1
|
Endika MF, Barnett DJM, Olmos EM, ter Braak CJF, Arts ICW, Penders J, Nauta A, Leemhuis H, Venema K, Smidt H. Assessing the potential for non-digestible carbohydrates toward mitigating adverse effects of antibiotics on microbiota composition and activity in an in vitro colon model of the weaning infant. FEMS Microbiol Ecol 2025; 101:fiaf028. [PMID: 40113239 PMCID: PMC11963755 DOI: 10.1093/femsec/fiaf028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/02/2025] [Accepted: 03/19/2025] [Indexed: 03/22/2025] Open
Abstract
Environmental factors like diet and antibiotics modulate the gut microbiota in early life. During weaning, gut microbiota progressively diversifies through exposure to non-digestible carbohydrates (NDCs) from diet, while antibiotic perturbations might disrupt this process. Supplementing an infant's diet with prebiotic NDCs may mitigate the adverse effects of antibiotics on gut microbiota development. This study evaluated the influence of supplementation with 2-fucosyllactose (2'-FL), galacto-oligosaccharides (GOS), or isomalto/malto-polysaccharides containing 87% of α(1→6) linkages (IMMP-87), on the recovery of antibiotic-perturbed microbiota. The TIM-2 in vitro colon model inoculated with fecal microbiota of 9-month-old infants was used to simulate the colon of weaning infants exposed to the antibiotics amoxicillin/clavulanate or azithromycin. Both antibiotics induced changes in microbiota composition, with no signs of recovery in azithromycin-treated microbiota within 72 h. Moreover, antibiotic exposure affected microbiota activity, indicated by a low valerate production, and azithromycin treatment was associated with increased succinate production. The IMMP-87 supplementation promoted the compositional recovery of amoxicillin/clavulanate-perturbed microbiota, associated with the recovery of Ruminococcus, Ruminococcus gauvreauii group, and Holdemanella. NDC supplementation did not influence compositional recovery of azithromycin-treated microbiota. Irrespective of antibiotic exposure, supplementation with 2'-FL, GOS, or IMMP-87 enhanced microbiota activity by increasing short-chain fatty acids production (acetate, propionate, and butyrate).
Collapse
Affiliation(s)
- Martha F Endika
- Laboratory of Microbiology, Wageningen University & Research, 6708 PE Wageningen, The Netherlands
| | - David J M Barnett
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6229 EN Maastricht, The Netherlands
- School for Nutrition and Translational Research in Metabolism, Department of Medical Microbiology, Infection Prevention and Infectious Diseases, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Emiliana M Olmos
- Laboratory of Microbiology, Wageningen University & Research, 6708 PE Wageningen, The Netherlands
| | - Cajo J F ter Braak
- Biometris, Wageningen University & Research, 6708 PB Wageningen, The Netherlands
| | - Ilja C W Arts
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, 6229 EN Maastricht, The Netherlands
| | - John Penders
- School for Nutrition and Translational Research in Metabolism, Department of Medical Microbiology, Infection Prevention and Infectious Diseases, Maastricht University Medical Center+, 6229 HX Maastricht, The Netherlands
| | - Arjen Nauta
- FrieslandCampina, 3818 LE Amersfoort, The Netherlands
| | - Hans Leemhuis
- Avebe Innovation Center, 9747 AA Groningen, The Netherlands
| | - Koen Venema
- Centre for Healthy Eating & Food Innovation (HEFI), Maastricht University—Campus Venlo, 5928 SZ Venlo, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, 6708 PE Wageningen, The Netherlands
| |
Collapse
|
2
|
Węsierska E, Micek P, Adamski MG, Gondek K, Lis M, Trela M, Wojtysiak D, Kowal J, Wyrobisz-Papiewska A, Kunstman G, Mosiołek S, Smoroń K. Changes in the intestinal microbiota of broiler chicken induced by dietary supplementation of the diatomite-bentonite mixture. BMC Vet Res 2025; 21:13. [PMID: 39799366 PMCID: PMC11724591 DOI: 10.1186/s12917-024-04439-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 12/10/2024] [Indexed: 01/15/2025] Open
Abstract
BACKGROUND Diatomite is a source of biologically available silicon but in feed industry its insecticide and anti-caking properties have been also widely recognized. The aim of the study was to evaluate the effect of dietary diatomite-bentonite mixture (DBM) supplementation on the quantitative and qualitative composition of the bacterial microbiome of the broiler chicken gut. The trial was carried out on 960 Ross 308 broiler chickens divided into 2 experimental groups throughout the entire rearing period lasting 6 weeks. The birds were fed complete granulated diets without (group C) or with DBM (group E) in an amount of 1% from the 11 day of life. Two nutritionally balanced diets were used, tailored to the age of the broilers: a grower diet (from day 11 to 34) and a finisher diet (from day 35 to 42 of life). RESULTS Diatomite used in a mixture with bentonite significantly altered the microbiome. Restricting the description to species that comprise a minimum of 1% of all analyzed sequences, 36 species in group E (with diatomite) and 30 species in group C (without diatomite) were selected. Several bacteria species were identified in intestinal contents of chickens for the first time. Thirteen species occurred only in group E: Agathobaculum butyriciproducens, Anaerobutyricum hallii, Anaerobutyricum soehngenii, Blautia producta ATCC 27,340 = DSM 2950, Gordonibacter pamelaeae 7-10-1-b, Helicobacter pullorum NCTC 12,824, Lactobacillus crispatus, L. helveticus DSM 20,075 = CGMCC 1.1877, Mucispirillum schaedleri, Phascolarctobacterium faecium, Phocaeicola coprocola DSM 17,136, P. massiliensis, and Ruthenibacterium lactatiformans. CONCLUSIONS The findings highlight the intricate and potentially consequential relationship between diet, specifically diatomite-bentonite mixture supplementation, and gut microbiota composition.
Collapse
Affiliation(s)
- E Węsierska
- Department of Infectious Diseases and Public Health, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland.
