1
|
Caruso G, Coniglio MA, Laganà P, Fasciana T, Arcoleo G, Arrigo I, Di Carlo P, Palermo M, Giammanco A. Validation of a Loop-Mediated Isothermal Amplification-Based Kit for the Detection of Legionella pneumophila in Environmental Samples According to ISO/TS 12869:2012. Microorganisms 2024; 12:961. [PMID: 38792790 PMCID: PMC11124444 DOI: 10.3390/microorganisms12050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/20/2024] [Accepted: 04/22/2024] [Indexed: 05/26/2024] Open
Abstract
Legionella pneumophila is a freshwater opportunistic pathogen and the leading cause of severe pneumonia known as Legionnaires' disease. It can be found in all water systems and survives in biofilms, free-living amoebae, and a wide variety of facilities, such as air conditioning and showers in hospitals, hotels and spas. The reference cultural method allows for the isolation and identification in many days, and in addition, it does not detect viable but rather non-culturable bacteria, increasing the risk of infection. In this context, a new LAMP-based (loop-mediated isothermal amplification) kit was developed, allowing for the rapid, sensitive, and labor-saving detection of L. pneumophila. The kit, "Legionella pneumophila Glow", was validated according to ISO/TS 12869:2012, testing sensitivity, inclusivity and exclusivity, and kit robustness. Sensitivity showed that the "Legionella pneumophila Glow" kit can detect up to 28 plasmid copies/µL. Robustness tests showed consistent results, with both contamination levels and the matrices used giving reproducible results. Furthermore, real samples were evaluated to compare the performance of the two methods. The LAMP kit "Legionella pneumophila Glow" proved a useful option for the rapid, efficient, and labor-saving screening of different typologies of water samples, offering significant advantages over the traditional method, as it is characterized by a high sensitivity, ease of use for laboratory testing, and a large reduction in analysis time, making it an asset to official controls.
Collapse
Affiliation(s)
- Giorgia Caruso
- U.O.C. of Microbiology and Virology, ARNAS “Civico Di Cristina and Benfratelli”, 90127 Palermo, Italy
| | - Maria Anna Coniglio
- Legionella Reference Laboratory, Department of Medical, Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, University of Catania, Via Santa Sofia 87, 95123 Catania, Italy;
- Hygiene Complex Operative Unit, A.O.U. Policlinico—Vittorio Emanuele, Via S. Sofia 87, 95123 Catania, Italy
| | - Pasqualina Laganà
- Legionella Reference Laboratory, University of Messina, 98125 Messina, Italy;
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Teresa Fasciana
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | | | - Ignazio Arrigo
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.)
| | - Paola Di Carlo
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| | - Mario Palermo
- Sicilian Health Department, Public Health and Environmental Risks Service, 90127 Palermo, Italy;
| | - Anna Giammanco
- Legionella Reference Laboratory, University of Palermo, 90127 Palermo, Italy; (I.A.); (A.G.)
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, 90127 Palermo, Italy;
| |
Collapse
|
2
|
Lopez AE, Grigoryeva LS, Barajas A, Cianciotto NP. Legionella pneumophila Rhizoferrin Promotes Bacterial Biofilm Formation and Growth within Amoebae and Macrophages. Infect Immun 2023; 91:e0007223. [PMID: 37428036 PMCID: PMC10429650 DOI: 10.1128/iai.00072-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/20/2023] [Indexed: 07/11/2023] Open
Abstract
Previously, we showed that Legionella pneumophila secretes rhizoferrin, a polycarboxylate siderophore that promotes bacterial growth in iron-deplete media and the murine lung. Yet, past studies failed to identify a role for the rhizoferrin biosynthetic gene (lbtA) in L. pneumophila infection of host cells, suggesting the siderophore's importance was solely linked to extracellular survival. To test the possibility that rhizoferrin's relevance to intracellular infection was missed due to functional redundancy with the ferrous iron transport (FeoB) pathway, we characterized a new mutant lacking both lbtA and feoB. This mutant was highly impaired for growth on bacteriological media that were only modestly depleted of iron, confirming that rhizoferrin-mediated ferric iron uptake and FeoB-mediated ferrous iron uptake are critical for iron acquisition. The lbtA feoB mutant, but not its lbtA-containing complement, was also highly defective for biofilm formation on plastic surfaces, demonstrating a new role for the L. pneumophila siderophore in extracellular survival. Finally, the lbtA feoB mutant, but not its complement containing lbtA, proved to be greatly impaired for growth in Acanthamoeba castellanii, Vermamoeba vermiformis, and human U937 cell macrophages, revealing that rhizoferrin does promote intracellular infection by L. pneumophila. Moreover, the application of purified rhizoferrin triggered cytokine production from the U937 cells. Rhizoferrin-associated genes were fully conserved across the many sequenced strains of L. pneumophila examined but were variably present among strains from the other species of Legionella. Outside of Legionella, the closest match to the L. pneumophila rhizoferrin genes was in Aquicella siphonis, another facultative intracellular parasite of amoebae.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Lubov S. Grigoryeva
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Armando Barajas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
3
|
Lopez AE, Mayoral J, Cianciotto NP. Complete Genome Sequence of Legionella cardiaca Strain H63 T, Isolated from a Case of Native Valve Endocarditis. Microbiol Resour Announc 2023; 12:e0017523. [PMID: 37310280 PMCID: PMC10353460 DOI: 10.1128/mra.00175-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/30/2023] [Indexed: 06/14/2023] Open
Abstract
We report the complete genome sequence of Legionella cardiaca strain H63T, which had been isolated from aortic valve tissue from a patient with native endocarditis. The genome assembly contains a single 3,477,232-bp contig, with a G+C content of 38.59%, and is predicted to encode 2,948 proteins.
