1
|
Karkuzhali N, Edward YSJT, Chitra N, Senthilkumar M, Ramalingam J. Unveiling the diversity of gut microbes in green lacewings (Chrysopidae: Neuroptera) and their role as protagonist in nutrition. Arch Microbiol 2025; 207:100. [PMID: 40126663 DOI: 10.1007/s00203-025-04289-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 02/26/2025] [Indexed: 03/26/2025]
Abstract
Green lacewings (Chrysopidae; Neuroptera) plays a crucial role as predators against insect pests in diverse cropping systems. Larval chrysopids are predatory on mealybugs, aphids, scales, whiteflies, mites and eggs of many arthropods. Adults are palynoglycophagous and feed on nectar, pollen, and honeydew secreted by aphids. Many insects cannot synthesize necessary vitamins and amino acids on their own and depend on gut microbes. Microbes associated with chrysopid gut help them with balanced nutrition and ecological fitness to withstand extreme stresses, especially adult gut microbiota, which constitutes an indispensable part of nutrients in addition to reproduction. Except for yeast, microbes such as bacteria in the chrysopid larval and adult gut have not been extensively studied. This review aims to seek a comprehensive overview of the gut microbes present in the chrysopids and their role in improving the fitness of chrysopids through adequate nutrition. This will pave the way for further research on understanding the microbe-mediated metabolic activities, their role in toxin production, and the development of probiotic feed from the novel gut microbiota for improving the productivity of laboratory-reared chrysopids used in augmentative biological control of major pests in agricultural ecosystems.
Collapse
Affiliation(s)
- N Karkuzhali
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | | | - N Chitra
- Department of Agricultural Entomology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - M Senthilkumar
- Department of Agricultural Microbiology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| | - J Ramalingam
- Department of Plant Biotechnology, Tamil Nadu Agricultural University, Coimbatore, 641003, India
| |
Collapse
|
2
|
Dimitrov R, Gouliamova D, Guéorguiev B, Smith M, Groenewald M, Boekhout T. First DNA Barcoding Survey in Bulgaria Unveiled Huge Diversity of Yeasts in Insects. INSECTS 2024; 15:566. [PMID: 39194771 DOI: 10.3390/insects15080566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/11/2024] [Accepted: 07/12/2024] [Indexed: 08/29/2024]
Abstract
In this study, we conducted a comprehensive survey aimed at assessing the diversity of yeast species inhabiting the guts of various insect species collected mainly from two Bulgarian National Parks, namely, Rila, and Pirin. The insect specimens encompass a broad taxonomic spectrum, including representatives from Coleoptera, Orthoptera, Lepidoptera, Hymenoptera, Dermaptera, Isopoda, and Collembola. Yeast strains were identified with DNA barcoding using the ribosomal markers, specifically, the D1/D2 domains of the ribosomal large subunit (LSU) and the internal transcribed spacers regions ITS 1 + 2 (ITS). The analysis unveiled the presence of 89 ascomycetous and 18 basidiomycetous yeast isolates associated with the insect specimens. Furthermore, our study identified 18 hitherto unknown yeast species.
Collapse
Affiliation(s)
- Roumen Dimitrov
- Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, G. Bonchev 8, 1113 Sofia, Bulgaria
| | - Dilnora Gouliamova
- The Stephan Angeloff Institute of Microbiology, Bulgarian Academy of Sciences, G. Bonchev 26, 1113 Sofia, Bulgaria
| | - Borislav Guéorguiev
- National Museum of Natural History, Bulgarian Academy of Sciences, bul. "Tsar Osvoboditel" 1, 1000 Sofia, Bulgaria
| | - Maudy Smith
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Marizeth Groenewald
- Westerdijk Fungal Biodiversity Institute, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Teun Boekhout
- The Yeast Foundation, 1015 JR Amsterdam, The Netherlands
- College of Sciences, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
3
|
Yoshihashi Y, Degawa Y. Novel Metschnikowia yeasts from the gut of green lacewing in Japan. Antonie Van Leeuwenhoek 2023; 116:1295-1304. [PMID: 37755530 PMCID: PMC10645609 DOI: 10.1007/s10482-023-01887-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 09/13/2023] [Indexed: 09/28/2023]
Abstract
Family Chrysopidae is known to harbor specific gut yeasts. However, no studies have been conducted outside of a limited number of these green lacewing species, and the diversity of yeasts in the family as a whole is not known. Therefore, we collected 58 Chrysopidae adults (9 species, 6 genera, 2 subfamilies) in Japan and isolated yeasts from all individuals. The results showed for the first time that not only subfamily Chrysopinae but also subfamily Apochrysinae have gut yeasts. We obtained 58 yeast isolates (one from each host individual), all of which were of the genus Metschnikowia. 28S rDNA- and ITS-based phylogenetic analysis showed that the isolates were divided into three clades, designated clade I, II, and III. Clade I contains two previously described Chrysopidae gut yeasts (M. picachoensis and M. pimensis) as well as a one of our new species named M. shishimaru. Clade II is a new clade, with at least two new species named M. kenjo and M. seizan. Clade III contains the previously described species M. noctiluminum, a Chrysopidae gut yeast, and one of our isolate (We have not described it as new species). However, the phylogenetic relationship between our isolate and M. noctiluminum was unclear. These results indicate that the Japanese Chrysopidae gut yeasts consist mainly of three undescribed species and that they are more unique than those found in previous surveys. The results of this study indicate that Chrysopidae gut yeasts are more diverse than previously thought and should be investigated in various geographical regions in the future.
Collapse
Affiliation(s)
- Yuma Yoshihashi
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-Kogen, Ueda, Nagano, 386-2204, Japan
| | - Yousuke Degawa
- Sugadaira Research Station, Mountain Science Center, University of Tsukuba, 1278-294 Sugadaira-Kogen, Ueda, Nagano, 386-2204, Japan.
| |
Collapse
|
4
|
Malassigné S, Minard G, Vallon L, Martin E, Valiente Moro C, Luis P. Diversity and Functions of Yeast Communities Associated with Insects. Microorganisms 2021; 9:microorganisms9081552. [PMID: 34442634 PMCID: PMC8399037 DOI: 10.3390/microorganisms9081552] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 07/14/2021] [Accepted: 07/19/2021] [Indexed: 12/28/2022] Open
Abstract
Following the concept of the holobiont, insect-microbiota interactions play an important role in insect biology. Many examples of host-associated microorganisms have been reported to drastically influence insect biological processes such as development, physiology, nutrition, survival, immunity, or even vector competence. While a huge number of studies on insect-associated microbiota have focused on bacteria, other microbial partners including fungi have been comparatively neglected. Yeasts, which establish mostly commensal or symbiotic relationships with their host, can dominate the mycobiota of certain insects. This review presents key advances and progress in the research field highlighting the diversity of yeast communities associated with insects, as well as their impact on insect life-history traits, immunity, and behavior.