| | - P Micek
- Department of Nutrition, Animal Biotechnology, and Fisheries, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - M G Adamski
- SPARK-TECH, Sp. z o.o., Rynek Główny 28, Krakow, 31-010, Poland
| | - K Gondek
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, Krakow, 31-120, Poland
| | - M Lis
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - M Trela
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - D Wojtysiak
- Department of Genetics, Animal Breeding and Ethology, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - J Kowal
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - A Wyrobisz-Papiewska
- Department of Zoology and Animal Welfare, University of Agriculture in Krakow, Al. Mickiewicza 24/28, Krakow, 30-059, Poland
| | - G Kunstman
- SPARK-TECH, Sp. z o.o., Rynek Główny 28, Krakow, 31-010, Poland
| | - S Mosiołek
- SPARK-TECH, Sp. z o.o., Rynek Główny 28, Krakow, 31-010, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Lojasiewicza 11, Krakow, 30-348, Poland
- Jagiellonian Centre for Experimental Therapeutics, Jagiellonian University, Bobrzynskiego 14, Krakow, 30-348, Poland
| | - K Smoroń
- Specialized Mining Company "Górtech" Sp. z o.o, ul. Wielicka 50, Krakow, 30-552, Poland
| |
Collapse
|
3
|
Augustijn QJJ, Grefhorst A, de Groen P, Wortelboer K, Seegers JFM, Gül IS, Suenaert P, Verheij J, de Vos WM, Herrema H, Nieuwdorp M, Holleboom AG. Randomised double-blind placebo-controlled trial protocol to evaluate the therapeutic efficacy of lyophilised faecal microbiota capsules amended with next-generation beneficial bacteria in individuals with metabolic dysfunction-associated steatohepatitis. BMJ Open 2025; 15:e088290. [PMID: 39788762 PMCID: PMC11784342 DOI: 10.1136/bmjopen-2024-088290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 12/12/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND The spectrum of metabolic dysfunction-associated steatotic liver disease (MASLD) is highly prevalent, affecting 30% of the world's population, with a significant risk of hepatic and cardiometabolic complications. Different stages of MASLD are accompanied by distinct gut microbial profiles, and several microbial components have been implicated in MASLD pathophysiology. Indeed, earlier studies demonstrated that hepatic necroinflammation was reduced in individuals with MASLD after allogenic faecal microbiota transplantation (FMT) from healthy donors on a vegan diet. Here, we further investigate the therapeutic potential of gut microbiome modulation using a syntrophic combination of next-generation beneficial bacteria with FMT in individuals with advanced MASLD. METHODS AND ANALYSIS This trial is a randomised, double-blind, placebo-controlled study investigating the therapeutic potential of lyophilised faecal microbiota capsules (LFMCs) in individuals with metabolic dysfunction-associated steatohepatitis. In this study, 48 participants will be randomised 1:1 to receive either healthy vegan donor LFMCs or placebo for 24 weeks. In addition, all participants will be supplemented with a set of next-generation beneficial bacteria, including Anaerobutyricum soehngenii, pasteurised Akkermansia muciniphila and Bifidobacterium animalis subsp. lactis, as well as fructo-oligosaccharides. A liver biopsy will be performed at baseline and at the end of the trial. In addition, participants will be assessed through MRI, FibroScan, blood tests, faecal samples and continuous glucose monitoring. The first participant was enrolled on 25 April 2023. ETHICS AND DISSEMINATION Ethical approval was obtained from the Medical Ethics Committee of the University Medical Centre of Amsterdam. The results of this study will be disseminated through peer-reviewed journals. TRIAL REGISTRATION NUMBER The trial is registered on clinicaltrials.gov (NCT05821010).
Collapse
Affiliation(s)
- Quinten J J Augustijn
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Aldo Grefhorst
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Pleun de Groen
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | - Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centres, Amsterdam, Netherlands
- University of Amsterdam, Amsterdam, Netherlands
| | | | | | | | | | | | - Hilde Herrema
- Amsterdam University Medical Centres, Amsterdam, Netherlands
| | - Max Nieuwdorp
- Department of Internal Medicine, Amsterdam UMC, Vrije Universiteit Amsterdam, Academisch Medisch Centrum, Amsterdam, Netherlands
| | | |
Collapse
|
4
|
Liu Y, Wang F, Zhou Z, Liu B, Wu Z, Pan X. Profiling and comprehensive analysis of microbiome and ARGs of nurses and nursing workers in China: a cross-sectional study. Sci Rep 2024; 14:31301. [PMID: 39732868 PMCID: PMC11682234 DOI: 10.1038/s41598-024-82659-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 12/06/2024] [Indexed: 12/30/2024] Open
Abstract
Hospital-acquired infection (HAI) and antimicrobial resistance (AMR) represent major challenges in healthcare system. Despite numerous studies have assessed environmental and patient samples, very few studies have explored the microbiome and resistome profiles of medical staff including nursing workers. This cross-sectional study was performed in a tertiary hospital in China and involved 25 nurses (NSs), 25 nursing workers (NWs), and 55 non-medical control (NC). Stool samples from all participants and hand samples (i.e., the microbiome sample from hand skin, which were collected by swabbing both hands with a sponge-swab soaked with neutralized buffer and centrifuging the liquid buffer) from NSs and NWs were collected for metagenomic analysis. Metagenomic analysis revealed that medical staff exhibited lower abundances of beneficial species such as Blautia, and Bifidobacterium in the gut microbiome. However, an important potential pathogen, Staphylococcus haemolyticus, was enriched in the hands of NWs, suggesting a considerable prevalence of pathogenesis and multi-drug resistance. Accordantly, ARG analysis revealed worse hand hygiene among NWs than among NSs, characterized by a higher diversity of ARGs and a higher abundance of ARGs conferring multi-drug resistance including mdtF, acrB, AcrF and evgS. This study provides a comprehensive overview of the microbial and ARG profiles in the gut and hands of NSs and NWs. The higher abundance of potential pathogens and diverse multi-drug resistant ARGs in NWs hands indicates insufficient hand hygiene and a higher risk of HAI in this subgroup. This study is the first to highlight the critical need to improve hand hygiene among NWs, thus mitigating the risks of AMR and HAI.
Collapse
Affiliation(s)
- Ye Liu
- Department of Nursing, The First Affiliated Hospital, Zhejiang University School of Medicine, No. 79, Qingchun Rd, Hangzhou, 310003, China
| | - Fang Wang
- Department of infectious diseases, Beilun District People's Hospital, Ningbo, 315800, Zhejiang, China
| | - Ziyuan Zhou
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Bowen Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Zhongwen Wu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xiaxia Pan
- Cancer Center, Department of Pulmonary and Critical Care Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
| |
Collapse
|
5
|
Lin TL, Chen WJ, Hung CM, Wong YL, Lu CC, Lai HC. Characterization and Safety Evaluation of Autoclaved Gut Commensal Parabacteroides goldsteinii RV-01. Int J Mol Sci 2024; 25:12660. [PMID: 39684372 DOI: 10.3390/ijms252312660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Gut commensals play important roles in maintaining the homeostasis of human health. Previous studies indicated that the abundance of P. goldsteinii in animal hosts was increased by the administration of prebiotics such as polysaccharides purified from iconic oriental medicinal fungi. Subsequently, P. goldsteinii was found to exert beneficial effects on the amelioration of multiple chronic inflammation-associated diseases. Even so, during the process of the development of P. goldsteinii as a next-generation probiotic (NGP), care has to be taken when it is used as a functional food ingredient. In this study, we isolated a novel P. goldsteinii strain, RV-01, from the feces of a healthy adult and carried out comprehensive analyses of its genomic and phenotypic characteristics. Bioinformatic analysis of P. goldsteinii RV-01 revealed the absence of potential virulence genes, as well as the presence of genes and traits potentially beneficial to human health, such as the production of short-chain fatty acids, anti-inflammatory lipopolysaccharides, and zwitterionic capsular polysaccharides, as well as immune regulatory proteins. To circumvent any potential side effects, the P. goldsteinii RV-01 was autoclaved before proceeding to the nonclinical safety assessment. The autoclaved P. goldsteinii RV-01 retained its anti-inflammatory effect in human colon epithelial cells. In addition to the three genotoxicity assays, 28-day subacute and 90-day subchronic animal toxicity studies (the highest dose tested was equivalent to 8.109 × 1010P. goldsteinii RV-01 cells/kg body weight/day) were also implemented. The results of all studies were negative for toxicity. These results support the conclusion that autoclaved P. goldsteinii RV-01 is safe for use as a food ingredient.
