1
|
Monge-Loría M, Zhong W, Abrahamse NH, Hartter S, Garg N. Discovery of Peptidic Siderophore Degradation by Screening Natural Product Profiles in Marine-Derived Bacterial Mono- and Cocultures. Biochemistry 2025; 64:634-654. [PMID: 39807563 PMCID: PMC11800396 DOI: 10.1021/acs.biochem.4c00706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/12/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
Coral reefs are hotspots of marine biodiversity, which results in the synthesis of a wide variety of compounds with unique molecular scaffolds, and bioactivities, rendering reefs an ecosystem of interest. The chemodiversity stems from the intricate relationships between inhabitants of the reef, as the chemistry produced partakes in intra- and interspecies communication, settlement, nutrient acquisition, and defense. However, the coral reefs are declining at an unprecedented rate due to climate change, pollution, and increased incidence of pathogenic diseases. Among pathogens, Vibrio spp. bacteria are key players resulting in high mortality. Thus, alternative strategies such as application of beneficial bacteria isolated from disease-resilient species are being explored to lower the burden of pathogenic species. Here, we apply coculturing of a coral-derived pathogenic species of Vibrio and beneficial bacteria and leverage recent advancements in untargeted metabolomics to discover engineerable beneficial traits. By chasing chemical change in coculture, we report Microbulbifer spp.-mediated degradation of amphibactins, produced by Vibrio spp. bacteria to sequester iron. Additional biochemical experiments revealed that the degradation occurs in the peptide backbone and requires the enzyme fraction of Microbulbifer. A reduction in iron affinity is expected due to the loss of one Fe(III) binding moiety. Therefore, we hypothesize that this degradation shapes community behaviors as it pertains to iron acquisition, a limiting nutrient in the marine environment, and survival. Furthermore, Vibrio sp. bacteria suppressed natural product synthesis by beneficial bacteria. Understanding biochemical mechanisms behind these interactions will enable engineering probiotic bacteria capable of lowering pathogenic burdens during heat waves and incidence of disease.
Collapse
Affiliation(s)
- Mónica Monge-Loría
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Weimao Zhong
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Nadine H. Abrahamse
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
| | - Stephen Hartter
- Georgia
Aquarium, 225 Baker St.
NW, Atlanta, Georgia 30313, United States
| | - Neha Garg
- School
of Chemistry and Biochemistry, Georgia Institute
of Technology, 950 Atlantic Drive, Atlanta, Georgia 30332, United States
- Center
for Microbial Dynamics and Infection, Georgia
Institute of Technology, 315 Ferst Drive, Atlanta, Georgia 30332, United States
| |
Collapse
|
2
|
Kawano K, Awano T, Yoshinaga A, Sugiyama J, Sawayama S, Nakagawa S. Paralimibaculum aggregatum gen. nov. sp. nov. and Biformimicrobium ophioploci gen. nov. sp. nov., two novel heterotrophs from brittle star Ophioplocus japonicus. Int J Syst Evol Microbiol 2024; 74:006530. [PMID: 39325648 PMCID: PMC11426391 DOI: 10.1099/ijsem.0.006530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 09/12/2024] [Indexed: 09/28/2024] Open
Abstract
Two novel Gram-stain-negative, strictly aerobic, halophilic and non-motile bacterial strains, designated NKW23T and NKW57T, were isolated from a brittle star Ophioplocus japonicus collected from a tidal pool in Wakayama, Japan. The results of phylogenetic analysis based on 16S rRNA gene sequences indicated that NKW23T represented a member of the family Paracoccaceae, with Limibaculum halophilum CAU 1123T as its closest relative (94.4% sequence identity). NKW57T was identified as representing a member of the family Microbulbiferaceae, with up to 94.9% sequence identity with its closest relatives. Both strains displayed average nucleotide identity (ANI) and digital DNA-DNA hybridisation (dDDH) values below the species delimitation threshold against their closest relatives. Additionally, amino acid identity (AAI) values of both strains fell below the genus-defining threshold. Phylogenetic trees based on genome sequences indicated that NKW23T formed a novel lineage, branching deeply prior to the divergence of the genera Limibaculum and Thermohalobaculum, with an evolutionary distance (ED) of 0.31-0.32, indicative of genus-level differentiation. NKW57T similarly formed a distinct lineage separate from the species of the genus Microbulbifer. The major respiratory quinones of NKW23T and NKW57T were ubiquinone-10 (Q-10) and Q-8, respectively. The genomic DNA G+C contents of NKW23T and NKW57T were 71.4 and 58.8%, respectively. On the basis of the physiological and phylogenetic characteristics, it was proposed that these strains should be classified as novel species representing two novel genera: Paralimibaculum aggregatum gen. nov., sp. nov., with strain NKW23T (=JCM 36220T=KCTC 8062T) as the type strain, and Biformimicrobium ophioploci gen. nov., sp. nov., with strain NKW57T (=JCM 36221T=KCTC 8063T) as the type strain.
