1
|
Iltchenco J, Smiderle MD, Gaio J, Magrini FE, Paesi S. Metataxonomic characterization of the microbial present in the anaerobic digestion of turkey litter waste with the addition of two inocula: allochthonous and commercial. Int Microbiol 2025; 28:539-551. [PMID: 39039379 DOI: 10.1007/s10123-024-00561-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/07/2024] [Accepted: 07/15/2024] [Indexed: 07/24/2024]
Abstract
Turkey litter waste is lignocellulosic waste that can be sustainably used as an energy source through anaerobic digestion (AD). The 16S ribosomal RNA technique helps to unravel microbial diversity and predominant metabolic pathways. The assays were performed in 600-mL-glass bottles with 400 mL volume, for 60 days at 37 °C. The study evaluated the physicochemical parameters, the composition of the microbiota, and the functional inference in AD of different concentrations of turkey litter (T) using two inocula: granular inoculum (S) and commercial inoculum (B). The highest accumulated methane production (633 mL CH4·L-1) was observed in the test containing 25.5 g VS·L-1 of turkey litter with the addition of the two inocula (T3BS). In tests without inoculum (T3) and with commercial inoculum (T3B), there was an accumulation of acids and consequent inhibition of methane production 239 mL CH4·L-1 and 389 mL CH4·L-1, respectively. Bacteroidota, Firmicutes, and Actinobacteria were the main phyla identified. The presence of archaea Methanobacterium, Methanocorpusculum, and Methanolinea highlighted the hydrogenotrophic metabolic pathway in T3BS. Functional prediction showed enzymes involved in three metabolic pathways in turkey litter biodigestion: acetotrophic, hydrogenotrophic, and methylotrophic methanogenesis. The predominant hydrogenotrophic pathway can be observed by analyzing the microbiota, archaea involved in this specific pathway, genes involved, and relative acid consumption for T3S and T3BS samples with higher methane production. Molecular tools help to understand the main groups of microorganisms and metabolic pathways involved in turkey litter AD, such as the use of different inocula, allowing the development of strategies for the sustainable disposal of turkey litter.
Collapse
Affiliation(s)
- Janaina Iltchenco
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil.
| | - Mariana Dalsoto Smiderle
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Juliano Gaio
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Flaviane Eva Magrini
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| | - Suelen Paesi
- Molecular Diagnostic Laboratory, University of Caxias do Sul, Biotechnology Institute, Caxias do Sul, RS, 95070-560, Brazil
| |
Collapse
|
2
|
Liu H, Pan Z, Bai Y, Xu S, Wu Z, Ma J, Wang Z, Tian Z, Chen Y. Methanogens dominate methanotrophs and act as a methane source in aquaculture pond sediments. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 288:117317. [PMID: 39571254 DOI: 10.1016/j.ecoenv.2024.117317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/29/2024] [Accepted: 11/07/2024] [Indexed: 12/09/2024]
Abstract
Aquaculture pond sediments act as hotspots for methane (CH4) emissions; however, knowledge gaps on the regulation of microorganisms hinder our further understanding of methane dynamics in aquaculture pond sediment. Using field sampling and molecular analysis, we examined CH4 fluxes, the methanogenic community composition, and their interaction with methanotrophs to comprehensively understand the methane cycling in sediments of aquaculture ponds in northern China. Compared with a fishing pond without feed inputs, the abundances of methanogens mcrA and methanotrophs pmoA genes increased significantly in aquaculture ponds sediments. The dominant methanogens were Methanothrix, Methanoregula, and Methanolinea, and the α-diversity indices of methanogens demonstrated higher levels in 0-5 cm surface sediment. The methanotrophs were dominated by Methylocystis, Methylocaldum, and Methylobacter, and the α-diversity indices of methanotrophs showed no significant difference. The total organic carbon (TOC) contents and oxidation reduction potential (ORP) were the key factors driving methanogenic and methanotrophic communities on methane cycle in aquaculture sediment. The inter-domain ecological network (IDEN) analysis revealed that total number of network nodes, links, connectances, and links per species in the aquaculture sediments presented relatively higher levels, whereas the IDEN modules were fewer. The methanogens dominated in the networks and the interaction of methanogens and methanotrophs was more competitive and complex in aquaculture sediments. These findings highlight the marked methane production in aquaculture sediment, primarily due to the abundance, diversity, and competitive advantage of methanogens over methanotrophic communities.
Collapse
Affiliation(s)
- Hongda Liu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China; Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei 066003, PR China
| | - Zhe Pan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei 066003, PR China
| | - Yucen Bai
- Exchange, Development & Service Center for Science & Technology Talents, No. 54 Sanlihe Road, Beijing 100045, PR China
| | - Shaogang Xu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China
| | - Zhaoxing Wu
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China; Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei 066003, PR China
| | - Junfeng Ma
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China
| | - Zhuonan Wang
- Natural Resources Ecology Laboratory Colorado State University, Fort Collins, CO 80523, USA
| | - Zhaohui Tian
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China.
| | - Yan Chen
- Fisheries Science Institute, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100068, PR China.
| |
Collapse
|
3
|
Peterse IF, Hendriks L, Weideveld STJ, Smolders AJP, Lamers LPM, Lücker S, Veraart AJ. Wastewater-effluent discharge and incomplete denitrification drive riverine CO 2, CH 4 and N 2O emissions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175797. [PMID: 39197791 DOI: 10.1016/j.scitotenv.2024.175797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 08/23/2024] [Accepted: 08/23/2024] [Indexed: 09/01/2024]
Abstract
Rivers are well-known sources of the greenhouse gasses (GHG) carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O). These emissions from rivers can increase because of anthropogenic activities, such as agricultural fertilizer input or the discharge of treated wastewater, as these often contain elevated nutrient concentrations. Yet, the specific effects of wastewater effluent discharge on river GHG emissions remain poorly understood. Here, we studied two lowland rivers which both receive municipal wastewater effluent: river Linge and river Kromme Rijn. Dissolved concentrations and fluxes of CH4, N2O and CO2 were measured upstream, downstream and at discharge locations, alongside water column properties and sediment composition. Microbial communities in the sediment and water column were analysed using 16S rRNA gene sequencing. In general, observed GHG emissions from Linge and Kromme Rijn were comparable to eutrophic rivers in urban and agricultural environments. CO2 emissions peaked at most discharge locations, likely resulting from dissolved CO2 present in the effluent. CH4 emission was highest 2 km downstream, suggesting biological production by methanogenic activity stimulated by the effluents' carbon and nutrient supply. Dissolved N2O concentrations were strongly related to NO3- content of the water column which points towards incomplete riverine denitrification. Notably, methanogenic archaea were more abundant downstream of effluent discharge locations. However, overall microbial community composition remained relatively unaffected in both rivers. In conclusion, we demonstrate a clear link between wastewater effluent discharge and enhanced downstream GHG emission of two rivers. Mitigating the impact of wastewater effluent on receiving rivers will be crucial to reduce riverine GHG contributions.
Collapse
Affiliation(s)
- Ida F Peterse
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Lisanne Hendriks
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Stefan T J Weideveld
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Alfons J P Smolders
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; B-WARE Research Centre, Radboud University, P.O. Box 6558, 6503 GB Nijmegen, the Netherlands
| | - Leon P M Lamers
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands; B-WARE Research Centre, Radboud University, P.O. Box 6558, 6503 GB Nijmegen, the Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands
| | - Annelies J Veraart
- Department of Ecology, Radboud Institute for Biological and Environmental Sciences, Radboud University, P.O. Box 9010, 6500 GL Nijmegen, the Netherlands.
| |
Collapse
|
4
|
Wang L, Ducoste JJ, de los Reyes FL. Perturbations to common gardens of anaerobic co-digesters reveal relationships between functional resilience and microbial community composition. Appl Environ Microbiol 2024; 90:e0029824. [PMID: 39189736 PMCID: PMC11409718 DOI: 10.1128/aem.00298-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
We report the relationship between enrichment of adapted populations and enhancement of community functional resilience in methanogenic bioreactors. Although previous studies have shown the positive effects of acclimation, this work directly investigated the relationships between microbiome dynamics and performance of anaerobic co-digesting reactors in response to different levels of an environmental perturbation (loading of grease interceptor waste [GIW]). Using the methanogenic microbiome from a full-scale digester, we developed eight sets of microbial communities in triplicate using different feed sources. These substrate-specific microbiomes were then exposed to three independent disturbance events of low-, mid- and high-GIW loading rates. This approach allowed us to directly attribute differences in community responses to differences in community composition. Despite identical inocula, environment (digester operation, substrate loading rate, and feeding patterns) and general whole-community function (methane production and effluent quality) during the cultivation period, different substrates led to different microbial community assemblies. Lipid pre-acclimation led to enrichment of a pool of specialized populations, along with thriving of sub-dominant communities. The enrichment of these populations improved functional resilience and process performance when exposed to a low level of lipid-rich perturbation compared with less-acclimated communities. At higher levels of perturbation, the communities were not able to recover methanogenesis, indicating a loading limit to the resilience response. This study extends our current understanding of environmental perturbations, feed-specific adaptation, and functional resilience in methanogenic bioreactors.IMPORTANCEThis study demonstrates, for the first time for GIW co-digestion, how applying similar perturbations to different microbial communities was used to directly identify the causal relationships between microbial community, function, and environment in triplicate anaerobic microbiomes. We evaluated the impact of feed-specific adaptation on methanogenic microbiomes and demonstrated how microbiomes can be influenced to improve their functional (methanogenic) resilience to GIW inhibition. These findings demonstrate how an ecological framework can help improve a biological engineering application, and more specifically, increase the potential of anaerobic co-digestion for converting wastes to energy.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Joel J. Ducoste
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Francis L. de los Reyes
- Department of Civil Construction, and Environmental Engineering, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
5
|
Wang L, Lee E, Barlaz MA, de Los Reyes FL. Linking microbial population dynamics in anaerobic bioreactors to food waste type and decomposition stage. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 186:77-85. [PMID: 38865907 DOI: 10.1016/j.wasman.2024.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 05/18/2024] [Accepted: 06/06/2024] [Indexed: 06/14/2024]
Abstract
A key question in anaerobic microbial ecology is how microbial communities develop over different stages of waste decomposition and whether these changes are specific to waste types. We destructively sampled over time 26 replicate bioreactors cultivated on fruit/vegetable waste (FVW) and meat waste (MW) based on pre-defined waste components and composition. To characterize community shifts, we examined 16S rRNA genes from both the leachate and solid fractions of the waste. Waste decomposition occurred faster in FVW than MW, as accumulation of ammonia in MW reactors led to inhibition of methanogenesis. We identified population succession during different stages of waste decomposition and linked specific populations to different waste types. Community analyses revealed underrepresentation of methanogens in the leachate fractions, emphasizing the importance of consistent and representative sampling when characterizing microbial communities in solid waste.
Collapse
Affiliation(s)
- Ling Wang
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695
| | - Eunyoung Lee
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695
| | - Morton A Barlaz
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695
| | - Francis L de Los Reyes
- Department of Civil, Construction, and Environmental Engineering, North Carolina State University, Raleigh, NC 27695.
| |
Collapse
|
6
|
Costa JL, Silva LG, Veras STS, Gavazza S, Florencio L, Motteran F, Kato MT. Use of nitrate, sulphate, and iron (III) as electron acceptors to improve the anaerobic degradation of linear alkylbenzene sulfonate: effects on removal potential and microbiota diversification. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-33158-4. [PMID: 38613756 DOI: 10.1007/s11356-024-33158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/27/2024] [Indexed: 04/15/2024]
Abstract
Linear alkylbenzene sulfonate (LAS) is a synthetic anionic surfactant that is found in certain amounts in wastewaters and even in water bodies, despite its known biodegradability. This study aimed to assess the influence of nitrate, sulphate, and iron (III) on LAS anaerobic degradation and biomass microbial diversity. Batch reactors were inoculated with anaerobic biomass, nutrients, LAS (20 mg L-1), one of the three electron acceptors, and ethanol (40 mg L-1) as a co-substrate. The control treatments, with and without co-substrate, showed limited LAS biodegradation efficiencies of 10 ± 2% and 0%, respectively. However, when nitrate and iron (III) were present without co-substrate, biodegradation efficiencies of 53 ± 4% and 75 ± 3% were achieved, respectively, which were the highest levels observed. Clostridium spp. was prominent in all treatments, while Alkaliphilus spp. and Bacillus spp. thrived in the presence of iron, which had the most significant effect on LAS biodegradation. Those microorganisms were identified as crucial in affecting the LAS anaerobic degradation. The experiments revealed that the presence of electron acceptors fostered the development of a more specialised microbiota, especially those involved in the LAS biodegradation. A mutual interaction between the processes of degradation and adsorption was also shown.