Collapse
Affiliation(s)
- Alberto E. Lopez
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Joshua Mayoral
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
4
|
Kiyose N, Miyazaki N, Furuhata K, Ito Y. Sensitive immunoassay of Legionella using multivalent conjugates of engineered VHHs. J Biochem 2023; 173:185-195. [PMID: 36525357 DOI: 10.1093/jb/mvac102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/23/2022] Open
Abstract
VHH antibodies or nanobodies, which are antigen-binding domains of heavy chain antibodies from camelid species, have several advantageous characteristics, including compact molecular size, high productibility in bacteria and easy engineering for functional improvement. Focusing on these advantages of VHHs, we attempted to establish an immunoassay system for detection of Legionella, the causative pathogen of Legionnaires' disease. A VHH phage display library was constructed using cDNA from B cells of alpacas immunized with Legionella pneumophila serogroup1 (LpSG1). Through biopanning, two specific VHH clones were isolated and used to construct a Legionella detection system based on the latex agglutination assay. After engineering the VHHs and improving the assay system, the sensitive detection system was successfully established for the LpSG1 antigen. The immunoassay developed in this study should be useful in easy and sensitive detection of Legionella, the causative agent of Legionnaires' disease, which is a potentially fatal pneumonia.
Collapse
Key Words
- VHH.Abbreviations: Abs, antibodies; BSA, bovine serum albumin; CDR, complementarity determining region; CFU, colony forming unit; DBCO, dibenzylcyclooctyne; ELISA, enzyme-linked immunosorbent assay; FR, framework region; HcAbs, heavy chain antibodies; KLH, keyhole limpet hemocyanin; LpSG1, Legionella pneumophila serogroup1; MALDI-TOFMS, matrix assisted laser desorption/ionization time of flight mass spectrometry; NHS, N-hydroxysuccinimide; PBMC, peripheral blood mononuclear cells; PCR, polymerase chain reaction; RT-PCR, reverse transcription PCR; SDS-PAGE, sodium do-decyl sulphate-polyacrylamide gel electrophoresis; TMB, 3,3′,5,5′-tetramethylbenzidine solution
- alpaca
- antibody
- engineering
- immunoassay
Collapse
Affiliation(s)
- Norihiko Kiyose
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan.,ARK Resource Co., Ltd., 383-2, Nakahara-machi, Nishi-ku, Kumamoto 861-5271, Japan
| | - Nobuo Miyazaki
- ARK Resource Co., Ltd., 383-2, Nakahara-machi, Nishi-ku, Kumamoto 861-5271, Japan
| | - Katsunori Furuhata
- School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5201, Japan
| | - Yuji Ito
- Graduate School of Science and Engineering, Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
5
|
Tata A, Marzoli F, Cordovana M, Tiengo A, Zacometti C, Massaro A, Barco L, Belluco S, Piro R. A multi-center validation study on the discrimination of Legionella pneumophila sg.1, Legionella pneumophila sg. 2-15 and Legionella non- pneumophila isolates from water by FT-IR spectroscopy. Front Microbiol 2023; 14:1150942. [PMID: 37125166 PMCID: PMC10133462 DOI: 10.3389/fmicb.2023.1150942] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/20/2023] [Indexed: 05/02/2023] Open
Abstract
This study developed and validated a method, based on the coupling of Fourier-transform infrared spectroscopy (FT-IR) and machine learning, for the automated serotyping of Legionella pneumophila serogroup 1, Legionella pneumophila serogroups 2-15 as well as their successful discrimination from Legionella non-pneumophila. As Legionella presents significant intra- and inter-species heterogeneities, careful data validation strategies were applied to minimize late-stage performance variations of the method across a large microbial population. A total of 244 isolates were analyzed. In details, the method was validated with a multi-centric approach with isolates from Italian thermal and drinking water (n = 82) as well as with samples from German, Italian, French, and British collections (n = 162). Specifically, robustness of the method was verified over the time-span of 1 year with multiple operators and two different FT-IR instruments located in Italy and Germany. Moreover, different production procedures for the solid culture medium (in-house or commercial) and different culture conditions (with and without 2.5% CO2) were tested. The method achieved an overall accuracy of 100, 98.5, and 93.9% on the Italian test set of Legionella, an independent batch of Legionella from multiple European culture collections, and an extra set of rare Legionella non-pneumophila, respectively.
Collapse
Affiliation(s)
- Alessandra Tata
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
- *Correspondence: Alessandra Tata,
| | - Filippo Marzoli
- Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | | | - Alessia Tiengo
- OIE Italian Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Carmela Zacometti
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Andrea Massaro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| | - Lisa Barco
- OIE Italian Reference Laboratory for Salmonella, Istituto Zooprofilattico Sperimentale delle Venezie, Padova, Italy
| | - Simone Belluco
- Department of Food Safety, Istituto Zooprofilattico Sperimentale delle Venezie, Legnaro, Italy
| | - Roberto Piro
- Laboratorio di Chimica Sperimentale, Istituto Zooprofilattico Sperimentale delle Venezie, Vicenza, Italy
| |
Collapse
|
6
|
Fraz MSA, Dahle G, Skaug KM, Jarraud S, Frye S, Bjørnholt JV, Nordøy I. Case report: A prosthetic valve endocarditis caused by Legionella bozemanae in an immunocompetent patient. Front Med (Lausanne) 2022; 9:1055465. [PMID: 36405607 PMCID: PMC9669447 DOI: 10.3389/fmed.2022.1055465] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 10/14/2022] [Indexed: 04/17/2025] Open
Abstract
Extrapulmonary infections with Legionella species are rare, but important to acknowledge. We report a case of infective endocarditis (IE) with Legionella bozemanae in a 66-year-old immunocompetent man with an aortic homograft. The diagnosis was made by direct 16S rRNA gene amplification from valve material, confirmed by a targeted Legionella-PCR in serum and the detection of L. bozemanae specific antibodies. To our knowledge, this is the first confirmed case of IE with L. bozemanae as causative pathogen. The infected aortic prosthesis was replaced by a homograft, and the patient was successfully treated with levofloxacin and azithromycin for 6 weeks.