Collapse
|
6
|
Naghibi M, Pont-Beltran A, Lamelas A, Llobregat L, Martinez-Blanch JF, Rojas A, Álvarez B, López Plaza B, Arcos Castellanos L, Chenoll E, Vijayakumar V, Day R. Effect of Postbiotic Bifidobacterium longum CECT 7347 on Gastrointestinal Symptoms, Serum Biochemistry, and Intestinal Microbiota in Healthy Adults: A Randomised, Parallel, Double-Blind, Placebo-Controlled Pilot Study. Nutrients 2024; 16:3952. [PMID: 39599737 PMCID: PMC11597252 DOI: 10.3390/nu16223952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES A randomised, double-blind, placebo-controlled pilot trial was conducted to assess the effect of heat-treated Bifidobacterium longum CECT 7347 (HT-ES1) in healthy adults with mild to moderate digestive symptoms. A total of 60 participants were recruited and received either HT-ES1 or an identical placebo for 8 weeks with a further follow-up at week 10. METHODS This study monitored changes in the total Gastrointestinal Symptom Rating Scale for IBS score (GSRS-IBS), Irritable Bowel Syndrome Symptom Severity Scale (IBS-SSS), IBS Quality of Life index (IBS-QoL), gut microbiome using 16S rRNA sequencing, and the Visceral Sensitivity Index, as well as a range of biochemical markers, anthropometric parameters, and adverse events. RESULTS While minimal changes were observed in gastrointestinal (GI) symptoms, the HT-ES1 group showed a significant decrease in total and non-HDL cholesterol compared to the placebo. The intervention group also exhibited a significant increase in the abundance of the genera Faecalibacterium and Anaerobutyricum, both of which were positively correlated with butyrate concentrations. Faecal calprotectin significantly increased over time in the placebo group but remained stable in the HT-ES1 group. CONCLUSIONS Overall, these findings suggest that HT-ES1 may promote gut health by increasing butyrate-producing bacteria in the gut, maintaining normal levels of faecal calprotectin and reducing serum cholesterol.
Collapse
Affiliation(s)
- Malwina Naghibi
- Medical Department, ADM Health & Wellness, London SE1 7NT, UK
| | - Adria Pont-Beltran
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Araceli Lamelas
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Laura Llobregat
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Juan F. Martinez-Blanch
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Antonia Rojas
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Beatriz Álvarez
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | - Bricia López Plaza
- Food, Nutrition and Health Platform, Hospital La Paz Institzonulute for Health Research (IdiPAZ), 28046 Madrid, Spain
- Medicine Department, Faculty of Medicine, Complutense University of Madrid, Plaza de Ramón y Cajal, s/n, 28040 Madrid, Spain
| | - Lucia Arcos Castellanos
- Food, Nutrition and Health Platform, Hospital La Paz Institzonulute for Health Research (IdiPAZ), 28046 Madrid, Spain
| | - Empar Chenoll
- ADM Research and Development Center-Valencia, ADM Health & Wellness, Parc Científic Universitat de València, 46980 València, Spain
| | | | - Richard Day
- Medical Department, ADM Health & Wellness, London SE1 7NT, UK
| |
Collapse
|
7
|
Attaye I, Witjes JJ, Koopen AM, van der Vossen EW, Zwirs D, Wortelboer K, Collard D, Kemper EM, Winkelmeijer M, Holst JJ, Hazen SL, Kuipers F, Stroes ES, Groen AK, de Vos WM, Nieuwdorp M, Herrema H. Oral Anaerobutyricum soehngenii augments glycemic control in type 2 diabetes. iScience 2024; 27:110455. [PMID: 39139405 PMCID: PMC11321313 DOI: 10.1016/j.isci.2024.110455] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 11/21/2023] [Accepted: 07/02/2024] [Indexed: 08/15/2024] Open
Abstract
This randomized, double-blind, placebo-controlled trial investigated the impact of 14-day Anaerobutyricum soehngenii L2-7 supplementation on postprandial glucose levels in 25 White Dutch males with type 2 diabetes (T2D) on stable metformin therapy. The primary endpoint was the effect of A. soehngenii versus placebo on glucose excursions and variability as determined by continuous glucose monitoring. Secondary endpoints were changes in ambulatory 24-h blood pressure, incretins, circulating metabolites and excursions of plasma short-chain fatty acids (SCFAs) and bile acids upon a standardized meal. Results showed that A. soehngenii supplementation for 14 days significantly improved glycemic variability and mean arterial blood pressure, without notable changes in SCFAs, bile acids, incretin levels, or anthropometric parameters as compared to placebo-treated controls. Although well-tolerated and effective in improving glycemic control in the intervention group, further research in larger and more diverse populations is needed to generalize these findings.