Collapse
Affiliation(s)
- Joelithon L Costa
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Luiz Galdino Silva
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Shyrlane T S Veras
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Sávia Gavazza
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Lourdinha Florencio
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Fabrício Motteran
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil
| | - Mario Takayuki Kato
- Department of Civil and Environmental Engineering, Laboratory of Environmental Sanitation, Federal University of Pernambuco, Recife, PE, Brazil.
| |
Collapse
|
7
|
Xu H, Miao J, Wang J, Deng J, Zhang J, Kou Q, Xiong X, Holmes DE. Integrated CO 2 capture and conversion via H 2-driven CO 2 biomethanation: Cyclic performance and microbial community response. BIORESOURCE TECHNOLOGY 2024; 393:130055. [PMID: 37995871 DOI: 10.1016/j.biortech.2023.130055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 11/16/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
This study investigated the use of H2-driven CO2 biomethanation for integrated CO2 capture and conversion (iCCC). Anaerobic chambers containing Na2CO3-amended microbial growth medium provided with H2 were inoculated with anaerobic granular sludge. Microorganisms were enriched that could regenerate carbonate by using the bicarbonate formed from CO2 absorption to generate methane. Multiple absorption-regeneration cycles were performed and effective restoration of CO2 absorption capacity and stable carbonate recycling via CO2 biomethanation were observed for CO2 absorbents adjusted to three different pH values (9.0, 9.5, and 10.0). The pH = 10.0 group had the highest CO2 absorption capacity; 65.3 mmol/L in the 5th cycle. A slight alkaline inhibition of acetoclastic methanogenesis occurred near the end of regeneration, but had limited impact on the cyclic performance of the iCCC process. Microbial communities were dominated by H2-utilizing and alkali-tolerant species that could participate in CO2 biomethanation and survive under alternating neutral and alkaline conditions.
Collapse
Affiliation(s)
- Heng Xu
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jiahui Miao
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jianbing Wang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jiushuai Deng
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Jiayin Zhang
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Qingshuang Kou
- School of Chemical & Environmental Engineering, China University of Mining & Technology-Beijing, Beijing 100083, China
| | - Xia Xiong
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, Chengdu 610041, China.
| | - Dawn E Holmes
- Department of Physical and Biological Sciences, Western New England University, 1215 Wilbraham Road, Springfield, MA 01119, United States
| |
Collapse
|
8
|
Yan W, Wang Y, Li Y, Rong C, Wang D, Wang C, Wang Y, Yuen YL, Wong FF, Chui HK, Li YY, Zhang T. Treatment of fresh leachate by anaerobic membrane bioreactor: On-site investigation, long-term performance and response of microbial community. BIORESOURCE TECHNOLOGY 2023; 383:129243. [PMID: 37257727 DOI: 10.1016/j.biortech.2023.129243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/02/2023]
Abstract
This study proposed fresh leachate treatment with anaerobic membrane bioreactor (AnMBR) based on the on-site investigation of the characteristics of fresh leachate. Temperature-related profiles of fresh leachate properties, like chemical oxygen demand (COD), were observed. In addition, AnMBR achieved a high COD removal of 98% with a maximum organic loading rate (OLR) of 19.27 kg-COD/m3/d at the shortest hydraulic retention time (HRT) of 1.5 d. The microbial analysis implied that the abundant protein and carbohydrate degraders (e.g., Thermovirga and Petrimonas) as well as syntrophic bacteria, such as Syntrophomonas, ensured the effective adaptation of AnMBR to the reduced HRTs. However, an excessive OLR at 36.55 kg-COD/m3/d at HRT of 1 d resulted in a sharp decrease in key microbes, such as archaea (from 37% to 15%), finally leading to the deterioration of AnMBR. This study provides scientific guidance for treating fresh leachate by AnMBR and its full-scale application for high-strength wastewater.
Collapse
Affiliation(s)
- Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yulin Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yemei Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Chao Rong
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Dou Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Chunxiao Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yubo Wang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region
| | - Yee-Lok Yuen
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Fanny Fong Wong
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Ho-Kwong Chui
- Environmental Protection Department, The Government of the Hong Kong Special Administrative Region, Hong Kong Special Administrative Region
| | - Yu-You Li
- Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Hong Kong Special Administrative Region.
| |
Collapse
|
9
|
Ma XC, Wang K, Gao XL, Li XK, Liu GG, Chen HY, Piao CY, You SJ. Temperature-regulated and starvation-induced refractory para-toluic acid anaerobic biotransformation. CHEMOSPHERE 2023; 311:137008. [PMID: 36377119 DOI: 10.1016/j.chemosphere.2022.137008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 10/04/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Little research was focused on the anerobic degradation of refractory para-toluic acid at present. Thus, temperature-regulated anaerobic system of para-toluic acid fed as sole substrate was built and investigated via microbiota, metabolism intermediates, and function prediction in this study. Results showed that low methane yield was produced in para-toluic acid anaerobic system at alkaline condition. And the causes were owing to anaerobic methane oxidation and potentially H2S production at 37 °C, N2 production by denitrification before starvation and propionic acid occurrence after starvation at 27 °C, and production of N2 and free ammonia, and accumulation of acetic acid at 52 °C. Simultaneously, hydrogenotrophic methanogenesis dependent on syntrophic acetate oxidation (SAO) was predominant, facilitating the removal of para-toluic acid at 52 °C. Moreover, the key intermediate changed from phthalic acid of 37 °C and 27 °C before starvation to terephthalic acid of 52 °C. Starvation promoted removal of para-toluic acid through benzoyl-CoA pathway by Syntrophorhabdus, enrichment of syntrophic propionate degraders of Bacteroidetes and Ignavibacteriaceae, and increase of methylotrophic methanogens.
Collapse
Affiliation(s)
- Xiao-Chen Ma
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Ke Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China; National Engineering Research Center for Safe Sludge Disposal and Resource Recovery, Harbin Institute of Technology, Harbin, 150090, China; Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin, 150090, China.
| | - Xin-Lei Gao
- Harbin Institute of Technology National Engineering Research Center of Water Resources Co., Ltd, Guangdong Yuehai Water Investment Co., Ltd, Harbin, 150090, China
| | - Xiang-Kun Li
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China.
| | - Gai-Ge Liu
- School of Civil and Transportation, Hebei University of Technology, Tianjin, 300401, China
| | - Hong-Ying Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Chen-Yu Piao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Shi-Jie You
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
10
|
Characterization of archaeal and bacterial communities thriving in methane-seeping on-land mud volcanoes, Niigata, Japan. Int Microbiol 2022; 26:191-204. [PMID: 36329310 DOI: 10.1007/s10123-022-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 09/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022]
Abstract
Submarine mud volcanoes (MVs) have attracted significant interest in the scientific community for obtaining clues on the subsurface biosphere. On-land MVs, which are much less focused in this context, are equally important, and they may even provide insights also for astrobiology of extraterrestrial mud volcanism. Hereby, we characterized microbial communities of two active methane-seeping on-land MVs, Murono and Kamou, in central Japan. 16S rRNA gene profiling of those sites recovered the dominant archaeal sequences affiliated with methanogens. Anaerobic methanotrophs (ANME), with the subgroups ANME-1b and ANME-3, were recovered only from the Murono site albeit a greatly reduced relative abundance in the community compared to those of typical submarine MVs. The bacterial sequences affiliated to Caldatribacteriota JS1 were recovered from both sites; on the other hand, sulfate-reducing bacteria (SRB) of Desulfobulbaceae was recovered only from the Murono site. The major difference of on-land MVs from submarine MVs is that the high concentrations of sulfate are not always introduced to the subsurface from above. In addition, the XRD analysis of Murono shows the absence of sulfate-, sulfur-related mineral. Therefore, we hypothesize one scenario of ANME-1b and ANME-3 thriving at the depth of the Murono site independently from SRB, which is similar to the situations reported in some other methane-seeping sites with a sulfate-depleted condition. We note that previous investigations speculate that the erupted materials from Murono and Kamou originate from the Miocene marine strata. The fact that SRB (Desulfobulbaceae) capable of associating with ANME-3 was recovered from the Murono site presents an alternative scenario: the old sea-related juvenile water somehow worked as the source of additional sulfur-related components for the SRB-ANME syntrophic consortium forming at a deeper zone of the site. However, the reason for the differences between Murono and Kamou is still unknown, and this requires further investigation.
Collapse
|
11
|
Carneiro RB, Gomes GM, Zaiat M, Santos-Neto ÁJ. Two-phase (acidogenic-methanogenic) anaerobic fixed bed biofilm reactor enhances the biological domestic sewage treatment: Perspectives for recovering bioenergy and value-added by-products. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 317:115388. [PMID: 35653845 DOI: 10.1016/j.jenvman.2022.115388] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/23/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
The organic matter bioconversion into methane during anaerobic digestion (AD) comprises different steps, the acidogenic and methanogenic phases being clearly distinct in terms of metabolic activities. In this work, new configurations of anaerobic fixed bed biofilm reactors (AFBBR) were operated under conventional methanogenic conditions (single phase - SP-AFBBR, M1R), and in a sequential two-phase system, acidogenic reactor followed by methanogenic reactor (TP-AFBBR, AcR + M2R), in order to verify the impact of the AD phase separation on the overall system performance in operational, kinetics and microbiological aspects. The results indicated that feeding the methanogenic reactor with the acidogenic effluent stream provided a shorter operating start-up period (11 and 32 days for SP and TP-AFBBR, respectively), a greater alkalinity generation (0.14 and 0.41 g-CaCO3·g-CODremoved-1 for M1R and M2R, respectively), and the optimization of biomethane production (methane yield of 95 and 154 N-mLCH4·g-CODremoved-1 for M1R and M2R, respectively). The COD removal kinetics was also favored in the TP-AFBBR (k1-COD = 1.4 and 2.9 h-1 for M1R and M2R, respectively), since the soluble fermentation products were readily bioavailable to the biomass in the reactor. Hydrogenotrophic methanogenesis was the predominant pathway in the M2R, while the Methanosaeta-driven acetoclastic pathway predominated in the M1R. The greater diversity of Bacteria and Archaea in M2R denotes a better balance between the species that degrade volatile organic acids from AcR (i.e. Syntrophorhabdus, Syntrophus and Syntrophobacter) and the hydrogenotrophic methanogens (Methanoregula, Methanolinea and Methanospirillum) that consume the biodegradation products. The estimated bioenergy generation potential (range of 0.39-0.64 kWh·m-3-sewage considering the COD removed) for full-scale TP-sewage treatment plants evidences the feasibility of energetic recovery in the domestic sewage anaerobic treatment.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Chromatography (CROMA), Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil; Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Gisele M Gomes
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
12
|
Kudisi D, Lu X, Zheng C, Wang Y, Cai T, Li W, Hu L, Zhang R, Zhang Y, Zhen G. Long-term performance, membrane fouling behaviors and microbial community in a hollow fiber anaerobic membrane bioreactor (HF-AnMBR) treating synthetic terephthalic acid-containing wastewater. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127458. [PMID: 34653863 DOI: 10.1016/j.jhazmat.2021.127458] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/02/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Purified terephthalic acid (PTA) wastewater with properties of poor biodegradation and high toxicity is produced from refining and synthesis of petrochemical products. In this study, a lab-scale hollow fiber membrane bioreactor (HF-AnMBR) fed with synthetic PTA wastewater was operated over 200 days with stepwise decreased hydraulic retention time (HRT) to investigate the long-term performance, membrane fouling mechanism and microbial community evolution. Results showed that a stable chemical oxygen demand (COD) removal rate of 65.8 ± 4.1% was achieved at organic loading rate of 3.1 ± 0.3 g-COD/L-reactor/d and HRT 24 h, under which the methane production rate reached 0.33 ± 0.02 L/L-reactor/d. Further shortening HRT, however, led to the decreased COD removal efficiency and low methane bioconversion. A mild membrane fouling occurred due to the production of colloidal biopolymers and the interaction between increased colloidal substances secreted/cracked by microorganisms and membrane interface. Further 16S rRNA analysis indicated that microbial diversity and richness had changed with the variation of HRT while Methanosaeta, and Methanolinea species were always the dominant methanogens responsible for methane production. The results verify that HF-AnMBR is an alternative technology for PTA wastewater treatment along with energy harvesting, and provide a new avenue toward sustainable petrochemical wastewater management.
