1
|
Wang YM, Liu R, Wang X, Sun K, Hong W, Wang Y, Liu J. Albibacterium profundi sp. nov., isolated from sediment of the Challenger Deep of Mariana Trench, and reclassification of Pedobacter indicus as Albibacterium indicum comb. nov. Int J Syst Evol Microbiol 2025; 75. [PMID: 40232812 DOI: 10.1099/ijsem.0.006754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2025] Open
Abstract
A rod-shaped, white-pigmented, non-motile, Gram-stain-negative bacterium, designated RHL897T, was isolated from sediments collected at the Mariana Trench Challenger Deep (10,816 m). Strain RHL897T was strictly aerobic and grew at 4-37 °C, pH 6.0-10.0 and in the presence of 0-11.0 % (w/v) NaCl. Its genomic DNA G+C content was 41.2%. Metabolic analysis revealed mechanisms for salt tolerance, abundant metal ion transport proteins and stronger resistance to heavy metals such as arsenic and mercury compared to the closest reference strains, likely linked to adaptation to the hadal sediment environment. The predominant menaquinone was MK-7, and the major polar lipids were phosphatidylethanolamine, an unidentified aminophospholipid and an unidentified glycolipid. The main fatty acids were iso-C15 : 0, summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c) and iso-C17 : 0 3OH. Strain RHL897T exhibited the highest 16S rRNA gene sequence similarity to the type strain of Pedobacter indicus (97.9%) and Albibacterium bauzanense (96.1%). Phylogenetic trees constructed based on 16S rRNA gene sequences and a 549 core gene set indicated that strain RHL897T was closely related to P. indicus and A. bauzanense, with all three species clustering within a distinct clade. Combined with the analyses of average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization, strain RHL897T represented a novel species of the genus Albibacterium, for which the name Albibacterium profundi sp. nov. is proposed. The type strain is RHL897T (=MCCC 1K09221T=KCTC 102276T). Furthermore, the revised phylogeny with the inclusion of RHL897T suggested that P. indicus should be reclassified under the genus Albibacterium and renamed Albibacterium indicum.
Collapse
Affiliation(s)
- Yi-Ming Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Kaixuan Sun
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Wen Hong
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Yaru Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| | - Jiwen Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, PR China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
2
|
Liu R, Wang X, Huang R, Zhang XH, Wang X. Profundirhabdus halotolerans gen. nov., sp. nov., an haloalkaliphilic actinobacterium isolated from seawater of the Mariana Trench. Int J Syst Evol Microbiol 2023; 73. [PMID: 37610809 DOI: 10.1099/ijsem.0.006016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
A Gram-stain-positive, strictly aerobic, rod-shaped actinobacterium, designated strain ZYF776T, was isolated from seawater of the Mariana Trench collected at a depth of 4000 m. Results of 16S rRNA gene sequence analysis indicated that strain ZYF776T was a member of the class Nitriliruptoria and closely related to Nitriliruptor alkaliphilus DSM 45188T (member of the order Nitriliruptorales, 94.94 % sequence similarity) and Egicoccus halophilus KCTC 33612T (member of the order Egicoccales, 94.46 %). Strain ZYF776T was catalase-positive and oxidase-negative. Growth occurred at 16-37 °C (optimum, 28 °C), in the presence of 0-13 % NaCl (w/v; optimum, 4 %) and at pH 7.0-10.0 (optimum, pH 8.0). Cell-wall hydrolysates of strain ZYF776T contained meso-diaminopimelic (peptidoglycan type A1γ), with ribose, rhamnose and a smaller amount of xylose as the cell-wall sugars. The major menaquinone was MK-10. The predominant fatty acids (>10 %) were C16:0, C17:1 ω8c and summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c). The polar lipid profile mainly contained diphosphatidylglycerol, phosphatidylglycerol and phosphoglycolipid. The genomic DNA G+C content of strain ZYF776T was 68.7 mol%. The genome of strain ZYF776T was about 5.61 Mbp in size, which was larger than those of the reference strains N. alkaliphilus DSM45188T (5.56 Mbp) and E. halophilus KCTC 33612T (3.98 Mbp). The average nucleotide identity and digital DNA-DNA hybridization values between ZYF776T and the related strains N. alkaliphilus DSM 45188T and E. halophilus KCTC 33612T were 76.7 and 20.3 % and 75.8 and 20.0 %, respectively. Based on the polyphasic evidence, a novel genus and species with the name Profundirhabdus halotolerans gen. nov., sp. nov. is proposed. The type strain is ZYF776T (=JCM 33008T=MCCC 1K03555T).
Collapse
Affiliation(s)
- Ronghua Liu
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Xinyue Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Rong Huang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| | - Xiao-Hua Zhang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
- Laboratory for Marine Ecology and Environmental Science, Laoshan Laboratory, Qingdao, PR China
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, PR China
| | - Xiaolei Wang
- Frontiers Science Center for Deep Ocean Multispheres and Earth System and College of Marine Life Sciences, Ocean University of China, Qingdao, PR China
| |
Collapse
|
3
|
Dohrmann AB, Krüger M. Microbial H 2 Consumption by a Formation Fluid from a Natural Gas Field at High-Pressure Conditions Relevant for Underground H 2 Storage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1092-1102. [PMID: 36599497 DOI: 10.1021/acs.est.2c07303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Underground hydrogen storage (UHS) has been proposed as one option for storage of excess energy from renewable sources. Depleted gas reservoirs appear suitable, but at the same time, they may be environments with potentially high microbial abundances and activities. Hydrogen (H2) is one of the most energetic substrates in such environments, and many microorganisms are able to oxidize H2, potentially leading to loss of H2 or other unwanted reactions like production of, e.g., H2S, clogging, or corrosion. This study addressed the potential of H2 consumption by naturally abundant microorganisms in formation fluid from a gas field at near in situ pressure and temperature conditions. Microbial H2 consumption was evident at ambient and 100 bar and tolerated pressure variations reflecting cycles of H2 storage. Temperature strongly influenced the activity with higher activity at 30 °C but lower activity at 60 °C. The activity was sulfate-dependent, and sulfide was produced. The microbial community composition changed during H2 consumption with an increase in sulfate-reducing prokaryotes (SRP). Thus, the presence of an SRP-containing, H2-consuming microbial community with activity at UHS-relevant pressure and temperature conditions was shown and should be taken into account when planning UHS at this and other sites.