Collapse
Affiliation(s)
- Mai Sasaki Aanensen Fraz
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Centre for Rare Disorders, Oslo University Hospital, Oslo, Norway
- Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Gry Dahle
- Department of Cardiothoracic Surgery, Oslo University Hospital, Oslo, Norway
| | | | - Sophie Jarraud
- National Reference Centre for Legionella, Institute of Infectious Agents, Hospices Civils de Lyon, Lyon, France
| | - Stephan Frye
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
| | - Jørgen Vildershøj Bjørnholt
- Department of Microbiology, Oslo University Hospital, Oslo, Norway
- Faculty of Medicine, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ingvild Nordøy
- Section for Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
7
|
Zhang C, Struewing I, Mistry JH, Wahman DG, Pressman J, Lu J. Legionella and other opportunistic pathogens in full-scale chloraminated municipal drinking water distribution systems. WATER RESEARCH 2021; 205:117571. [PMID: 34628111 PMCID: PMC8629321 DOI: 10.1016/j.watres.2021.117571] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 08/02/2021] [Accepted: 08/13/2021] [Indexed: 05/06/2023]
Abstract
Water-based opportunistic pathogens (OPs) are a leading cause of drinking-water-related disease outbreaks, especially in developed countries such as the United States (US). Physicochemical water quality parameters, especially disinfectant residuals, control the (re)growth, presence, colonization, and concentrations of OPs in drinking water distribution systems (DWDSs), while the relationship between OPs and those parameters remain unclear. This study aimed to quantify how physicochemical parameters, mainly monochloramine residual concentration, hydraulic residence time (HRT), and seasonality, affected the occurrence and concentrations of four common OPs (Legionella, Mycobacterium, Pseudomonas, and Vermamoeba vermiformis) in four full-scale DWDSs in the US. Legionella as a dominant OP occurred in 93.8% of the 64 sampling events and had a mean density of 4.27 × 105 genome copies per liter. Legionella positively correlated with Mycobacterium, Pseudomonas, and total bacteria. Multiple regression with data from the four DWDSs showed that Legionella had significant correlations with total chlorine residual level, free ammonia concentration, and trihalomethane concentration. Therefore, Legionella is a promising indicator of water-based OPs, reflecting microbial water quality in chloraminated DWDSs. The OP concentrations had strong seasonal variations and peaked in winter and/or spring possibly because of reduced water usage (i.e., increased water stagnation or HRT) during cold seasons. The OP concentrations generally increased with HRT presumably because of disinfectant residual decay, indicating the importance of well-maintaining disinfectant residuals in DWDSs for OP control. The concentrations of Mycobacterium, Pseudomonas, and V. vermiformis were significantly associated with total chlorine residual concentration, free ammonia concentration, and pH and trihalomethane concentration, respectively. Overall, this study demonstrates how the significant spatiotemporal variations of OP concentrations in chloraminated DWDSs correlated with critical physicochemical water quality parameters such as disinfectant residual levels. This work also indicates that Legionella is a promising indicator of OPs and microbial water quality in chloraminated DWDSs.
Collapse
Affiliation(s)
- Chiqian Zhang
- Pegasus Technical Services, Inc., Cincinnati, Ohio, USA
| | - Ian Struewing
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jatin H Mistry
- United States Environmental Protection Agency, Region 6, Dallas, Texas, USA
| | - David G Wahman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jonathan Pressman
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA
| | - Jingrang Lu
- Office of Research and Development, United States Environmental Protection Agency, Cincinnati, Ohio, USA.
| |
Collapse
|
8
|
Salinas MB, Fenoy S, Magnet A, Vaccaro L, Gomes TD, Hurtado C, Ollero D, Valdivieso E, Del Águila C, Pozuelo MJ, Izquierdo F. Are pathogenic Legionella non-pneumophila a common bacteria in Water Distribution Networks? WATER RESEARCH 2021; 196:117013. [PMID: 33813251 DOI: 10.1016/j.watres.2021.117013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/16/2021] [Accepted: 03/04/2021] [Indexed: 05/22/2023]
Abstract
The present study analyzes at the national level, the presence of circulating Legionella in the artificial aquatic systems of different facilities of all of them state-owned centers throughout Spain for 12 months. 1754 water samples from various state-owned centers were collected from January to December 2014. Samples were collected from the cooling towers and evaporative condensers (CTC), and water distribution networks such as domestic hot water (DHW), cold water for human consumption (CW), sprinkler irrigation systems (SIS), fire sprinkler systems (FSS), and water from decorative fountains (DF). All these facilities are considered, according to current regulations, as potential amplifying systems for bacteria and possible sources of infection by the generation of droplets and aerosols. The isolation and counting of Legionella in water samples was carried out using microbiological culture following the international normative UNE-EN-ISO 11,731:2007 (ISO 11,731:1998) and UNE-EN ISO 8199:2008 (ISO 8199:2005).The quantification of Legionella colonization, the annual distribution, and the geographical distribution of the Legionella isolates recovered in the water were analyzed. Besides, molecular techniques were used for the characterization of the Legionella non-pneumophila isolates. Legionella was recovered from 15.79% of the analyzed water samples. High colonization was more frequently detected in water samples from CTC, DHW, CW, and DF. Regarding the geographic distribution, positive samples of Legionella were obtained in 14 of the 18 Spanish locations analyzed. Legionella non-pneumophila was the most prevalent and was isolated from water samples from 13 different geographical locations (72%). Legionella anisa and Legionella jordanis were the most frequently non-pneumophila species isolated. Legionella donaldsonii was isolated for the first time in the water distribution networks in Spain. Legionella pneumophila sg 2-14 was detected in 13 locations and Legionella pneumophila sg 1 in 11 locations. Therefore, our study concludes that the presence of Legionella pneumophila and Legionella non-pneumophila species in these systems can be a potential threat to public health and should be examined thoroughly with complementary techniques, such as molecular techniques as a screen for routine diagnosis.