Collapse
Affiliation(s)
- Ilias Attaye
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Julia J. Witjes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Annefleur M. Koopen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | | | - Diona Zwirs
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Koen Wortelboer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
| | - Didier Collard
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Elles Marleen Kemper
- Department of Pharmacy and Clinical Pharmacology, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Maaike Winkelmeijer
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Jens J. Holst
- NNF Center for Basic Metabolic Research and Department of Biomedical Sciences, Copenhagen University, Copenhagen, Denmark
| | - Stanley L. Hazen
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Folkert Kuipers
- Department of Pediatrics and European Research Institute for the Biology of Ageing (ERIBA), University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Erik S.G. Stroes
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Albert K. Groen
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Willem M. de Vos
- Wageningen University, Wageningen, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| | - Hilde Herrema
- Department of Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes & Metabolism, Amsterdam, the Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, the Netherlands
- Department of Experimental Vascular Medicine, Amsterdam University Medical Centers, Amsterdam, the Netherlands
| |
Collapse
|
8
|
Kulecka M, Czarnowski P, Bałabas A, Turkot M, Kruczkowska-Tarantowicz K, Żeber-Lubecka N, Dąbrowska M, Paszkiewicz-Kozik E, Walewski J, Ługowska I, Koseła-Paterczyk H, Rutkowski P, Kluska A, Piątkowska M, Jagiełło-Gruszfeld A, Tenderenda M, Gawiński C, Wyrwicz L, Borucka M, Krzakowski M, Zając L, Kamiński M, Mikula M, Ostrowski J. Microbial and Metabolic Gut Profiling across Seven Malignancies Identifies Fecal Faecalibacillus intestinalis and Formic Acid as Commonly Altered in Cancer Patients. Int J Mol Sci 2024; 25:8026. [PMID: 39125593 PMCID: PMC11311272 DOI: 10.3390/ijms25158026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The key association between gut dysbiosis and cancer is already known. Here, we used whole-genome shotgun sequencing (WGS) and gas chromatography/mass spectrometry (GC/MS) to conduct metagenomic and metabolomic analyses to identify common and distinct taxonomic configurations among 40, 45, 71, 34, 50, 60, and 40 patients with colorectal cancer, stomach cancer, breast cancer, lung cancer, melanoma, lymphoid neoplasms and acute myeloid leukemia (AML), respectively, and compared the data with those from sex- and age-matched healthy controls (HC). α-diversity differed only between the lymphoid neoplasm and AML groups and their respective HC, while β-diversity differed between all groups and their HC. Of 203 unique species, 179 and 24 were under- and over-represented, respectively, in the case groups compared with HC. Of these, Faecalibacillus intestinalis was under-represented in each of the seven groups studied, Anaerostipes hadrus was under-represented in all but the stomach cancer group, and 22 species were under-represented in the remaining five case groups. There was a marked reduction in the gut microbiome cancer index in all case groups except the AML group. Of the short-chain fatty acids and amino acids tested, the relative concentration of formic acid was significantly higher in each of the case groups than in HC, and the abundance of seven species of Faecalibacterium correlated negatively with most amino acids and formic acid, and positively with the levels of acetic, propanoic, and butanoic acid. We found more differences than similarities between the studied malignancy groups, with large variations in diversity, taxonomic/metabolomic profiles, and functional assignments. While the results obtained may demonstrate trends rather than objective differences that correlate with different types of malignancy, the newly developed gut microbiota cancer index did distinguish most of the cancer cases from HC. We believe that these data are a promising step forward in the search for new diagnostic and predictive tests to assess intestinal dysbiosis among cancer patients.
Collapse
Affiliation(s)
- Maria Kulecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Paweł Czarnowski
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Aneta Bałabas
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maryla Turkot
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Kamila Kruczkowska-Tarantowicz
- Department of Internal Medicine and Hematology, Military Institute of Medicine—National Research Institute, 04-141 Warsaw, Poland
| | - Natalia Żeber-Lubecka
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michalina Dąbrowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Ewa Paszkiewicz-Kozik
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jan Walewski
- Department of Lymphoid Malignancies, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Iwona Ługowska
- Early Phase Clinical Trials Unit, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Anna Kluska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Magdalena Piątkowska
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Agnieszka Jagiełło-Gruszfeld
- Department of Breast Cancer & Reconstructive Surgery, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Tenderenda
- Department of Oncological Surgery and Neuroendocrine Tumors, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Cieszymierz Gawiński
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Lucjan Wyrwicz
- Department of Oncology and Radiotherapy, Maria Sklodowska-Curie National Cancer Research Institute, 02-781 Warsaw, Poland
| | - Magdalena Borucka
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, Maria Skłodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Leszek Zając
- Department of Gastrointestinal Surgical Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Kamiński
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Cancer Prevention, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Michał Mikula
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| | - Jerzy Ostrowski
- Department of Gastroenterology, Hepatology and Clinical Oncology, Centre of Postgraduate Medical Education, 02-781 Warsaw, Poland
- Department of Genetics, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland
| |
Collapse
|
9
|
Wu H, Sun Z, Guo Q, Li C. Mapping knowledge landscapes and research frontiers of gastrointestinal microbiota and bone metabolism: a text-mining study. Front Cell Infect Microbiol 2024; 14:1407180. [PMID: 39055979 PMCID: PMC11270605 DOI: 10.3389/fcimb.2024.1407180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
INTRODUCTION Extensive research efforts have been dedicated to elucidating the intricate pathways by which gastrointestinal microbiota and their metabolites exert influence on the processes of bone formation. Nonetheless, a notable gap exists in the literature concerning a bibliometric analysis of research trends at the nexus of gastrointestinal microbiota and bone metabolism. METHODS To address this scholarly void, the present study employs a suite of bibliometric tools including online platforms, CiteSpace and VOSviewer to scrutinize the pertinent literature in the realm of gastrointestinal microbiota and bone metabolism. RESULTS AND DISCUSSION Examination of the temporal distribution of publications spanning from 2000 to 2023 reveals a discernible upward trajectory in research output, characterized by an average annual growth rate of 19.2%. Notably, China and the United States emerge as primary contributors. Predominant among contributing institutions are Emory University, Harvard University, and the University of California. Pacifici R from Emory University contributed the most research with 15 publications. In the realm of academic journals, Nutrients emerges as the foremost publisher, followed closely by Frontiers in Microbiology and PLOS One. And PLOS One attains the highest average citations of 32.48. Analysis of highly cited papers underscores a burgeoning interest in the therapeutic potential of probiotics or probiotic blends in modulating bone metabolism by augmenting host immune responses. Notably, significant research attention has coalesced around the therapeutic interventions of probiotics, particularly Lactobacillus reuteri, in osteoporosis, as well as the role of gastrointestinal microbiota in the etiology and progression of osteoarthritis. Keyword analysis reveals prevalent terms including gut microbiota, osteoporosis, bone density, probiotics, inflammation, SCFAs, metabolism, osteoarthritis, calcium absorption, obesity, double-blind, prebiotics, mechanisms, postmenopausal women, supplementation, risk factors, oxidative stress, and immune system. Future research endeavors warrant a nuanced exploration of topics such as inflammation, obesity, SCFAs, postmenopausal osteoporosis, skeletal muscle, oxidative stress, double-blind trials, and pathogenic mechanisms. In summary, this study presents a comprehensive bibliometric analysis of global research on the interplay between gastrointestinal microbiota and bone metabolism, offering valuable insights for scholars, particularly nascent researchers, embarking on analogous investigations within this domain.