Collapse
Affiliation(s)
- Keisuke Kawano
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Tatsuya Awano
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Arata Yoshinaga
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Junji Sugiyama
- Laboratory of Tree Cell Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Shigeki Sawayama
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
| | - Satoshi Nakagawa
- Laboratory of Marine Environmental Microbiology, Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Oiwake-cho, Kitashirakawa, Sakyo-ku, Kyoto 606-8502, Japan
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science & Technology (JAMSTEC), 2-15 Natsushima-Cho, Yokosuka 237-0061, Japan
- Section for Exploration of Life in Extreme Environments, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute of Natural Sciences, 5-1 Higashiyama, Myodaiji-Cho, Okazaki 444-8787, Japan
| |
Collapse
|
3
|
Ishaq N, Zhang M, Gao L, Ilan M, Li Z. Microbulbifer spongiae sp. nov., isolated from marine sponge Diacarnus erythraeanus. Int J Syst Evol Microbiol 2024; 74. [PMID: 39325661 DOI: 10.1099/ijsem.0.006521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024] Open
Abstract
A novel bacterium, designated as MI-GT, was isolated from marine sponge Diacarnus erythraeanus. Cells of strain MI-GT are Gram-stain-negative, aerobic, and rod or coccoid-ovoid in shape. MI-GT is able to grow at 10-40 °C (optimum, 28 °C), with 1.0-8.0% (w/v) NaCl (optimum, 4.0%), and at pH 5.5-9.0 (optimum, pH 8.0). The 16S rRNA gene sequence of strain MI-GT shows 98.35, 97.32 and 97.25% similarity to those of Microbulbifer variabilis Ni-2088T, Microbulbifer maritimus TF-17T and Microbulbifer echini AM134T, respectively. Phylogenetic analysis also exhibits that strain MI-GT falls within a clade comprising members of the genus Microbulbifer (class Gammaproteobacteria). The genome size of strain MI-GT is 4478124 bp with a G+C content of 54.51 mol%. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain MI-GT and other type strains are 71.61-76.44% (ANIb), 83.27-84.36% (ANIm) and 13.4-18.7% (dDDH), respectively. These values are significantly lower than the recommended threshold values for bacterial species delineation. Percentage of conserved proteins and average amino acid identity values among the genomes of strain MI-GT and other closely related species are 52.04-59.13% and 67.47-77.21%, respectively. The major cellular fatty acids of MI-GT are composed of summed feature 8 (C18 : 1 ω7c or C18 : 1 ω6c), iso-C11 : 0 3-OH, iso-C15 : 0, C16 : 0, and summed feature 9 (C17 : 1 iso ω9c or C16 : 0 10-methyl). The polar lipids of MI-GT mainly consist of phosphatidylethanolamine, phosphatidylglycerol, aminolipid, and two glycolipids. The major respiratory quinone is Q-8. Based on differential phenotypic and phylogenetic data, strain MI-GT is considered to represent a novel species of genus Microbulbifer, for which the name Microbulbifer spongiae sp. nov. is proposed. The type strain is MI-GT (=MCCC 1K07826T=KCTC 8081T).
Collapse
Affiliation(s)
- Nabila Ishaq
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Mimi Zhang
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Luyao Gao
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
| | - Micha Ilan
- School of Zoology, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv, Israel
| | - Zhiyong Li
- Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, PR China
- Yazhou Bay Institute of Deepsea Science and Technology, Shanghai Jiao Tong University, Shanghai, PR China
| |
Collapse
|
4
|
Zhong W, Agarwal V. Polymer degrading marine Microbulbifer bacteria: an un(der)utilized source of chemical and biocatalytic novelty. Beilstein J Org Chem 2024; 20:1635-1651. [PMID: 39076296 PMCID: PMC11285056 DOI: 10.3762/bjoc.20.146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 07/02/2024] [Indexed: 07/31/2024] Open
Abstract
Microbulbifer is a genus of halophilic bacteria that are commonly detected in the commensal marine microbiomes. These bacteria have been recognized for their ability to degrade polysaccharides and other polymeric materials. Increasingly, Microbulbifer genomes indicate these bacteria to be an untapped reservoir for novel natural product discovery and biosynthetic novelty. In this review, we summarize the distribution of Microbulbifer bacteria, activities of the various polymer degrading enzymes that these bacteria produce, and an up-to-date summary of the natural products that have been isolated from Microbulbifer strains. We argue that these bacteria have been hiding in plain sight, and contemporary efforts into their genome and metabolome mining are going to lead to a proliferation of Microbulbifer-derived natural products in the future. We also describe, where possible, the ecological interactions of these bacteria in marine microbiomes.
Collapse
Affiliation(s)
- Weimao Zhong
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Vinayak Agarwal
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
5
|
Su Y, Yu H, Gao C, Sun S, Liang Y, Liu G, Zhang X, Dong Y, Liu X, Chen G, Shao H, McMinn A, Wang M. Effects of vegetation cover and aquaculture pollution on viral assemblages in mangroves sediments. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135147. [PMID: 39029189 DOI: 10.1016/j.jhazmat.2024.135147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/07/2024] [Accepted: 07/06/2024] [Indexed: 07/21/2024]
Abstract
Mangrove forests, a critical coastal ecosystem, face numerous anthropogenic threats, particularly from aquaculture activities. Despite the acknowledged significance of viruses in local and global biogeochemical cycles, there is limited knowledge regarding the community structure, genomic diversity, and ecological roles of viruses in mangrove forests ecosystems, especially regarding their responses to aquaculture. In this study, we identified 17,755 viral operational taxonomic units (vOTUs) from nine sediments viromes across three distinct ecological regions of the mangrove forests ecosystem: mangrove, bare flat, and aquaculture regions. Viral assemblages varied among three regions, and the pathogenic viruses associated with marine animals, such as the white spot syndrome virus (WSSV) from Nimaviridae, were identified in this study. The relative abundance of Nimaviridae in the bare flat region was higher than in other regions. Furthermore, viruses in distinct mangrove forests sediments regions have adapted to their environments by adopting distinct survival strategies and encoding various auxiliary metabolic genes involved in carbon metabolism and antibiotic resistance. These adaptations may have profound impacts on biogeochemical cycles. This study provides the first insights into the effects of vegetation cover and aquaculture on the community structure and ecological roles of viruses in mangrove forests sediments. These findings are crucial for understanding the risks posed by anthropogenic threats to mangrove forests ecosystems and informing effective management strategies.