Collapse
Affiliation(s)
- Anja B Dohrmann
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655Hannover, Germany
| | - Martin Krüger
- Federal Institute for Geosciences and Natural Resources (BGR), Stilleweg 2, 30655Hannover, Germany
| |
Collapse
|
4
|
A Review on the Prevalence of Arcobacter in Aquatic Environments. WATER 2022. [DOI: 10.3390/w14081266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Arcobacter is an emerging pathogen that is associated with human and animal diseases. Since its first introduction in 1991, 33 Arcobacter species have been identified. Studies have reported that with the presence of Arcobacter in environmental water bodies, animals, and humans, a possibility of its transmission via water and food makes it a potential waterborne and foodborne pathogen. Therefore, this review article focuses on the general characteristics of Arcobacter, including its pathogenicity, antimicrobial resistance, methods of detection by cultivation and molecular techniques, and its presence in water, fecal samples, and animal products worldwide. These detection methods include conventional culture methods, and rapid and accurate Arcobacter identification at the species level, using quantitative polymerase chain reaction (qPCR) and multiplex PCR. Arcobacter has been identified worldwide from feces of various hosts, such as humans, cattle, pigs, sheep, horses, dogs, poultry, and swine, and also from meat, dairy products, carcasses, buccal cavity, and cloacal swabs. Furthermore, Arcobacter has been detected in groundwater, river water, wastewater (influent and effluent), canals, treated drinking water, spring water, and seawater. Hence, we propose that understanding the prevalence of Arcobacter in environmental water and fecal-source samples and its infection of humans and animals will contribute to a better strategy to control and prevent the survival and growth of the bacteria.
Collapse
|
5
|
He X, Liu R, Liang J, Li Y, Zhao X, Ran L, Ahmad W, Zhang XH. Winogradskyella ouciana sp. nov., isolated from the hadal seawater of the Mariana Trench. Int J Syst Evol Microbiol 2021; 71. [PMID: 33555246 DOI: 10.1099/ijsem.0.004687] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-staining-negative, strictly aerobic, long-rod shaped with no flagellum and yellow-pigmented bacterium designated strain ZXX205T, was isolated from the hadal seawater at the depth of 7500 m in the Mariana Trench, Pacific Ocean. Phylogenetic analysis based on 16S rRNA gene sequences placed strain ZXX205T within the genus Winogradskyella and strain ZXX205T was most closely related to Winogradskyella flava KCTC 52348T and Winogradskyella echinorum KCTC 22026T with 96.9 % and 96.6 % sequence similarity, respectively. The sequence similarities to all other type strains were 96.3 % or less, and to the type strain Winogradskyella thalassocola LMG 22492T was 94.1 %. Growth occurred in the presence of 0-9.0 % (w/v) NaCl (optimum 3.0 %), at 4-45 °C (optimum 28 °C) and pH 6.0-9.0 (optimum pH 7.5). The sole respiratory quinone was menaquinone 6 (MK-6). The dominant cellular fatty acids (>10 %) of strain ZXX205T were iso-C15 : 0, iso-C15 : 1 G, iso-C16 : 0 3-OH and iso-C16 : 0. The polar lipids profile contained predominantly phosphatidylethanolamine, four glycolipids, four unidentified aminolipids and three unidentified lipids. The genomic DNA G+C content was 35.5 %. The DNA-DNA relatedness (DDH) values between strain ZXX205T and the most closely related species Winogradskyella flava and Winogradskyella echinorum were 21.1 and 20.4 %, respectively. Based on polyphasic taxonomic analysis, strain ZXX205T is considered to represent a novel species in the genus Winogradskyella of the family Flavobacteriaceae, for which the name Winogradskyella ouciana is proposed. The type strain is ZXX205T (=MCCC 1K03851T=JCM 33665T).
Collapse
Affiliation(s)
- Xinxin He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Ronghua Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Jinchang Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Yuying Li
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiuxiu Zhao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Lingman Ran
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Waqar Ahmad
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China.,Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China.,College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
6
|
Kugler P, Fröhlich D, Wendisch VF. Development of a Biosensor for Crotonobetaine-CoA Ligase Screening Based on the Elucidation of Escherichia coli Carnitine Metabolism. ACS Synth Biol 2020; 9:2460-2471. [PMID: 32794733 DOI: 10.1021/acssynbio.0c00234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
l-Carnitine is essential in the intermediary metabolism of eukaryotes and is involved in the β-oxidation of medium- and long-chain fatty acids; thus, it has applications for medicinal purposes and as a dietary supplement. In addition, l-carnitine plays roles in bacterial physiology and metabolism, which have been exploited by the industry to develop biotechnological carnitine production processes. Here, on the basis of studies of l-carnitine metabolism in Escherichia coli and its activation by the transcriptional activator CaiF, a biosensor was developed. It expresses a fluorescent reporter gene that responds in a dose-dependent manner to crotonobetainyl-CoA, which is an intermediate of l-carnitine metabolism in E. coli and is proposed to be a coactivator of CaiF. Moreover, a dual-input biosensor for l-carnitine and crotonobetaine was developed. As an application of the biosensor, potential homologues of the betaine:CoA ligase CaiC from Citrobacter freundii, Proteus mirabilis, and Arcobacter marinus were screened and shown to be functionally active CaiC variants. These variants and the developed biosensor may be valuable for improving l-carnitine production processes.