Collapse
Affiliation(s)
- Haiyang Wu
- Department of Orthopaedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Clinical College of Neurology, Neurosurgery and Neurorehabilitation, Tianjin Medical University, Tianjin, China
| | - Zaijie Sun
- Department of Orthopaedic Surgery, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, China
| | - Qiang Guo
- Department of Spine and Joint Surgery, Tianjin Baodi Hospital, Baodi Clinical College of Tianjin Medical University, Tianjin, China
| | - Cheng Li
- Department of Spine Surgery, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing, China
- Center for Musculoskeletal Surgery (CMSC), Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt University of Berlin, Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
Lee NK, Jang HJ, Paik HD. Non-lactic acid bacteria probiotics isolated from intestine or various circumstances. Food Sci Biotechnol 2024; 33:1997-2007. [PMID: 39130655 PMCID: PMC11315843 DOI: 10.1007/s10068-024-01608-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/09/2024] [Accepted: 05/16/2024] [Indexed: 08/13/2024] Open
Abstract
Probiotics are live microorganisms beneficial to host health, predominantly comprising lactic acid bacteria (LAB) such as Lactobacillus. Additional non-LAB probiotics, termed intestinal isolates, encompass next-generation strains like Akkermansia muciniphila, Faecalibacterium prausnitzii, Christensenella minuta, Anaerobutyricum soehngenii, Oxalobacter formigenes, etc. and alongside externally sourced Bacillus, Saccharomyces cerevisiae, Clostridium butyricum, and Propionibacterium. Intestinal-derived probiotics represent strictly anaerobic strains with challenging culturing requirements, contrasting with the aerobic nature of Bacillus probiotics and the ease of culturing S. cerevisiae. These strains exhibit diverse health-promoting properties, encompassing antimicrobial, anticancer, antioxidant, and vitamin production capabilities, albeit contingent upon strain specificity. This review delineates the characteristics, culturing conditions, and health advantages associated with non-LAB probiotics.
Collapse
Affiliation(s)
- Na-Kyoung Lee
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hye Ji Jang
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| | - Hyun-Dong Paik
- Department of Food Science and Biotechnology of Animal Resource, Konkuk University, Seoul, 05029 Republic of Korea
| |
Collapse
|
11
|
Wang L, Gong C, Wang R, Wang J, Yang Z, Wang X. A pilot study on the characterization and correlation of oropharyngeal and intestinal microbiota in children with type 1 diabetes mellitus. Front Pediatr 2024; 12:1382466. [PMID: 38938502 PMCID: PMC11208633 DOI: 10.3389/fped.2024.1382466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/04/2024] [Indexed: 06/29/2024] Open
Abstract
Background Type 1 Diabetes Mellitus (T1DM) is one of the most common endocrine disorders of childhood and adolescence, showing a rapidly increasing prevalence worldwide. A study indicated that the composition of the oropharyngeal and gut microbiota changed in T1DM. However, no studies have yet associated the changes between the microbiomes of the oropharyngeal and intestinal sites, nor between the flora and clinical indicators. In this study, we examined the composition and characteristics of oropharyngeal and intestinal flora in patients with T1DM in compared to healthy children. We identified correlations between oropharyngeal and intestinal flora and evaluated their association with clinical laboratory tests in patients with T1DM. Methods The oropharyngeal and fecal samples from 13 T1DM and 20 healthy children were analyzed by high-throughput sequencing of the V3-V4 region of 16S rRNA. The associations between microbes and microorganisms in oropharyngeal and fecal ecological niches, as well as the correlation between these and clinical indicators were further analyzed. Results It was revealed that T1DM children had distinct microbiological characteristics, and the dominant oropharyngeal microbiota genus included Streptococcus, Prevotella, Leptotrichia, and Neisseria; that of intestinal microbiota included Blautia, Fusicatenibacter, Bacteroides, and Eubacterium_hallii_group. Furthermore, oropharyngeal Staphylococcus was significantly positively correlated with intestinal norank_f__Ruminococcaceae and Ruminococcus_torques_group in TIDM children. Moreover, in these children, differential genes in oropharyngeal and intestinal samples were enriched in metabolic pathways such as amino acid generation, fatty acid metabolism, and nucleotide sugar biosynthesis. Additionally, correlation analysis between the oropharyngeal/intestinal microbiome with laboratory tests showed significant correlations between several bacterial taxa in the oropharynx and intestines and glycated hemoglobin and C-peptide. Conclusion Unique microbial characteristics were found in the oropharynx and intestine in children with T1DM compared to healthy children. Positive correlations were found between changes in the relative abundance of oropharyngeal and gut microbiota in children with T1DM. Associations between the oropharyngeal/intestinal microbiota and laboratory investigations in children with T1DM suggest that the composition of the oropharyngeal and intestinal flora in children with T1DM may have some impact on glycemic control.
Collapse
Affiliation(s)
- Limin Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Chao Gong
- College of Rehabilitation Medicine, Jiamusi University, Jiamusi, China
| | - Ruiye Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Jinxue Wang
- College of Clinical Medicine, Jiamusi University, Jiamusi, China
| | - Zhanshuang Yang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| | - Xianhe Wang
- Jiamusi University Affiliated No. 1 Hospital, Jiamusi, China
| |
Collapse
|
12
|
García-Gavilán JF, Atzeni A, Babio N, Liang L, Belzer C, Vioque J, Corella D, Fitó M, Vidal J, Moreno-Indias I, Torres-Collado L, Coltell O, Toledo E, Clish C, Hernando J, Yun H, Hernández-Cacho A, Jeanfavre S, Dennis C, Gómez-Pérez AM, Martínez MA, Ruiz-Canela M, Tinahones FJ, Hu FB, Salas-Salvadó J. Effect of 1-year lifestyle intervention with energy-reduced Mediterranean diet and physical activity promotion on the gut metabolome and microbiota: a randomized clinical trial. Am J Clin Nutr 2024; 119:1143-1154. [PMID: 38428742 DOI: 10.1016/j.ajcnut.2024.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND The health benefits of the Mediterranean diet (MedDiet) have been linked to the presence of beneficial gut microbes and related metabolites. However, its impact on the fecal metabolome remains poorly understood. OBJECTIVES Our goal was to investigate the weight-loss effects of a 1-y lifestyle intervention based on an energy-reduced MedDiet coupled with physical activity (intervention group), compared with an ad libitum MedDiet (control group), on fecal metabolites, fecal microbiota, and their potential association with cardiovascular disease risk factors. METHODS A total of 400 participants (200 from each study group), aged 55-75 y, and at high cardiovascular disease risk, were included. Dietary and lifestyle information, anthropometric measurements, blood biochemical parameters, and stool samples were collected at baseline and after 1 y of follow-up. Liquid chromatography-tandem mass spectrometry was used to profile endogenous fecal metabolites, and 16S amplicon sequencing was employed to profile the fecal microbiota. RESULTS Compared with the control group, the intervention group exhibited greater weight loss and improvement in various cardiovascular disease risk factors. We identified intervention effects on 4 stool metabolites and subnetworks primarily composed of bile acids, ceramides, and sphingosines, fatty acids, carnitines, nucleotides, and metabolites of purine and the Krebs cycle. Some of these were associated with changes in several cardiovascular disease risk factors. In addition, we observed a reduction in the abundance of the genera Eubacterium hallii group and Dorea, and an increase in alpha diversity in the intervention group after 1 y of follow-up. Changes in the intervention-related microbiota profiles were also associated with alterations in different fecal metabolite subnetworks and some cardiovascular disease risk factors. CONCLUSIONS An intervention based on an energy-reduced MedDiet and physical activity promotion, compared with an ad libitum MedDiet, was associated with improvements in cardiometabolic risk factors, potentially through modulation of the fecal microbiota and metabolome. This trial was registered at https://www.isrctn.com/ as ISRCTN89898870 (https://doi.org/10.1186/ISRCTN89898870).