Collapse
Affiliation(s)
- Yue Su
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Hao Yu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Chen Gao
- Haide College, Ocean University of China, Qingdao, China
| | - Shujuan Sun
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China.
| | - Gang Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xinran Zhang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Yue Dong
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Xiaoshou Liu
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Guangcheng Chen
- Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, China; Observation and Research Station of Coastal Wetland Ecosystem in Beibu Gulf, Ministry of Natural Resources, Beihai, China
| | - Hongbing Shao
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia
| | - Min Wang
- College of Marine Life Sciences, Institute of Evolution and Marine Biodiversity, MoE Laboratory of Evolution and Marine Biodiversity, Frontiers Science Center for Deep Ocean, Center for Ocean Carbon Neutrality, Ocean University of China, Qingdao, China; Haide College, Ocean University of China, Qingdao, China; UMT-OUC Joint Academic Centre for Marine Studies, Qingdao, China; The Affiliated Hospital of Qingdao University, Qingdao 266000, China.
| |
Collapse
|
6
|
Huang Y, Jiang Y, Zhao A, Liu Y, Chen X, Wang F, Liu H, Huang W, Ihsan YN, Jiang M, Jiang Y. Microbulbifer litoralis sp. nov., Isolated from Seashore of Weizhou Island. Curr Microbiol 2024; 81:105. [PMID: 38393402 DOI: 10.1007/s00284-023-03594-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 12/19/2023] [Indexed: 02/25/2024]
Abstract
A bacterium designated GXH0434T was isolated from sea shore samples collected from Weizhou Island, Beihai, Guangxi, China. The organism is motile, strictly aerobic, and possesses a rod-coccus cell cycle in association with the growth phase. It can grow at 15-45 °C (optimum 37 °C), at pH 6.0-11.0 (optimum 6.0), and at 0-20% (w/v) NaCl (optimum 5.0-8.0%). The strain is positive for peroxidase and oxidase activity, negative for Voges-Proskauer test, can hydrolyze Tween 20, Tween 60, Tween 80, casein, and is able to produce siderophore and has the function of nitrogen fixation. Molecular phylogenetic analysis based on 16S rRNA gene sequences indicated that GXH0434T was most closely related to Microbulbifer halophilus KCTC 12848T with the similarity of 97.2%, followed by Microbulbifer chitinilyticus JCM 16148T (97.1%) and Microbulbifer taiwanensis LMG 26125T (96.5%). The digital DNA-DNA hybridization and the average nucleotide identity values between GXH0434T and Microbulbifer halophilus KCTC 12848T were 28.90% and 83.38%, respectively, which were below thresholds of species delineation. The genomic DNA G+C content of the strain was 61.9%. The major fatty acids were iso-C15:0, C16:0, iso-C11:0 3-OH, iso-C11:0 and Summed features 8 (C18:0 ω7c and/or C18:0 ω6c). The major polar lipids detected in GXH0434T were diphosphatidylglycerol (DPG), phosphatidylethanolamine (PE), phosphatidylglycerol (PG), phosphatidylcholine (PC). The major respiratory quinone was ubiquinone Q-8. Based on the above polyphasic classification indicated strain GXH0434T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer litoralis sp. nov. is proposed. The type strain is GXH0434T (= MCCC 1K07158T = KCTC 92169T).
Collapse
Affiliation(s)
- Ying Huang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Yu Jiang
- College of Plant Protection, Yunnan Agricultural University, Kunming, 650201, People's Republic of China
| | - Aolin Zhao
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Ying Liu
- School of Chemistry and Chemical Engineering, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Xuemei Chen
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China
| | - Fang Wang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Hongcun Liu
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China
| | - Wenshan Huang
- Guangxi Lvyounong Biological Technology Co., Ltd, Nanning, 530000, People's Republic of China
| | - Yudi N Ihsan
- Department of Marine Science, Universitas Padjadjaran, Jatinangor, Indonesia
| | - Mingguo Jiang
- School of Marine Sciences and Biotechnology, Guangxi Key Laboratory of Polysaccharide Materials and Modifications, Guangxi Minzu University, Nanning, 530008, People's Republic of China.
| | - Yi Jiang
- Yunnan Institute of Microbiology, Yunnan University, Kunming, 650091, People's Republic of China.
| |
Collapse
|
7
|
Long M, Chen D, Fan H, Tang S, Gan Z, Xia H, Lu Y. Microbulbifer bruguierae sp. nov., isolated from sediment of mangrove plant Bruguiera sexangula, and comparative genomic analyses of the genus Microbulbifer. Int J Syst Evol Microbiol 2024; 74. [PMID: 38240737 DOI: 10.1099/ijsem.0.006209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024] Open
Abstract
A Gram-negative, non-motile, strictly aerobic, rod-shaped bacterium, designated as H12T, was isolated from the sediments of mangrove plant Bruguiera sexangula taken from Dapeng district, Shenzhen, PR China. The pairwise 16S rRNA gene sequence analysis showed that strain H12T shared high identity levels with species of the genus Microbulbifer, with the highest similarity level of 98.5 % to M. pacificus SPO729T, followed by 98.1 % to M. donghaiensis CN85T. Phylogenetic analysis using core-genome sequences showed that strain H12T formed a cluster with type species of M. pacificus SPO729T and M. harenosus HB161719T. The complete genome of strain H12T was 4 481 396 bp in size and its DNA G+C content was 56.7 mol%. The average nucleotide identity and digital DNA-DNA hybridization values among strain H12T and type species of genus Microbulbifer were below the cut-off levels of 95-96 and 70 %, respectively. The predominant cellular fatty acids of strain H12T were iso-C15 : 0 (22.5 %) and C18 : 1 ω7c (13.9 %). Ubiquinone-8 was detected as the major respiratory quinone. The polar lipids of strain H12T comprised one phosphatidylglycerol, one phosphatidylethanolamine, one unidentified aminoglycophospholipid, one unidentified glycophospholipid, three unidentified glycolipids, two unidentified aminolipids, and one unidentified lipid. Based on polyphasic evidence, strain H12T represents a novel species of the genus Microbulbifer, for which the name Microbulbifer bruguierae sp. nov. is proposed. The type strain is H12T (=KCTC 92859T=MCCC 1K08451T). Comparative genomic analyses of strain H12T with strains of the genus Microbulbifer reveal its potential in degradation of pectin.