Collapse
Affiliation(s)
- Pierre Kugler
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Deborah Fröhlich
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| | - Volker F. Wendisch
- Genetics of Prokaryotes, Faculty of Biology & CeBiTec, Bielefeld University, 33615 Bielefeld, Germany
| |
Collapse
|
7
|
Alonso R, Girbau C, Martinez-Malaxetxebarria I, Pérez-Cataluña A, Salas-Massó N, Romalde JL, Figueras MJ, Fernandez-Astorga A. Aliarcobacter vitoriensis sp. nov., isolated from carrot and urban wastewater. Syst Appl Microbiol 2020; 43:126091. [PMID: 32690190 DOI: 10.1016/j.syapm.2020.126091] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/27/2020] [Accepted: 04/30/2020] [Indexed: 10/24/2022]
Abstract
Two isolates, one recovered from a carrot and another one from urban wastewater, were characterized using a polyphasic approach. Phylogenetic analysis based on 16S rRNA gene sequences revealed that both isolates clustered together, and were most closely related to Aliarcobacter lanthieri. Multilocus phylogenetic analysis (MLPA) using the concatenated sequences of five housekeeping genes (atpA, gyrA, gyrB, hsp60 and rpoB) suggested that these isolates formed a distinct phylogenetic lineage among the genera derived from the former genus Arcobacter. Whole-genome sequence, in silico DNA-DNA hybridization (isDDH) and the average nucleotide identity (ANI) value between the genome of strain F199T and those of related species confirmed that these isolates represent a novel species. These strains can be differentiated from its phylogenetically closest species A. lanthieri by its inability to growth on 1% glycine and by their enzyme activity of esterase lipase (C8) and acid phosphatase. Our results, by the application of a polyphasic analysis, confirmed that these two isolates represent a novel species of the genus Aliarcobacter, for which the name Aliarcobacter vitoriensis sp. nov. is proposed. The type strain is F199T (=CECT 9230T=LMG 30050T).
Collapse
Affiliation(s)
- Rodrigo Alonso
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Cecilia Girbau
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Irati Martinez-Malaxetxebarria
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain.
| | - Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología & Instituto CRETUS, Universidade de Santiago de Compostela, Santiago de Compostela, 15782 Spain
| | - María José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Aurora Fernandez-Astorga
- Department of Immunology, Microbiology and Parasitology, Faculty of Pharmacy. University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| |
Collapse
|
8
|
Miller WG, Yee E, Bono JL. Complete Genome Sequencing of Four Arcobacter Species Reveals a Diverse Suite of Mobile Elements. Genome Biol Evol 2020; 12:3850-3856. [PMID: 32011709 DOI: 10.1093/gbe/evaa014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2020] [Indexed: 11/13/2022] Open
Abstract
Arcobacter species are recovered from a wide variety of sources, including animals, food, and both fresh and marine waters. Several Arcobacter species have also been recovered from human clinical samples and are thus associated tentatively with food- and water-borne human illnesses. Genome sequencing of the poultry isolate Arcobacter cibarius H743 and the Arcobacter acticola, Arcobacter pacificus, and Arcobacter porcinus type strains identified a large number and variety of insertion sequences. This study presents an analysis of these A. acticola, A. cibarius, A. pacificus, and A. porcinus IS elements. The four genomes sequenced here contain 276 complete and degenerate IS elements, representing 13 of the current 29 prokaryotic IS element families. Expansion of the analysis to include 15 other previously sequenced Arcobacter spp. added 73 complete and degenerate IS elements. Several of these IS elements were identified in two or more Arcobacter species, suggesting movement by horizontal gene transfer between the arcobacters. These IS elements are putatively associated with intragenomic deletions and inversions, and tentative movement of antimicrobial resistance genes. The A. cibarius strain H743 megaplasmid contains multiple IS elements common to the chromosome and, unusually, a complete ribosomal RNA locus, indicating that larger scale genomic rearrangements, potentially resulting from IS element-mediated megaplasmid cointegration and resolution may be occurring within A. cibarius and possibly other arcobacters. The presence of such a large and varied suite of mobile elements could have profound effects on Arcobacter biology and evolution.
Collapse
Affiliation(s)
- William G Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - Emma Yee
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California
| | - James L Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, Nebraska
| |
Collapse
|
9
|
Holt CC, van der Giezen M, Daniels CL, Stentiford GD, Bass D. Spatial and temporal axes impact ecology of the gut microbiome in juvenile European lobster (Homarus gammarus). THE ISME JOURNAL 2020; 14:531-543. [PMID: 31676854 PMCID: PMC6976562 DOI: 10.1038/s41396-019-0546-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/14/2019] [Accepted: 10/17/2019] [Indexed: 12/25/2022]
Abstract
Microbial communities within the gut can markedly impact host health and fitness. To what extent environmental influences affect the differential distribution of these microbial populations may therefore significantly impact the successful farming of the host. Using a sea-based container culture (SBCC) system for the on-growing of European lobster (Homarus gammarus), we tracked the bacterial gut microbiota over a 1-year period. We compared these communities with lobsters of the same cohort, retained in a land-based culture (LBC) system to assess the effects of the culture environment on gut bacterial assemblage and describe the phylogenetic structure of the microbiota to compare deterministic and stochastic assembly across both environments. Bacterial gut communities from SBCCs were generally more phylogenetically clustered, and therefore deterministically assembled, compared to those reared in land-based systems. Lobsters in SBCCs displayed significantly more species-rich and species-diverse gut microbiota compared to those retained in LBC. A reduction in the bacterial diversity of the gut was also associated with higher infection prevalence of the enteric viral pathogen Homarus gammarus nudivirus (HgNV). SBCCs may therefore benefit the overall health of the host by promoting the assembly of a more diverse gut bacterial community and reducing the susceptibility to disease.