Collapse
|
5
|
The antagonistic Metschnikowia andauensis produces extracellular enzymes and pulcherrimin, whose production can be promoted by the culture factors. Sci Rep 2021; 11:10593. [PMID: 34011985 PMCID: PMC8134588 DOI: 10.1038/s41598-021-89982-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/05/2021] [Indexed: 11/29/2022] Open
Abstract
Biological control against microbial infections has a great potential as an alternative approach instead of fungicidal chemicals, which can cause environmental pollution. The pigment producer Metschnikowia andauensis belongs to the antagonistic yeasts, but details of the mechanism by which it inhibits growth of other microbes are less known. Our results confirmed its antagonistic capacity on other yeast species isolated from fruits or flowers and demonstrated that the antagonistic capacity was well correlated with the size of the red pigmented zone. We have isolated and characterized its red pigment, which proved to be the iron chelating pulcherrimin. Its production was possible even in the presence of 0.05 mg/ml copper sulphate, which is widely used in organic vineyards because of its antimicrobial properties. Production and localisation of the pulcherrimin strongly depended on composition of the media and other culture factors. Glucose, galactose, disaccharides and the presence of pectin or certain amino acids clearly promoted pigment production. Higher temperatures and iron concentration decreased the diameter of red pigmented zones. The effect of pH on pigment production varied depending of whether it was tested in liquid or solid media. In addition, our results suggest that other mechanisms besides the iron depletion of the culture media may contribute to the antagonistic capacity of M. andauensis.
Collapse
|
6
|
Haelewaters D, Urbina H, Brown S, Newerth-Henson S, Aime MC. Isolation and Molecular Characterization of the Romaine Lettuce Phylloplane Mycobiome. J Fungi (Basel) 2021; 7:277. [PMID: 33917072 PMCID: PMC8067711 DOI: 10.3390/jof7040277] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/27/2021] [Accepted: 04/05/2021] [Indexed: 02/06/2023] Open
Abstract
Romaine lettuce (Lactuca sativa) is an important staple of American agriculture. Unlike many vegetables, romaine lettuce is typically consumed raw. Phylloplane microbes occur naturally on plant leaves; consumption of uncooked leaves includes consumption of phylloplane microbes. Despite this fact, the microbes that naturally occur on produce such as romaine lettuce are for the most part uncharacterized. In this study, we conducted culture-based studies of the fungal romaine lettuce phylloplane community from organic and conventionally grown samples. In addition to an enumeration of all such microbes, we define and provide a discussion of the genera that form the "core" romaine lettuce mycobiome, which represent 85.5% of all obtained isolates: Alternaria, Aureobasidium, Cladosporium, Filobasidium, Naganishia, Papiliotrema, Rhodotorula, Sampaiozyma, Sporobolomyces, Symmetrospora and Vishniacozyma. We highlight the need for additional mycological expertise in that 23% of species in these core genera appear to be new to science and resolve some taxonomic issues we encountered during our work with new combinations for Aureobasidiumbupleuri and Curvibasidium nothofagi. Finally, our work lays the ground for future studies that seek to understand the effect these communities may have on preventing or facilitating establishment of exogenous microbes, such as food spoilage microbes and plant or human pathogens.
Collapse
Affiliation(s)
- Danny Haelewaters
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - Hector Urbina
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
- Division of Plant Industry, Florida Department of Agriculture and Consumer Services, Gainesville, FL 32608, USA
| | - Samuel Brown
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - Shannon Newerth-Henson
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| | - M. Catherine Aime
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA; (H.U.); (S.B.); (S.N.-H.)
| |
Collapse
|
7
|
Tiwari S, Avchar R, Arora R, Lanjekar V, Dhakephalkar PK, Dagar SS, Baghela A. Xylanolytic and Ethanologenic Potential of Gut Associated Yeasts from Different Species of Termites from India. MYCOBIOLOGY 2020; 48:501-511. [PMID: 33312017 PMCID: PMC7717550 DOI: 10.1080/12298093.2020.1830742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 09/10/2020] [Accepted: 09/28/2020] [Indexed: 06/12/2023]
Abstract
Xylophagous termites are capable of degrading lignocellulose by symbiotic gut microorganisms along with the host's indigenous enzymes. Therefore, the termite gut might be a potential niche to obtain natural yeasts with celluloytic, xylanolytic and ethanologenic traits required for bioethanol production from lignocellulosic biomass. In this study, we cultured 79 yeasts from three different termites viz. Coptotermes heimi, Odontotermes javanicus and Odontotermes obesus. After suitable screening methods, we identified 53 yeasts, which belonged to 10 genera and 16 different species of both ascomycetous and basidiomycetous yeasts. Most yeasts in the present study represent their first-ever isolation from the termite gut. Representative strains of identified yeasts were evaluated for their cellulolytic, xylanolytic, and ethanologenic abilities. None of the isolates showed cellulase activity; 22 showed xylanolytic activity, while six produced substantial quantities of ethanol. Among xylanolytic cultures, Pseudozyma hubeiensis STAG 1.7 and Hannaella pagnoccae STAG 1.14 produced 1.31 and 1.17 IU of xylanase. Among ethanologenic yeasts, the strains belonging to genera Candida and Kodamaea produced high amount of ethanol. Overall, highest ethanol level of 4.42 g/L was produced by Candida tropicalis TS32 using 1% glucose, which increased up to 22.92 g/L at 35 °C, pH 4.5 with 5% glucose. Fermentation of rice straw hydrolysate gave 8.95 g/l of ethanol with a yield of 0.42 g/g using the strain TS32. Our study highlights the gut of wood-feeding termites as a potential source of diverse yeasts that would be useful in the production of xylanase and bioethanol.
Collapse
Affiliation(s)
- Snigdha Tiwari
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Rameshwar Avchar
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Riya Arora
- Savitribai Phule Pune University, Pune, India
| | - Vikram Lanjekar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Prashant K. Dhakephalkar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Sumit S. Dagar
- Bioenergy Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| | - Abhishek Baghela
- National Fungal Culture Collection of India (NFCCI), Biodiversity and Palaeobiology Group, MACS-Agharkar Research Institute, Pune, India
- Savitribai Phule Pune University, Pune, India
| |
Collapse
|
8
|
Wang X, Glawe DA, Weller DM, Okubara PA. Real-time PCR assays for the quantification of native yeast DNA in grape berry and fermentation extracts. J Microbiol Methods 2019; 168:105794. [PMID: 31783049 DOI: 10.1016/j.mimet.2019.105794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 11/23/2019] [Accepted: 11/23/2019] [Indexed: 12/11/2022]
Abstract
Native yeasts comprise part of the microbial community in grape vineyards and play roles in alcoholic fermentation and wine quality. Monitoring populations of native yeast in vineyards, during fermentation and after bottling will provide viticulturalists and oenologists with information needed to help control spoilage and to enhance desirable wine properties. This is especially crucial for low-intervention winemaking, in which fermentation is driven by native rather than starter microbes. In this study, we report real-time polymerase chain reaction (qPCR) assays for rapid quantification of seven grape yeast species or species combinations that occur in vineyards of Washington State and throughout the world. The assays targeted Candida californica, Curvibasidium pallidicorallinum, Metschnikowia spp., Meyerozyma caribbica/Me. guilliermondii, and Saccharomyces cerevisiae/S. bayanus. We also developed assays for the spoilage yeast Brettanomyces bruxellensis, and the yeast-like fungus Aureobasidium pullulans. Primers were designed for sequences in the internal transcribed spacer (ITS) and large ribosome subunit (LSU) gene. Known populations of yeast cells, added to fermentation extract, were significantly correlated to amounts of purified DNA in picograms (pg) for most of the yeasts; exceptions were A. pullulans and Cu. pallidicorallinum. The utility of the Metschnikowia, Meyerozyma and Saccharomyces assays was further validated by good correlations (R2 = 0.75-0.83) between the number of target sequences and pg of DNA from qPCR for selected vineyard and fermentation samples. Overall, the assays will aid in species identification and monitoring of specific yeasts from cultures, vineyards and fermentation samples. Topics: Food Microbiology, Microbiological Method.