Collapse
Affiliation(s)
- Meng Long
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Dakun Chen
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Huimin Fan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Shaoshuai Tang
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Zhen Gan
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| | - Hongli Xia
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
| | - Yishan Lu
- Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, and Shenzhen Public Service Platform for Evaluation of Marine Economic Animal Seedings, Shenzhen Institute of Guangdong Ocean University, Shenzhen, PR China
- Guangdong Provincial Key Laboratory of Aquatic Animal Disease Control and Healthy culture, and Key Laboratory of Control for Disease of Aquatic Animals of Guangdong Higher Education Institute, College of Fishery, Guangdong Ocean University, Zhanjiang, PR China
| |
Collapse
|
8
|
Microbulbifer okhotskensis sp. nov., isolated from a deep bottom sediment of the Okhotsk Sea. Arch Microbiol 2022; 204:548. [PMID: 35945400 DOI: 10.1007/s00203-022-03161-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/25/2022] [Accepted: 07/28/2022] [Indexed: 11/02/2022]
Abstract
A Gram-negative, aerobic, non-motile bacterium КMM 9862T was isolated from a deep bottom sediment sample obtained from the Okhotsk Sea, Russia. Based on the 16S rRNA gene and whole genome sequences analyses the novel strain КMM 9862T fell into the genus Microbulbifer (class Gammaproteobacteria) sharing the highest 16S rRNA gene sequence similarities of 97.4% to Microbulbifer echini AM134T and Microbulbifer epialgicus F-104T, 97.3% to Microbulbifer pacificus SPO729T, 97.1% to Microbulbifer variabilis ATCC 700307T, and similarity values of < 97.1% to other recognized Microbulbifer species. The average nucleotide identity and digital DNA-DNA hybridization values between strain КMM 9862T and M. variabilis ATCC 700307T and M. thermotolerans DSM 19189T were 80.34 and 77.72%, and 20.2 and 19.0%, respectively. Strain КMM 9862T contained Q-8 as the predominant ubiquinone and C16:0, C16:1 ω7c, C12:0, and C10:0 3-OH as the major fatty acids. The polar lipids were phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, phosphatidylcholine, an unidentified aminophospholipid, an unidentified aminolipid, two unidentified phospholipids, phosphatidic acid, and an unidentified lipid. The DNA G+C content of 49.8% was calculated from the genome sequence. On the basis of the phylogenetic evidence and distinctive phenotypic characteristics, the marine bacterium KMM 9862T is proposed to be classified as a novel species Microbulbifer okhotskensis sp. nov. The type strain of the species is strain KMM 9862T (= KACC 22804T).
Collapse
|
9
|
Zhu X, Chen S, Luo G, Zheng W, Tian Y, Lei X, Yao L, Wu C, Xu H. A Novel Algicidal Bacterium, Microbulbifer sp. YX04, Triggered Oxidative Damage and Autophagic Cell Death in Phaeocystis globosa, Which Causes Harmful Algal Blooms. Microbiol Spectr 2022; 10:e0093421. [PMID: 35019679 PMCID: PMC8754136 DOI: 10.1128/spectrum.00934-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 12/17/2021] [Indexed: 11/20/2022] Open
Abstract
Phaeocystis globosa causes severe marine pollution by forming harmful algal blooms and releasing hemolytic toxins and is therefore harmful to marine ecosystems and aquaculture industries. In this study, Microbulbifer sp. YX04 exerted high algicidal activity against P. globosa by producing and secreting metabolites. The algicidal activity of the YX04 supernatant was stable after exposure to different temperatures (-80 to 100°C) and pH values (4 to 12) for 2 h, suggesting that algicidal substances could temporarily be stored under these temperature and pH value conditions. To explore the algicidal process and mechanism, morphological and structural changes, oxidative stress, photosynthesis, autophagic flux, and global gene expression were investigated. Biochemical analyses showed that the YX04 supernatant induced reactive oxygen species (ROS) overproduction, which caused lipid peroxidation and malondialdehyde (MDA) accumulation in P. globosa. Transmission electron microscopy (TEM) observation and the significant decrease in both maximum photochemical quantum yield (Fv/Fm) and relative electron transfer rate (rETR) indicated damage to thylakoid membranes and destruction of photosynthetic system function. Immunofluorescence, immunoblot, and TEM analyses indicated that cellular damage caused autophagosome formation and triggered large-scale autophagic flux in P. globosa. Transcriptome analysis revealed many P. globosa genes that were differentially expressed in response to YX04 stress, most of which were involved in photosynthesis, respiration, cytoskeleton, microtubule, and autophagosome formation and fusion processes, which may trigger autophagic cell death. In addition to P. globosa, the YX04 supernatant showed high algicidal activity against Thalassiosira pseudonana, Thalassiosira weissflogii, Skeletonema costatum, Heterosigma akashiwo, and Prorocentrum donghaiense. This study highlights multiple mechanisms underlying YX04 supernatant toxicity toward P. globosa and its potential for controlling the occurrence of harmful algal blooms. IMPORTANCEP. globosa is one of the most notorious harmful algal bloom (HAB)-causing species, which can secrete hemolytic toxins, frequently cause serious ecological pollution, and pose a health hazard to animals and humans. Hence, screening for bacteria with high algicidal activity against P. globosa and studies on the algicidal characteristics and mechanism will contribute to providing an ecofriendly microorganism-controlling agent for preventing the occurrence of algal blooms and reducing the harm of algal blooms to the environment. Our study first reported the algicidal characteristic and mechanism of Microbulbifer sp. YX04 against P. globosa and demonstrated that P. globosa shows different response mechanisms, including movement ability, antioxidative systems, photosynthetic systems, gene expression, and cell death mode, to adapt to the adverse environment when algicidal compounds are present.