Collapse
Affiliation(s)
- Corey C Holt
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
- The National Lobster Hatchery, South Quay, Padstow, UK.
- The Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
| | - Mark van der Giezen
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
- The Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
- Centre for Organelle Research, University of Stavanger, 4021, Stavanger, Norway
| | | | - Grant D Stentiford
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, UK
- The Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK
| | - David Bass
- International Centre of Excellence for Aquatic Animal Health, Centre for Environment, Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset, DT4 8UB, UK.
- The Centre for Sustainable Aquaculture Futures, College of Life and Environmental Sciences, University of Exeter, Stocker Road, Exeter, UK.
- Department of Life Sciences, The Natural History Museum, Cromwell Road, Kensington, London, UK.
| |
Collapse
|
10
|
Li B, Li Y, Liu R, Xue C, Zhu X, Tian X, Wang X, Liang J, Zheng Y, Zhang XH. Vibrio ouci sp. nov. and Vibrio aquaticus sp. nov., two marine bacteria isolated from the East China Sea. Int J Syst Evol Microbiol 2020; 70:172-179. [DOI: 10.1099/ijsem.0.003732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Bei Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yuying Li
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Ronghua Liu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Chunxu Xue
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaoyu Zhu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaorong Tian
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiaolei Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Jinchang Liang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Yanfen Zheng
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Xiao-Hua Zhang
- Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China
- Laboratory for Marine Ecology and Environmental Science, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266071, PR China
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| |
Collapse
|
11
|
Pérez-Cataluña A, Salas-Massó N, Figueras MJ. Arcobacter lacus sp. nov. and Arcobacter caeni sp. nov., two novel species isolated from reclaimed water. Int J Syst Evol Microbiol 2019; 69:3326-3331. [DOI: 10.1099/ijsem.0.003101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Affiliation(s)
- Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - María José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
12
|
Mizutani Y, Iehata S, Mori T, Oh R, Fukuzaki S, Tanaka R. Diversity, enumeration, and isolation of Arcobacter spp. in the giant abalone, Haliotis gigantea. Microbiologyopen 2019; 8:e890. [PMID: 31168933 PMCID: PMC6813453 DOI: 10.1002/mbo3.890] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/20/2019] [Indexed: 01/04/2023] Open
Abstract
Arcobacter have been frequently detected in and isolated from bivalves, but there is very little information on the genus Arcobacter in the abalone, an important fishery resource. This study aimed to investigate the genetic diversity and abundance of bacteria from the genus Arcobacter in the Japanese giant abalone, Haliotis gigantea, using molecular methods such as Arcobacter‐specific clone libraries and fluorescence in situ hybridization (FISH). Furthermore, we attempted to isolate the Arcobacter species detected. Twelve genotypes of clones were obtained from Arcobacter‐specific clone libraries. These sequences are not classified with any other known Arcobacter species including pathogenic Arcobacter spp., A. butzleri, A. skirrowii, and A. cryaerophilus, commonly isolated or detected from bivalves. From the FISH analysis, we observed that ARC94F‐positive cells, presumed to be Arcobacter, accounted for 6.96 ± 0.72% of all EUB338‐positive cells. In the culture method, three genotypes of Arcobacter were isolated from abalones. One genotype had a similarity of 99.2%–100.0% to the 16S rRNA gene of Arcobacter marinus, while the others showed only 93.3%–94.3% similarity to other Arcobacter species. These data indicate that abalones carry Arcobacter as a common bacterial genus which includes uncultured species.
Collapse
Affiliation(s)
- Yukino Mizutani
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| | - Shunpei Iehata
- School of Fisheries and Aquaculture Science, Universiti Malaysia Terengganu, Kuala Terengganu, Terengganu, Malaysia
| | - Tetsushi Mori
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, Koganei, Japan
| | - Ryota Oh
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| | - Satoshi Fukuzaki
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| | - Reiji Tanaka
- Graduate School of Bioresources, Laboratory of Marine Microbiology, Mie University, Tsu, Japan
| |
Collapse
|
13
|
Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A, Romalde JL, Figueras MJ. Corrigendum: Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Caos. Front Microbiol 2018; 9:3123. [PMID: 30622519 PMCID: PMC6308300 DOI: 10.3389/fmicb.2018.03123] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 12/03/2018] [Indexed: 12/05/2022] Open
Affiliation(s)
- Alba Pérez-Cataluña
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria José Figueras
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
14
|
Complete Genome Sequence of the Arcobacter mytili Type Strain LMG 24559. Microbiol Resour Announc 2018; 7:MRA01078-18. [PMID: 30533637 PMCID: PMC6256660 DOI: 10.1128/mra.01078-18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 08/20/2018] [Indexed: 01/28/2023] Open
Abstract
Multiple Arcobacter species have been recovered from fresh and contaminated waters, marine environments, and shellfish. Arcobacter mytili was recovered in 2006 from mussels collected from the Ebro River delta in Catalonia, Spain. Multiple Arcobacter species have been recovered from fresh and contaminated waters, marine environments, and shellfish. Arcobacter mytili was recovered in 2006 from mussels collected from the Ebro River delta in Catalonia, Spain. This study describes the complete whole-genome sequence of the A. mytili type strain LMG 24559 (=F2075T =CECT 7386T).