Collapse
Affiliation(s)
- Dilibaierkezi Kudisi
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Xueqin Lu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Rd., Shanghai 200062, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China.
| | - Chaoting Zheng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yue Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Teng Cai
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wanjiang Li
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Lingtan Hu
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Ruiliang Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Yizhi Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, PR China; Shanghai Institute of Pollution Control and Ecological Security, 1515 North Zhongshan Rd. (No. 2), Shanghai 200092, PR China; Technology Innovation Center for Land Spatial Eco-restoration in Metropolitan Area, Ministry of Natural Resources, 3663 N. Zhongshan Road, Shanghai 200062, PR China.
| |
Collapse
|
13
|
Kang X, Liu Y. Performance and mechanism of conductive magnetite particle-enhanced excess sludge anaerobic digestion for biogas recovery. RSC Adv 2021; 11:35559-35566. [PMID: 35493163 PMCID: PMC9043222 DOI: 10.1039/d1ra06236k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/13/2021] [Indexed: 01/01/2023] Open
Abstract
The aim of this study was to evaluate the effect of magnetite particles on the anaerobic digestion of excess sludge. The results showed that methane production increased with the increase in magnetite dosage in the range of 0–5 g L−1, and the cumulative methane production increased by 50.1% at a magnetite dosage of 5 g L−1 compared with the blank reactor after 20 days. Simultaneously, numerous volatile fatty acids (VFAs) were produced at high magnetite dosages, providing the required substrates for methanogenesis. The concentration of magnetite addition was positively correlated with methane production, which proved that magnetite was beneficial for the promotion of the conversion of VFAs to methane. Moreover, the degradation efficiencies of proteins and carbohydrates reached 64% and 52.6% at the magnetite dosage of 5 g L−1, respectively, and corresponding activities of protease and coenzyme F420 were 9.03 IU L−1 and 1.652 μmol L−1. In addition, the Methanosaeta and Methanoregula genus were enriched by magnetite, which often participate in direct interspecies electron transfer as electron acceptors. Magnetite particles were applied to excess sludge anaerobic digestion. The methane production and sludge reduction were related to magnetite particle dosage, and the Methanosaeta and Methanoregula involved in the electron transfer were enriched.![]()
Collapse
Affiliation(s)
- Xiaorong Kang
- School of Environmental Engineering, Nanjing Institute of Technology Nanjing 211167 PR China +86-18795465873
| | - Yali Liu
- School of Civil Engineering, Nanjing Forestry University Nanjing 210037 PR China
| |
Collapse
|
14
|
Zhang L, Gong X, Wang L, Guo K, Cao S, Zhou Y. Metagenomic insights into the effect of thermal hydrolysis pre-treatment on microbial community of an anaerobic digestion system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148096. [PMID: 34118665 DOI: 10.1016/j.scitotenv.2021.148096] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 06/12/2023]
Abstract
Thermal hydrolysis process (THP) is an effective pre-treatment method to reduce solids volume and improve biogas production during anaerobic digestion (AD) via increasing the biodegradability of waste activated sludge (WAS). However, the effects of THP pre-treated sludge on microbial diversity, interspecies interactions, and metabolism in AD systems remain largely unknown. We therefore setup and operated an anaerobic digester during a long-term period to shed light on the effect of THP pre-treatment on AD microbial ecology in comparison to conventional AD via Illumina based 16S rRNA gene amplicon sequencing and genome-centric metagenomics analysis. Results showed THP sludge significantly reduced the microbial diversity, shaped the microbial community structure, and resulted in more intense microbial interactions. Compared to WAS as the feed sludge, THP sludge shaped the core functional groups, but functional redundancy ensured the system's stability. The metabolic interactions between methanogens and syntrophic bacteria as well as the specific metabolic pathways were further elucidated. Hydrogenotrophic methanogens, Methanospirillum sp. and Methanolinea sp., were the primary contributors for methane production when treating THP and WAS, respectively, which also have potential for acetate oxidation to methane. Collectively, this study provides in-depth information on the interspecies interactions to better understand how THP pre-treatment influences AD microbial community.
Collapse
Affiliation(s)
- Liang Zhang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Xianzhe Gong
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong 266237, China
| | - Li Wang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Kun Guo
- Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore
| | - Yan Zhou
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
15
|
Shi J, Li Z, Zhang B, Li L, Sun W. Synergy between pyridine anaerobic mineralization and vanadium (V) oxyanion bio-reduction for aquifer remediation. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126339. [PMID: 34118535 DOI: 10.1016/j.jhazmat.2021.126339] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/29/2021] [Accepted: 06/03/2021] [Indexed: 06/12/2023]
Abstract
The co-occurrence of toxic pyridine (Pyr) and vanadium (V) oxyanion [V(V)] in aquifer has been of emerging concern. However, interactions between their biogeochemical fates remain poorly characterized, with absence of efficient route to decontamination of this combined pollution. In this work, microbial-driven Pyr degradation coupled to V(V) reduction was demonstrated for the first time. Removal efficiencies of Pyr and V(V) reached 94.8 ± 1.55% and 51.2 ± 0.20% in 72 h operation. The supplementation of co-substrate (glucose) deteriorated Pyr degradation slightly, but significantly promoted V(V) reduction efficiency to 84.5 ± 0.635%. Pyr was mineralized with NH4+-N accumulation, while insoluble vanadium (IV) was the major product from V(V) bio-reduction. It was observed that Bacillus and Pseudomonas realized synchronous Pyr and V(V) removals independently. Interspecific synergy between Pyr degraders and V(V) reducers also functioned with addition of co-substrate. V(V) was bio-reduced through alternative electron acceptor pathway conducted by gene nirS encoded nitrite reductase, which was evidenced by gene abundance and enzyme activity. Cytochrome c, nicotinamide adenine dinucleotide and extracellular polymeric substances also contributed to the coupled bioprocess. This work provides new insights into biogeochemical activities of Pyr and V(V), and proposes novel strategy for remediation of their co-contaminated aquifer.
Collapse
Affiliation(s)
- Jiaxin Shi
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Zongyan Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Baogang Zhang
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Lei Li
- School of Water Resources and Environment, MOE Key Laboratory of Groundwater Circulation and Environmental Evolution, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Weimin Sun
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, PR China
| |
Collapse
|
16
|
Zhao JY, Hu B, Dolfing J, Li Y, Tang YQ, Jiang Y, Chi CQ, Xing J, Nie Y, Wu XL. Thermodynamically favorable reactions shape the archaeal community affecting bacterial community assembly in oil reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 781:146506. [PMID: 33794455 DOI: 10.1016/j.scitotenv.2021.146506] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/19/2021] [Accepted: 03/11/2021] [Indexed: 02/07/2023]
Abstract
Microbial community assembly mechanisms are pivotal for understanding the ecological functions of microorganisms in biogeochemical cycling in Earth's ecosystems, yet rarely investigated in the context of deep terrestrial ecology. Here, the microbial communities in the production waters collected from water injection wells and oil production wells across eight oil reservoirs throughout northern China were determined and analyzed by proportional distribution analysis and null model analysis. A 'core' microbiota consisting of three bacterial genera, including Arcobacter, Pseudomonas and Acinetobacter, and eight archaeal genera, including Archaeoglobus, Methanobacterium, Methanothermobacter, unclassified Methanobacteriaceae, Methanomethylovorans, Methanoculleus, Methanosaeta and Methanolinea, was found to be present in all production water samples. Canonical correlation analysis reflected that the core archaea were significantly influenced by temperature and reservoir depth, while the core bacteria were affected by the combined impact of the core archaea and environmental factors. Thermodynamic calculations indicate that bioenergetic constraints are the driving force that governs the enrichment of two core archaeal guilds, aceticlastic methanogens versus hydrogenotrophic methanogens, in low- and high-temperature oil reservoirs, respectively. Collectively, our study indicates that microbial community structures in wells of oil reservoirs are structured by the thermodynamic window of opportunity, through which the core archaeal communities are accommodated directly followed by the deterministic recruiting of core bacterial genera, and then the stochastic selection of some other microbial members from local environments. Our study enhances the understanding of the microbial assembly mechanism in deep terrestrial habitats. Meanwhile, our findings will support the development of functional microbiota used for bioremediation and bioaugmentation in microbial enhanced oil recovery.
Collapse
Affiliation(s)
- Jie-Yu Zhao
- College of Engineering, Peking University, Beijing, China
| | - Bing Hu
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology of China; Institute of Biochemical Engineering, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Jan Dolfing
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, United Kingdom
| | - Yan Li
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, China
| | - Yiming Jiang
- Institute of Virology, Helmholtz Zentrum München/Technical University of Munich, Munich, Germany
| | - Chang-Qiao Chi
- College of Engineering, Peking University, Beijing, China
| | - Jianmin Xing
- CAS Key Laboratory of Green Process and Engineering & State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yong Nie
- College of Engineering, Peking University, Beijing, China.
| | - Xiao-Lei Wu
- College of Engineering, Peking University, Beijing, China; Institute of Ocean Research, Peking University, Beijing, China.
| |
Collapse
|
17
|
Kang HJ, Lee SH, Lim TG, Park HD. Effect of microbial community structure in inoculum on the stimulation of direct interspecies electron transfer for methanogenesis. BIORESOURCE TECHNOLOGY 2021; 332:125100. [PMID: 33838453 DOI: 10.1016/j.biortech.2021.125100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
To investigate how the seed microbial community structure affects the improvement of methanogenesis efficiency through direct interspecies electron transfer (DIET), a biomethane potential (BMP) test was conducted using sludge collected from a total of six anaerobic digesters. DIET-stimulating microbial populations were investigated by 16S rRNA gene sequence analysis. Correlations between microbial community composition and methane production performance by DIET were analyzed. The methane production rate increased under all conditions when granular activated carbon (GAC) was injected regardless of the inoculum type. However, redundancy analysis indicated a significant correlation between the inoculum microbial community and lag time. In a network analysis, Methanolinea species distributed in the inocula formed a single modularity with lag time, suggesting that the methanogens in the inocula might reduce the lag time of methanogenesis through DIET. Overall, this study revealed that the inoculum microbial community composition is an important factor affecting methane production efficiency by DIET.
Collapse
Affiliation(s)
- Hyun-Jin Kang
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Sang-Hoon Lee
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Tae-Guen Lim
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea
| | - Hee-Deung Park
- School of Civil, Environmental and Architectural Engineering, Korea University, Seoul 02841, South Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, South Korea.
| |
Collapse
|
18
|
Carrillo-Reyes J, Buitrón G, Arcila JS, López-Gómez MO. Thermophilic biogas production from microalgae-bacteria aggregates: biogas yield, community variation and energy balance. CHEMOSPHERE 2021; 275:129898. [PMID: 33667771 DOI: 10.1016/j.chemosphere.2021.129898] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/18/2021] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Biogas production through anaerobic mesophilic digestion is the most straightforward biofuel production route integrated into microalgae-bacteria wastewater treatment plants. Improvement of this biofuel route without adding pretreatment units is possible through the temperature increase. This paper presents a comprehensive evaluation of the transitory effect of different temperatures (35 °C and 55 °C) and hydraulic retention times (HRT) of 15 and 30 d on the long-term methane production using non-pretreated microalgae-bacteria aggregates as a feedstock. The thermophilic transition from mesophilic inoculum adapted to microalgae-bacteria aggregate increased 1.7-fold the methane production (0.41 m3CH4 kgVS-1) at HRT of 30 d. A substantial decrease in the microbial community's diversity present in the anaerobic reactor was observed when thermophilic conditions were applied, explaining the long adaptation period needed. The increase of the operative temperature condition promotes changes in the dominance pathway of methanogenesis from hydrogenotrophic to acetolactic. The energy balance assessment showed a positive net energy ratio when the digester was operated at an HRT of 30 d. A maximum net energy ratio of 1.5 was achieved at mesophilic temperature. This study demonstrated, based on experimental data, that microalgal digestion with an HRT of 30 d favors energy self-sustainability in microalgal wastewater treatment plants.
Collapse
Affiliation(s)
- Julián Carrillo-Reyes
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| | - Germán Buitrón
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico.
| | - Juan Sebastián Arcila
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico; Research Group of Technological and Environmental Advances, Universidad Católica de Manizales, Carrera 23 No. 60 - 63, Manizales, Caldas, Colombia
| | - Matías Orlando López-Gómez
- Laboratory for Research on Advanced Processes for Water Treatment, Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd. Juriquilla 3001, Querétaro, 76230, Mexico
| |
Collapse
|
19
|
Zhang Y, Mao Q, Su YA, Zhang H, Liu H, Fu B, Su Z, Wen D. Thermophilic rather than mesophilic sludge anaerobic digesters possess lower antibiotic resistant genes abundance. BIORESOURCE TECHNOLOGY 2021; 329:124924. [PMID: 33691205 DOI: 10.1016/j.biortech.2021.124924] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/23/2021] [Accepted: 02/24/2021] [Indexed: 06/12/2023]
Abstract
For exploring the impact of temperature on antibiotic resistant genes (ARGs) during sludge anaerobic digestion (AD), the dynamic variations of sludge ARGs, plasmid ARGs, and cell-free ARGs in mesophilic (25 °C and 35 °C) and thermophilic (55 °C) digesters were investigated. The study revealed that the abundance of sludge ARGs and plasmid ARGs in thermophilic sludge AD was significantly lower than that in mesophilic digesters, while the cell-free ARGs abundance of the thermophilic digesters was similar to mesophilic digesters. Higher archaea abundance, lower bacteria abundance, and different microbial community were found in thermophilic digesters compared to that of mesophilic ones. Firmicutes might be a main group of potential hosts of ARGs in sludge AD. The distinct microbial community was the main contributor to the low ARGs abundance in thermophilic sludge AD. Thermophilic operation at 55 °C rather than mesophilic operation is more conducive to control ARGs in sludge anaerobic digestion.