Collapse
Affiliation(s)
- Xiaoying Zhu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- School of Life Sciences, Xinjiang Normal University, Urumqi, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Shuangshuang Chen
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Guiying Luo
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Wei Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Yun Tian
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Xueqian Lei
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Caiming Wu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
| | - Hong Xu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, China
- Laboratory of Marine Environmental Science and Key Laboratory of the Ministry of Education for Coastal and Wetland Ecosystems, Xiamen, China
| |
Collapse
|
10
|
Park SL, Cho JY, Kim SH, Lee HJ, Kim SH, Suh MJ, Ham S, Bhatia SK, Gurav R, Park SH, Park K, Kim YG, Yang YH. Novel Polyhydroxybutyrate-Degrading Activity of the Microbulbifer Genus as Confirmed by Microbulbifer sp. SOL03 from the Marine Environment. J Microbiol Biotechnol 2022; 32:27-36. [PMID: 34750287 PMCID: PMC9628828 DOI: 10.4014/jmb.2109.09005] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 12/15/2022]
Abstract
Ever since bioplastics were globally introduced to a wide range of industries, the disposal of used products made with bioplastics has become an issue inseparable from their application. Unlike petroleum-based plastics, bioplastics can be completely decomposed into water and carbon dioxide by microorganisms in a relatively short time, which is an advantage. However, there is little information on the specific degraders and accelerating factors for biodegradation. To elucidate a new strain for biodegrading poly-3-hydroxybutyrate (PHB), we screened out one PHB-degrading bacterium, Microbulbifer sp. SOL03, which is the first reported strain from the Microbulbifer genus to show PHB degradation activity, although Microbulbifer species are known to be complex carbohydrate degraders found in high-salt environments. In this study, we evaluated its biodegradability using solid- and liquid-based methods in addition to examining the changes in physical properties throughout the biodegradation process. Furthermore, we established the optimal conditions for biodegradation with respect to temperature, salt concentration, and additional carbon and nitrogen sources; accordingly, a temperature of 37°C with the addition of 3% NaCl without additional carbon sources, was determined to be optimal. In summary, we found that Microbulbifer sp. SOL03 showed a PHB degradation yield of almost 97% after 10 days. To the best of our knowledge, this is the first study to investigate the potent bioplastic degradation activity of Microbulbifer sp., and we believe that it can contribute to the development of bioplastics from application to disposal.
Collapse
Affiliation(s)
- Sol Lee Park
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Jang Yeon Cho
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Su Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Hong-Ju Lee
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sang Hyun Kim
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Min Ju Suh
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sion Ham
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Konkuk University, Seoul 05029, Republic of Korea
| | - Ranjit Gurav
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - See-Hyoung Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong City 30016, Republic of Korea
| | - Kyungmoon Park
- Department of Biological and Chemical Engineering, Hongik University, Sejong City 30016, Republic of Korea
| | - Yun-Gon Kim
- Department of Chemical Engineering, Soongsil University, Seoul 06978, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| |
Collapse
|
11
|
Huang Z, Mo S, Yan L, Wei X, Huang Y, Zhang L, Zhang S, Liu J, Xiao Q, Lin H, Guo Y. A Simple Culture Method Enhances the Recovery of Culturable Actinobacteria From Coastal Sediments. Front Microbiol 2021; 12:675048. [PMID: 34194410 PMCID: PMC8236954 DOI: 10.3389/fmicb.2021.675048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/12/2021] [Indexed: 01/19/2023] Open
Abstract
Molecular methods revealed that the majority of microbes in natural environments remains uncultivated. To fully understand the physiological and metabolic characteristics of microbes, however, culturing is still critical for microbial studies. Here, we used bacterial community analysis and four culture media, namely, traditional marine broth 2216 (MB), water extracted matter (WEM), methanol extracted matter (MEM), and starch casein agar (SCA), to investigate the diversity of cultivated bacteria in coastal sediments. A total of 1,036 isolates were obtained in pure culture, and they were classified into five groups, namely, Alphaproteobacteria (52.51%), Gammaproteobacteria (23.26%), Actinobacteria (13.32%), Firmicutes, and Bacteroidetes. Compared to other three media, WEM recovered a high diversity of actinobacteria (42 of 63 genotypes), with Micromonospora and Streptomyces as the most cultivated genera. Amplicon sequencing of the bacterial 16S ribosomal RNA (rRNA) gene V3-V4 fragment revealed eight dominant groups, Alphaproteobacteria (12.81%), Gammaproteobacteria (20.07%), Deltaproteobacteria (12.95%), Chloroflexi (13.09%), Bacteroidetes (8.28%), Actinobacteria (7.34%), Cyanobacteria (6.20%), and Acidobacteria (5.71%). The dominant members affiliated to Actinobacteria belonged to "Candidatus Actinomarinales," "Candidatus Microtrichales," and Nitriliruptorales. The cultivated actinobacteria accounted for a small proportion (<5%) compared to the actinobacterial community, which supported that the majority of actinobacteria are still waiting for cultivation. Our study concluded that WEM could be a useful and simple culture medium that enhanced the recovery of culturable actinobacteria from coastal sediments.