Collapse
Affiliation(s)
- Xuefei Wang
- College of Enology, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Dean A Glawe
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - David M Weller
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, Washington 99164-6430, USA.
| | - Patricia A Okubara
- USDA-ARS Wheat Health, Genetics and Quality Research Unit, Pullman, Washington 99164-6430, USA.
| |
Collapse
|
9
|
Attraction of the Green Lacewing Chrysoperla comanche (Neuroptera: Chrysopidae) to Yeast. J Chem Ecol 2019; 45:388-391. [PMID: 30828777 DOI: 10.1007/s10886-019-01060-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 02/13/2019] [Accepted: 02/21/2019] [Indexed: 10/27/2022]
Abstract
Many adult Chrysoperla comanche (Stephens) green lacewings were caught in traps baited with live yeast cultures during tests designed to catch olive fruit flies. All 13 yeast species tested were more attractive than the industry-standard dried torula yeast (Cyberlindnera jadinii; syn. Candida utilis). Live C. jadinii culture attracted significantly more lacewings than the inactive dried-pellet form of the same yeast species, demonstrating that volatiles from live yeast cultures attract adults of this lacewing. Odor profiles for two of the highly active yeasts tested herein (Lachancea thermotolerans and Solicoccozyma terrea) were similar to that for Metschnikowia pulcherrima, a yeast species isolated earlier from the gut diverticulum of Chrysoperla rufilabris. A new Metschnikowia species (M. chrysoperlae), along with two new Candida spp. that were recently realigned to one of the Metschnikowia clades (M. picachoensis and M. pimensis), were also identified from the diverticulum of C. comanche. Thus, one clade of Metschnikowia yeasts that commonly occur in floral nectar appears to exhibit mutualistic symbioses with Chrysoperla green lacewings. Both male and female C. comanche adults were attracted in the present study, and we speculate that males have exploited this symbiosis by offering Metschnikowia-laden regurgitant, including attractive volatiles, to females ('mating trophallaxis') as a nuptial gift.
Collapse
|
10
|
Draft Genome Sequence of a Highly Heterozygous Yeast Strain from the Metschnikowia pulcherrima Subclade, UCD127. GENOME ANNOUNCEMENTS 2018; 6:6/25/e00550-18. [PMID: 29930059 PMCID: PMC6013633 DOI: 10.1128/genomea.00550-18] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Metschnikowia strain UCD127 was isolated from soil in Ireland and sequenced. It is a highly heterozygous diploid strain with 385,000 single nucleotide polymorphisms (SNPs). Its ribosomal DNA has the highest similarity to that of M. chrysoperlae, but its ACT1 and TEF1 loci and mitochondrial genome show affinity to those of M. fructicola, whose genome is significantly larger.
Collapse
|
11
|
Kurtzman CP, Robnett CJ, Basehoar E, Ward TJ. Four new species of Metschnikowia and the transfer of seven Candida species to Metschnikowia and Clavispora as new combinations. Antonie van Leeuwenhoek 2018; 111:2017-2035. [DOI: 10.1007/s10482-018-1095-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 05/05/2018] [Indexed: 11/24/2022]
|
12
|
de Vega C, Albaladejo RG, Lachance MA. Metschnikowia maroccana f.a., sp. nov., a new yeast species associated with floral nectar from Morocco. Int J Syst Evol Microbiol 2018; 68:2028-2035. [PMID: 29688165 DOI: 10.1099/ijsem.0.002784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wild flowers, and in particular, nectar of flowers, have been shown to be a rich reservoir of yeast biodiversity. In a taxonomic study of yeasts recovered from floral nectar in Morocco, nine strains were found to represent a novel species. Morphological and physiological characteristics and sequence analyses of the D1/D2 region of the large subunit rRNA gene as well as the internal transcribed spacer region showed that the novel species belonged to the genus Metschnikowia. The name Metschnikowia maroccana f.a., sp. nov. (EBDCdVMor24-1T=CBS 15053T=NRRL Y-63972T) is proposed to accommodate this new species. Metschnikowia maroccana was isolated from floral nectar of Teucrium pseudochamaepitys, Teucrium polium and Gladiolus italicus. The ascosporic state of the novel species was not found. Metschnikowia maroccana was phylogenetically distinct from any currently recognized species and forms a well-supported subclade (bootstrap value 81 %) containing species associated with flowers and flower-visiting insects, including Metschnikowia gruessii, Metschnikowia lachancei and Metschnikowia vanudenii. The close genealogical relationship of M. maroccana with the M. gruessii clade is also consistent with the striking similarity of their 'aeroplane' cells morphologies and the lack of utilization of the α-glucoside trehalose. The ecology of these novel species and its probable endemicity are discussed.
Collapse
Affiliation(s)
- Clara de Vega
- Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas (CSIC), Avenida de Américo Vespucio s/n, 41092 Sevilla, Spain
| | - Rafael G Albaladejo
- Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, C/ Profesor García González 2, 41012 Sevilla, Spain
| | - Marc-André Lachance
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
13
|
Nguyen NH, Suh SO, Blackwell M. Five novelCandidaspecies in insect-associated yeast clades isolated fromNeuropteraand other insects. Mycologia 2017. [DOI: 10.1080/15572536.2007.11832516] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
| | | | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803
| |
Collapse
|
14
|
Liu J, Arneborg N, Toldam-Andersen TB, Zhang S, Petersen MA, Bredie WLP. Impact of sequential co-culture fermentations on flavour characters of Solaris wines. Eur Food Res Technol 2016. [DOI: 10.1007/s00217-016-2757-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kuan CS, Ismail R, Kwan Z, Yew SM, Yeo SK, Chan CL, Toh YF, Na SL, Lee KW, Hoh CC, Yee WY, Ng KP. Isolation and Characterization of an Atypical Metschnikowia sp. Strain from the Skin Scraping of a Dermatitis Patient. PLoS One 2016; 11:e0156119. [PMID: 27280438 PMCID: PMC4900598 DOI: 10.1371/journal.pone.0156119] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 05/08/2016] [Indexed: 01/23/2023] Open
Abstract
A yeast-like organism was isolated from the skin scraping sample of a stasis dermatitis patient in the Mycology Unit Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia. The isolate produced no pigment and was not identifiable using chromogenic agar and API 20C AUX. The fungus was identified as Metschnikowia sp. strain UM 1034, which is close to that of Metschnikowia drosophilae based on ITS- and D1/D2 domain-based phylogenetic analysis. However, the physiology of the strain was not associated to M. drosophilae. This pathogen exhibited low sensitivity to all tested azoles, echinocandins, 5-flucytosine and amphotericin B. This study provided insight into Metschnikowia sp. strain UM 1034 phenotype profiles using a Biolog phenotypic microarray (PM). The isolate utilized 373 nutrients of 760 nutrient sources and could adapt to a broad range of osmotic and pH environments. To our knowledge, this is the first report of the isolation of Metschnikowia non-pulcherrima sp. from skin scraping, revealing this rare yeast species as a potential human pathogen that may be misidentified as Candida sp. using conventional methods. Metschnikowia sp. strain UM 1034 can survive in flexible and diverse environments with a generalist lifestyle.