Collapse
Affiliation(s)
- Mireya Beatriz Salinas
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Soledad Fenoy
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Angela Magnet
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Lucianna Vaccaro
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Thiago Ds Gomes
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Carolina Hurtado
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Dolores Ollero
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Elizabeth Valdivieso
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Carmen Del Águila
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - María José Pozuelo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España
| | - Fernando Izquierdo
- Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28660 Boadilla del Monte, Madrid, España.
| |
Collapse
|
9
|
Kirillov S, Daniyarov A, Turgimbayeva A, Ramankulov Y, Kalendar R, Abeldenov S. Draft Genome Sequence of Lactobacillus salivarius KZ-NCB, Isolated from Chicken Cecum. Microbiol Resour Announc 2020; 9:e01129-20. [PMID: 33303665 PMCID: PMC7729413 DOI: 10.1128/mra.01129-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 11/19/2020] [Indexed: 12/01/2022] Open
Abstract
Here, we report the draft genome sequence of Lactobacillus salivarius strain KZ-NCB, which was isolated from the cecum of a healthy chicken from a poultry farm in Kazakhstan.
Collapse
Affiliation(s)
| | | | | | - Yerlan Ramankulov
- National Center for Biotechnology, Nur-Sultan, Kazakhstan
- School of Science and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Ruslan Kalendar
- Department of Agricultural Sciences, University of Helsinki, Helsinki, Finland
| | | |
Collapse
|
10
|
Draft Genome Sequence of a Potential Commercial Biocellulose Producer, Strain Komagataeibacter europaeus GH1. Microbiol Resour Announc 2020; 9:9/42/e00963-20. [PMID: 33060274 PMCID: PMC7561693 DOI: 10.1128/mra.00963-20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
In this work, we present the draft genome sequence of Komagataeibacter europaeus strain GH1 which is an extremely efficient biocellulose producer. In this work, we present the draft genome sequence of Komagataeibacter europaeus strain GH1, which is an extremely efficient biocellulose producer.
Collapse
|
11
|
Alam MS, Takahashi S, Ito M, Komura M, Kabir MH, Shoham D, Sakai K, Suzuki M, Takehara K. Bactericidal efficacies of food additive grade calcium hydroxide toward Legionella pneumophila. J Vet Med Sci 2019; 81:1318-1325. [PMID: 31292348 PMCID: PMC6785613 DOI: 10.1292/jvms.19-0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Food additive grade calcium hydroxide (FdCa(OH)2) in the solution of 0.17% was evaluated for its bactericidal efficacies toward Legionella pneumophila with or without sodium hypochlorite (NaOCl) at a concentration of 200 ppm total residual chlorine, at room temperature (RT) (25°C ± 2°C) and 42°C, either with or without 5% fetal bovine serum (FBS). Besides, FdCa(OH)2 in different concentration solutions were prepared in field water samples (hot spring and bath tab water) and evaluated for their bactericidal efficacies at 42°C. FdCa(OH)2 (0.17%) inactivated the L. pneumophila to the undetectable level (<2.6 log CFU/ml) within 5 min and 3 min, respectively, at RT and 42°C, with 5% FBS. At RT and 42°C, NaOCl inactivated L. pneumophila to the undetectable level within 5 min, without 5% FBS, but with 5% FBS, it could only inactivate this bacterium effectively (≥3 log reductions). Conversely, at RT and 42°C, the mixture of 0.17% FdCa(OH)2 and 200 ppm NaOCl could inactivate L. pneumophila to the undetectable level, respectively, within 3 min and 1 min, even with 5% FBS, and it was elucidated that FdCa(OH)2 has a synergistic bactericidal effect together with NaOCl. FdCa(OH)2 0.05% solution prepared in hot spring water could inactivate L. pneumophila to the undetectable within 3 min at 42°C. So, FdCa(OH)2 alone could show nice bactericidal efficacy at 42°C, even with 5% FBS, as well as in field water samples.
Collapse
Affiliation(s)
- Md Shahin Alam
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan
| | - Satoru Takahashi
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan
| | - Mariko Ito
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan
| | - Miyuki Komura
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan
| | - Md Humayun Kabir
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan.,Laboratory of Animal Health, Cooperative Division of Veterinary Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan
| | - Dany Shoham
- Bar-Ilan University, Begin-Sadat Center for Strategic Studies, Ramat Gan 5290002, Israel
| | - Kouji Sakai
- Department of Virology 3, National Institute of Infectious Diseases, Tokyo 208-0011, Japan
| | - Masato Suzuki
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, 4-2-1 Aobamachi, Higashimurayama, Tokyo 189-0002, Japan
| | - Kazuaki Takehara
- Laboratory of Animal Health, Department of Veterinary Medicine, Faculty of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan.,Laboratory of Animal Health, Cooperative Division of Veterinary Science, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8, Saiwai-cho, Fchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
12
|
Munson E, Carroll KC. What's in a Name? New Bacterial Species and Changes to Taxonomic Status from 2012 through 2015. J Clin Microbiol 2017; 55:24-42. [PMID: 27795334 PMCID: PMC5228236 DOI: 10.1128/jcm.01379-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Technological advancements in fields such as molecular genetics and the human microbiome have resulted in an unprecedented recognition of new bacterial genus/species designations by the International Journal of Systematic and Evolutionary Microbiology Knowledge of designations involving clinically significant bacterial species would benefit clinical microbiologists in the context of emerging pathogens, performance of accurate organism identification, and antimicrobial susceptibility testing. In anticipation of subsequent taxonomic changes being compiled by the Journal of Clinical Microbiology on a biannual basis, this compendium summarizes novel species and taxonomic revisions specific to bacteria derived from human clinical specimens from the calendar years 2012 through 2015.