Collapse
Affiliation(s)
- Yan Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Qiuyan Mao
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Yu-Ao Su
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Huimin Zhang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - He Liu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| | - Bo Fu
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - Zhiguo Su
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
20
|
Liu X, Wu Y, Xu Q, Du M, Wang D, Yang Q, Yang G, Chen H, Zeng T, Liu Y, Wang Q, Ni BJ. Mechanistic insights into the effect of poly ferric sulfate on anaerobic digestion of waste activated sludge. WATER RESEARCH 2021; 189:116645. [PMID: 33227607 DOI: 10.1016/j.watres.2020.116645] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 06/11/2023]
Abstract
Poly ferric sulfate (PFS), one of the typical inorganic flocculants widely used in wastewater management and waste activated sludge (WAS) dewatering, could be accumulated in WAS and inevitably entered in anaerobic digestion system at high levels. However, knowledge about its impact on methane production is virtually absent. This study therefore aims to fill this gap and provide insights into the mechanisms involved through both batch and long-term tests using either real WAS or synthetic wastewaters as the digestion substrates. Experimental results showed that the maximum methane potential and production rate of WAS was respectively retarded by 39.0% and 66.4%, whereas the lag phase was extended by 237.0% at PFS of 40 g per kg of total solids. Mechanism explorations exhibited that PFS induced the physical enmeshment and disrupted the enzyme activity involved in anaerobic digestion, resulting in an inhibitory state of the bioprocess of hydrolysis, acidogenesis, and methanogenesis. Furthermore, PFS's inhibition to hydrogenotrophic methanogenesis was much severer than that to acetotrophic methanogenesis, which could be supported by the elevated abundances of Methanosaeta sp and the dropped abundances of Methanobacterium sp in PFS-present digester, and probably due to the severe mass transfer resistance of hydrogen between the syntrophic bacteria and methanogens, as well as the higher hydrogen appetency of PFS-induced sulfate reducing bacteria. Among the derivatives of PFS, "multinucleate and multichain-hydroxyl polymers" and sulfate were unveiled to be the major contributors to the decreased methane potential, while the "multinucleate and multichain-hydroxyl polymers" were identified to be the chief buster to the slowed methane-producing rate and the extended lag time.
Collapse
Affiliation(s)
- Xuran Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Yanxin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Qiuxiang Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Mingting Du
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China.
| | - Qi Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, P.R. China
| | - Guojing Yang
- College of Biological and Environmental Sciences, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Hong Chen
- Key Laboratory of Water-Sediment Sciences and Water Disaster Prevention of Hunan Province, School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Tianjing Zeng
- Ecology and Environment Department of Hunan Provience, Changsha 410014, P.R. China
| | - Yiwen Liu
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| |
Collapse
|
21
|
Cozannet M, Borrel G, Roussel E, Moalic Y, Allioux M, Sanvoisin A, Toffin L, Alain K. New Insights into the Ecology and Physiology of Methanomassiliicoccales from Terrestrial and Aquatic Environments. Microorganisms 2020; 9:E30. [PMID: 33374130 PMCID: PMC7824343 DOI: 10.3390/microorganisms9010030] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/19/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Members of the archaeal order Methanomassiliicoccales are methanogens mainly associated with animal digestive tracts. However, environmental members remain poorly characterized as no representatives not associated with a host have been cultivated so far. In this study, metabarcoding screening combined with quantitative PCR analyses on a collection of diverse non-host-associated environmental samples revealed that Methanomassiliicoccales were very scarce in most terrestrial and aquatic ecosystems. Relative abundance of Methanomassiliicoccales and substrates/products of methanogenesis were monitored during incubation of environmental slurries. A sediment slurry enriched in Methanomassiliicoccales was obtained from a freshwater sample. It allowed the reconstruction of a high-quality metagenome-assembled genome (MAG) corresponding to a new candidate species, for which we propose the name of Candidatus 'Methanomassiliicoccus armoricus MXMAG1'. Comparison of the annotated genome of MXMAG1 with the published genomes and MAGs from Methanomassiliicoccales belonging to the 2 known clades ('free-living'/non-host-associated environmental clade and 'host-associated'/digestive clade) allowed us to explore the putative physiological traits of Candidatus 'M. armoricus MXMAG1'. As expected, Ca. 'Methanomassiliicoccus armoricus MXMAG1' had the genetic potential to produce methane by reduction of methyl compounds and dihydrogen oxidation. This MAG encodes for several putative physiological and stress response adaptations, including biosynthesis of trehalose (osmotic and temperature regulations), agmatine production (pH regulation), and arsenic detoxication, by reduction and excretion of arsenite, a mechanism that was only present in the 'free-living' clade. An analysis of co-occurrence networks carried out on environmental samples and slurries also showed that Methanomassiliicoccales detected in terrestrial and aquatic ecosystems were strongly associated with acetate and dihydrogen producing bacteria commonly found in digestive habitats and which have been reported to form syntrophic relationships with methanogens.
Collapse
Affiliation(s)
- Marc Cozannet
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Guillaume Borrel
- Unit Evolutionary Biology of the Microbial Cell, Department of Microbiology, Institute Pasteur, 75015 Paris, France;
| | - Erwan Roussel
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Yann Moalic
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Maxime Allioux
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Amandine Sanvoisin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Laurent Toffin
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| | - Karine Alain
- Laboratoire de Microbiologie des Environnements Extrêmes LM2E, Univ Brest, CNRS, IFREMER, IRP 1211 MicrobSea, UMR 6197, IUEM, Rue Dumont d’Urville, F-29280 Plouzané, France; (M.C.); (E.R.); (Y.M.); (M.A.); (A.S.); (L.T.)
| |
Collapse
|
22
|
Kato S, Takashino M, Igarashi K, Mochimaru H, Mayumi D, Tamaki H. An iron corrosion-assisted H 2-supplying system: a culture method for methanogens and acetogens under low H 2 pressures. Sci Rep 2020; 10:19124. [PMID: 33154519 PMCID: PMC7645788 DOI: 10.1038/s41598-020-76267-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/12/2020] [Indexed: 11/09/2022] Open
Abstract
H2 is an important fermentation intermediate in anaerobic environments. Although H2 occurs at very low partial pressures in the environments, the culture and isolation of H2-utilizing microorganisms is usually carried out under very high H2 pressures, which might have hampered the discovery and understanding of microorganisms adapting to low H2 environments. Here we constructed a culture system designated the "iron corrosion-assisted H2-supplying (iCH) system" by connecting the gas phases of two vials (one for the iron corrosion reaction and the other for culturing microorganisms) to achieve cultures of microorganisms under low H2 pressures. We conducted enrichment cultures for methanogens and acetogens using rice paddy field soil as the microbial source. In the enrichment culture of methanogens under canonical high H2 pressures, only Methanobacterium spp. were enriched. By contrast, Methanocella spp. and Methanoculleus spp., methanogens adapting to low H2 pressures, were specifically enriched in the iCH cultures. We also observed selective enrichment of acetogen species by the iCH system (Acetobacterium spp. and Sporomusa spp.), whereas Clostridium spp. predominated in the high H2 cultures. These results demonstrate that the iCH system facilitates culture of anaerobic microorganisms under low H2 pressures, which will enable the selective culture of microorganisms adapting to low H2 environments.
Collapse
Affiliation(s)
- Souichiro Kato
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan. .,Division of Applied Bioscience, Graduate School of Agriculture, Hokkaido University, Kita-9 Nishi-9, Kita-ku, Sapporo, Hokkaido, 060-8589, Japan.
| | - Motoko Takashino
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Kensuke Igarashi
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 2-17-2-1 Tsukisamu-Higashi, Toyohira-ku, Sapporo, Hokkaido, 062-8517, Japan
| | - Hanako Mochimaru
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| | - Daisuke Mayumi
- Institute for Geo-Resources and Environment, Geological Survey of Japan, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, AIST, 1-1-1 Higashi, Tsukuba, 305-8567, Japan
| |
Collapse
|
23
|
Carneiro RB, Mukaeda CM, Sabatini CA, Santos-Neto ÁJ, Zaiat M. Influence of organic loading rate on ciprofloxacin and sulfamethoxazole biodegradation in anaerobic fixed bed biofilm reactors. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111170. [PMID: 32763746 DOI: 10.1016/j.jenvman.2020.111170] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 07/09/2020] [Accepted: 07/31/2020] [Indexed: 06/11/2023]
Abstract
Antibiotic compounds, notably sulfamethoxazole (SMX) and ciprofloxacin (CIP), are ubiquitous emerging contaminants (ECs), which are often found in domestic sewage. They are associated with the development of antimicrobial resistance. Operational parameters, e.g. organic loading rate (OLR), hydraulic retention time (HRT) and sludge retention time, may influence EC biodegradation in wastewater treatment plants. This study assessed the impact of the OLR variation on the biodegradation of CIP and SMX, applying two configurations of anaerobic fixed bed reactors: anaerobic packed bed biofilm reactor (APBBR) and anaerobic structured bed biofilm reactor (ASBBR). A significant reduction in the biodegradation of SMX (APBBR: 93-69%; ASBBR: 94-81%) and CIP (APBBR: 85-66%; ASBBR: 85-64%) was observed increasing OLR from 0.6 to 2.0 kgCOD m-3 d-1. The decrease in the HRT from 12 to 4 h resulted in higher liquid-phase mass transfer coefficient (APBBR: ks from 0.01 to 0.05 cm h-1; ASBBR: ks from 0.07 to 0.24 cm h-1), but this was not enough to overcome the decrease in the antibiotic-biomass contact time on biofilm, thus reducing the bioreactors' performance. The ASBBR favored biomethane production (from 7 to 17 mLCH4 g-1VSS L-1 d-1) and biodegradation kinetics (kbio from 1.7 to 4.2 and for SMX and from 2.1 to 4.8 L g-1VSS d-1 for CIP) due to the higher relative abundance of the archaea community in the biofilm and the lower liquid-phase mass transfer resistance in the structured bed. CIP and SMX cometabolic biodegradation was associated to the hydrogenotrophic methanogenesis (mainly Methanobacterium genus) in co-culture with fermentative bacteria (notably the genera Clostridium, Bacillus, Lactivibrio, Syntrophobacter and Syntrophorhabdus). The anaerobic fixed bed biofilm reactors proved to be highly efficient in biodegrading the antibiotics, preventing them from spreading to the environment.
Collapse
Affiliation(s)
- Rodrigo B Carneiro
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Caio M Mukaeda
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Carolina A Sabatini
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| | - Álvaro J Santos-Neto
- Laboratory of Chromatography (CROMA), Institute of Chemistry of São Carlos, University of São Paulo (USP), 400, Trabalhador São-Carlense Ave., São Carlos, São Paulo, 13566-590, Brazil.
| | - Marcelo Zaiat
- Laboratory of Biological Processes (LPB), São Carlos School of Engineering, University of São Paulo (USP), 1100, João Dagnone Ave., Santa Angelina, 13563-120, São Carlos, São Paulo, Brazil.
| |
Collapse
|
24
|
Cabezas A, Bovio P, Etchebehere C. Commercial formulation amendment transiently affects the microbial composition but not the biogas production of a full scale methanogenic UASB reactor. ENVIRONMENTAL TECHNOLOGY 2020; 41:3119-3133. [PMID: 30919752 DOI: 10.1080/09593330.2019.1600042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 03/18/2019] [Indexed: 06/09/2023]
Abstract
The treatment of dairy wastewater in methanogenic reactors cause several problems due to their high lipid content. One strategy to overcome these problems is the use of commercial formulations. Here we studied the effect of adding a commercial formulation, designed to improve fat degradation, on both the microbial community composition and reactor performance. Samples from two full-scale Up-flow Anaerobic Sludge Blanket (UASB) reactors in parallel arrangement were analysed. The commercial product was added to one of the reactors while the other was used as control. The amendment increased significantly the fat removal but an accumulation of volatile fatty acids was detected. Nevertheless, no significant differences were observed in the total Chemical Oxygen Demand (COD) removal and biogas production between reactors. A significant change in the bacterial community was not detected by 16S rRNA gene Terminal Restriction Fragment Length Polymorphism (T-RFLP) analysis probably due to the limitation of the technique. A strong change in the composition of the phylum Firmicutes was detected with 16S rRNA gene amplicon sequencing; however, it didn't persist during the whole operation period. The relative abundance of minor Operational Taxonomic Units (OTUs) with sequences related to syntrophic bacteria increased with the amendment. Although a better hydrolytic capacity was obtained when adding the commercial product, the overall process did not improve and no increase in biogas production was detected. Alternative strategies could be applied to avoid the accumulation of intermediary products and improve biogas production as intermittent addition of the commercial product or batch operation of reactors.