Collapse
Affiliation(s)
- Zhaobin Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material From Marine Algae, Quanzhou, China
| | - Shiqing Mo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Lifei Yan
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Xiaomei Wei
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Yuanyuan Huang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Lizhen Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Shuhui Zhang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jianzong Liu
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Qingqing Xiao
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Hong Lin
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Yu Guo
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
12
|
Cheng Y, Zhu S, Guo C, Xie F, Jung D, Li S, Zhang W, He S. Microbulbifer hainanensis sp. nov., a moderately halopilic bacterium isolated from mangrove sediment. Antonie van Leeuwenhoek 2021; 114:1033-1042. [PMID: 33844121 DOI: 10.1007/s10482-021-01574-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
A new bacterium was successfully isolated from a mangrove sediment sample in Haikou City, Hainan Province, China. The organism is a Gram-negative, rod-shaped, non-motile and strictly aerobic bacterium, named NBU-8HK146T. Strain NBU-8HK146T was able to grow at temperatures of 10-40 °C, at salinities of 0-11% (w/v) and at pH 5.5-9.5. Veoges-Proskauer, methyl red reaction and hydrolysis of Tween 20 were negative. Catalase and oxidase activities, H2S production, hydrolysis of starch, casein, Tweens 40, 60 and 80 were positive. The major cellular fatty acids were C16:0, iso-C15:0 and summed feature 9. The major respiratory quinone was ubiquinone-8 (Q-8). The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and two unidentified glycolipids. According to 16S rRNA gene sequence similarities, strain NBU-8HK146T shared 98.0%, 97.9%, 97.7%, 97.6% and 97.3% similarities to the species with validated name Microbulbifer taiwanensis CC-LN1-12T, Microbulbifer rhizosphaerae Cs16bT, Microbulbifer marinus Y215T, Microbulbifer donghaiensis CN85T and Microbulbifer aggregans CCB-MM1T, respectively. Phylogenetic analyses indicated that strain NBU-8HK146T formed a distinct lineage with strains Microbulbifer taiwanensis CC-LN1-12T and Microbulbifer marinus Y215T. Both digital DNA-DNA hybridization values (19.5-22.7%) and average nucleotide identity values (73.2-78.9%) between strain NBU-8HK146T and related species of genus Microbulbifer were below the species delineation cutoffs. The DNA G+C content was 58.9 mol%. Many proteins involving in the adaption of osmotic stress in the salt environment of mangrove were predicted in genome of strain NBU-8HK146T. From phenotypic, genotypic, phylogenetic and chemotaxonomic characteristics, strain NBU-8HK146T can be regarded as a new Microbulbifer species for which the name Microbulbifer hainanensis. The type strain is NBU-8HK146T (= KCTC 82226T = MCCC 1K04737T).
Collapse
Affiliation(s)
- Yuping Cheng
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Suting Zhu
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Chaobo Guo
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Feilu Xie
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Dawoon Jung
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, People's Republic of China
| | - Weiyan Zhang
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China.
| | - Shan He
- College of Food and Pharmaceutical Sciences, Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo, 315800, People's Republic of China.
| |
Collapse
|
13
|
Furusawa G, Diyana T, Lau NS. Metabolic strategies of dormancy of a marine bacterium Microbulbifer aggregans CCB-MM1: Its alternative electron transfer chain and sulfate-reducing pathway. Genomics 2021; 114:443-455. [PMID: 33689784 DOI: 10.1016/j.ygeno.2021.02.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/26/2021] [Accepted: 02/28/2021] [Indexed: 12/26/2022]
Abstract
Bacterial dormancy plays a crucial role in maintaining the functioning and diversity of microbial communities in natural environments. However, the metabolic regulations of the dormancy of bacteria in natural habitats, especially marine habitats, have remained largely unknown. A marine bacterium, Microbulbifer aggregans CCB-MM1 exhibits rod-to-coccus cell shape change during the dormant state. Therefore, to clarify the metabolic regulation of the dormancy, differential gene expression analysis based on RNA-Seq was performed between rod- (vegetative), intermediate, and coccus-shaped cells (dormancy). The RNA-Seq data revealed that one of two distinct electron transfer chains was upregulated in the dormancy. Dissimilatory sulfite reductase and soluble hydrogenase were also highly upregulated in the dormancy. In addition, induction of the dormancy of MM1 in the absence of MgSO4 was slower than that in the presence of MgSO4. These results indicate that the sulfate-reducing pathway plays an important role in entering the dormancy of MM1.
Collapse
Affiliation(s)
- Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia.
| | - Tarmizi Diyana
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Bayan Lepas, Penang, Malaysia
| |
Collapse
|
14
|
Liu Y, Du J, Zhang J, Lai Q, Shao Z, Zhu H. Parahaliea maris sp. nov., isolated from surface seawater and emended description of the genus Parahaliea. J Microbiol 2020; 58:92-98. [DOI: 10.1007/s12275-020-9405-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/28/2019] [Accepted: 12/02/2019] [Indexed: 01/07/2023]
|
15
|
Jayanetti DR, Braun DR, Barns KJ, Rajski SR, Bugni TS. Bulbiferates A and B: Antibacterial Acetamidohydroxybenzoates from a Marine Proteobacterium, Microbulbifer sp. JOURNAL OF NATURAL PRODUCTS 2019; 82:1930-1934. [PMID: 31181927 PMCID: PMC6660402 DOI: 10.1021/acs.jnatprod.9b00312] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Here we report the discovery of two new 3-acetamido-4-hydroxybenzoate esters, bulbiferates A (1) and B (2), isolated from Microbulbifer sp. cultivated from the marine tunicate Ecteinascidia turbinata. The structures of 1 and 2 were determined by analysis of 2D NMR and MS data. Additionally, three synthetic analogues (3-5), differing in ester sizes/lengths, were prepared for the purposes of evaluating potential structure-activity relationships; no clear correlations tying ester lengths to activity were evident. Bulbiferates A (1) and B (2) demonstrated antibacterial activity against both Escherichia coli (E. coli) and methicillin-sensitive Staphylococcus aureus (MSSA), whereas the synthetic analogues 3 and 4 displayed activity only against MSSA.