Collapse
Affiliation(s)
- Chee Sian Kuan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rokiah Ismail
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhenli Kwan
- Division of Dermatology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Su Mei Yew
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Siok Koon Yeo
- School of Biosciences, Taylor’s University Lakeside Campus, Selangor Darul Ehsan, Malaysia
| | - Chai Ling Chan
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Yue Fen Toh
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Shiang Ling Na
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Kok Wei Lee
- Codon Genomics SB, Selangor Darul Ehsan, Malaysia
| | | | - Wai-Yan Yee
- Codon Genomics SB, Selangor Darul Ehsan, Malaysia
| | - Kee Peng Ng
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- * E-mail:
| |
Collapse
|
16
|
Grangeteau C, Gerhards D, Terrat S, Dequiedt S, Alexandre H, Guilloux-Benatier M, von Wallbrunn C, Rousseaux S. FT-IR spectroscopy: A powerful tool for studying the inter- and intraspecific biodiversity of cultivable non-Saccharomyces yeasts isolated from grape must. J Microbiol Methods 2015; 121:50-8. [PMID: 26688103 DOI: 10.1016/j.mimet.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 12/10/2015] [Accepted: 12/10/2015] [Indexed: 11/28/2022]
Abstract
The efficiency of the FT-IR technique for studying the inter- and intra biodiversity of cultivable non-Saccharomyces yeasts (NS) present in different must samples was examined. In first, the capacity of the technique FT-IR to study the global diversity of a given sample was compared to the pyrosequencing method, used as a reference technique. Seven different genera (Aureobasidium, Candida, Cryptococcus, Hanseniaspora, Issatchenkia, Metschnikowia and Pichia) were identified by FT-IR and also by pyrosequencing. Thirty-eight other genera were identified by pyrosequencing, but together they represented less than 6% of the average total population of 6 musts. Among the species identified, some of them present organoleptic potentials in winemaking, particularly Starmerella bacillaris (synonym Candidazemplinina). So in a second time, we evaluated the capacity of the FT-IR technique to discriminate the isolates of this species because few techniques were able to study intraspecific NS yeast biodiversity. The results obtained were validated by using a classic method as ITS sequencing. Biodiversity at strain level was high: 19 different strains were identified from 58 isolates. So, FT-IR spectroscopy seems to be an accurate and reliable method for identifying major genera present in the musts. The two biggest advantages of the FT-IR are the capacity to characterize intraspecific biodiversity of non-Saccharomyces yeasts and the possibility to discriminate a lot of strains.
Collapse
Affiliation(s)
- Cédric Grangeteau
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Daniel Gerhards
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sebastien Terrat
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Samuel Dequiedt
- INRA, UMR 1347 Agroécologie-Plateforme Genosol, 17, rue Sully, BP 86510, 21000 Dijon, France
| | - Hervé Alexandre
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Michèle Guilloux-Benatier
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France
| | - Christian von Wallbrunn
- Institut für Mikrobiologie und Biochemie Zentrum Analytische Chemie und Mikrobiologie - Hochschule Geisenheim University, Geisenheim, Germany
| | - Sandrine Rousseaux
- UMR Procédés Alimentaires et Microbiologiques, Equipe VAlMiS (Vin, Aliment, Microbiologie, Stress), AgroSup Dijon - Université de Bourgogne/Franche-Comté, IUVV, Rue Claude Ladrey, BP 27877, 21000 Dijon, France.
| |
Collapse
|
17
|
Brysch-Herzberg M, Seidel M. Yeast diversity on grapes in two German wine growing regions. Int J Food Microbiol 2015; 214:137-144. [DOI: 10.1016/j.ijfoodmicro.2015.07.034] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Revised: 07/17/2015] [Accepted: 07/31/2015] [Indexed: 01/19/2023]
|
18
|
Iasur-Kruh L, Taha-Salaime L, Robinson WE, Sharon R, Droby S, Perlman SJ, Zchori-Fein E. Microbial associates of the vine mealybug Planococcus ficus (Hemiptera: Pseudococcidae) under different rearing conditions. MICROBIAL ECOLOGY 2015; 69:204-214. [PMID: 25135816 DOI: 10.1007/s00248-014-0478-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 08/04/2014] [Indexed: 06/03/2023]
Abstract
Sap-feeding insects harbor diverse microbial endosymbionts that play important roles in host ecology and evolution, including contributing to host pest status. The vine mealybug, Planococcus ficus, is a serious pest of grapevines, vectoring a number of pathogenic grape viruses. Previous studies have shown that virus transmission is abolished when mealybugs are raised in the laboratory on potato. To examine the possible role of microbial symbionts in virus transmission, the archaeal, bacterial, and fungal microbiota of field and laboratory P. ficus were characterized using molecular and classical microbiological methods. Lab and field colonies of P. ficus harbored different microbiota. While both were dominated by the bacterial obligate nutritional symbionts Moranella and Tremblaya, field samples also harbored a third bacterium that was allied with cluster L, a lineage of bacterial symbionts previously identified in aphids. Archaea were not found in any of the samples. Fungal communities in field-collected mealybugs were dominated by Metschnikowia and Cladosporium species, while those from laboratory-reared mealybugs were dominated by Alternaria and Cladosporium species. In conclusion, this study has identified a diverse set of microbes, most of which appear to be facultatively associated with P. ficus, depending on environmental conditions. The role of various members of the mealybug microbiome, as well as how the host plant affects microbial community structure, remains to be determined.
