide range of trypanosome species that in some cases may circulate via these insect vectors. While one-third of the examined tsetse flies harbored trypanosomes either from the Trypanosoma theileri, Trypanosoma congolense or Trypanosoma simiae complex, or one of the three new members of the genus Trypanosoma (strains 'Bai', 'Ngbanda' and 'Didon'), more than half of the tabanid flies exclusively carried T. theileri. To establish the putative vertebrate hosts of the novel trypanosome species, we further analyzed the provenance of blood meals of tsetse flies. DNA individually isolated from 1033 specimens of Glossina spp. and subjected to high-throughput library-based screening proved that most of the examined tsetse flies engorged on wild ruminants (buffalo, sitatunga, bongo), humans and suids. Moreover, they also fed (albeit more rarely) on other vertebrates, thus providing indirect but convincing evidence that trypanosomes can be transmitted via these vectors among a wide range of warm- and cold-blooded hosts.
Collapse
Affiliation(s)
- Jan Votýpka
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic.
| | - Jana Rádrová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic; Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic
| | - Tomáš Skalický
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Milan Jirků
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Dagmar Jirsová
- Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Andrei D Mihalca
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Gianluca D'Amico
- Department of Parasitology and Parasitic Diseases, Faculty of Veterinary Medicine, University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
| | - Klára J Petrželková
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Institute of Vertebrate Biology, Czech Academy of Sciences, Brno, Czech Republic
| | - David Modrý
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic; Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, České Budějovice (Budweis), Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada.
| |
Collapse
|
32
|
Barros JHS, Toma HK, de Fatima Madeira M. Molecular study of Trypanosoma caninum isolates based on different genetic markers. Parasitol Res 2015; 114:777-83. [PMID: 25566771 DOI: 10.1007/s00436-014-4291-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2014] [Accepted: 12/23/2014] [Indexed: 11/29/2022]
Abstract
Trypanosoma caninum is a parasite recently described in dogs, whose life cycle is rather unknown. Here, we performed a genetic study with T. caninum samples obtained in different Brazilian regions. The study was based on PCR assays target to small and large subunit ribosomal DNA (rDNA) (18S rDNA and 24Sα rDNA), cytochrome B (Cyt b), and internal transcribed spacer 1 rDNA (ITS1 rDNA) following by the sequence analysis. Additionally, we used primers for the variable regions of kinetoplast DNA (kDNA) minicircles and endonucleases restriction in the ITS1 rDNA amplification product. T. caninum samples displayed the same patterns. Tree construction confirmed the close relationship between T. caninum samples, regardless of the molecular target used and endonuclease restriction digestion revealed that all samples have the same restriction profile. Therefore, T. caninum seems to be a genetically homogeneous specie. In the kDNA assay, T. caninum possessed a different molecular size profile with respect to others trypanosomes, 330 and 350 bp. This study provides nucleotide sequences from different regions of the genome of T. caninum that certainly facilitate future studies.
Collapse
Affiliation(s)
- Juliana H S Barros
- Programa de Pós-Graduação em Pesquisa Clínica em Doenças Infecciosas, Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Av. Brasil 4365, Rio de Janeiro, RJ, 21040-900, Brazil
| | | | | |
Collapse
|
33
|
Oakgrove KS, Harrigan RJ, Loiseau C, Guers S, Seppi B, Sehgal RNM. Distribution, diversity and drivers of blood-borne parasite co-infections in Alaskan bird populations. Int J Parasitol 2014; 44:717-27. [PMID: 25014331 DOI: 10.1016/j.ijpara.2014.04.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/15/2014] [Accepted: 04/17/2014] [Indexed: 10/25/2022]
Abstract
Avian species are commonly infected by multiple parasites, however few studies have investigated the environmental determinants of the prevalence of co-infection over a large scale. Here we believe that we report the first, detailed ecological study of the prevalence, diversity and co-infections of four avian blood-borne parasite genera: Plasmodium spp., Haemoproteus spp., Leucocytozoon spp. and Trypanosoma spp. We collected blood samples from 47 resident and migratory bird species across a latitudinal gradient in Alaska. From the patterns observed at collection sites, random forest models were used to provide evidence of associations between bioclimatic conditions and the prevalence of parasite co-infection distribution. Molecular screening revealed a higher prevalence of haematozoa (53%) in Alaska than previously reported. Leucocytozoons had the highest diversity, prevalence and prevalence of co-infection. Leucocytozoon prevalence (35%) positively correlated with Trypanosoma prevalence (11%), negatively correlated with Haemoproteus prevalence (14%) and had no correlation with Plasmodium prevalence (7%). We found temperature, precipitation and tree cover to be the primary environmental drivers that show a relationship with the prevalence of co-infection. The results provide insight into the impacts of bioclimatic drivers on parasite ecology and intra-host interactions, and have implications for the study of infectious diseases in rapidly changing environments.