Collapse
|
15
|
Miller WG, Yee E, Huynh S, Parker CT. Complete Genome Sequence of the Arcobacter marinus Type Strain JCM 15502. Microbiol Resour Announc 2018; 7:e01269-18. [PMID: 30533748 PMCID: PMC6256584 DOI: 10.1128/mra.01269-18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 10/03/2018] [Indexed: 02/02/2023] Open
Abstract
Arcobacter species are often recovered from marine environments and are isolated from both seawater and shellfish. Arcobacter marinus was recovered from the homogenate of a sample containing surface seawater, seaweed, and a starfish. This study describes the whole-genome sequence of the A. marinus type strain JCM 15502 (= CL-S1T = KCCM 90072T).
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Emma Yee
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Steven Huynh
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| | - Craig T. Parker
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, California, USA
| |
Collapse
|
16
|
Pérez-Cataluña A, Salas-Massó N, Diéguez AL, Balboa S, Lema A, Romalde JL, Figueras MJ. Revisiting the Taxonomy of the Genus Arcobacter: Getting Order From the Chaos. Front Microbiol 2018; 9:2077. [PMID: 30233547 PMCID: PMC6131481 DOI: 10.3389/fmicb.2018.02077] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 08/14/2018] [Indexed: 11/16/2022] Open
Abstract
Since the description of the genus Arcobacter in 1991, a total of 27 species have been described, although some species have shown 16S rRNA similarities below 95%, which is the cut-off that usually separates species that belong to different genera. The objective of the present study was to reassess the taxonomy of the genus Arcobacter using information derived from the core genome (286 genes), a Multilocus Sequence Analysis (MLSA) with 13 housekeeping genes, as well as different genomic indexes like Average Nucleotide Identity (ANI), in silico DNA–DNA hybridization (isDDH), Average Amino-acid Identity (AAI), Percentage of Conserved Proteins (POCPs), and Relative Synonymous Codon Usage (RSCU). The study included a total of 39 strains that represent all the 27 species included in the genus Arcobacter together with 13 strains that are potentially new species, and the analysis of 57 genomes. The different phylogenetic analyses showed that the Arcobacter species grouped into four clusters. In addition, A. lekithochrous and the candidatus species ‘A. aquaticus’ appeared, as did A. nitrofigilis, the type species of the genus, in separate branches. Furthermore, the genomic indices ANI and isDDH not only confirmed that all the species were well-defined, but also the coherence of the clusters. The AAI and POCP values showed intra-cluster ranges above the respective cut-off values of 60% and 50% described for species belonging to the same genus. Phenotypic analysis showed that certain test combinations could allow the differentiation of the four clusters and the three orphan species established by the phylogenetic and genomic analyses. The origin of the strains showed that each of the clusters embraced species recovered from a common or related environment. The results obtained enable the division of the current genus Arcobacter in at least seven different genera, for which the names Arcobacter, Aliiarcobacter gen. nov., Pseudoarcobacter gen. nov., Haloarcobacter gen. nov., Malacobacter gen. nov., Poseidonibacter gen. nov., and Candidate ‘Arcomarinus’ gen. nov. are proposed.
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Alberto Lema
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Maria J Figueras
- Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
17
|
Pérez-Cataluña A, Salas-Massó N, Figueras MJ. Arcobacter canalis sp. nov., isolated from a water canal contaminated with urban sewage. Int J Syst Evol Microbiol 2018; 68:1258-1264. [PMID: 29488868 DOI: 10.1099/ijsem.0.002662] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Four bacterial strains recovered from shellfish (n=3) and from the water (n=1) of a canal contaminated with urban sewage were recognized as belonging to a novel species of the genus Arcobacter (represented by strain F138-33T) by using a polyphasic characterization. All the new isolates required 2 % NaCl to grow. Phylogenetic analyses based on 16S rRNA gene sequences indicated that all strains clustered together, with the most closely related species being Arcobacter marinus and Arcobactermolluscorum. However, phylogenetic analyses using the concatenated sequences of housekeeping genes (atpA, gyrB, hsp60, gyrA and rpoB) showed that all the novel strains formed a distinct lineage within the genus Arcobacter. Results of in silico DNA-DNA hybridization and the average nucleotide identity between the genome of strain F138-33T and those of the closely related species A. marinus and other relatively closely related species such as A. molluscorum and Arcobacterhalophilus were all below 70 and 96 %, respectively. All the above results, together with the 15 physiological and biochemical tests that could distinguish the newly isolated strains from the closely related species, confirmed that these strains represent a novel species for which the name Arcobacter canalis sp. nov. is proposed, with the type strain F138-33T (=CECT 8984T=LMG 29148T).