Collapse
Affiliation(s)
- Lilach Iasur-Kruh
- Department of Entomology, Newe Ya'ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | | | | | | | | | | | | |
Collapse
|
19
|
Bjørnson S, Steele T, Hu Q, Ellis B, Saito T. Ultrastructure and molecular characterization of the microsporidium, Nosema chrysoperlae sp. nov., from the green lacewing, Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae) used for biological pest control. J Invertebr Pathol 2013; 114:53-60. [DOI: 10.1016/j.jip.2013.05.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 05/21/2013] [Accepted: 05/22/2013] [Indexed: 11/26/2022]
|
20
|
Phylogenetic analysis of the angiosperm-floricolous insect–yeast association: Have yeast and angiosperm lineages co-diversified? Mol Phylogenet Evol 2013; 68:161-75. [DOI: 10.1016/j.ympev.2013.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/21/2013] [Accepted: 04/02/2013] [Indexed: 11/20/2022]
|
21
|
Sipiczki M, Pfliegler WP, Holb IJ. Metschnikowia Species Share a Pool of Diverse rRNA Genes Differing in Regions That Determine Hairpin-Loop Structures and Evolve by Reticulation. PLoS One 2013; 8:e67384. [PMID: 23805311 PMCID: PMC3689696 DOI: 10.1371/journal.pone.0067384] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Accepted: 05/19/2013] [Indexed: 12/20/2022] Open
Abstract
Modern taxonomy of yeasts is mainly based on phylogenetic analysis of conserved DNA and protein sequences. By far the most frequently used sequences are those of the repeats of the chromosomal rDNA array. It is generally accepted that the rDNA repeats of a genome have identical sequences due to the phenomenon of sequence homogenisation and can thus be used for identification and barcoding of species. Here we show that the rDNA arrays of the type strains of Metschnikowia andauensis and M. fructicola are not homogenised. Both have arrays consisting of diverse repeats that differ from each other in the D1/D2 domains by up to 18 and 25 substitutions. The variable sites are concentrated in two regions that correspond to back-folding stretches of hairpin loops in the predicted secondary structure of the RNA molecules. The substitutions do not alter significantly the overall hairpin-loop structure due to wobble base pairing at sites of C-T transitions and compensatory mutations in the complementary strand of the hairpin stem. The phylogenetic and network analyses of the cloned sequences revealed that the repeats had not evolved in a vertical tree-like way but reticulation might have shaped the rDNA arrays of both strains. The neighbour-net analysis of all cloned sequences of the type strains and the database sequences of different strains further showed that these species share a continuous pool of diverse repeats that appear to evolve by reticulate evolution.
Collapse
Affiliation(s)
- Matthias Sipiczki
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Walter P. Pfliegler
- Department of Genetics and Applied Microbiology, University of Debrecen, Debrecen, Hungary
| | - Imre J. Holb
- Plant Protection Institute, Hungarian Academy of Sciences, and University of Debrecen, Debrecen, Hungary
| |
Collapse
|
22
|
Savini V, Hendrickx M, Sisti M, Masciarelli G, Favaro M, Fontana C, Pitzurra L, Arzeni D, Astolfi D, Catavitello C, Polilli E, Farina C, Fazii P, D'Antonio D, Stubbe D. An atypical, pigment-producing Metschnikowia strain from a leukaemia patient. Med Mycol 2012; 51:438-43. [PMID: 23170963 DOI: 10.3109/13693786.2012.733429] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
A yeast strain was isolated from the sputum sample of a leukaemia patient in the Spirito Santo Hospital of Pescara, Italy. The fungus produced a pigment that formed a reddish halo around colonies, and was identified and deposited as a Metschnikowia spp. (accession number IHEM 25107-GenBank accession number JQ921016) in the BCCM/IHEM collection of biomedical fungi and yeasts (Bruxelles, Belgium). Although the physiology of the strain was close to that of Metschnikowia sinensis, the D1/D2 sequence did not correspond to any previously described Metschnikowia species. Phylogeny of the genus Metschnikowia is complex and requires far more analysis. We present the first non-M. pulcherrima Metschnikowia spp. isolate recovered from a human, and emphasize the role of man as a transient carrier of environmental yeasts, the pathogenicity of which still needs to be defined.
Collapse
Affiliation(s)
- Vincenzo Savini
- Clinical Microbiology and Virology, Spirito Santo Hospital, Pescara, PE, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kraková L, Chovanová K, Ženišová K, Turcovská V, Brežná B, Kuchta T, Pangallo D. Yeast diversity investigation of wine-related samples from two different Slovakian wine-producing areas through a multistep procedure. Lebensm Wiss Technol 2012. [DOI: 10.1016/j.lwt.2011.12.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
24
|
Naumov GI. Genus assignment of small-spored aquatic and terrestrial species of the Metschnikowia yeasts. Microbiology (Reading) 2012. [DOI: 10.1134/s0026261712020075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
25
|
Misra S, Raghuwanshi S, Gupta P, Dutt K, Saxena RK. Fermentation behavior of osmophilic yeast Candida tropicalis isolated from the nectar of Hibiscus rosa sinensis flowers for xylitol production. Antonie van Leeuwenhoek 2011; 101:393-402. [PMID: 21956659 DOI: 10.1007/s10482-011-9646-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
Abstract
Eighteen yeast species belonging to seven genera were isolated from ten samples of nectar from Hibiscus rosa sinensis and investigated for xylitol production using D-xylose as sole carbon source. Amongst these isolates, no. 10 was selected as the best xylitol producer and identified as Candida tropicalis on the basis of morphological, biochemical and 26S rDNA sequencing. C. tropicalis produced 12.11 gl(-1) of xylitol in presence of 50 gl(-1) of xylose in 72 h at pH 5, 30°C and 200 rpm. The strain of C. tropicalis obtained through xylose enrichment technique has resulted in a yield of 0.5 gg(-1) with a xylitol volumetric productivity of 1.07 gl(-1)h(-1) in the presence of 300 gl(-1) of xylose through batch fermentation. This organism has been reported for the first time from Hibiscus rosa sinensis flowers. Realizing, the importance of this high valued compound, as a sugar substitute, xylose enrichment technique was developed in order to utilize even higher concentrations of xylose as substrate for maximum xylitol production.