Collapse
Affiliation(s)
- Erik Munson
- College of Health Sciences, Marquette University, Milwaukee, Wisconsin, USA
| | - Karen C Carroll
- Division of Medical Microbiology, Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
13
|
Principe L, Tomao P, Visca P. Legionellosis in the occupational setting. ENVIRONMENTAL RESEARCH 2017; 152:485-495. [PMID: 27717486 DOI: 10.1016/j.envres.2016.09.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 09/07/2016] [Accepted: 09/22/2016] [Indexed: 05/22/2023]
Abstract
Legionellosis is the common name for two infections, Legionnaires' disease (LD) and Pontiac fever (PF), both caused by Legionella bacteria. Although with low incidence, LD is an important cause of community- and hospital-acquired pneumonia. Among community-acquired cases, an increasing number was reported to be linked to the occupational setting, posing the need for better recognition of work activities at risk of legionellosis. In this work, we selected and reviewed relevant literature on cases of occupational legionellosis published between 1978 and 2016 in order to define the: i) etiology; ii) sources of infection, iii) work activities at risk, iv) infection rates, v) predisposing factors, vi) mortality and vii) country distribution. To our knowledge, this is the first review to provide an analysis of cases of occupational legionellosis. A literature search in the PubMed website was started on January 31, 2015 and ended on June 30, 2016. Cases of occupational legionellosis documented in the scientific literature were retrieved from PubMed upon interrogation with the following keywords: "Legionella pneumophila", "Legionnaires' disease", "Pontiac fever", and "legionellosis", in combination with "employees", "workers", and "occupational". Abstracts were reviewed, and applicable articles were obtained. Only articles that met the inclusion criteria were considered. Forty-seven articles were selected, reporting confirmed cases of legionellosis which occurred over 66 years (1949-2015), and involved 805 workers (221, LD; 584, PF). Fatalities were all associated with LD, resulting in 4.1% mortality. The most common etiologic agents were Legionella pneumophila (58.5%) and Legionella feeleii (39.4%), the latter being responsible for only one large outbreak of PF. Workplaces more frequently associated with occupational legionellosis were industrial settings (62.0%), office buildings (27.3%) and healthcare facilities (6.3%), though cases were also reported from a variety of workplaces, e.g. artesian excavation and horticultural sites, lorry parks, ships, water and sewage plants. With few exceptions, cases occurred in industrialized countries of the northern hemisphere. Overall, our review highlights an extended spectrum of occupational categories at risk for legionellosis. For all categories, infection originated from exposure to work-generated aerosols contaminated with Legionella spp., and industrial facilities equipped with cooling towers or coolant systems were the most common occupational settings. These observations should raise awareness of the risk of acquiring legionellosis at work, and help to improve prevention and control measures for this infrequent but still problematic disease.
Collapse
Affiliation(s)
- Luigi Principe
- Microbiology and Virology Unit, Department of Laboratory Medicine, A. Manzoni Hospital, Lecco, Italy
| | - Paola Tomao
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Italian Workers' Compensation Authority, Monte Porzio Catone, Rome, Italy
| | - Paolo Visca
- Department of Science, Roma Tre University, Rome, Italy.
| |
Collapse
|
14
|
Vaccaro L, Izquierdo F, Magnet A, Hurtado C, Salinas MA, Gomes TS, Angulo S, Salso S, Pelaez J, Tejeda MI, Alhambra A, Gómez C, Enríquez A, Estirado E, Fenoy S, del Aguila C. First Case of Legionnaire's Disease Caused by Legionella anisa in Spain and the Limitations on the Diagnosis of Legionella non-pneumophila Infections. PLoS One 2016; 11:e0159726. [PMID: 27442238 PMCID: PMC4956277 DOI: 10.1371/journal.pone.0159726] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 05/27/2016] [Indexed: 12/13/2022] Open
Abstract
Legionnaires' disease is a severe form of pneumonia, with worldwide relevance, caused by Legionella spp. Approximately 90% of all cases of legionellosis are caused by Legionella pneumophila, but other species can also be responsible for this infection. These bacteria are transmitted by inhalation of aerosols or aspiration of contaminated water. In Spain, environmental studies have demonstrated the presence of Legionella non-pneumophila species in drinking water treatment plants and water distribution networks. Aware that this evidence indicates a risk factor and the lack of routine assays designed to detect simultaneously diverse Legionella species, we analyzed 210 urine samples from patients presenting clinical manifestations of pneumonia using a semi-nested PCR for partial amplification of the 16S rDNA gene of Legionella and a diagnostic method used in hospitals for Legionella antigen detection. In this study, we detected a total of 15 cases of legionellosis (7.1%) and the first case of Legionnaires' disease caused by L. anisa in Spain. While the conventional method used in hospitals could only detect four cases (1.9%) produced by L. pneumophila serogroup 1, using PCR, the following species were identified: Legionella spp. (10/15), L. pneumophila (4/15) and L. anisa (1/15). These results suggest the need to change hospital diagnostic strategies regarding the identification of Legionella species associated with this disease. Therefore, the detection of Legionella DNA by PCR in urine samples seems to be a suitable alternative method for a sensitive, accurate and rapid diagnosis of Legionella pneumonia, caused by L. pneumophila and also for L. non-pneumophila species.
Collapse
Affiliation(s)
- Lucianna Vaccaro
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Fernando Izquierdo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Angela Magnet
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Carolina Hurtado
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Mireya A. Salinas
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Thiago Santos Gomes
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
- CAPES Foundation, Ministry of Education of Brazil, Brasília, Brazil
| | - Santiago Angulo
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Santiago Salso
- Hospital Universitario HM Monteprincipe, Boadilla del Monte, Madrid, Spain
| | - Jesús Pelaez
- Hospital Universitario HM Monteprincipe, Boadilla del Monte, Madrid, Spain
| | | | | | - Carmen Gómez
- Hospital Universitario HM Sanchinarro, Madrid, Madrid, Spain
| | - Ana Enríquez
- Hospital Universitario Carlos III, Madrid, Madrid, Spain
| | - Eva Estirado
- Hospital Universitario Carlos III, Madrid, Madrid, Spain
| | - Soledad Fenoy
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| | - Carmen del Aguila
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo CEU, Alcorcón, Madrid, Spain
| |
Collapse
|
15
|
Cianciotto NP. An update on iron acquisition by Legionella pneumophila: new pathways for siderophore uptake and ferric iron reduction. Future Microbiol 2016; 10:841-51. [PMID: 26000653 DOI: 10.2217/fmb.15.21] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Iron acquisition is critical for the growth and pathogenesis of Legionella pneumophila, the causative agent of Legionnaires' disease. L. pneumophila utilizes two main modes of iron assimilation, namely ferrous iron uptake via the FeoB system and ferric iron acquisition through the action of the siderophore legiobactin. This review highlights recent studies concerning the mechanism of legiobactin assimilation, the impact of c-type cytochromes on siderophore production, the importance of legiobactin in lung infection and a newfound role for a bacterial pyomelanin in iron acquisition. These data demonstrate that key aspects of L. pneumophila iron acquisition are significantly distinct from those of long-studied, 'model' organisms. Indeed, L. pneumophila may represent a new paradigm for a variety of other intracellular parasites, pathogens and under-studied bacteria.