Collapse
Affiliation(s)
- Alba Pérez-Cataluña
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - Nuria Salas-Massó
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | - María José Figueras
- Unitat de Microbiologia, Departament de Ciències Mèdiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
18
|
Ramees TP, Dhama K, Karthik K, Rathore RS, Kumar A, Saminathan M, Tiwari R, Malik YS, Singh RK. Arcobacter: an emerging food-borne zoonotic pathogen, its public health concerns and advances in diagnosis and control - a comprehensive review. Vet Q 2017; 37:136-161. [PMID: 28438095 DOI: 10.1080/01652176.2017.1323355] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Arcobacter has emerged as an important food-borne zoonotic pathogen, causing sometimes serious infections in humans and animals. Newer species of Arcobacter are being incessantly emerging (presently 25 species have been identified) with novel information on the evolutionary mechanisms and genetic diversity among different Arcobacter species. These have been reported from chickens, domestic animals (cattle, pigs, sheep, horses, dogs), reptiles (lizards, snakes and chelonians), meat (poultry, pork, goat, lamb, beef, rabbit), vegetables and from humans in different countries. Arcobacters are implicated as causative agents of diarrhea, mastitis and abortion in animals, while causing bacteremia, endocarditis, peritonitis, gastroenteritis and diarrhea in humans. Three species including A. butzleri, A. cryaerophilus and A. skirrowii are predominantly associated with clinical conditions. Arcobacters are primarily transmitted through contaminated food and water sources. Identification of Arcobacter by biochemical tests is difficult and isolation remains the gold standard method. Current diagnostic advances have provided various molecular methods for efficient detection and differentiation of the Arcobacters at genus and species level. To overcome the emerging antibiotic resistance problem there is an essential need to explore the potential of novel and alternative therapies. Strengthening of the diagnostic aspects is also suggested as in most cases Arcobacters goes unnoticed and hence the exact epidemiological status remains uncertain. This review updates the current knowledge and many aspects of this important food-borne pathogen, namely etiology, evolution and emergence, genetic diversity, epidemiology, the disease in animals and humans, public health concerns, and advances in its diagnosis, prevention and control.
Collapse
Affiliation(s)
- Thadiyam Puram Ramees
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kuldeep Dhama
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Kumaragurubaran Karthik
- c Central University Laboratory , Tamil Nadu Veterinary and Animal Sciences University , Chennai , India
| | - Ramswaroop Singh Rathore
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ashok Kumar
- a Division of Veterinary Public Health , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Mani Saminathan
- b Division of Pathology , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Ruchi Tiwari
- d Department of Veterinary Microbiology and Immunology, College of Veterinary Sciences , UP Pandit Deen Dayal Upadhayay Pashu Chikitsa Vigyan Vishwavidyalay Evum Go-Anusandhan Sansthan (DUVASU) , Mathura , India
| | - Yashpal Singh Malik
- e Division of Biological Standardization , ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| | - Raj Kumar Singh
- f ICAR-Indian Veterinary Research Institute (IVRI) , Bareilly , India
| |
Collapse
|
19
|
Tanaka R, Cleenwerck I, Mizutani Y, Iehata S, Bossier P, Vandamme P. Arcobacter haliotis sp. nov., isolated from abalone species Haliotis gigantea. Int J Syst Evol Microbiol 2017; 67:3050-3056. [PMID: 28820118 DOI: 10.1099/ijsem.0.002080] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A Gram-negative, aerobic, polar-flagellated and rod-shaped, sometimes slightly curved bacterium, designated MA5T, was isolated from the gut of an abalone of the species Haliotis gigantea collected in Japan. Phylogenetic analyses based on 16S rRNA, gyrB, hsp60 and rpoB gene sequences placed strain MA5T in the genus Arcobacter in an independent phylogenetic line. Comparison of the 16S rRNA gene sequence of this strain with those of the type strains of the established Arcobacter species revealed A. nitrofigilis (95.1 %) as nearest neighbour. Strain MA5T grew optimally at 25 °C, pH 6.0 to 9.0 and in the presence of 2 to 5 % (w/v) NaCl under both aerobic and microaerobic conditions. The predominant fatty acids found were summed feature 3 (iso-C15 : 0 2-OH and/or C16 : 1 ω7c), C12 : 0 3-OH and C18 : 1 ω7c. Menaquinone-6 (MK-6) and menaquinone-7 (MK-7) were found as the major respiratory quinones. The major polar lipids detected were phosphatidylethanolamine and phosphatidylglycerol. Strain MA5T could be differentiated phenotypically from the phylogenetic closest Arcobacter species by its ability to grow on 0.05 % safranin and 0.01 % 2,3,5-triphenyl tetrazolium chloride (TTC), but not on 0.5 % NaCl. The obtained DNA G+C content of strain MA5T was 27.9 mol%. Based on the phylogenetic, chemotaxonomic and phenotypic distinctiveness of MA5T, this strain is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter haliotis sp. nov. is proposed. The type strain is MA5T (=LMG 28652T=JCM 31147T).