Collapse
Affiliation(s)
- Swati Misra
- Department of Microbiology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110 021, India
| | | | | | | | | |
Collapse
|
26
|
Candida northwykensis sp. nov., A Novel Yeast Isolated from the Gut of the Click Beetle Melanotus villosus. Curr Microbiol 2011; 63:115-20. [DOI: 10.1007/s00284-011-9952-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 04/18/2011] [Indexed: 11/26/2022]
|
27
|
Naumov GI. Molecular and genetic differentiation of small-spored species of the yeast genus Metschnikowia Kamienski. Microbiology (Reading) 2011. [DOI: 10.1134/s0026261711020111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
28
|
The use of parsimony network analysis for the formal delineation of phylogenetic species of yeasts: Candida apicola, Candida azyma, and Candida parazyma sp. nov., cosmopolitan yeasts associated with floricolous insects. Antonie van Leeuwenhoek 2009; 97:155-70. [DOI: 10.1007/s10482-009-9399-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 11/12/2009] [Indexed: 10/20/2022]
|
29
|
Gibson CM, Hunter MS. Inherited fungal and bacterial endosymbionts of a parasitic wasp and its cockroach host. MICROBIAL ECOLOGY 2009; 57:542-549. [PMID: 18758845 DOI: 10.1007/s00248-008-9436-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/25/2008] [Indexed: 05/26/2023]
Abstract
Bacterial endosymbionts of insects are increasingly being recognized as common, diverse, and integral to the biology of their hosts. Inherited fungal symbionts have been largely overlooked, however, even though insect guts appear to be a key habitat for an incredible array of fungal diversity. Like bacteria, fungal symbionts also likely play important roles in the ecology and evolution of their insect associates. The objective of this study was to lay the foundations for understanding the roles of the vertically transmitted fungal and bacterial associates of both the brownbanded cockroach, Supella longipalpa, and its parasitic wasp, Comperia merceti. We used culture-dependent and culture-independent molecular methods and phylogenetic analyses in order to identify the symbionts. Two fungal associates of brownbanded cockroaches were found. To our knowledge, this is the first record of vertically transmitted fungal symbionts in the order Blattaria. The wasp was found to house a close relative of one of the cockroach fungi but no bacterial symbionts. Finally, the brownbanded cockroaches also harbored three lineages of bacterial symbionts: Blattabacterium and two lineages of Wolbachia, indicating the number of vertically transmitted symbionts in this insect may be as many as five.
Collapse
Affiliation(s)
- Cara M Gibson
- College of Agriculture and Life Sciences, Department of Entomology, The University of Arizona, Tucson, AZ 85721-0036, USA.
| | | |
Collapse
|
30
|
Yaman M, Radek R. Identification, distribution and occurrence of the ascomycete Metschnikowia typographi in the great spruce bark beetle, Dendroctonus micans. Folia Microbiol (Praha) 2008; 53:427-32. [PMID: 19085078 DOI: 10.1007/s12223-008-0065-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Revised: 04/29/2008] [Indexed: 11/26/2022]
Abstract
This is the first report on the ascomycete Metschnikowia typographi from the adults and larvae of the great spruce bark beetle Dendroctonus micans in Turkey. In total, 910 of 1928 adults and 44 of 149 larvae investigated during the two years were infected by the pathogen. In a fresh smear the asci of the pathogen measure 18.5 +/- 2.05 microm (14.7-22.3) in length and 2.1 +/- 0.4 microm in width (n = 35). The ascospores are about 2 microm shorter than asci, having an average length of 16.4 +/- 1.5 microm (14.2-18.0). The total infection rate of D. micans was 47.2 %. The prevalence of M. typographi infections differed between localities and years. Different infection rates of male and female beetles of D. micans were not recognized.
Collapse
Affiliation(s)
- M Yaman
- Department of Biology, Faculty of Arts and Sciences, Karadeniz Technical University, 61080, Trabzon, Turkey.
| | | |
Collapse
|
31
|
Ji ZH, Jia JH, Bai FY. Four novel Candida species in the Candida albicans/Lodderomyces elongisporus clade isolated from the gut of flower beetles. Antonie van Leeuwenhoek 2008; 95:23-32. [DOI: 10.1007/s10482-008-9282-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2008] [Accepted: 09/11/2008] [Indexed: 10/21/2022]
|
32
|
Saluja P, Prasad GS. Candida ruelliae sp. nov., a novel yeast species isolated from flowers of Ruellia sp. (Acanthaceae). FEMS Yeast Res 2008; 8:660-6. [DOI: 10.1111/j.1567-1364.2008.00372.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
33
|
Candida alocasiicola sp. nov., Candida hainanensis sp. nov., Candida heveicola sp. nov. and Candida musiphila sp. nov., novel anamorphic, ascomycetous yeast species isolated from plants. Antonie van Leeuwenhoek 2008; 94:257-65. [DOI: 10.1007/s10482-008-9238-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2008] [Accepted: 03/06/2008] [Indexed: 11/25/2022]
|
34
|
Bhadra B, Rao RS, Singh PK, Sarkar PK, Shivaji S. Yeasts and yeast-like fungi associated with tree bark: diversity and identification of yeasts producing extracellular endoxylanases. Curr Microbiol 2008; 56:489-94. [PMID: 18219522 DOI: 10.1007/s00284-008-9108-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 11/30/2007] [Indexed: 12/21/2022]
Abstract
A total of 239 yeast strains was isolated from 52 tree bark samples of the Medaram and Srisailam forest areas of Andhra Pradesh, India. Based on analysis of D1/D2 domain sequence of 26S rRNA gene, 114 strains were identified as ascomycetous; 107 strains were identified as basidiomycetous yeasts; and 18 strains were identified as yeast-like fungi. Among the ascomycetous yeasts, 51% were identified as members of the genus Pichia, and the remaining 49% included species belonging to the genera Clavispora, Debaryomyces, Kluyveromyces, Hanseniaspora, Issatchenkia, Lodderomyces, Kodamaea, Metschnikowia, and Torulaspora. The predominant genera in the basidiomycetous yeasts were Cryptococcus (48.6%), Rhodotorula (29%), and Rhodosporidium (12.1%). The yeast-like fungi were represented by Aureobasidium pullulans (6.7%) and Lecythophora hoffmanii (0.8%). Of the 239 yeast strains tested for Xylanase, only five strains of Aureobasidium sp. produced xylanase on xylan-agar medium. Matrix-assisted laser desorption ionization-time of flight analysis and N-terminal amino-acid sequence of the xylanase of isolate YS67 showed high similarity with endo-1-4-beta-xylanase (EC 3.2.1.8) of Aureobasidium pullulans var. melanigenum.
Collapse
Affiliation(s)
- Bhaskar Bhadra
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500 007, India
| | | | | | | | | |
Collapse
|
35
|
Suh SO, Nguyen NH, Blackwell M. Yeasts isolated from plant-associated beetles and other insects: seven novel Candida species near Candida albicans. FEMS Yeast Res 2007; 8:88-102. [PMID: 17986254 DOI: 10.1111/j.1567-1364.2007.00320.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Yeasts related to Candida albicans were isolated from the digestive tracts of beetles in eight families and various orders of insects such as earwigs, crickets, and roaches, most of which were caught at light traps or in a few cases directly from plant materials. Based on comparisons of DNA sequences and other taxonomic characteristics, a total of 41 isolates were identified as Candida orthopsilosis, Candida pseudorhagii, Candida maltosa, Candida parapsilosis, Candida tropicalis, Candida neerlandica, Lodderomyces elongisporus, and seven new Candida species. The new species and type strains are designated as Candida gigantensis NRRL Y-27736T, Candida bohiensis NRRL Y-27737T, Candida alai NRRL Y-27739T, Candida buenavistaensis NRRL Y-27734T, Candida frijolesensis NRRL Y-48060T, Candida labiduridarum NRRL Y-27940T, and Candida tetrigidarum NRRL Y-48142T. A phylogeny based on SSU and LSU rRNA gene sequences indicated that most of the new species were closely related to members of the C. albicans/L. elongisporus clade, such as C. albicans, Candida dulbliniensis, C. neerlandica, Candida chauliodes, and Candida corydali. Candida alai was placed near this clade, but no closely related sister taxon was identified. The ecology of the insect-associated yeasts is discussed and compared with the results from other studies.