Collapse
Affiliation(s)
- A Cabezas
- Environmental Microbiology and Biotechnology Laboratory, Department of Environmental Sciences, Uruguay Technological University (UTEC), Durazno, Uruguay
| | - P Bovio
- Microbial Ecology Laboratory, Department of Biochemistry and Microbial Genetics, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| | - C Etchebehere
- Microbial Ecology Laboratory, Department of Biochemistry and Microbial Genetics, Biological Research Institute "Clemente Estable", Montevideo, Uruguay
| |
Collapse
|
25
|
Egerland Bueno B, Américo Soares L, Quispe-Arpasi D, Kimiko Sakamoto I, Zhang Y, Amancio Varesche MB, Ribeiro R, Tommaso G. Anaerobic digestion of aqueous phase from hydrothermal liquefaction of Spirulina using biostimulated sludge. BIORESOURCE TECHNOLOGY 2020; 312:123552. [PMID: 32502889 DOI: 10.1016/j.biortech.2020.123552] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal liquefaction is a process that converts wet biomass into biofuels, more specifically bio-crude oil. During the process, post hydrothermal liquefaction waste water (PHWW) is generated, rich in nutrient and organic matter, however potentially toxic. Anaerobic digestion of PHWW from Spirulina, was evaluated using biostimulated sludge as a strategy to optimize the process. The biostimulation was conducted in a sequential batch reactor fed with organic acids and methanol aiming at development of acetogenic and methanogenic microorganism. Anaerobic biodegradability batch assays were performed, with biostimulated sludge and with non-biostimulated sludge, using increasing PHWW concentrations. Biostimulated sludge were more favourable for reaching higher methane yields at higher organic matter concentrations in comparison to non-biostimulated sludge, presenting less inhibition at conditions tested. Biostimulation was a key process to select and favour potential microorganisms involved in specialized uptake of recalcitrant compounds, such as Mesotoga and Methanomethylovorans.
Collapse
Affiliation(s)
- Beatriz Egerland Bueno
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Laís Américo Soares
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Diana Quispe-Arpasi
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Isabel Kimiko Sakamoto
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, University of Illinois at Urbana-Champaign, 1304 W Pennsylvania Avenue, Urbana, IL 61801, USA
| | - Maria Bernadete Amancio Varesche
- Laboratory of Biological Processes, Department of Hydraulics and Sanitation, School of Engineering of São Carlos, University of São Paulo, 1100, João Dagnone Avenue, São Carlos 13563120, Brazil
| | - Rogers Ribeiro
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil
| | - Giovana Tommaso
- Laboratory of Environmental Biotechnology, Department of Food Engineering, University of São Paulo, 225, Duque de Caxias Norte, Pirassununga, São Paulo 13635-900, Brazil.
| |
Collapse
|
26
|
Inaba T, Aoyagi T, Hori T, Charfi A, Suh C, Lee JH, Sato Y, Ogata A, Aizawa H, Habe H. Clarifying prokaryotic and eukaryotic biofilm microbiomes in anaerobic membrane bioreactor by non-destructive microscopy and high-throughput sequencing. CHEMOSPHERE 2020; 254:126810. [PMID: 32334259 DOI: 10.1016/j.chemosphere.2020.126810] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 04/05/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Anaerobic membrane bioreactor (AnMBR) is used for the treatment of organic solid waste. Clogging of filtration membrane pores, called membrane fouling, is one of the most serious issues for the sustainable operation of AnMBR. Although the physical and chemical mechanisms of the membrane fouling have been widely studied, the biological mechanisms are still unclear. The biofilm formation and development on the membrane might cause the membrane fouling. In this study, the prokaryotic and eukaryotic microbiomes of the membrane-attached biofilms in an AnMBR treating a model slurry of organic solid waste were investigated by non-destructive microscopy and high-throughput sequencing of 16S and 18S rRNA genes. The non-destructive visualization indicated that the biofilm was layered with different structures. The lowermost residual fouling layer was mesh-like and composed of filamentous microorganisms, while the upper cake layer was mainly the non-dense and non-cell region. The principal coordinate and phylogenetic analyses of the sequence data showed that the biofilm microbiomes were different from the sludge. The lowermost layer consisted of operational taxonomic units that were related to Leptolinea tardivitalis and Methanosaeta concilii (9.53-10.07% and 1.14-1.64% of the total prokaryotes, respectively) and Geotrichum candidum (30.22-82.31% of the total eukaryotes), all of which exhibited the filamentous morphology. Moreover, the upper layer was inhabited by the presumably cake-degrading bacteria and predatory eukaryotes. The biofilm microbiome features were consistent with the microscope-visualized structure. These results demonstrated that the biofilm structure and microbiome were the layer specific, which provides better understanding of biological mechanisms of membrane fouling in the AnMBR.
Collapse
Affiliation(s)
- Tomohiro Inaba
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomo Aoyagi
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Tomoyuki Hori
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan.
| | - Amine Charfi
- LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Changwon Suh
- LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Jong Hoon Lee
- LG-Hitachi Water Solutions, Gasan R&D Campus, 51, Gasan Digital 1-ro, Geumcheon-gu, Seoul, 08592, South Korea
| | - Yuya Sato
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Atsushi Ogata
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hidenobu Aizawa
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| | - Hiroshi Habe
- Environmental Management Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba, Ibaraki, 305-8569, Japan
| |
Collapse
|
27
|
Matsumoto A, Nagoya M, Tsuchiya M, Suga K, Inohana Y, Hirose A, Yamada S, Hirano S, Ito Y, Tanaka S, Kouzuma A, Watanabe K. Enhanced electricity generation in rice paddy-field microbial fuel cells supplemented with iron powders. Bioelectrochemistry 2020; 136:107625. [PMID: 32781329 DOI: 10.1016/j.bioelechem.2020.107625] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 10/23/2022]
Abstract
Microbial fuel cells installed in rice paddy fields (RP-MFCs) are able to serve as on-site batteries for operating low-power environmental sensors. In order to increase the utility and reliability of RP-MFCs, however, further research is necessary for boosting the power output. Here we examined several powdered iron species, including zero valent iron (ZVI), goethite, and magnetite, for their application to increasing power outputs from RP-MFCs. Soil around anodes was supplemented with either of these iron species, and RP-MFCs were operated for several months during the transplanting and harvesting. It was found that power outputs from RP-MFCs supplemented with ZVI were more than double the outputs from control (not supplemented with iron species) and other RP-MFCs, even after iron corrosion was ceased, and the maximum power density reached 130 mW/m2 (per projected area of the anode). Metabarcoding of 16S rRNA gene amplicons suggested that several taxa represented by fermentative and exoelectrogenic bacteria were substantially increased in MFCs supplemented with ZVI. Results suggest that ZVI lowers oxidation/reduction potential around anodes, activates anaerobic microbes involved in the conversion of organic matter into electricity and increases power output from RP-MFCs.
Collapse
Affiliation(s)
- Akiho Matsumoto
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Misa Nagoya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Miyu Tsuchiya
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Keigo Suga
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Yoshino Inohana
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Atsumi Hirose
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shohei Yamada
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Shinichi Hirano
- Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Yuki Ito
- Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Shirou Tanaka
- Central Research Institute of Electric Power Industry, Abiko, Chiba 270-1194, Japan
| | - Atsushi Kouzuma
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Kazuya Watanabe
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan.
| |
Collapse
|
28
|
Tanikawa D, Seo S, Motokawa D. Development of a molasses wastewater treatment system equipped with a biological desulfurization process. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24738-24748. [PMID: 31820243 DOI: 10.1007/s11356-019-07077-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, a laboratory scale experiment for the treatment of synthetic molasses wastewater using a combination of an anaerobic baffled reactor (ABR) and a two-stage down-flow hanging sponge (TSDHS) reactor (ABR-TSDHS system) was conducted. The TSDHS comprised a closed-type first-stage down-flow hanging sponge (first DHS) for desulfurization and an open-type second-stage DHS (second DHS) for post-treatment of effluent from the ABR and first DHS. Effluent from the second DHS was sprinkled on top of the first DHS, whereas biogas produced from the ABR was supplied to its bottom. A chemical oxygen demand (COD) removal efficiency of 88.3% was found for the ABR-TSDHS system during the final treatment phase. The ABR achieved a maximum organic loading rate (OLR) of 3.70 kg COD/(m3 day). Most of the organic matter was degraded in the first compartment of the ABR, with methane-producing archaea as its main consumer. The biogas generated by the ABR contained high concentrations of hydrogen sulfide (up to 4,500 ppm). In the TSDHS, the first DHS achieved 87.3% hydrogen sulfide removal via dissolution into sprinkled effluent water. Dissolved sulfide in the first DHS effluent was oxidized to sulfate in the second DHS in the absence of aeration. In addition, 85.0% of the ammonia and 57.7% of the total nitrogen were removed in the second DHS via biological reactions, including sulfur-based autotrophic denitrification. Therefore, the ABR-TSDHS system can be applied to not only molasses wastewater treatment but also the desulfurization of the produced biogas.
Collapse
Affiliation(s)
- Daisuke Tanikawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan.
| | - Shogo Seo
- Advanced Course, Project Design Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan
| | - Daisuke Motokawa
- Department of Civil and Environmental Engineering, National Institute of Technology (KOSEN), Kure College, 2-2-11, Aga-minami, Kure, Hiroshima, 737-8506, Japan
| |
Collapse
|
29
|
Kim M, Lam TY, Tan GYA, Lee PH, Kim J. Use of polymeric scouring agent as fluidized media in anaerobic fluidized bed membrane bioreactor for wastewater treatment: System performance and microbial community. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2020.118121] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
30
|
de Lima E Silva MR, Feitosa de Lima Gomes PC, Okada DY, Sakamoto IK, Varesche MBA. The use of non-adapted anaerobic consortium in batch reactors enable to couple polychlorinated biphenyl degradation and community adaptation. ENVIRONMENTAL TECHNOLOGY 2020; 41:1766-1779. [PMID: 30457445 DOI: 10.1080/09593330.2018.1547794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 11/03/2018] [Indexed: 06/09/2023]
Abstract
The removal of polychlorinated biphenyls (PCBs) and PCB biosorption was investigated in anaerobic batch reactors with non-adapted sludge fed with 1.5 mg L-1 of six PCB congener (PCB 10, 28, 52, 153, 138 and 180), mineral medium and co-substrates. PCBs were analyzed by gas chromatography using headspace solid-phase microextraction (HS-SPME). In the methanogenic reactor the methane production, COD (Carbon Organic Demand) removal (90% of initial 2292.60 mg L-1) and consumption of volatile organic acids were verified. Nevertheless, anaerobic activity was not observed in the reactor with inactivated biomass and biosorption range of 38% to 89% was measured for distinct PCB congeners in this reactor. The PCB removal was calculated from the PCB bioavailable (not biosorbed) and reached 76% of total PCBs. The selection of some representatives of the Thermotogaceae family, Sedimentibacter and Pseudomonas at 101 days of operation in the methanogenic reactor was correlated with PCB degradation. In addition, the various removal rates for each PCB congener indicate that the removal depends on bioavailability. The selection of the former non-adapted microbiota in the methanogenic reactor combined with PCB degradation occurred at 101 days. These results allow to assert that it is possible to simultaneously couple PCB degradation and community selection, without the previous adaptation step, which is a time-consuming stage.
Collapse
Affiliation(s)
- Mara Rúbia de Lima E Silva
- Department of Hydraulic and Sanitation, School of Engineering of São Carlos, USP-EESC, Sao Carlos, Brazil
| | | | | | - Isabel Kimiko Sakamoto
- Department of Hydraulic and Sanitation, School of Engineering of São Carlos, USP-EESC, Sao Carlos, Brazil
| | | |
Collapse
|
31
|
Ma K, Zhang X, Shang Y, Zhu Z, Li X, Li X, Li X. Improved purified terephthalic acid wastewater treatment using combined UAFB-SBR system: At mesophilic and ambient temperature. CHEMOSPHERE 2020; 247:125752. [PMID: 31978668 DOI: 10.1016/j.chemosphere.2019.125752] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/09/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
In this study, a combined UAFB-SBR process was introduced to improve the treatment efficiency of PTA wastewater. The techno-economic feasibility of the process was evaluated in terms of organic removal efficiencies under mesophilic (37 °C) and ambient temperature (15-25 °C) during the long-term run. The lab-scale study revealed that all organic compounds present in the PTA wastewater could be efficiently removed under both mesophilic and ambient temperature, and p-toluic acid is probably the critical pollutant regulating the overall process performance in anaerobic stage, which should be seriously considered. The Miseq Sequencing results suggested that, along with the system temperature variation from mesophilic to ambient temperature, greater effects on bacterial community than archaeal community were detected in the UAFB reactor, while only slight variations were observed in the SBR reactor. Further taxonomy analysis demonstrated that within the UAFB reactor, the syntrophic partnership of Syntrophorhabdus, Syntrophus and Desulfovibrio with hydrogenotrophic methanogens were the main impetus for aromatic organics reduction. In the meanwhile, the intensively identified Thauera and Azoarcus groups were speculated of important roles in the aerobic degradation of aromatic compounds.