Collapse
|
16
|
The Legionella pneumophila Siderophore Legiobactin Is a Polycarboxylate That Is Identical in Structure to Rhizoferrin. Infect Immun 2015. [PMID: 26195554 DOI: 10.1128/iai.00808-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Legionella pneumophila, the agent of Legionnaires' disease, secretes a siderophore (legiobactin) that promotes bacterial infection of the lung. In past work, we determined that cytoplasmic LbtA (from Legiobactin gene A) promotes synthesis of legiobactin, inner membrane LbtB aids in export of the siderophore, and outer membrane LbtU and inner membrane LbtC help mediate ferrilegiobactin uptake and assimilation. However, the past studies examined legiobactin contained within bacterial culture supernatants. By utilizing high-pressure liquid chromatography that incorporates hydrophilic interaction-based chemistry, we have now purified legiobactin from supernatants of virulent strain 130b that is suitable for detailed chemical analysis. High-resolution mass spectrometry (MS) revealed that the molecular mass of (protonated) legiobactin is 437.140 Da. On the basis of the results obtained from both MS analysis and various forms of nuclear magnetic resonance, we found that legiobactin is composed of two citric acid residues linked by a putrescine bridge and thus is identical in structure to rhizoferrin, a polycarboxylate-type siderophore made by many fungi and several unrelated bacteria. Both purified legiobactin and rhizoferrin obtained from the fungus Cunninghamella elegans were able to promote Fe(3+) uptake by wild-type L. pneumophila as well as enhance growth of iron-starved bacteria. These results did not occur with 130b mutants lacking lbtU or lbtC, indicating that both endogenously made legiobactin and exogenously derived rhizoferrin are assimilated by L. pneumophila in an LbtU- and LbtC-dependent manner.
Collapse
|
17
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
18
|
Tyson JY, Vargas P, Cianciotto NP. The novel Legionella pneumophila type II secretion substrate NttC contributes to infection of amoebae Hartmannella vermiformis and Willaertia magna. MICROBIOLOGY-SGM 2014; 160:2732-2744. [PMID: 25253612 DOI: 10.1099/mic.0.082750-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The type II protein secretion (T2S) system of Legionella pneumophila secretes over 25 proteins, including novel proteins that have no similarity to proteins of known function. T2S is also critical for the ability of L. pneumophila to grow within its natural amoebal hosts, including Acanthamoeba castellanii, Hartmannella vermiformis and Naegleria lovaniensis. Thus, T2S has an important role in the natural history of legionnaires' disease. Our previous work demonstrated that the novel T2S substrate NttA promotes intracellular infection of A. castellanii, whereas the secreted RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all promote infection of H. vermiformis and N. lovaniensis. In this study, we determined that another novel T2S substrate that is specific to Legionella, designated NttC, is unique in being required for intracellular infection of H. vermiformis but not for infection of N. lovaniensis or A. castellanii. Expanding our repertoire of amoebal hosts, we determined that Willaertia magna is susceptible to infection by L. pneumophila strains 130b, Philadelphia-1 and Paris. Furthermore, T2S and, more specifically, NttA, NttC and PlaC were required for infection of W. magna. Taken together, these data demonstrate that the T2S system of L. pneumophila is critical for infection of at least four types of aquatic amoebae and that the importance of the individual T2S substrates varies in a host cell-specific fashion. Finally, it is now clear that novel T2S-dependent proteins that are specific to the genus Legionella are particularly important for L. pneumophila infection of key, environmental hosts.
Collapse
Affiliation(s)
- Jessica Y Tyson
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Paloma Vargas
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| | - Nicholas P Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, IL 60611, USA
| |
Collapse
|
19
|
Kusić D, Kampe B, Rösch P, Popp J. Identification of water pathogens by Raman microspectroscopy. WATER RESEARCH 2014; 48:179-189. [PMID: 24103393 DOI: 10.1016/j.watres.2013.09.030] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/12/2013] [Accepted: 09/13/2013] [Indexed: 05/27/2023]
Abstract
Legionella species can be found living in water mostly in a viable but nonculturable state or associated with protozoa and complex biofilm formations. Isolation and afterwards identification of these pathogens from environmental samples by using common identification procedures based on cultivation are extremely difficult and prolonged. The development of fast and sensitive method based on the cultivation free identification of bacteria is necessary. In this study Raman microspectroscopy combined with multiclass support vector machines have been used to discriminate between Legionella and other common aquatic bacteria, to distinguish among clinically relevant Legionella species and to classify unknown Raman spectra for a fast and reliable identification. Recorded Raman spectra of the twenty-two Legionella species as well as the Raman spectra of Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa were utilized to build the classification model. Afterwards, independent Raman spectra of eleven species were used to identify them on the basis of the classification model that was created. The present study shows that Raman microspectroscopy can be used as a rapid and reliable method to distinguish between Legionella species recognized as human pathogens and to identify samples which are unknown to the model based on multiclass support vector machines (MC-SVM).