Collapse
Affiliation(s)
- Sung-Oui Suh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
36
|
Suh SO, Nguyen NH, Blackwell M. A yeast clade near Candida kruisii uncovered: nine novel Candida species associated with basidioma-feeding beetles. ACTA ACUST UNITED AC 2006; 110:1379-94. [PMID: 17113766 DOI: 10.1016/j.mycres.2006.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2006] [Revised: 08/30/2006] [Accepted: 09/05/2006] [Indexed: 10/23/2022]
Abstract
Yeasts similar to Candida kruisii were isolated repeatedly from the digestive tracts of basidioma-feeding beetles, especially nitidulids inhabiting and feeding on a variety of agarics in the southeastern USA and Barro Colorado Island, Panama. Based on the identical sequences of the D1/D2 domains of the LSU rRNA gene (rDNA) and host beetle information, the isolates were grouped into 19 genotypes which varied from C. kruisii by up to 38 nucleotide differences in the D1/D2 region. Phylogenetic analysis of rDNA sequences and phenotypic traits placed the isolates in C. kruisii and in nine undescribed taxa. The new species and type strains are designated as Candida pallodes (NRRL Y-27653(T)), C. tritomae (NRRL Y-27650(T)), C. panamensis (NRRL Y-27657(T)), C. lycoperdinae (NRRL Y-27658(T)), C. atbi (NRRL Y-27651(T)), C. barrocoloradensis (NRRL Y-27934(T)), C. aglyptinia (NRRL Y-27935(T)), C. stri (NRRL Y-48063(T)), and C. gatunensis (NRRL Y-48064(T)). A phylogeny based on analysis of a combined database of sequences of SSU and LSU rDNA and the ITS region showed that the nine new species formed a novel sister clade to C. kruisii that was strongly supported by bootstrap analysis. Candida pallodes, C. tritomae, C. panamensis, and C. lycoperdinae formed one subclade, while C. atbi, C. barrocoloradensis, C. aglyptinia, C. stri, and C. gatunensis formed a second distinct subclade within the larger clade. Candida pallodes and C. atbi showed a strong host specificity to beetle species in the genus Pallodes (Coleoptera: Nitidulidae) collected from a variety of agarics. On the other hand, C. panamensis, C. tritomae, and C. lycoperdinae were associated with several unrelated beetles in Erotylidae, Scarabaeidae, Tenebrionidae, and Curculionidae as well as Lycoperdina ferruginea (Nitidulidae). Candida pallodes, C. tritomae, C. lycoperdinae, and C. atbi have been isolated repeatedly in the USA, while the other five new species have been found only at Barro Colorado Island, Panama.
Collapse
Affiliation(s)
- Sung-Oui Suh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
37
|
Nguyen NH, Suh SO, Erbil CK, Blackwell M. Metschnikowia noctiluminum sp. nov., Metschnikowia corniflorae sp. nov., and Candida chrysomelidarum sp. nov., isolated from green lacewings and beetles. ACTA ACUST UNITED AC 2006; 110:346-56. [PMID: 16483756 DOI: 10.1016/j.mycres.2005.11.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2005] [Revised: 09/21/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022]
Abstract
Fourteen yeast isolates belonging to the Metschnikowia clade were isolated from the digestive tracts of lacewings (Neuroptera: Chrysopidae), soldier beetles and leaf beetles (Coleoptera: Cantharidae and Chrysomelidae), and a caddisfly (Trichoptera: Hydropsychidae). The insect hosts were associated with sugary substances of plants, a typical habitat for yeasts in this clade. Based on DNA sequence comparisons and phenetic characters, the yeasts were identified as Candida picachoensis, Candida pimensis, and four undescribed taxa. Among the undescribed taxa, three yeasts were distinguished from one another and from other described taxa by nucleotide differences in the ribosomal DNA repeat, which were sufficient to consider them as new species. Two of the novel yeast species are described as Metschnikowia noctiluminum (NRRL Y-27753(T)) and M. cornifloraespp. nov. (NRRL Y-27750(T)) based in part on production of needle-shaped ascospores, which are found in most Metschnikowia species. Sexual reproduction was not observed in the third new yeast, Candida chrysomelidarumsp. nov. (NRRL Y-27749(T)). A fourth isolate, NRRL Y-27752, was not significantly distinct from Metschnikowia viticola and Candida kofuensis to be described as a new species. Phylogenetic analysis of the D1/D2 loop sequences placed M. noctiluminum within the M. viticola clade, while C. chrysomelidarum was a sister taxon of Candida rancensis. Metschnikowia corniflorae was phylogenetically distinct from other new species and fell outside of the large-spored Metschnikowia group.
Collapse
Affiliation(s)
- Nhu H Nguyen
- Department of Biological Sciences, Louisiana State University, Baton Rouge, 70803, USA
| | | | | | | |
Collapse
|
38
|
Suh SO, Blackwell M. Three new asexual arthroconidial yeasts, Geotrichum carabidarum sp. nov., Geotrichum histeridarum sp. nov., and Geotrichum cucujoidarum sp. nov., isolated from the gut of insects. ACTA ACUST UNITED AC 2006; 110:220-8. [PMID: 16406553 DOI: 10.1016/j.mycres.2005.08.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Revised: 08/01/2005] [Accepted: 08/30/2005] [Indexed: 10/25/2022]
Abstract
Twenty arthroconidial yeasts were isolated from the digestive tract of basidiome-feeding beetles and lepidopteran larvae. All of the yeasts reproduced only asexually by arthroconidia and some by endo- or blastoconidia as well. Based on the comparisons of sequences in ribosomal RNA genes and other taxonomic characteristics, the yeasts were identified as three unknown Geotrichum species. The three new species are described as Geotrichum carabidarum (NRRL Y-27727T), G. histeridarum (NRRL Y-27729T), and G. cucujoidarum (NRRL Y-27731T). Phylogenetic analyses from ribosomal DNA sequences showed that members of the genus Geotrichum and related arthroconidial yeast taxa were divided into two major clades: (1) Dipodascus and Galactomyces with Geotrichum anamorphs including all the new species; and (2) Magnusiomyces with Saprochaete anamorphs. G. cucujoidarum formed a subclade with G. fermentans and Geotrichum sp. Y-5419, while the two closely related species, G. carabidarum and G. histeridarum, represent a new basal subclade in the clade of Geotrichum and its teleomorphs.