Collapse
Affiliation(s)
- Kaili Ma
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China.
| | - Xiaohan Zhang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Yong Shang
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Zhenkui Zhu
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Xilin Li
- School of Environment, Henan Normal University, Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, Henan Key Laboratory for Environmental Pollution Control, Xinxiang, 453000, China
| | - Xiaoling Li
- School of Civil Engineering, Chang'an University, Xi'an, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin, 300000, China.
| |
Collapse
|
32
|
Zhang CJ, Chen YL, Pan J, Wang YM, Li M. Spatial and seasonal variation of methanogenic community in a river-bay system in South China. Appl Microbiol Biotechnol 2020; 104:4593-4603. [PMID: 32306050 DOI: 10.1007/s00253-020-10613-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/01/2020] [Accepted: 04/05/2020] [Indexed: 10/24/2022]
Abstract
River-bay system is a transitional zone connecting land and ocean and an important natural source for methane emission. Methanogens play important roles in the global greenhouse gas budget and carbon cycle since they produce methane. The abundance and community assemblage of methanogens in such a dynamic system are not well understood. Here, we used quantitative PCR and high-throughput sequencing of the mcrA gene to investigate the abundance and community composition of methanogens in the Shenzhen River-Bay system, a typical subtropical river-bay system in Southern of China, during the wet and dry seasons. Results showed that mcrA gene abundance was significantly higher in the sediments of river than those of estuary, and was higher in wet season than dry season. Sequences of mcrA gene were mostly assigned to three orders, including Methanosarcinales, Methanomicrobiales, and Methanobacteriales. Specifically, Methanosarcina, Methanosaeta, and Methanobacterium were the most abundant and ubiquitous genera. Methanogenic communities generally clustered according to habitat (river vs. estuary), and salinity was the major factor driving the methanogenic community assemblage. Furthermore, the indicator groups for two habitats were identified. For example, Methanococcoides, Methanoculleus, and Methanogenium preferentially existed in estuarine sediments, whereas Methanomethylovorans, Methanolinea, Methanoregula, and Methanomassiliicoccales were more abundant in riverine sediments, indicating distinct ecological niches. Overall, these findings reveal the distribution patterns of methanogens and expand our understanding of methanogenic community assemblage in the river-bay system. Key Points • Abundance of methanogens was relatively higher in riverine sediments. • Methanogenic community in estuarine habitat separated from that in riverine habitat. • Salinity played a vital role in regulating methanogenic community assemblage.
Collapse
Affiliation(s)
- Cui-Jing Zhang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yu-Lian Chen
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.,College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, 518060, China
| | - Jie Pan
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Yong-Ming Wang
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China
| | - Meng Li
- Shenzhen Key Laboratory of Marine Microbiome Engineering, Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
33
|
Wu B, Wang J, Hu Z, Yuan S, Wang W. Anaerobic biotransformation and potential impact of quinoline in an anaerobic methanogenic reactor treating synthetic coal gasification wastewater and response of microbial community. JOURNAL OF HAZARDOUS MATERIALS 2020; 384:121404. [PMID: 31628062 DOI: 10.1016/j.jhazmat.2019.121404] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Revised: 09/22/2019] [Accepted: 10/04/2019] [Indexed: 06/10/2023]
Abstract
Phenolic and quinoline compounds are the most primary organic pollutants in coal gasification wastewater (CGW), but the biotransformation of quinoline compounds under methanogenic condition and their potential impacts on treatment performance of CGW are still unclear. Anaerobic biotransformation pathways of quinoline in an upflow anaerobic sludge blanket reactor treating synthetic CGW and response of microbial community were firstly investigated. The result indicated that the degradation of 2(1 H)-quinolinone was the rate-limiting step for the complete conversion of quinoline under methanogenic condition. The reactor performed stably at total phenols concentration of 1000 mg L-1 with a gradual increase of quinoline concentration from 100 to 600 mg L-1. However, the reactor performance was rapidly deteriorated from 98% of COD removal to about 80% at quinoline concentration of 1200 mg L-1 resulting from the accumulation of 2(1 H)-quinolinone. Correspondingly, phenol utilization rate of sludge was significantly reduced by 61% while quinoline utilization rate of sludge was increased by 132%. As phenol degraders, Syntrophorhabdus gradually predominated along with the increase of quinoline concentration, but Syntrophus declined inversely. Compared with syntrophs, acetotrophic methanogens could quickly adapt to quinoline toxicity and tolerate higher quinoline stress. Therefore, anaerobic digestion is an effective method for eliminating quinoline and phenol in CGW.
Collapse
Affiliation(s)
- Benteng Wu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Shoujun Yuan
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
34
|
Long-term acclimatization of sludge microbiome for treatment of high-strength organic solid waste in anaerobic membrane bioreactor. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2019.107461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Matsushita M, Ishikawa S, Magara K, Sato Y, Kimura H. The Potential for CH 4 Production by Syntrophic Microbial Communities in Diverse Deep Aquifers Associated with an Accretionary Prism and its Overlying Sedimentary Layers. Microbes Environ 2020; 35. [PMID: 31932538 PMCID: PMC7104277 DOI: 10.1264/jsme2.me19103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accretionary prisms are thick masses of sedimentary material scraped from the oceanic crust and piled up at convergent plate boundaries found across large regions of the world. Large amounts of anoxic groundwater and natural gas, mainly methane (CH4), are contained in deep aquifers associated with these accretionary prisms. To identify the subsurface environments and potential for CH4 production by the microbial communities in deep aquifers, we performed chemical and microbiological assays on groundwater and natural gas derived from deep aquifers associated with an accretionary prism and its overlying sedimentary layers. Physicochemical analyses of groundwater and natural gas suggested wide variations in the features of the six deep aquifers tested. On the other hand, a stable carbon isotope analysis of dissolved inorganic carbon in the groundwater and CH4 in the natural gas showed that the deep aquifers contained CH4 of biogenic or mixed biogenic and thermogenic origins. Live/dead staining of microbial cells contained in the groundwater revealed that the cell density of live microbial cells was in the order of 104 to 106 cells mL–1, and cell viability ranged between 7.5 and 38.9%. A DNA analysis and anoxic culture of microorganisms in the groundwater suggested a high potential for CH4 production by a syntrophic consortium of hydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogenic archaea. These results suggest that the biodegradation of organic matter in ancient sediments contributes to CH4 production in the deep aquifers associated with this accretionary prism as well as its overlying sedimentary layers.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Geosciences, Faculty of Science, Shizuoka University.,Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Shugo Ishikawa
- Department of Geosciences, Faculty of Science, Shizuoka University
| | - Kenta Magara
- Department of Geosciences, Faculty of Science, Shizuoka University
| | - Yu Sato
- Department of Geosciences, Faculty of Science, Shizuoka University.,Department of Biotechnology, Graduate School of Engineering, Osaka University
| | - Hiroyuki Kimura
- Department of Geosciences, Faculty of Science, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
36
|
Guermazi-Toumi S, Chouari R, Sghir A. Molecular analysis of methanogen populations and their interactions within anaerobic sludge digesters. ENVIRONMENTAL TECHNOLOGY 2019; 40:2864-2879. [PMID: 29560816 DOI: 10.1080/09593330.2018.1455747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
Knowledge of archaeal population structure, function and interactions is of great interest for a deeper understanding of the anaerobic digestion step in wastewater treatment process, that represents a bottle neck in the optimization of digesters performance. Although culture-independent techniques have enabled the exploration of archaeal population in such systems, their population dynamics and interactions still require further investigation. In the present study, 2646 almost full archaeal 16S rRNA gene sequences retrieved from 22 anaerobic digesters located worldwide were analyzed and classified into 83 Operational Taxonomic Units (OTUs) for Euryarchaeotes and 2 OTUs for Crenarchaeotes. Among the Euryarchaeotes, Methanosarcinales represent the predominant archaeal population (47.5% of total sequences), followed by the ARC I (WSA2) lineage (25.3%), Methanomicrobiales (19.9%) and Methanobacteriales (1.9%). Theses lineages are predominant in nine, five, two and one digesters respectively. However, the remaining 5 digesters show no predominance of any methanogenic group. According to the predominance of theses lineages, 5 digester profiles were distinguished. This study revealed a clear interaction between the 4 methanogenic lineages. A core of 12 OTUs represented by five, four, two and one OTU for Methanosarcinales, Methanomicrobiales, ARC I and Methanobacteriales respectively were quantitatively abundant in at least 50% of the analyzed digesters. 16S rRNA targeted hybridization oligonucleotide probes targeting the predominant OTUs are being developed to follow their population dynamics under various parameters.
Collapse
Affiliation(s)
- Sonda Guermazi-Toumi
- a Faculté des Sciences de Gafsa, Université de Gafsa , Gafsa , Tunisie
- b Laboratoire de recherche Toxicologie-Microbiologie Environnementale et Santé (LR17ES06), Faculté des Sciences de Sfax, Université de Sfax , Sfax , Tunisie
| | - Rakia Chouari
- c Faculté des Sciences de Bizerte, UR11ES32 Plant Toxicology and Molecular Biology of Microorganims, Université de Carthage , Bizerte , Tunisie
| | - Abdelghani Sghir
- d Université d'Evry Val d'Essonne , Evry , France
- e CNRS-UMR 8030 , Evry , France
- f CEA, DRF, Institut de biologie François Jacob , Genoscope, Evry , France
| |
Collapse
|
37
|
Song B, Tang J, Zhen M, Liu X. Effect of rhamnolipids on enhanced anaerobic degradation of petroleum hydrocarbons in nitrate and sulfate sediments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:438-447. [PMID: 31077922 DOI: 10.1016/j.scitotenv.2019.04.383] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 04/20/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
Anaerobic degradation of petroleum hydrocarbons (PH) is an important process in contaminated environment. The application of rhamnolipids in anaerobic degradation of PH was not extensively studied and inconclusive. This study explored the combined effect of rhamnolipids and electron acceptors on the anaerobic degradation process of total petroleum hydrocarbons (TPH) in sediment from an oil field. The results indicated that rhamnolipids decreased the surface tension of the medium and increased the desorption of TPH from the sediment. After 10-wk culture, the maximum degradation rate of TPH in nitrate and sulfate condition was found to be 32.2% and 24.0%, respectively, with rhamnolipids concentration of 150 mg/L. The addition of 45 and 150 mg/L rhamnolipids increased the degradation rate of TPH but the promotion effect was weakened in the treatment with 450 mg/L rhamnolipids. The copy number of two degradation genes (1-methylalkyl) succinate synthase gene (masD) and 6-oxocyclohex-1-ene-1-carbonyl-CoA hydrolase gene (bamA) increased with incubation time and showed higher copy numbers in treatments with 45 and 150 mg/L rhamnolipids. In the first week, with the increase of rhamnolipids concentration, the copy number of 16S rDNA increased rapidly and the concentration of electron receptors decreased correspondingly. Moreover, no nitrate was detected in treatments of nitrate with 450 mg/L rhamnolipids after the first week. Microbial community structure analysis result showed that Thiobacillus was the dominant bacteria in all treatments with nitrate as electron acceptor and its proportion gradually decreased with the increase of rhamnolipids concentration. The addition of rhamnolipids changed the subdominant bacteria in the treatments with nitrate as electron acceptor. Methanothrix was the dominant archaea in all treatments with rhamnolipids content of lower than 45 mg/L. When the rhamnolipids concentration increased, the dominant archaea changed to Methanogenium or Methanobacterium. In conclusion, suitable concentrations of rhamnolipids could promote the anaerobic degradation of PH in the sediment.
Collapse
Affiliation(s)
- Benru Song
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Jingchun Tang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Meinan Zhen
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xiaomei Liu
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Engineering Center of Environmental Diagnosis and Contamination Remediation, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
38
|
Zhu M, Feng X, Qiu G, Feng J, Zhang L, Brookes PC, Xu J, He Y. Synchronous response in methanogenesis and anaerobic degradation of pentachlorophenol in flooded soil. JOURNAL OF HAZARDOUS MATERIALS 2019; 374:258-266. [PMID: 31005708 DOI: 10.1016/j.jhazmat.2019.04.040] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/09/2019] [Accepted: 04/10/2019] [Indexed: 06/09/2023]
Abstract
Methanogenesis is commonly mass-produced under anaerobic conditions and serves as a major terminal electron accepting process driving the degradation of organic biomass. In this study, a cofactor of methanogenesis (coenzyme M, CoM) and a classic methanogensis inhibitor (2-bromoethanesulfonate, BES) were added at different concentrations to investigate how methanogenesis would affect PCP degradation in flooded soil. Strikingly, the processes of methanogenesis and PCP degradation were simultaneously promoted with CoM, or inhibited with BES, significantly (p < 0.05). High-throughput sequencing for soil bacterial and archaeal community structures revealed that members of Desulfitobacterium, Dethiobacter, Sedimentibacter, Bacillus and Methanosarcina might act as the core functional groups jointly perform PCP degradation in flooded soil, possibly through assisting microbial mediated dechlorination in direct organohalide-respiration, and/or indirect co-metabolization in complex anaerobic soil conditions. This study implied an underlying synergistic coupling between methanogenesis and dechlorination, and provided insights into a novel consideration with respect to coordinating methanogenesis while promoting anaerobic degradation of PCP for complex polluted soil environment, which is necessary for the improved all-win remediation.