Collapse
Affiliation(s)
- Reiji Tanaka
- Laboratory of Marine Microbiology, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - Ilse Cleenwerck
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Campus Ledeganck, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - Yukino Mizutani
- Laboratory of Marine Microbiology, Mie University, Kurima-machiya 1577, Tsu, Mie, 514-8507, Japan
| | - Shunpei Iehata
- School of Fisheries and Aquaculture Science, University Malaysia Terengganu, 21030 Kuala Terengganu, Terengganu, Malaysia
| | - Peter Bossier
- Laboratory of Aquaculture and Artemia Reference Center, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000 Ghent, Belgium
| | - Peter Vandamme
- BCCM/LMG Bacteria Collection, Laboratory of Microbiology, Faculty of Science, Ghent University, Campus Ledeganck, K. L. Ledeganckstraat 35, B-9000 Ghent, Belgium
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, Campus Ledeganck, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| |
Collapse
|
20
|
González A, Bayas Morejón IF, Ferrús MA. Isolation, molecular identification and quinolone-susceptibility testing of Arcobacter spp. isolated from fresh vegetables in Spain. Food Microbiol 2017; 65:279-283. [PMID: 28400014 DOI: 10.1016/j.fm.2017.02.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 01/23/2017] [Accepted: 02/07/2017] [Indexed: 10/20/2022]
Abstract
Some species of the Arcobacter genus are considered emerging foodborne and waterborne enteropathogens. However, the presence of Arcobacter spp. in vegetables very little is known, because most studies have focused on foods of animal origin. On the other hand, quinolones are considered as first-line drugs for the treatment of infection by campylobacteria in human patients, but few data are currently available about the resistance levels to these antibiotics among Arcobacter species. Therefore, the aim of this study was to investigate the presence and diversity of arcobacters isolated from fresh vegetables such as lettuces, spinaches, chards and cabbages. Resistance to quinolones of the isolates was also investigated. One hundred fresh vegetables samples purchased from seven local retail markets in Valencia (Spain) during eight months were analysed. The study included 41 lettuces, 21 spinaches, 34 chards and 4 cabbages. Samples were analysed by culture and by molecular methods before and after enrichment. By culture, 17 out of 100 analysed samples were Arcobacter positive and twenty-five isolates were obtained from them. Direct detection by PCR was low, with only 4% Arcobacter spp. positive samples. This percentage increased considerably, up 20%, after 48 h enrichment. By polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP), 17 out of the 25 isolates were identified as A. butzleri and 8 as A. cryaerophilus. Only two A. butzleri isolates showed resistance to levofloxacin and ciprofloxacin. The sequencing of a fragment of the QRDR region of the gyrA gene from the quinolones-resistant isolates revealed the presence of a mutation in position 254 of this gene (C-T transition). This study is the first report about the presence of pathogenic species of Arcobacter spp. in chards and cabbages and confirms that fresh vegetables can act as transmission vehicle to humans. Moreover, the presence of A. butzleri quinolone resistant in vegetables could pose a potential public health risk.
Collapse
Affiliation(s)
- Ana González
- Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - Isidro Favián Bayas Morejón
- Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| | - María Antonia Ferrús
- Department of Biotechnology, Universitat Politècnica de València, Camino de Vera s/n, 46022, Valencia, Spain
| |
Collapse
|
21
|
Rovetto F, Carlier A, Van den Abeele AM, Illeghems K, Van Nieuwerburgh F, Cocolin L, Houf K. Characterization of the emerging zoonotic pathogen Arcobacter thereius by whole genome sequencing and comparative genomics. PLoS One 2017; 12:e0180493. [PMID: 28671965 PMCID: PMC5495459 DOI: 10.1371/journal.pone.0180493] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/17/2017] [Indexed: 11/24/2022] Open
Abstract
Four Arcobacter species have been associated with human disease, and based on current knowledge, these Gram negative bacteria are considered as potential food and waterborne zoonotic pathogens. At present, only the genome of the species Arcobacter butzleri has been analysed, and still little is known about their physiology and genetics. The species Arcobacter thereius has first been isolated from tissue of aborted piglets, duck and pig faeces, and recently from stool of human patients with enteritis. In the present study, the complete genome and analysis of the A. thereius type strain LMG24486T, as well as the comparative genome analysis with 8 other A. thereius strains are presented. Genome analysis revealed metabolic pathways for the utilization of amino acids, which represent the main source of energy, together with the presence of genes encoding for respiration-associated and chemotaxis proteins. Comparative genome analysis with the A. butzleri type strain RM4018 revealed a large correlation, though also unique features. Furthermore, in silico DDH and ANI based analysis of the nine A. thereius strains disclosed clustering into two closely related genotypes. No discriminatory differences in genome content nor phenotypic behaviour were detected, though recently the species Arcobacter porcinus was proposed to encompass part of the formerly identified Arcobacter thereius strains. The report of the presence of virulence associated genes in A. thereius, the presence of antibiotic resistance genes, verified by in vitro susceptibility testing, as well as other pathogenic related relevant features, support the classification of A. thereius as an emerging pathogen.
Collapse
Affiliation(s)
- Francesca Rovetto
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Aurélien Carlier
- Laboratory of Microbiology, Faculty of Sciences, Ghent University, K. L. Ledeganckstraat 35, Ghent, Belgium
| | | | - Koen Illeghems
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Filip Van Nieuwerburgh
- Laboratory of Pharmaceutical Biotechnology, Faculty of Pharmaceutical Sciences, Ghent University, Harelbekestraat 72, Ghent, Belgium
| | - Luca Cocolin
- Department of Forestry, Agriculture and Food Sciences, University of Torino, Largo Braccini 2, Grugliasco, Italy
| | - Kurt Houf
- Department of Veterinary Public Health and Food Safety, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| |
Collapse
|
22
|
Diéguez AL, Balboa S, Magnesen T, Romalde JL. Arcobacter lekithochrous sp. nov., isolated from a molluscan hatchery. Int J Syst Evol Microbiol 2017; 67:1327-1332. [PMID: 28109200 DOI: 10.1099/ijsem.0.001809] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Four bacterial strains, LFT 1.7T, LT2C 2.5, LT4C 2.8 and TM 4.6, were isolated from great scallop (Pecten maximus) larvae and tank seawater in a Norwegian hatchery and characterized by a polyphasic approach including determination of phenotypic, chemotaxonomic and genomic traits. All were Gram-stain-negative, motile rods, oxidase- and catalase-positive and required sea salts for growth. Major fatty acids present were summed feature 3 (C16 : 1ω7c/C16 : 1ω6c), summed feature 8 (C18 : 1ω7c or C18 : 1ω6c), C16 : 0, C14 : 0, summed feature 2 (C14 : 0 3-OH/iso-C16 : 1 I), C12 : 0 3-OH and C12 : 0. Strain LFT 1.7T contained menaquinone MK-6 as the sole respiratory quinone. Phylogenetic analysis based on 16S rRNA gene sequences indicated that all strains formed a distinct lineage within the genus Arcobacter with a low similarity to known species (94.77-95.32 %). The DNA G+C content was 28.7 mol%. Results of in silico DNA-DNA hybridization and average nucleotide identity confirmed that the isolates constitute a novel species of Arcobacter, for which the name Arcobacter lekithochrous sp. nov. is proposed. The type strain is LFT 1.7T (=CECT 8942T=DSM 100870T).