Collapse
Affiliation(s)
- Jesús F García-Gavilán
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Alessandro Atzeni
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| | - Nancy Babio
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Liming Liang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Clara Belzer
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Jesús Vioque
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Dolores Corella
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine, University of Valencia, Valencia, Spain
| | - Montserrat Fitó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Josep Vidal
- CIBER Diabetes y Enfermedades Metabólicas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), Madrid, Spain; Department of Endocrinology, Institut d'Investigacions Biomédiques August Pi Sunyer (IDIBAPS), Hospital Clinic, University of Barcelona, Barcelona, Spain
| | - Isabel Moreno-Indias
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Laura Torres-Collado
- CIBER de Epidemiología y Salud Pública (CIBERESP), Instituto de Salud Carlos III, Madrid, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante, Universidad Miguel Hernández (ISABIAL-UMH), Alicante, Spain
| | - Oscar Coltell
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Computer Languages and Systems, Jaume I University, Castellón, Spain
| | - Estefanía Toledo
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Clary Clish
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Javier Hernando
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Unit of Cardiovascular Risk and Nutrition, Institut Hospital del Mar de Investigaciones Médicas Municipal d'Investigació Médica (IMIM), Barcelona, Spain
| | - Huan Yun
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, United States; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, United States
| | - Adrián Hernández-Cacho
- Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Sarah Jeanfavre
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Courtney Dennis
- Metabolomics Platform, The Broad Institute of MIT and Harvard, Boston, MA, United States
| | - Ana M Gómez-Pérez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Maria Angeles Martínez
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain
| | - Miguel Ruiz-Canela
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Preventive Medicine and Public Health, University of Navarra, Pamplona, Spain; Epidemiología y Salud Pública, Instituto de Investigación Sanitaria de Navarra (IdiSNA), Pamplona, Spain
| | - Francisco J Tinahones
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Department of Endocrinology and Nutrition, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Universitario Virgen de la Victoria, Málaga, Spain
| | - Frank B Hu
- Department of Nutrition, Harvard T. H. Chan School of Public Health, Boston, MA, United States; Channing Division for Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States
| | - Jordi Salas-Salvadó
- CIBER de Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, Madrid, Spain; Departament de Bioquímica i Biotecnologia, Alimentaciò, Nutrició, Desenvolupament i Salut Mental (ANUT-DSM), Universitat Rovira i Virgili, Reus, Spain; Institut d'Investigació Sanitària Pere Virgili (IISPV), Reus, Spain.
| |
Collapse
|
13
|
Puhlmann ML, van de Rakt E, Kerezoudi EN, Rangel I, Brummer RJ, Smidt H, Kaper FS, de Vos WM. Analysis of the fermentation kinetics and gut microbiota modulatory effect of dried chicory root reveals the impact of the plant-cell matrix rationalizing its conversion in the distal colon. MICROBIOME RESEARCH REPORTS 2024; 3:28. [PMID: 39421250 PMCID: PMC11485554 DOI: 10.20517/mrr.2024.04] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/04/2024] [Accepted: 04/19/2024] [Indexed: 10/19/2024]
Abstract
Aim: The cell matrix of plant foods has received little attention in prebiotic fiber research. We aimed to understand the impact of the plant cell matrix in dried chicory root on its breakdown in the human gut to explain its reported beneficial effects on gut and metabolic health. Methods: We applied in vitro digestion and fermentation models together with an ex vivo gut barrier integrity model. Plant cell matrix intactness in the upper gastrointestinal tract was investigated by scanning electron microscopy. Colonic breakdown of inulin, and chicory root cubes and powder was assessed by gut microbiota analysis using 16S rRNA gene amplicon sequencing and determining the kinetics of changes in pH, gas, and short-chain fatty acid (SCFA) production. Finally, effects on gut barrier integrity were explored by exposing colonic biopsies to fermentation supernatants in an Ussing chamber model. Results: The plant cell matrix of dried chicory root cubes remained intact throughout upper gastrointestinal transit. Dried chicory root fermentation resulted in higher final relative abundances of pectin-degrading Monoglobus and butyrate-producing Roseburia spp. compared to inulin and a seven-fold increase in Bifidobacterium spp. in donors where these species were present. Dried chicory root cubes yielded similar total SCFAs but higher final butyrate levels than chicory root powder or isolated inulin with less gas produced. No uniform but donor-specific effects of fermentation supernatants on the maintenance of gut barrier integrity were detected. Conclusion: The intact plant cell matrix of dried chicory root affected its colonic breakdown kinetics and microbiota, underpinning its beneficial effect in vivo.
Collapse
Affiliation(s)
- Marie-Luise Puhlmann
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Ember van de Rakt
- Division of Human Nutrition and Health, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | - Evangelia N. Kerezoudi
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70182, Sweden
- Department of Nutrition and Dietetics, Harokopio University, Athens 17671, Greece
| | - Ignacio Rangel
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70182, Sweden
| | - Robert J. Brummer
- Nutrition-Gut-Brain Interactions Research Centre, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro 70182, Sweden
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
| | | | - Willem M. de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen 6708 WE, the Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
14
|
Bläckberg A, Holm K, Liderot K, Nilson B, Sunnerhagen T. Eubacterium bacteremia - a retrospective observational study of a seldom found anaerobic pathogen. Diagn Microbiol Infect Dis 2024; 108:116185. [PMID: 38232640 DOI: 10.1016/j.diagmicrobio.2024.116185] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 11/28/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND Human infections due to Eubacterium are rare and knowledge of the condition is limited. This study aimed to describe clinical characteristics and outcome in patients with Eubacterium bacteremia. METHODS Episodes of Eubacterium bacteremia were identified through the clinical microbiology laboratory in Lund, Sweden. Medical records were retrospectively reviewed. Blood isolates of Eubacterium were collected and antibiotic susceptibility testing was performed with agar dilution. RESULTS Seventeen patients with Eubacterium bacteremia were identified of whom six had monomicrobial bacteremia. The incidence was 1.7 cases of Eubacterium bacteremia per million inhabitants and year. The median age was 67 years (interquartile range 63-79 years), and six patients had some form of malignancy. Most of the patients an abdominal focus of infection and the 30-day mortality was low (n = 1). CONCLUSIONS Invasive infections with Eubacterium have a low incidence. The condition has a low mortality and an abdominal focus of infection, and malignancy, is common.