Collapse
Affiliation(s)
- Khouanchy S Oakgrove
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA.
| | - Ryan J Harrigan
- Center for Tropical Research, Institute of the Environment and Sustainability, University of California, Los Angeles, CA 90095, USA
| | - Claire Loiseau
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| | - Sue Guers
- Alaska Songbird Institute, PO Box 82035, Fairbanks, AK 99708, USA
| | - Bruce Seppi
- Bureau of Land Management, Anchorage Field Office, 4700 BLM Road, Anchorage, AK 99507, USA
| | - Ravinder N M Sehgal
- Department of Biology, San Francisco State University, 1600 Holloway Avenue, San Francisco, CA 94132, USA
| |
Collapse
|
34
|
Flegontov P, Votýpka J, Skalický T, Logacheva MD, Penin AA, Tanifuji G, Onodera NT, Kondrashov AS, Volf P, Archibald JM, Lukeš J. Paratrypanosoma is a novel early-branching trypanosomatid. Curr Biol 2013; 23:1787-93. [PMID: 24012313 DOI: 10.1016/j.cub.2013.07.045] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 06/17/2013] [Accepted: 07/12/2013] [Indexed: 11/27/2022]
Abstract
The kinetoplastids are a widespread and important group of single-celled eukaryotes, many of which are devastating parasites of animals, including humans. We have discovered a new insect trypanosomatid in the gut of Culex pipiens mosquitoes. Glyceraldehyde-3-phosphate dehydrogenase- and SSU rRNA-based phylogenetic analyses show this parasite to constitute a distinct branch between the free-living Bodo saltans and the obligatory parasitic clades represented by the genus Trypanosoma and other trypanosomatids. From draft genome sequence data, we identified 114 protein genes shared among the new flagellate, 15 trypanosomatid species, B. saltans, and the heterolobosean Naegleria gruberi, as well as 129 protein genes shared with the basal kinetoplastid Perkinsela sp. Individual protein phylogenies together with analyses of concatenated alignments show that the new species, here named Paratrypanosoma confusum n. gen., n. sp., branches with very high support at the base of the family Trypanosomatidae. P. confusum thus represents a long-sought-after missing link between the ancestral free-living bodonids and the derived parasitic trypanosomatids. Further analysis of the P. confusum genome should provide insight into the emergence of parasitism in the medically important trypanosomatids.
Collapse
Affiliation(s)
- Pavel Flegontov
- Institute of Parasitology, Biology Centre, 37005 České Budějovice (Budweis), Czech Republic
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Prevalence of filarioid nematodes and trypanosomes in American robins and house sparrows, Chicago USA. INTERNATIONAL JOURNAL FOR PARASITOLOGY-PARASITES AND WILDLIFE 2012; 2:42-9. [PMID: 24533314 PMCID: PMC3862512 DOI: 10.1016/j.ijppaw.2012.11.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Revised: 11/24/2012] [Accepted: 11/28/2012] [Indexed: 02/05/2023]
Abstract
Hosts are commonly infected with a suite of parasites, and interactions among these parasites can affect the size, structure, and behavior of host–parasite communities. As an important step to understanding the significance of co-circulating parasites, we describe prevalence of co-circulating hemoparasites in two important avian amplification hosts for West Nile virus (WNV), the American robin (Turdus migratorius) and house sparrow (Passer domesticus), during the 2010–2011 in Chicago, Illinois, USA. Rates of nematode microfilariemia were 1.5% of the robins (n = 70) and 4.2% of the house sparrows (n = 72) collected during the day and 11.1% of the roosting robins (n = 63) and 0% of the house sparrows (n = 11) collected at night. Phylogenetic analysis of nucleotide sequences of the 18S rRNA and cytochrome oxidase subunit I (COI) genes from these parasites resolved two clades of filarioid nematodes. Microscopy revealed that 18.0% of American robins (n = 133) and 16.9% of house sparrows (n = 83) hosted trypanosomes in the blood. Phylogenetic analysis of nucleotide sequences from the 18s rRNA gene revealed that the trypanosomes fall within previously described avian trypanosome clades. These results document hemoparasites in the blood of WNV hosts in a center of endemic WNV transmission, suggesting a potential for direct or indirect interactions with the virus.
Collapse
|