Collapse
Affiliation(s)
- Ana L Diéguez
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago, 15782 Santiago de Compostela, Spain
| | - Sabela Balboa
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago, 15782 Santiago de Compostela, Spain
| | - Thorolf Magnesen
- Department of Biology, Faculty of Mathematics and Natural Sciences, University of Bergen, Bergen, Norway
| | - Jesús L Romalde
- Departamento de Microbiología y Parasitología, CIBUS-Facultad de Biología, Universidade de Santiago, 15782 Santiago de Compostela, Spain
| |
Collapse
|
23
|
Šilha D, Pejchalová M, Šilhová L. Susceptibility to 18 drugs and multidrug resistance of Arcobacter isolates from different sources within the Czech Republic. J Glob Antimicrob Resist 2017; 9:74-77. [PMID: 28400212 DOI: 10.1016/j.jgar.2017.01.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 01/09/2017] [Accepted: 01/20/2017] [Indexed: 11/30/2022] Open
Abstract
OBJECTIVES Arcobacter spp. are considered to be potential foodborne pathogens, and consumption of contaminated food containing these bacteria could endanger human and animal health. Arcobacter butzleri and Arcobacter cryaerophilus are the species most frequently isolated from food of animal origin and from other samples. The aim of this study was to evaluate the susceptibility of arcobacters isolated in the Czech Republic. No information about antibiotic susceptibility and multidrug resistance of arcobacters isolated in the Czech Republic is available in the literature before now. METHODS The antimicrobial resistance of A. butzleri (n=80) and A. cryaerophilus (n=20) isolated from meat of animal origin, water sources and clinical samples was examined by the disk diffusion method. RESULTS Arcobacters were resistant to one or more antimicrobial agents in 99% (99/100) of tested isolates. Most of the Arcobacter isolates were resistant to β-lactam antibiotics, i.e. ampicillin (81.0%), amoxicillin/clavulanic acid (28.0%), cefalotin (73.0%) and aztreonam (93.0%). Arcobacters were also frequently resistant to lincosamides, i.e. clindamycin (98.0%). Of the aminoglycosides, amikacin, gentamicin and tobramycin were evaluated to be the most effective antibiotics among those tested against arcobacters. CONCLUSIONS These results demonstrate substantial resistance in Arcobacter isolates to 18 antimicrobial agents commonly used in medical and veterinary medicine. Multidrug resistance was found in 93.8% (75/80) of A. butzleri isolates and 70.0% (14/20) of A. cryaerophilus isolates.
Collapse
Affiliation(s)
- David Šilha
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic.
| | - Marcela Pejchalová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| | - Lucie Šilhová
- Department of Biological and Biochemical Sciences, Faculty of Chemical Technology, University of Pardubice, Studentská 573, 532 10 Pardubice, Czech Republic
| |
Collapse
|
24
|
Park S, Jung YT, Kim S, Yoon JH. Arcobacter acticola sp. nov., isolated from seawater on the East Sea in South Korea. J Microbiol 2016; 54:655-9. [PMID: 27687227 DOI: 10.1007/s12275-016-6268-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 08/11/2016] [Accepted: 08/11/2016] [Indexed: 10/20/2022]
Abstract
A Gram-stain-negative, facultative aerobic, non-flagellated, and rod-shaped bacterium, designated AR-13(T), was isolated from a seawater on the East Sea in South Korea, and subjected to a polyphasic taxonomic study. Strain AR-13(T) grew optimally at 30°C, at pH 7.0-8.0 and in the presence of 0-0.5% (w/v) NaCl. The phylogenetic trees based on 16S rRNA gene sequences showed that strain AR-13(T) fell within the clade comprising the type strains of Arcobacter species, clustering coherently with the type strain of Arcobacter venerupis. Strain AR-13(T) exhibited 16S rRNA gene sequence similarity values of 98.1% to the type strain of A. venerupis and of 93.2-96.9% to the type strains of the other Arcobacter species. Strain AR-13(T) contained MK-6 as the only menaquinone and summed feature 3 (C16:1 ω7c and/or C16:1 ω6c), C16:0, C18:1 ω7c, and summed feature 2 (iso-C16:1 I and/or C14:0 3-OH) as the major fatty acids. The major polar lipids detected in strain AR-13(T) were phosphatidylethanolamine, phosphatidylglycerol, and one unidentified aminophospholipid. The DNA G+C content was 28.3 mol% and its mean DNA-DNA relatedness value with the type strain of A. venerupis was 21%. Differential phenotypic properties, together with its phylogenetic and genetic distinctiveness, revealed that strain AR-13(T) is separated from recognized Arcobacter species. On the basis of the data presented, strain AR-13(T) is considered to represent a novel species of the genus Arcobacter, for which the name Arcobacter acticola sp. nov. is proposed. The type strain is AR-13(T) (=KCTC 52212(T) =NBRC 112272(T)).
Collapse
Affiliation(s)
- Sooyeon Park
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yong-Taek Jung
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.,University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Sona Kim
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jung-Hoon Yoon
- Department of Food Science and Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|