Collapse
Affiliation(s)
- Dragana Kusić
- Institut für Physikalische Chemie and Abbe Center of Photonics, Friedrich-Schiller-Universität Jena, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
20
|
Petzold M, Thürmer A, Menzel S, Mouton JW, Heuner K, Lück C. A structural comparison of lipopolysaccharide biosynthesis loci of Legionella pneumophila serogroup 1 strains. BMC Microbiol 2013; 13:198. [PMID: 24069939 PMCID: PMC3766260 DOI: 10.1186/1471-2180-13-198] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 08/31/2013] [Indexed: 01/21/2023] Open
Abstract
Background The lipopolysaccharide (LPS) is the major immuno-dominant antigen of all Legionella species including L. pneumophila. Its diversity is the basis for the classification of L. pneumophila into serogroups and monoclonal subgroups and is thought to be involved in strain specific virulence. The understanding of the genetic basis of the LPS-antigen is incomplete. Thus, we analyzed the genetic locus involved in LPS-biosynthesis of L. pneumophila serogroup 1 (Sg1) strains with the focus on strain specific gene composition. Results The LPS-biosynthesis loci of 14 L. pneumophila Sg1 strains comprise two distinct regions: A 15 kb region containing LPS-biosynthesis genes that can be found in all L. pneumophila strains and a Sg1-specific 18 kb region. The 15 kb region is highly conserved among Sg1 strains as reflected by high homologies of single ORFs and by a consistent ORF arrangement. In contrast, the Sg1 specific 18 kb region is variable and partially disrupted by phage related genes. We propose that the region spanning from ORF 6 to ORF 11 of the Sg1-specific region is likely involved in late LPS-modification. Due to the high variability of this small region and various combinations of single ORFs within this region a strain specific LPS-structure could be synthesized including modifications of legionaminic acid derivates. Conclusions Our data clearly demonstrate that the gene structure of the LPS-biosynthesis locus of L. pneumophila Sg1 strains show significant interstrain variability. These data can be used for further functional analysis of the LPS synthesis to understand pathogenesis and reactivity with monoclonal antibodies. Moreover, variable but strain specific regions can serve as basis for the development of novel genotyping assays.
Collapse
Affiliation(s)
- Markus Petzold
- Institute of Medical Microbiology and Hygiene, Faculty of Medicine 'Carl Gustav Carus', University of Technology Dresden, Fetscherstraße 74, Dresden D-01307, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Secreted pyomelanin of Legionella pneumophila promotes bacterial iron uptake and growth under iron-limiting conditions. Infect Immun 2013; 81:4182-91. [PMID: 23980114 DOI: 10.1128/iai.00858-13] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Iron acquisition is critical to the growth and virulence of Legionella pneumophila. Previously, we found that L. pneumophila uses both a ferrisiderophore pathway and ferrous iron transport to obtain iron. We now report that two molecules secreted by L. pneumophila, homogentisic acid (HGA) and its polymerized variant (HGA-melanin, a pyomelanin), are able to directly mediate the reduction of various ferric iron salts. Furthermore, HGA, synthetic HGA-melanin, and HGA-melanin derived from bacterial supernatants enhanced the ability of L. pneumophila and other species of Legionella to take up radiolabeled iron. Enhanced iron uptake was not observed with a ferrous iron transport mutant. Thus, HGA and HGA-melanin mediate ferric iron reduction, with the resulting ferrous iron being available to the bacterium for uptake. Upon further testing of L. pneumophila culture supernatants, we found that significant amounts of ferric and ferrous iron were associated with secreted HGA-melanin. Importantly, a pyomelanin-containing fraction obtained from a wild-type culture supernatant was able to stimulate the growth of iron-starved legionellae. That the corresponding supernatant fraction obtained from a nonpigmented mutant culture did not stimulate growth demonstrated that HGA-melanin is able to both promote iron uptake and enhance growth under iron-limiting conditions. Indicative of a complementary role in iron acquisition, HGA-melanin levels were inversely related to the levels of siderophore activity. Compatible with a role in the ecology and pathogenesis of L. pneumophila, HGA and HGA-melanin were effective at reducing and releasing iron from both insoluble ferric hydroxide and the mammalian iron chelates ferritin and transferrin.
Collapse
|
22
|
Multiple Legionella pneumophila Type II secretion substrates, including a novel protein, contribute to differential infection of the amoebae Acanthamoeba castellanii, Hartmannella vermiformis, and Naegleria lovaniensis. Infect Immun 2013; 81:1399-410. [PMID: 23429532 DOI: 10.1128/iai.00045-13] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Type II protein secretion (T2S) by Legionella pneumophila is required for intracellular infection of host cells, including macrophages and the amoebae Acanthamoeba castellanii and Hartmannella vermiformis. Previous proteomic analysis revealed that T2S by L. pneumophila 130b mediates the export of >25 proteins, including several that appeared to be novel. Following confirmation that they are unlike known proteins, T2S substrates NttA, NttB, and LegP were targeted for mutation. nttA mutants were impaired for intracellular multiplication in A. castellanii but not H. vermiformis or macrophages, suggesting that novel exoproteins which are specific to Legionella are especially important for infection. Because the importance of NttA was host cell dependent, we examined a panel of T2S substrate mutants that had not been tested before in more than one amoeba. As a result, RNase SrnA, acyltransferase PlaC, and metalloprotease ProA all proved to be required for optimal intracellular multiplication in H. vermiformis but not A. castellanii. Further examination of an lspF mutant lacking the T2S apparatus documented that T2S is also critical for infection of the amoeba Naegleria lovaniensis. Mutants lacking SrnA, PlaC, or ProA, but not those deficient for NttA, were defective in N. lovaniensis. Based upon analysis of a double mutant lacking PlaC and ProA, the role of ProA in H. vermiformis was connected to its ability to activate PlaC, whereas in N. lovaniensis, ProA appeared to have multiple functions. Together, these data document that the T2S system exports multiple effectors, including a novel one, which contribute in different ways to the broad host range of L. pneumophila.