Collapse
Affiliation(s)
- Min Zhu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Xi Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Gaoyang Qiu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jiayin Feng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Lujun Zhang
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Phillip C Brookes
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Jianming Xu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China
| | - Yan He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Hangzhou 310058, China.
| |
Collapse
|
39
|
Li L, Qin Y, Kong Z, Wu J, Kubota K, Li YY. Characterization of microbial community and main functional groups of prokaryotes in thermophilic anaerobic co-digestion of food waste and paper waste. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:709-717. [PMID: 30380478 DOI: 10.1016/j.scitotenv.2018.10.292] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/17/2018] [Accepted: 10/21/2018] [Indexed: 06/08/2023]
Abstract
The thermophilic anaerobic co-digestion of food waste and paper waste was successfully operated with a 0% to 70% fraction of paper waste. The variation of functional microbial community was investigated by 16S rRNA gene analysis. The results indicated that the hydrolyzing bacterial community changed from carbohydrate/protein-degrading bacteria to cellulose-degrading bacteria when the paper waste ratio was higher than 50%. Significant changes in the taxon responsible for cellulose degradation were found depending on the paper waste fraction. Cellulose-degrading bacteria outcompeted lactic acid bacteria in the degradation of monosaccharide, resulting in a decline in the proportion of lactic acid bacteria and the absence of an accumulation of lactic acid. At high paper waste ratios, because the cellulose-degrading bacteria, such as Defluviitoga tunisiensis, were more likely to degrade monosaccharides directly to acetate and hydrogen rather than to propionate and butyrate, the abundance of syntrophs was reduced. The variation of those bacteria with high H2-producing ability significantly influenced the proportion of hydrogenotrophic archaea. The change in the microbial community as the paper waste fraction increased was illustrated with regard to anaerobic degradation steps.
Collapse
Affiliation(s)
- Lu Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu Qin
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Zhe Kong
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Jing Wu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan.
| |
Collapse
|
40
|
Jiang Y, Dennehy C, Lawlor PG, Hu Z, McCabe M, Cormican P, Zhan X, Gardiner GE. Inhibition of volatile fatty acids on methane production kinetics during dry co-digestion of food waste and pig manure. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 79:302-311. [PMID: 30343759 DOI: 10.1016/j.wasman.2018.07.049] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 07/04/2018] [Accepted: 07/27/2018] [Indexed: 05/16/2023]
Abstract
Compared with wet digestion, dry digestion of organic wastes reduces reactor volume and requires less energy for heating, but it is easily inhibited by high volatile fatty acid (VFA) or ammonia concentration. The inhibition on methane production kinetics during dry co-digestion of food waste and pig manure is rarely reported. The aim of this study was to explore the inhibition mechanisms and the microbial interactions in food waste and pig manure dry co-digestion systems at different inoculum rates (25% and 50% based on volatile solids) and food waste/pig manure ratios (0:100, 25:75, 50:50, 75:25 and 100:0 based on volatile solids). The results showed that the preferable operation conditions were obtained at the inoculum rate of 50% and food waste/pig manure ratio of 50:50, with a specific methane yield of 263 mL/g VSadded. High VFA concentration was the main inhibition factor on methane production, and the threshold VFA inhibition concentrations ranged 16.5-18.0 g/L. Syntrophic oxidation with hydrogenotrophic methanogenesis might be the main methane production pathway in dry co-digestion systems due to the dominance of hydrogenotrophic methanogens in the archaeal community. In conclusion, dry co-digestion of food waste and pig manure is feasible for methane production without pH adjustment and can be operated stably by choosing proper operation conditions.
Collapse
Affiliation(s)
- Yan Jiang
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Conor Dennehy
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland
| | - Peadar G Lawlor
- Teagasc, Pig Development Department, Animal & Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork, Ireland
| | - Zhenhu Hu
- School of Civil Engineering, Hefei University of Technology, Hefei 230009, Anhui Province, China
| | - Matthew McCabe
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Paul Cormican
- Animal and Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Xinmin Zhan
- Civil Engineering, College of Engineering & Informatics, National University of Ireland, Galway, Ireland.
| | - Gillian E Gardiner
- Department of Science, Waterford Institute of Technology, Waterford, Ireland
| |
Collapse
|
41
|
Zhang Y, Cui M, Duan J, Zhuang X, Zhuang G, Ma A. Abundance, rather than composition, of methane-cycling microbes mainly affects methane emissions from different vegetation soils in the Zoige alpine wetland. Microbiologyopen 2018; 8:e00699. [PMID: 30047238 PMCID: PMC6460274 DOI: 10.1002/mbo3.699] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/09/2018] [Accepted: 06/25/2018] [Indexed: 11/10/2022] Open
Abstract
Methane fluxes, which are controlled by methanogens and methanotrophs, vary among wetland vegetation species. In this study, we investigated belowground methanogens and methanotrophs in two soils under two different dominant vegetation species with different methane fluxes in the Zoige wetland, which was slightly but significantly (p ≤ 0.05) higher in soils covered by Carex muliensis than that in soils covered by Eleocharis valleculosa. Real‐time quantitative PCR and Illumina MiSeq sequencing methods were used to elucidate the microbial communities based on the key genes involved in methane production and oxidation. The absolute abundances of methanogens and methanotrophs of samples from C. muliensis were 1.80 ± 0.07 × 106 and 4.03 ± 0.28 × 106 copies g‐soil−1, respectively, and which from E. valleculosa were 3.99 ± 0.19 × 105 and 2.53 ± 0.22 × 106 copies g‐soil−1 , respectively. The t‐test result showed that both the abundance of methanogens and methanotrophs from C. muliensis were significantly higher (p ≤ 0.05) than that of samples from E. valleculosa. However, the diversities and compositions of both methanogens and methanotrophs showed no significant differences (p ≥ 0.05) between vegetation species. The path analysis showed that the microbial abundance had a greater effect than the microbial diversity on methane production potentials and the regression analysis also showed that the methane emissions significantly (p ≤ 0.05) varied with the abundance of methane‐cycling microbes. These findings imply that abundance rather than diversity and composition of a methane‐cycling microbial community is the major contributor to the variations in methane emissions between vegetation types in the Zoige wetland.
Collapse
Affiliation(s)
- Yanfen Zhang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mengmeng Cui
- University of Chinese Academy of Sciences, Beijing, China.,National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jingbo Duan
- University of Chinese Academy of Sciences, Beijing, China.,Key Laboratory of Environmental Optics & Technology, Anhui Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Hefei, China
| | - Xuliang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Matsushita M, Magara K, Sato Y, Shinzato N, Kimura H. Geochemical and Microbiological Evidence for Microbial Methane Production in Deep Aquifers of the Cretaceous Accretionary Prism. Microbes Environ 2018; 33:205-213. [PMID: 29899169 PMCID: PMC6031385 DOI: 10.1264/jsme2.me17199] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Accretionary prisms are thick layers of sedimentary material piled up at convergent plate boundaries. Large amounts of anaerobic groundwater and methane (CH4) are contained in the deep aquifers associated with accretionary prisms. In order to identify microbial activity and CH4 production processes in the deep aquifers associated with the Cretaceous accretionary prism in Okinawa Island, Japan, we performed geochemical and microbiological studies using anaerobic groundwater and natural gas (mainly CH4) samples collected through four deep wells. Chemical and stable hydrogen and oxygen isotope analyses of groundwater samples indicated that the groundwater samples obtained from each site originated from ancient seawater and a mixture of rainwater and seawater, respectively. Additionally, the chemical and stable carbon isotopic signatures of groundwater and natural gas samples suggested that CH4 in the natural gas samples was of a biogenic origin or a mixture of biogenic and thermogenic origins. Microscopic observations and a 16S rRNA gene analysis targeting microbial communities in groundwater samples revealed the predominance of dihydrogen (H2)-producing fermentative bacteria and H2-utilizing methanogenic archaea. Moreover, anaerobic cultures using groundwater samples suggested a high potential for CH4 production by a syntrophic consortium of H2-producing fermentative bacteria and H2-utilizing methanogenic archaea through the biodegradation of organic substrates. Collectively, our geochemical and microbiological data support the conclusion that the ongoing biodegradation of organic matter widely contributes to CH4 production in the deep aquifers associated with the Cretaceous accretionary prism.
Collapse
Affiliation(s)
- Makoto Matsushita
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University
| | - Kenta Magara
- Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University
| | - Yu Sato
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University
| | | | - Hiroyuki Kimura
- Department of Environment and Energy Systems, Graduate School of Science and Technology, Shizuoka University.,Department of Science, Graduate School of Integrated Science and Technology, Shizuoka University.,Department of Geosciences, Faculty of Science, Shizuoka University.,Research Institute of Green Science and Technology, Shizuoka University
| |
Collapse
|
43
|
Cho K, Jeong Y, Seo KW, Lee S, Smith AL, Shin SG, Cho SK, Park C. Effects of changes in temperature on treatment performance and energy recovery at mainstream anaerobic ceramic membrane bioreactor for food waste recycling wastewater treatment. BIORESOURCE TECHNOLOGY 2018; 256:137-144. [PMID: 29433048 DOI: 10.1016/j.biortech.2018.02.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
An anaerobic ceramic membrane bioreactor (AnCMBR) has been attracted as an alternative technology to co-manage various organic substrates. This AnCMBR study investigated process performance and microbial community structure at decreasing temperatures to evaluate the potential of AnCMBR treatment for co-managing domestic wastewater (DWW) and food waste-recycling wastewater (FRW). As a result, the water flux (≥6.9 LMH) and organic removal efficiency (≥98.0%) were maintained above 25 °C. The trend of methane production in the AnCMBR was similar except for at 15 °C. At 15 °C, the archaeal community structure did not shifted, whereas the bacterial community structure was changed. Various major archaeal species were identified as the mesophilic methanogens which unable to grow at 15 °C. Our results suggest that the AnCMBR can be applied to co-manage DWW and FRW above 20 °C. Future improvements including psychrophilic methanogen inoculation and process optimization would make co-manage DWW and FRW at lower temperature climates.
Collapse
Affiliation(s)
- Kyungjin Cho
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Yeongmi Jeong
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Kyu Won Seo
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea; Department of Biotechnology, Korea University, Seoul 02841, South Korea
| | - Seockheon Lee
- Center for Water Research, Korea Institute of Science and Technology, Seoul 02792, South Korea
| | - Adam L Smith
- Astani Department of Civil and Environmental Engineering, University of Southern California, Los Angeles, CA 90089, United States
| | - Seung Gu Shin
- Department of Energy Engineering, Future Convergence Technology Research Institute, Gyeongnam National University of Science and Technology, Jinju-si, Gyeongsangnam-do 52725, South Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Goyang-si, Gyeonggi-do 10326, South Korea
| | - Chanhyuk Park
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 03760, South Korea.
| |
Collapse
|
44
|
Ma KL, Li XK, Wang K, Meng LW, Liu GG, Zhang J. Establishment of thermophilic anaerobic terephthalic acid degradation system through one-step temperature increase startup strategy - Revealed by Illumina Miseq Sequencing. CHEMOSPHERE 2017; 184:951-959. [PMID: 28655114 DOI: 10.1016/j.chemosphere.2017.06.090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 05/16/2017] [Accepted: 06/19/2017] [Indexed: 06/07/2023]
Abstract
Over recent years, thermophilic digestion was constantly focused owing to its various advantage over mesophilic digestion. Notably, the startup approach of thermophilic digester needs to be seriously considered as unsuitable startup ways may result in system inefficiency. In this study, one-step temperature increase startup strategy from 37 °C to 55 °C was applied to establish a thermophilic anaerobic system treating terephthalic acid (TA) contained wastewater, meanwhile, the archaeal and bacterial community compositions at steady periods of 37 °C and 55 °C during the experimental process was also compared using Illumina Miseq Sequencing. The process operation demonstrated that the thermophilic TA degradation system was successfully established at 55 °C with over 95% COD reduction. For archaea community, the elevation of operational temperature from 37 °C to 55 °C accordingly increase the enrichment of hydrogenotrophic methanogens but decrease the abundance of the acetotrophic ones. While for bacterial community, the taxonomic analysis suggested that Syntrophorhabdus (27.40%) was the dominant genus promoting the efficient TA degradation under mesophilic condition, whereas OPB95 (24.99%) and TA06 (14.01%) related populations were largely observed and probably take some crucial role in TA degradation under thermophilic condition.