Collapse
Affiliation(s)
- Dinith R. Jayanetti
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Doug R. Braun
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Kenneth J. Barns
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Scott Raymond Rajski
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Tim S. Bugni
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| |
Collapse
|
16
|
Poduval PB, Noronha JM, Bansal SK, Ghadi SC. Characterization of a new virulent phage ϕMC1 specific to Microbulbifer strain CMC-5. Virus Res 2018; 257:7-13. [DOI: 10.1016/j.virusres.2018.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Revised: 06/11/2018] [Accepted: 08/28/2018] [Indexed: 11/29/2022]
|
17
|
Genomic analysis of Microbulbifer sp. Q7 exhibiting degradation activity toward seaweed polysaccharides. Mar Genomics 2018. [DOI: 10.1016/j.margen.2017.07.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Moh TH, Furusawa G, Amirul AAA. Microbulbifer aggregans sp. nov., isolated from estuarine sediment from a mangrove forest. Int J Syst Evol Microbiol 2017; 67:4089-4094. [DOI: 10.1099/ijsem.0.002258] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Tsu Horng Moh
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
| | - Abdullah Al-Ashraf Amirul
- Centre for Chemical Biology, Universiti Sains Malaysia, Penang, Malaysia
- School of Biological Sciences, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
19
|
Moh TH, Lau NS, Furusawa G, Amirul AAA. Complete genome sequence of Microbulbifer sp. CCB-MM1, a halophile isolated from Matang Mangrove Forest, Malaysia. Stand Genomic Sci 2017; 12:36. [PMID: 28694917 PMCID: PMC5501506 DOI: 10.1186/s40793-017-0248-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 06/29/2017] [Indexed: 12/30/2022] Open
Abstract
Microbulbifer sp. CCB-MM1 is a halophile isolated from estuarine sediment of Matang Mangrove Forest, Malaysia. Based on 16S rRNA gene sequence analysis, strain CCB-MM1 is a potentially new species of genus Microbulbifer. Here we describe its features and present its complete genome sequence with annotation. The genome sequence is 3.86 Mb in size with GC content of 58.85%, harbouring 3313 protein coding genes and 92 RNA genes. A total of 71 genes associated with carbohydrate active enzymes were found using dbCAN. Ectoine biosynthetic genes, ectABC operon and ask_ect were detected using antiSMASH 3.0. Cell shape determination genes, mreBCD operon, rodA and rodZ were annotated, congruent with the rod-coccus cell cycle of the strain CCB-MM1. In addition, putative mreBCD operon regulatory gene, bolA was detected, which might be associated with the regulation of rod-coccus cell cycle observed from the strain.
Collapse
Affiliation(s)
- Tsu Horng Moh
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia
| | - Nyok-Sean Lau
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia
| | - Go Furusawa
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia
| | - Al-Ashraf Abdullah Amirul
- Centre for Chemical Biology, Universiti Sains Malaysia, 11900 Penang, Malaysia.,School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia
| |
Collapse
|
20
|
Lee JY, Kim PS, Hyun DW, Kim HS, Shin NR, Jung MJ, Yun JH, Kim MS, Whon TW, Bae JW. Microbulbifer echini sp. nov., isolated from the gastrointestinal tract of a purple sea urchin, Heliocidaris crassispina. Int J Syst Evol Microbiol 2017; 67:998-1004. [PMID: 27959777 DOI: 10.1099/ijsem.0.001731] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A novel bacterium, designated as strain AM134T, was isolated from the gut of a purple sea urchin (Heliocidaris crassispina) gathered from the coastal waters of Dokdo, Korea. Strain AM134T was Gram-stain-negative, both catalase- and oxidase-positive, strictly aerobic and showed a rod-coccus cell cycle. Optimum growth occurred at 30 °C, in the presence of 2 % (w/v) NaCl and at pH 7. The 16S rRNA gene sequence analysis showed that strain AM134T belonged to the genus Microbulbifer in the family Alteromonadaceae and had high 16S rRNA gene sequence similarity (>97 %) with Microbulbifer epialgicus F-104T (98.9 % similarity) and Microbulbifer variabilis Ni-2088T (98.6 % similarity). The polar lipid profile of strain AM134T was composed of phosphatidylethanolamine, phosphatidylserine, three unidentified aminophospholipids, two unidentified phospholipids, an unidentified amino lipid and six unidentified lipids. The major respiratory quinone was identified as ubiquinone-8 (Q-8). The major cellular fatty acids were summed feature 8 (C18 : 1ω6c and/or C18 : 1ω7c) and C16 : 0. The DNA-DNA hybridization analysis showed that the strain shared less than 28 % genomic relatedness with Microbulbifer epialgicus DSM 18651T (27±3 %) and Microbulbifer variabilis ATCC 700307T (15±1 %). The G+C content of the genomic DNA was 56.1 mol%. The results of the phylogenetic, phenotypic and genotypic analyses suggest that strain AM134T represents a novel species in the genus Microbulbifer, for which the name Microbulbifer echini is proposed. The type strain is AM134T (=KACC 18258T=JCM 30400T).