Collapse
Affiliation(s)
- Sung-Oui Suh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | |
Collapse
|
39
|
Molnár O, Prillinger H. Analysis of yeast isolates related to Metschnikowia pulcherrima using the partial sequences of the large subunit rDNA and the actin gene; description of Metschnikowia andauensis sp. nov. Syst Appl Microbiol 2005; 28:717-26. [PMID: 16261861 DOI: 10.1016/j.syapm.2005.05.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Thirty-two yeast isolates were cultured from guts or excrements of three different pests of corn or from the stem of healthy corn. The strains were analyzed using MSP-PCR (micro/minisatellite-primed polymerase chain reaction), sequences of the D1/D2 region of the large subunit rDNA and a 979 bp long part of the actin gene (act-1). They seem to belong to three groups that are all sister groups of Metschnikowia pulcherrima, M. fructicola and M. chrysoperlae. A new species, Metschnikowia andauensis (HA 1657T) is described. In contrast to M. pulcherrima and M. fructicola, M. andauensis is well separated in the act-1 phylogenetic tree too.
Collapse
Affiliation(s)
- Orsolya Molnár
- Institute of Applied Microbiology, University of Natural Resources and Applied Life Sciences, Vienna, Austria
| | | |
Collapse
|
40
|
Suh SO, Nguyen NH, Blackwell M. Nine new Candida species near C. membranifaciens isolated from insects. ACTA ACUST UNITED AC 2005; 109:1045-56. [PMID: 16209309 DOI: 10.1017/s0953756205003254] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
14 different yeasts were isolated from the gut of a variety of insects, including beetles, lacewings, fishflies, craneflies, and a cockroach. One of the yeasts was found both in the gut and on the body surface of a beetle larva. Based on ribosomal DNA sequence comparisons and phenotypic characters, the yeasts were identified as Candida membranifaciens, C. tenuis, Pichia nakazawae, and nine undescribed taxa in Saccharomycotina. All the undescribed taxa reproduced only asexually, and they fit within the limits of the polyphyletic genus Candida. The new species and their type strains are Candida blattariae NRRL Y-27703T, C. amphixiae NRRL Y-27704T, C. michaelii NRRL Y-27705T, C. cerambycidarum NRRL Y-27706T, C. gorgasii NRRL Y-27707T, C. endomychidarum NRRL Y-27708T, C. temnochilae NRRL Y-27763T, C. sinolaborantium NRRL Y-27765T, and C. lessepsii NRRL Y-27766T spp. nov. Phylogenetic analysis of combined small and large subunit ribosomal DNA sequences placed C. amphixiae, C. michaelii, C. cerambycidarum, C. gorgasii, C. endomychidarum, and C. lessepsii in a statistically well supported clade with C. blattariae, C. membranifaciens, C. friedrichii, and C. buinensis as sisters to the clade. The other two new taxa, C. temnochilae and C. sinolaborantium, formed an independent clade basal to the major clade containing C. membranifaciens and closely related taxa. C. sinolaborantium occurred in both Panama and the USA, but there were genetic differences between the isolates from the two places.
Collapse
Affiliation(s)
- Sung-Oui Suh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA.
| | | | | |
Collapse
|
41
|
Suh SO, McHugh JV, Blackwell M. Expansion of the Candida tanzawaensis yeast clade: 16 novel Candida species from basidiocarp-feeding beetles. Int J Syst Evol Microbiol 2005; 54:2409-2429. [PMID: 15545491 DOI: 10.1099/ijs.0.63246-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major clade of new yeast taxa from the digestive tract of basidiocarp-feeding beetles is recognized based on rRNA gene sequence analyses. Almost 30 % of 650 gut isolates formed a statistically well-supported clade that included Candida tanzawaensis. The yeasts in the clade were isolated from 11 families of beetles, of which Tenebrionidae and Erotylidae were most commonly sampled. Repeated isolation of certain yeasts from the same beetle species at different times and places indicated strong host associations. Sexual reproduction was never observed in the yeasts. Based on comparisons of small- and large-subunit rRNA gene sequences and morphological and physiological traits, the yeasts were placed in Candida ambrosiae and in 16 other undescribed taxa. In this report, the novel species in the genus Candida are described and their relationships with other taxa in the Saccharomycetes are discussed. The novel species and their type strains are as follows: Candida guaymorum (NRRL Y-27568(T)=CBS 9823(T)), Candida bokatorum (NRRL Y-27571(T)=CBS 9824(T)), Candida kunorum (NRRL Y-27580(T)=CBS 9825(T)), Candida terraborum (NRRL Y-27573(T)=CBS 9826(T)), Candida emberorum (NRRL Y-27606(T)=CBS 9827(T)), Candida wounanorum (NRRL Y-27574(T)=CBS 9828(T)), Candida yuchorum (NRRL Y-27569(T)=CBS 9829(T)), Candida chickasaworum (NRRL Y-27566(T)=CBS 9830(T)), Candida choctaworum (NRRL Y-27584(T)=CBS 9831(T)), Candida bolitotheri (NRRL Y-27587(T)=CBS 9832(T)), Candida atakaporum (NRRL Y-27570(T)=CBS 9833(T)), Candida panamericana (NRRL Y-27567(T)=CBS 9834(T)), Candida bribrorum (NRRL Y-27572(T)=CBS 9835(T)), Candida maxii (NRRL Y-27588(T)=CBS 9836(T)), Candida anneliseae (NRRL Y-27563(T)=CBS 9837(T)) and Candida taliae (NRRL Y-27589(T)=CBS 9838(T)).
Collapse
Affiliation(s)
- Sung-Oui Suh
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Joseph V McHugh
- Department of Entomology, University of Georgia, Athens, GA 30602, USA
| | - Meredith Blackwell
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
42
|
|
43
|
SUH SO, McHUGH JV, POLLOCK DD, BLACKWELL M. The beetle gut: a hyperdiverse source of novel yeasts. ACTA ACUST UNITED AC 2005; 109:261-5. [PMID: 15912941 PMCID: PMC2943959 DOI: 10.1017/s0953756205002388] [Citation(s) in RCA: 185] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We isolated over 650 yeasts over a three year period from the gut of a variety of beetles and characterized them on the basis of LSU rDNA sequences and morphological and metabolic traits. Of these, at least 200 were undescribed taxa, a number equivalent to almost 30% of all currently recognized yeast species. A Bayesian analysis of species discovery rates predicts further sampling of previously sampled habitats could easily produce another 100 species. The sampled habitat is, thereby, estimated to contain well over half as many more species as are currently known worldwide. The beetle gut yeasts occur in 45 independent lineages scattered across the yeast phylogenetic tree, often in clusters. The distribution suggests that the some of the yeasts diversified by a process of horizontal transmission in the habitats and subsequent specialization in association with insect hosts. Evidence of specialization comes from consistent associations over time and broad geographical ranges of certain yeast and beetle species. The discovery of high yeast diversity in a previously unexplored habitat is a first step toward investigating the basis of the interactions and their impact in relation to ecology and evolution.
Collapse
Affiliation(s)
- Sung-Oui SUH
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Joseph V. McHUGH
- Department of Entomology, University of Georgia, Athens, Georgia 30602, USA
| | - David D. POLLOCK
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| | - Meredith BLACKWELL
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70803, USA
| |
Collapse
|