Collapse
Affiliation(s)
- Anna Bläckberg
- Department of Infectious Diseases, Skåne University Hospital Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University Sweden
| | - Karin Holm
- Department of Infectious Diseases, Skåne University Hospital Lund, Sweden; Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University Sweden
| | - Karin Liderot
- Division of Clinical Microbiology, Karolinska Institutet and Karolinska University Hospital, Huddinge, Stockholm, Sweden
| | - Bo Nilson
- Clinical Microbiology, Infection Prevention and Control, Office for Medical Services, Lund, Sweden; Division of Medical Microbiology, Department of Laboratory Medicine Lund, Lund University, Lund, Sweden
| | - Torgny Sunnerhagen
- Division of Infection Medicine, Department of Clinical Sciences Lund, Lund University Sweden; Clinical Microbiology, Infection Prevention and Control, Office for Medical Services, Lund, Sweden.
| |
Collapse
|
15
|
Versluis DM, Schoemaker R, Looijesteijn E, Geurts JM, Merks RM. 2'-Fucosyllactose helps butyrate producers outgrow competitors in infant gut microbiota simulations. iScience 2024; 27:109085. [PMID: 38380251 PMCID: PMC10877688 DOI: 10.1016/j.isci.2024.109085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 11/16/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024] Open
Abstract
A reduced capacity for butyrate production by the early infant gut microbiota is associated with negative health effects, such as inflammation and the development of allergies. Here, we develop new hypotheses on the effect of the prebiotic galacto-oligosaccharides (GOS) or 2'-fucosyllactose (2'-FL) on butyrate production by the infant gut microbiota using a multiscale, spatiotemporal mathematical model of the infant gut. The model simulates a community of cross-feeding gut bacteria in metabolic detail. It represents the community as a grid of bacterial populations that exchange metabolites, using 20 different subspecies-specific metabolic networks taken from the AGORA database. The simulations predict that both GOS and 2'-FL promote the growth of Bifidobacterium, whereas butyrate producing bacteria are only consistently abundant in the presence of propane-1,2-diol, a product of 2'-FL metabolism. In absence of prebiotics or in presence of only GOS, however, Bacteroides vulgatus and Cutibacterium acnes outcompete butyrate producers by consuming intermediate metabolites.
Collapse
Affiliation(s)
- David M. Versluis
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
| | | | | | | | - Roeland M.H. Merks
- Leiden University, Institute of Biology, 2300 RA Leiden, the Netherlands
- Leiden University, Mathematical Institute, 2300 RA Leiden, the Netherlands
| |
Collapse
|
16
|
Apalowo OE, Adegoye GA, Obuotor TM. Microbial-Based Bioactive Compounds to Alleviate Inflammation in Obesity. Curr Issues Mol Biol 2024; 46:1810-1831. [PMID: 38534735 DOI: 10.3390/cimb46030119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 02/20/2024] [Accepted: 02/23/2024] [Indexed: 03/28/2024] Open
Abstract
The increased prevalence of obesity with several other metabolic disorders, including diabetes and non-alcoholic fatty liver disease, has reached global pandemic proportions. Lifestyle changes may result in a persistent positive energy balance, hastening the onset of these age-related disorders and consequently leading to a diminished lifespan. Although suggestions have been raised on the possible link between obesity and the gut microbiota, progress has been hampered due to the extensive diversity and complexities of the gut microbiota. Being recognized as a potential biomarker owing to its pivotal role in metabolic activities, the dysregulation of the gut microbiota can give rise to a persistent low-grade inflammatory state associated with chronic diseases during aging. This chronic inflammatory state, also known as inflammaging, induced by the chronic activation of the innate immune system via the macrophage, is controlled by the gut microbiota, which links nutrition, metabolism, and the innate immune response. Here, we present the functional roles of prebiotics, probiotics, synbiotics, and postbiotics as bioactive compounds by underscoring their putative contributions to (1) the reduction in gut hyperpermeability due to lipopolysaccharide (LPS) inactivation, (2) increased intestinal barrier function as a consequence of the upregulation of tight junction proteins, and (3) inhibition of proinflammatory pathways, overall leading to the alleviation of chronic inflammation in the management of obesity.
Collapse
Affiliation(s)
- Oladayo Emmanuel Apalowo
- Department of Food Science, Nutrition and Health Promotion, Mississippi State University, Starkville, MS 39762, USA
| | - Grace Adeola Adegoye
- Department of Nutrition and Health Science, Ball State University, Muncie, IN 47306, USA
| | | |
Collapse
|
17
|
Tintoré M, Cuñé J, Vu LD, Poppe J, Van den Abbeele P, Baudot A, de Lecea C. A Long-Chain Dextran Produced by Weissella cibaria Boosts the Diversity of Health-Related Gut Microbes Ex Vivo. BIOLOGY 2024; 13:51. [PMID: 38248481 PMCID: PMC10813514 DOI: 10.3390/biology13010051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 12/19/2023] [Accepted: 01/12/2024] [Indexed: 01/23/2024]
Abstract
Long-chain dextrans are α-glucans that can be produced by lactic acid bacteria. NextDextTM, a specific long-chain dextran with a high degree of polymerisation, produced using Weissella cibaria, was recently shown to exert prebiotic potential in vitro. In this study, the ex vivo SIFR® technology, recently validated to provide predictive insights into gut microbiome modulation down to the species level, was used to investigate the effects of this long-chain dextran on the gut microbiota of six human adults that altogether covered different enterotypes. A novel community modulation score (CMS) was introduced based on the strength of quantitative 16S rRNA gene sequencing and the highly controlled ex vivo conditions. This CMS overcomes the limitations of traditional α-diversity indices and its application in the current study revealed that dextran is a potent booster of microbial diversity compared to the reference prebiotic inulin (IN). Long-chain dextran not only exerted bifidogenic effects but also consistently promoted Bacteroides spp., Parabacteroides distasonis and butyrate-producing species like Faecalibacterium prausnitzii and Anaerobutyricum hallii. Further, long-chain dextran treatment resulted in lower gas production compared to IN, suggesting that long-chain dextran could be better tolerated. The additional increase in Bacteroides for dextran compared to IN is likely related to the higher propionate:acetate ratio, attributing potential to long-chain dextran for improving metabolic health and weight management. Moreover, the stimulation of butyrate by dextran suggests its potential for improving gut barrier function and inflammation. Overall, this study provides a novel tool for assessing gut microbial diversity ex vivo and positions long-chain dextran as a substrate that has unique microbial diversity enhancing properties.