Collapse
Affiliation(s)
- June-Young Lee
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Pil Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Dong-Wook Hyun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Hyun Sik Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Na-Ri Shin
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Mi-Ja Jung
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Ji-Hyun Yun
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Min-Soo Kim
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Tae Woong Whon
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jin-Woo Bae
- Department of Life and Nanopharmaceutical Sciences and Department of Biology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Park S, Yoon SY, Ha MJ, Yoon JH. Microbulbifer aestuariivivens sp. nov., isolated from a tidal flat. Int J Syst Evol Microbiol 2017; 67:1436-1441. [DOI: 10.1099/ijsem.0.001831] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Sun Young Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Min-Ji Ha
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Jangan-gu, Suwon, Republic of Korea
| |
Collapse
|
22
|
Imran M, Pant P, Shanbhag YP, Sawant SV, Ghadi SC. Genome Sequence of Microbulbifer mangrovi DD-13 T Reveals Its Versatility to Degrade Multiple Polysaccharides. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2017; 19:116-124. [PMID: 28161851 DOI: 10.1007/s10126-017-9737-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 01/12/2017] [Indexed: 06/06/2023]
Abstract
Microbulbifer mangrovi strain DD-13T is a novel-type species isolated from the mangroves of Goa, India. The draft genome sequence of strain DD-13 comprised 4,528,106 bp with G+C content of 57.15%. Out of 3479 open reading frames, functions for 3488 protein coding sequences were predicted on the basis of similarity with the cluster of orthologous groups. In addition to protein coding sequences, 34 tRNA genes and 3 rRNA genes were detected. Analysis of nucleotide sequence of predicted gene using a Carbohydrate-Active Enzymes (CAZymes) Analysis Toolkit indicates that strain DD-13 encodes a large set of CAZymes including 255 glycoside hydrolases, 76 carbohydrate esterases, 17 polysaccharide lyases, and 113 carbohydrate-binding modules (CBMs). Many genes from strain DD-13 were annotated as carbohydrases specific for degradation of agar, alginate, carrageenan, chitin, xylan, pullulan, cellulose, starch, β-glucan, pectin, etc. Some of polysaccharide-degrading genes were highly modular and were appended at least with one CBM indicating the versatility of strain DD-13 to degrade complex polysaccharides. The cell growth of strain DD-13 was validated using pure polysaccharides such as agarose or alginate as carbon source as well as by using red and brown seaweed powder as substrate. The homologous carbohydrase produced by strain DD-13 during growth degraded the polysaccharide, ensuring the production of metabolizable reducing sugars. Additionally, several other polysaccharides such as carrageenan, xylan, pullulan, pectin, starch, and carboxymethyl cellulose were also corroborated as growth substrate for strain DD-13 and were associated with concomitant production of homologous carbohydrase.
Collapse
Affiliation(s)
- Md Imran
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Poonam Pant
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Yogini P Shanbhag
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, CSIR-National Botanical Research Institute, Lucknow, 226001, India
| | - Sanjeev C Ghadi
- Department of Biotechnology, Goa University, Taleigao Plateau, Goa, 403206, India.
| |
Collapse
|
23
|
Camacho M, del Carmen Montero-Calasanz M, Redondo-Gómez S, Rodríguez-Llorente I, Schumann P, Klenk HP. Microbulbifer rhizosphaerae sp. nov., isolated from the rhizosphere of the halophyte Arthrocnemum macrostachyum. Int J Syst Evol Microbiol 2016; 66:1844-1850. [DOI: 10.1099/ijsem.0.000955] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Maria Camacho
- IFAPA-Instituto de Investigación y Formación Agraria y Pesquera, Centro Las Torres-Tomejil, Ctra. Sevilla-Cazalla de la Sierra, Km 12.2, 41200 Alcalá del Río, Sevilla, Spain
| | - Maria del Carmen Montero-Calasanz
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| | - Susana Redondo-Gómez
- Facultad de Biología, Universidad de Sevilla. Avda. Reina Mercedes s/n, ., Sevilla, Spain
| | | | - Peter Schumann
- Leibniz Institute DSMZ – German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Hans-Peter Klenk
- School of Biology, Newcastle University, Ridley Building, Newcastle upon Tyne, NE1 7RU, UK
| |
Collapse
|
24
|
Comparative genome analyses of novel Mangrovimonas -like strains isolated from estuarine mangrove sediments reveal xylan and arabinan utilization genes. Mar Genomics 2016; 25:115-121. [DOI: 10.1016/j.margen.2015.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Revised: 12/09/2015] [Accepted: 12/16/2015] [Indexed: 11/22/2022]
|
25
|
A rapid, sensitive, simple plate assay for detection of microbial alginate lyase activity. Enzyme Microb Technol 2015; 77:8-13. [DOI: 10.1016/j.enzmictec.2015.05.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 05/12/2015] [Accepted: 05/12/2015] [Indexed: 11/17/2022]
|
26
|
Spring S, Scheuner C, Göker M, Klenk HP. A taxonomic framework for emerging groups of ecologically important marine gammaproteobacteria based on the reconstruction of evolutionary relationships using genome-scale data. Front Microbiol 2015; 6:281. [PMID: 25914684 PMCID: PMC4391266 DOI: 10.3389/fmicb.2015.00281] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2015] [Accepted: 03/21/2015] [Indexed: 11/13/2022] Open
Abstract
In recent years a large number of isolates were obtained from saline environments that are phylogenetically related to distinct clades of oligotrophic marine gammaproteobacteria, which were originally identified in seawater samples using cultivation independent methods and are characterized by high seasonal abundances in coastal environments. To date a sound taxonomic framework for the classification of these ecologically important isolates and related species in accordance with their evolutionary relationships is missing. In this study we demonstrate that a reliable allocation of members of the oligotrophic marine gammaproteobacteria (OMG) group and related species to higher taxonomic ranks is possible by phylogenetic analyses of whole proteomes but also of the RNA polymerase beta subunit, whereas phylogenetic reconstructions based on 16S rRNA genes alone resulted in unstable tree topologies with only insignificant bootstrap support. The identified clades could be correlated with distinct phenotypic traits illustrating an adaptation to common environmental factors in their evolutionary history. Genome wide gene-content analyses revealed the existence of two distinct ecological guilds within the analyzed lineage of marine gammaproteobacteria which can be distinguished by their trophic strategies. Based on our results a novel order within the class Gammaproteobacteria is proposed, which is designated Cellvibrionales ord. nov. and comprises the five novel families Cellvibrionaceae fam. nov., Halieaceae fam. nov., Microbulbiferaceae fam. nov., Porticoccaceae fam. nov., and Spongiibacteraceae fam. nov.
Collapse
Affiliation(s)
- Stefan Spring
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Carmen Scheuner
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Markus Göker
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany
| | - Hans-Peter Klenk
- Department Microorganisms, Leibniz Institute DSMZ - German Collection of Microorganisms and Cell Cultures Braunschweig, Germany ; School of Biology, Newcastle University Newcastle upon Tyne, UK
| |
Collapse
|