Collapse
Affiliation(s)
- Kai-Li Ma
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China.
| | - Xiang-Kun Li
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China.
| | - Ke Wang
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China.
| | - Ling-Wei Meng
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China
| | - Gai-Ge Liu
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China
| | - Jie Zhang
- School of Municipal and Environmental Engineering, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, China
| |
Collapse
|
45
|
Efficacies of Various Anaerobic Starter Seeds for Biogas Production from Different Types of Wastewater. BIOMED RESEARCH INTERNATIONAL 2017; 2017:2782850. [PMID: 28932741 PMCID: PMC5592398 DOI: 10.1155/2017/2782850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/13/2017] [Accepted: 07/24/2017] [Indexed: 12/04/2022]
Abstract
Various anaerobic starter seeds from different sources were investigated for their efficacies in treatment of different types of wastewater. Six combinations of starter seeds and wastewaters were selected out of 25 combination batch experiments and operated in semicontinuous reactors. It was noticed that the efficacies of various anaerobic starter seeds for biogas production from different types of wastewater in terms of reactor performance and stability were depended on wastewater characteristics and F/M ratio affecting microbial community and their microbial activities. However, exogenous starter seed can be used across different types of wastewater with or without acclimatization. Four reactors reached the targeted OLR of 2 kg COD/m3·d with high performance and stability except for concentrated rubber wastewater (RBw), even using high active starter seeds of cassava starch (CSs) and palm oil (POs). The toxic compounds in RBw such as ammonia and sulfate might also adversely affect methanogenic activity in CSsRBw and POsRBw reactors. DGGE analysis showed that propionate utilizers, Smithella propionica strain LYP and Syntrophus sp., were detected in all samples. For Archaea domain, methylotrophic, hydrogenotrophic, and acetoclastic methanogens were also detected. Syntrophic relationships were assumed between propionate utilizers and methanogens as acetate/H2 producers and utilizers, respectively.
Collapse
|
46
|
Huang Z, Sednek C, Urynowicz MA, Guo H, Wang Q, Fallgren P, Jin S, Jin Y, Igwe U, Li S. Low carbon renewable natural gas production from coalbeds and implications for carbon capture and storage. Nat Commun 2017; 8:568. [PMID: 28924176 PMCID: PMC5603537 DOI: 10.1038/s41467-017-00611-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 07/14/2017] [Indexed: 12/03/2022] Open
Abstract
Isotopic studies have shown that many of the world’s coalbed natural gas plays are secondary biogenic in origin, suggesting a potential for gas regeneration through enhanced microbial activities. The generation of biogas through biostimulation and bioaugmentation is limited to the bioavailability of coal-derived compounds and is considered carbon positive. Here we show that plant-derived carbohydrates can be used as alternative substrates for gas generation by the indigenous coal seam microorganisms. The results suggest that coalbeds can act as natural geobioreactors to produce low carbon renewable natural gas, which can be considered carbon neutral, or perhaps even carbon negative depending on the amount of carbon sequestered within the coal. In addition, coal bioavailability is no longer a limiting factor. This approach has the potential of bridging the gap between fossil fuels and renewable energy by utilizing existing coalbed natural gas infrastructure to produce low carbon renewable natural gas and reducing global warming. Coalbeds produce natural gas, which has been observed to be enhanced by in situ microbes. Here, the authors add plant-derived carbohydrates (monosaccharides) to coal seams to be converted by indigenous microbes into natural gas, thus demonstrating a potential low carbon renewable natural gas resource.
Collapse
Affiliation(s)
- Zaixing Huang
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA. .,Center for Biogenic Natural Gas Research, University of Wyoming, Laramie, Wyoming, 82071, USA.
| | - Christine Sednek
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Michael A Urynowicz
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA.,Center for Biogenic Natural Gas Research, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Hongguang Guo
- College of Mining Technology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Qiurong Wang
- Department of Animal Science, University of Wyoming, Laramie, Wyoming, 82071, USA.
| | - Paul Fallgren
- Advanced Environmental Technologies LLC, Fort Collins, Colorado, 80525, USA
| | - Song Jin
- Center for Biogenic Natural Gas Research, University of Wyoming, Laramie, Wyoming, 82071, USA.,Advanced Environmental Technologies LLC, Fort Collins, Colorado, 80525, USA
| | - Yan Jin
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Uche Igwe
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| | - Shengpin Li
- Department of Civil and Architectural Engineering, University of Wyoming, Laramie, Wyoming, 82071, USA
| |
Collapse
|
47
|
Gagliano MC, Ismail SB, Stams AJM, Plugge CM, Temmink H, Van Lier JB. Biofilm formation and granule properties in anaerobic digestion at high salinity. WATER RESEARCH 2017; 121:61-71. [PMID: 28511041 DOI: 10.1016/j.watres.2017.05.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/28/2017] [Accepted: 05/07/2017] [Indexed: 06/07/2023]
Abstract
For the anaerobic biological treatment of saline wastewater, Anaerobic Digestion (AD) is currently a possibility, even though elevated salt concentrations can be a major obstacle. Anaerobic consortia and especially methanogenic archaea are very sensitive to fluctuations in salinity. When working with Upflow Sludge Blanket Reactor (UASB) technology, in which the microorganisms are aggregated and retained in the system as a granular biofilm, high sodium concentration negatively affects aggregation and consequently process performances. In this research, we analysed the structure of the biofilm and granules formed during the anaerobic treatment of high salinity (at 10 and 20 g/L of sodium) synthetic wastewater at lab scale. The acclimated inoculum was able to accomplish high rates of organics removal at all the salinity levels tested. 16S rRNA gene clonal analysis and Fluorescence In Situ Hybridization (FISH) analyses identified the acetoclastic Methanosaeta harundinacea as the key player involved acetate degradation and microbial attachment/granulation. When additional calcium (1 g/L) was added to overcome the negative effect of sodium on microbial aggregation, during the biofilm formation process microbial attachment and acetate degradation decreased. The same result was observed on granules formation: while calcium had a positive effect on granules strength when added to UASB reactors, Methanosaeta filaments were not present and the degradation of the partially acidified substrate was negatively influenced. This research demonstrated the possibility to get granulation at high salinity, bringing to the forefront the importance of a selection towards Methanosaeta cells growing in filamentous form to obtain strong and healthy granules.
Collapse
Affiliation(s)
- M C Gagliano
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| | - S B Ismail
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands; Sub-department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands; Eastern Corridor Renewable Energy (ECRE), School of Ocean Engineering, University Malaysia Terengganu (UMT), 21030 Terengganu, Malaysia
| | - A J M Stams
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - C M Plugge
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - H Temmink
- Sub-department of Environmental Technology, Wageningen University, P.O. Box 8129, 6700 EV Wageningen, The Netherlands
| | - J B Van Lier
- Sanitary Engineering Section, Department of Water Management, Faculty of Civil Engineering and Geosciences, Delft University of Technology, Stevinweg 1, 2628 CN Delft, The Netherlands
| |
Collapse
|
48
|
Campeão ME, Reis L, Leomil L, de Oliveira L, Otsuki K, Gardinali P, Pelz O, Valle R, Thompson FL, Thompson CC. The Deep-Sea Microbial Community from the Amazonian Basin Associated with Oil Degradation. Front Microbiol 2017; 8:1019. [PMID: 28659874 PMCID: PMC5468453 DOI: 10.3389/fmicb.2017.01019] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/22/2017] [Indexed: 12/05/2022] Open
Abstract
One consequence of oil production is the possibility of unplanned accidental oil spills; therefore, it is important to evaluate the potential of indigenous microorganisms (both prokaryotes and eukaryotes) from different oceanic basins to degrade oil. The aim of this study was to characterize the microbial response during the biodegradation process of Brazilian crude oil, both with and without the addition of the dispersant Corexit 9500, using deep-sea water samples from the Amazon equatorial margin basins, Foz do Amazonas and Barreirinhas, in the dark and at low temperatures (4°C). We collected deep-sea samples in the field (about 2570 m below the sea surface), transported the samples back to the laboratory under controlled environmental conditions (5°C in the dark) and subsequently performed two laboratory biodegradation experiments that used metagenomics supported by classical microbiological methods and chemical analysis to elucidate both taxonomic and functional microbial diversity. We also analyzed several physical–chemical and biological parameters related to oil biodegradation. The concomitant depletion of dissolved oxygen levels, oil droplet density characteristic to oil biodegradation, and BTEX concentration with an increase in microbial counts revealed that oil can be degraded by the autochthonous deep-sea microbial communities. Indigenous bacteria (e.g., Alteromonadaceae, Colwelliaceae, and Alcanivoracaceae), archaea (e.g., Halobacteriaceae, Desulfurococcaceae, and Methanobacteriaceae), and eukaryotic microbes (e.g., Microsporidia, Ascomycota, and Basidiomycota) from the Amazonian margin deep-sea water were involved in biodegradation of Brazilian crude oil within less than 48-days in both treatments, with and without dispersant, possibly transforming oil into microbial biomass that may fuel the marine food web.
Collapse
Affiliation(s)
- Mariana E Campeão
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana Reis
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Luciana Leomil
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Louisi de Oliveira
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Koko Otsuki
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Piero Gardinali
- Department of Chemistry, Florida International University, MiamiFL, United States
| | - Oliver Pelz
- BP Exploration & Production Inc., HoustonTX, United States
| | - Rogerio Valle
- SAGE/COPPE, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Fabiano L Thompson
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil.,SAGE/COPPE, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| | - Cristiane C Thompson
- Institute of Biology, Federal University of Rio de JaneiroRio de Janeiro, Brazil
| |
Collapse
|
49
|
Dykstra CM, Pavlostathis SG. Methanogenic Biocathode Microbial Community Development and the Role of Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:5306-5316. [PMID: 28368570 DOI: 10.1021/acs.est.6b04112] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The cathode microbial community of a methanogenic bioelectrochemical system (BES) is key to the efficient conversion of carbon dioxide (CO2) to methane (CH4) with application to biogas upgrading. The objective of this study was to compare the performance and microbial community composition of a biocathode inoculated with a mixed methanogenic (MM) culture to a biocathode inoculated with an enriched hydrogenotrophic methanogenic (EHM) culture, developed from the MM culture following pre-enrichment with H2 and CO2 as the only externally supplied electron donor and carbon source, respectively. Using an adjacent Ag/AgCl reference electrode, biocathode potential was poised at -0.8 V (versus SHE) using a potentiostat, with the bioanode acting as the counter electrode. When normalized to cathode biofilm biomass, the methane production in the MM- and EHM-biocathode was 0.153 ± 0.010 and 0.586 ± 0.029 mmol CH4/mg biomass-day, respectively. This study showed that H2/CO2 pre-enriched inoculum enhanced biocathode CH4 production, although the archaeal communities in both biocathodes converged primarily (86-100%) on a phylotype closely related to Methanobrevibacter arboriphilus. The bacterial community of the MM-biocathode was similar to that of the MM inoculum but was enriched in Spirochaetes and other nonexoelectrogenic, fermentative Bacteria. In contrast, the EHM-biocathode bacterial community was enriched in Proteobacteria, exoelectrogens, and putative producers of electron shuttle mediators. Similar biomass levels were detected in the MM- and EHM-biocathodes. Thus, although the archaeal communities were similar in the two biocathodes, the difference in bacterial community composition was likely responsible for the 3.8-fold larger CH4 production rate observed in the EHM-biocathode. Roles for abundant OTUs identified in the biofilm and inoculum cultures were highlighted on the basis of previous reports.
Collapse
Affiliation(s)
- Christy M Dykstra
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Spyros G Pavlostathis
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
50
|
Gupta P, Ahammad SZ, Sreekrishnan TR. Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction. JOURNAL OF HAZARDOUS MATERIALS 2016; 315:52-60. [PMID: 27179200 DOI: 10.1016/j.jhazmat.2016.04.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Revised: 03/30/2016] [Accepted: 04/12/2016] [Indexed: 06/05/2023]
Abstract
Anaerobic biological treatment of high organics containing wastewater is amongst the preferred treatment options but poor tolerance to toxins makes its use prohibitive. In this study, efforts have been made to understand the key parameters for developing anaerobic reactor, resilient to cyanide toxicity. A laboratory scale anaerobic batch reactor was set up to treat cyanide containing wastewater. The reactor was inoculated with anaerobic sludge obtained from a wastewater treatment plant and fresh cow dung in the ratio of 3:1. The focus was on acclimatization and development of cyanide-degrading biomass and to understand the toxic effects of cyanide on the dynamic equilibrium between various microbial groups. The sludge exposed to cyanide was found to have higher bacterial diversity than the control. It was observed that certain hydrogenotrophic methanogens and bacterial groups were able to grow and produce methane in the presence of cyanide. Also, it was found that hydrogen utilizing methanogens were more cyanide tolerant than acetate utilizing methanogens. So, effluents from various industries like electroplating, coke oven plant, petroleum refining, explosive manufacturing, and pesticides industries which are having high concentrations of cyanide can be treated by favoring the growth of the tolerant microbes in the reactors. It will provide much better treatment efficiency by overcoming the inhibitory effects of cyanide to certain extent.
Collapse
Affiliation(s)
- Pragya Gupta
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S Z Ahammad
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - T R Sreekrishnan
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|