Collapse
|
23
|
Computational modeling and experimental validation of the Legionella and Coxiella virulence-related type-IVB secretion signal. Proc Natl Acad Sci U S A 2013; 110:E707-15. [PMID: 23382224 DOI: 10.1073/pnas.1215278110] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legionella and Coxiella are intracellular pathogens that use the virulence-related Icm/Dot type-IVB secretion system to translocate effector proteins into host cells during infection. These effectors were previously shown to contain a C-terminal secretion signal required for their translocation. In this research, we implemented a hidden semi-Markov model to characterize the amino acid composition of the signal, thus providing a comprehensive computational model for the secretion signal. This model accounts for dependencies among sites and captures spatial variation in amino acid composition along the secretion signal. To validate our model, we predicted and synthetically constructed an optimal secretion signal whose sequence is different from that of any known effector. We show that this signal efficiently translocates into host cells in an Icm/Dot-dependent manner. Additionally, we predicted in silico and experimentally examined the effects of mutations in the secretion signal, which provided innovative insights into its characteristics. Some effectors were found to lack a strong secretion signal according to our model. We demonstrated that these effectors were highly dependent on the IcmS-IcmW chaperons for their translocation, unlike effectors that harbor a strong secretion signal. Furthermore, our model is innovative because it enables searching ORFs for secretion signals on a genomic scale, which led to the identification and experimental validation of 20 effectors from Legionella pneumophila, Legionella longbeachae, and Coxiella burnetii. Our combined computational and experimental methodology is general and can be applied to the identification of a wide spectrum of protein features that lack sequence conservation but have similar amino acid characteristics.
Collapse
|
24
|
Abstract
Type II secretion (T2S) is one of six systems that can occur in Gram-negative bacteria for the purpose of secreting proteins into the extracellular milieu and/or into host cells. This chapter will describe the T2S system of Legionella pneumophila. Topics to be covered include the genetic basis of T2S in L. pneumophila, the numbers (>25), types, and novelties of Legionella proteins that are secreted via T2S, and the many ways in which T2S and its substrates promote L. pneumophila physiology, ecology, and virulence. Within the aquatic environment, T2S plays a major role in L. pneumophila intracellular infection of multiple types of (Acanthamoeba, Hartmannella, and Naegleria) amoebae. Within the mammalian host, T2S promotes bacterial persistence in lungs, intracellular infection of both macrophages and epithelial cells, and a dampening of the host innate immune response. In this context, T2S may represent a potential target for both industrial and biomedical application.
Collapse
|
25
|
Kuhle K, Flieger A. Legionella phospholipases implicated in virulence. Curr Top Microbiol Immunol 2013; 376:175-209. [PMID: 23925490 DOI: 10.1007/82_2013_348] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Phospholipases are diverse enzymes produced in eukaryotic hosts and their bacterial pathogens. Several pathogen phospholipases have been identified as major virulence factors acting mainly in two different modes: on the one hand, they have the capability to destroy host membranes and on the other hand they are able to manipulate host signaling pathways. Reaction products of bacterial phospholipases may act as secondary messengers within the host and therefore influence inflammatory cascades and cellular processes, such as proliferation, migration, cytoskeletal changes as well as membrane traffic. The lung pathogen and intracellularly replicating bacterium Legionella pneumophila expresses a variety of phospholipases potentially involved in disease-promoting processes. So far, genes encoding 15 phospholipases A, three phospholipases C, and one phospholipase D have been identified. These cell-associated or secreted phospholipases may contribute to intracellular establishment, to egress of the pathogen from the host cell, and to the observed lung pathology. Due to the importance of phospholipase activities for host cell processes, it is conceivable that the pathogen enzymes may mimic or substitute host cell phospholipases to drive processes for the pathogen's benefit. The following chapter summarizes the current knowledge on the L. pneumophila phospholipases, especially their substrate specificity, localization, mode of secretion, and impact on host cells.
Collapse
Affiliation(s)
- Katja Kuhle
- FG 11 - Division of Enteropathogenic Bacteria and Legionella, Robert Koch-Institut, Burgstr. 37, 38855, Wernigerode, Germany
| | | |
Collapse
|
26
|
Flydal MI, Chatfield CH, Zheng H, Gunderson FF, Aubi O, Cianciotto NP, Martinez A. Phenylalanine hydroxylase from Legionella pneumophila is a thermostable enzyme with a major functional role in pyomelanin synthesis. PLoS One 2012; 7:e46209. [PMID: 23049981 PMCID: PMC3458870 DOI: 10.1371/journal.pone.0046209] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Legionella pneumophila is a pathogenic bacterium that can cause Legionnaires' disease and other non-pneumonic infections in humans. This bacterium produces a pyomelanin pigment, a potential virulence factor with ferric reductase activity. In this work, we have investigated the role of phenylalanine hydroxylase from L. pneumophila (lpPAH), the product of the phhA gene, in the synthesis of the pyomelanin pigment and the growth of the bacterium in defined compositions. METHODOLOGY/PRINCIPAL FINDINGS Comparative studies of wild-type and phhA mutant corroborate that lpPAH provides the excess tyrosine for pigment synthesis. phhA and letA (gacA) appear transcriptionally linked when bacteria were grown in buffered yeast extract medium at 37°C. phhA is expressed in L. pneumophila growing in macrophages. We also cloned and characterized lpPAH, which showed many characteristics of other PAHs studied so far, including Fe(II) requirement for activity. However, it also showed many particular properties such as dimerization, a high conformational thermal stability, with a midpoint denaturation temperature (T(m)) = 79 ± 0.5°C, a high specific activity at 37°C (10.2 ± 0.3 µmol L-Tyr/mg/min) and low affinity for the substrate (K(m) (L-Phe) = 735 ± 50 µM. CONCLUSIONS/SIGNIFICANCE lpPAH has a major functional role in the synthesis of pyomelanin and promotes growth in low-tyrosine media. The high thermal stability of lpPAH might reflect the adaptation of the enzyme to withstand relatively high survival temperatures.
Collapse
Affiliation(s)
- Marte I. Flydal
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Christa H. Chatfield
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Huaixin Zheng
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Felizza F. Gunderson
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Oscar Aubi
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Nicholas P. Cianciotto
- Department of Microbiology-Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| |
Collapse
|