Collapse
Affiliation(s)
- Maria Tintoré
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Jordi Cuñé
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| | - Lam Dai Vu
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Jonas Poppe
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | | | - Aurélien Baudot
- Cryptobiotix SA, Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium; (L.D.V.)
| | - Carlos de Lecea
- AB Biotek Human Nutrition and Health, Peterborough PE7 8QJ, UK
| |
Collapse
|
18
|
Eckermann HA, Meijer J, Cooijmans K, Lahti L, de Weerth C. Daily skin-to-skin contact alters microbiota development in healthy full-term infants. Gut Microbes 2024; 16:2295403. [PMID: 38197254 PMCID: PMC10793693 DOI: 10.1080/19490976.2023.2295403] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 12/12/2023] [Indexed: 01/11/2024] Open
Abstract
The gut microbiota is vital for human body development and function. Its development in early life is influenced by various environmental factors. In this randomized controlled trial, the gut microbiota was obtained as a secondary outcome measure in a study on the effects of one hour of daily skin-to-skin contact (SSC) for five weeks in healthy full-term infants. Specifically, we studied the effects on alpha/beta diversity, volatility, microbiota maturation, and bacterial and gut-brain-axis-related functional abundances in microbiota assessed thrice in the first year. Pregnant Dutch women (n = 116) were randomly assigned to the SSC or care-as-usual groups. The SSC group participants engaged in one hour of daily SSC from birth to five weeks of age. Stool samples were collected at two, five, and 52 weeks and the V4 region was sequenced. We observed significant differences in the microbiota composition, bacterial abundances, and predicted functional pathways between the groups. The SSC group exhibited lower microbiota volatility during early infancy. Microbiota maturation was slower in the SSC group during the first year and our results suggested that breastfeeding duration may have partially mediated this relation. Our findings provide evidence that postpartum SSC may influence microbiota development. Replication is necessary to validate and generalize these results. Future studies should include direct stress measurements and extend microbiota sampling beyond the first year to investigate stress as a mechanism and research SSC's impact on long-term microbiota maturation trajectories.
Collapse
Affiliation(s)
- Henrik Andreas Eckermann
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Jennifer Meijer
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| | - Kelly Cooijmans
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, The Netherlands
| | - Leo Lahti
- Department of Computing, University of Turku, Turku, Finland
| | - Carolina de Weerth
- Donders Institute for Brain, Cognition and Behaviour, Department of Cognitive Neuroscience, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Koshida A, Karashima S, Ogura K, Miyajima Y, Ogai K, Mizoguchi R, Ikagawa Y, Hara S, Mizushima I, Fujii H, Kawano M, Tsujiguchi H, Hara A, Nakamura H, Okamoto S. Impact of gut microbiome on serum IgG4 levels in the general population: Shika-machi super preventive health examination results. Front Cell Infect Microbiol 2023; 13:1272398. [PMID: 37908763 PMCID: PMC10613983 DOI: 10.3389/fcimb.2023.1272398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction Immunoglobulin G4 (IgG4) is a member of the human immunoglobulin G (IgG) subclass, a protein involved in immunity to pathogens and the body's resistance system. IgG4-related diseases (IgG4-RD) are intractable diseases in which IgG4 levels in the blood are elevated, causing inflammation in organs such as the liver, pancreas, and salivary glands. IgG4-RD are known to be more prevalent in males than in females, but the etiology remains to be elucidated. This study was conducted to investigate the relationship between gut microbiota (GM) and serum IgG4 levels in the general population. Methods In this study, the relationship between IgG4 levels and GM evaluated in male and female groups of the general population using causal inference. The study included 191 men and 207 women aged 40 years or older from Shika-machi, Ishikawa. GM DNA was analyzed for the 16S rRNA gene sequence using next-generation sequencing. Participants were bifurcated into high and low IgG4 groups, depending on median serum IgG4 levels. Results ANCOVA, Tukey's HSD, linear discriminant analysis effect size, least absolute shrinkage and selection operator logistic regression model, and correlation analysis revealed that Anaerostipes, Lachnospiraceae, Megasphaera, and [Eubacterium] hallii group were associated with IgG4 levels in women, while Megasphaera, [Eubacterium] hallii group, Faecalibacterium, Ruminococcus.1, and Romboutsia were associated with IgG4 levels in men. Linear non-Gaussian acyclic model indicated three genera, Megasphaera, [Eubacterium] hallii group, and Anaerostipes, and showed a presumed causal association with IgG4 levels in women. Discussion This differential impact of the GM on IgG4 levels based on sex is a novel and intriguing finding.
Collapse
Affiliation(s)
- Aoi Koshida
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Shigehiro Karashima
- Institute of Liberal Arts and Science, Kanazawa University, Kanazawa, Japan
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
| | - Kohei Ogura
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Yuna Miyajima
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| | - Kazuhiro Ogai
- Department of Bio-engineering Nursing, Graduate School of Nursing, Ishikawa Prefectural Nursing University, Kahoku, Japan
| | - Ren Mizoguchi
- Department of Health Promotion and Medicine of the Future, Kanazawa University, Kanazawa, Japan
| | - Yasuo Ikagawa
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
| | - Satoshi Hara
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Ichiro Mizushima
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiroshi Fujii
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Mitsuhiro Kawano
- Department of Rheumatology, Kanazawa University Hospital, Kanazawa, Japan
| | - Hiromasa Tsujiguchi
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Nakamura
- Department of Hygiene and Public Health, Graduate School of Advanced Preventive Medical Sciences, Kanazawa University, Kanazawa, Japan
| | - Shigefumi Okamoto
- Institute for Frontier Science Initiative, Kanazawa University, Kanazawa, Japan
- Department of Clinical Laboratory Science, Faculty of Health Sciences, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
20
|
Li L, Yan S, Liu S, Wang P, Li W, Yi Y, Qin S. In-depth insight into correlations between gut microbiota and dietary fiber elucidates a dietary causal relationship with host health. Food Res Int 2023; 172:113133. [PMID: 37689844 DOI: 10.1016/j.foodres.2023.113133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 09/11/2023]
Abstract
Dietary fiber exerts a wide range of biological benefits on host health, which not only provides a powerful source of nutrition for gut microbiota but also supplies key microbial metabolites that directly affect host health. This review mainly focuses on the decomposition and metabolism of dietary fiber and the essential genera Bacteroides and Bifidobacterium in dietary fiber fermentation. Dietary fiber plays an essential role in host health by impacting outcomes related to obesity, enteritis, immune health, cancer and neurodegenerative diseases. Additionally, the gut microbiota-independent pathway of dietary fiber affecting host health is also discussed. Personalized dietary fiber intake combined with microbiome, genetics, epigenetics, lifestyle and other factors has been highlighted for development in the future. A higher level of evidence is needed to demonstrate which microbial phenotype benefits from which kind of dietary fiber. In-depth insights into the correlation between gut microbiota and dietary fiber provide strong theoretical support for the precise application of dietary fiber, which elucidates a dietary causal relationship with host health.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Shuling Yan
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangjiang Liu
- Shandong University, Qingdao 266237, China; Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Ping Wang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China; Shandong University of Traditional Chinese Medicine, Jinan 250355, China.
| | - Wenjun Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Yuetao Yi
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China.
| |
Collapse
|
21
|
Bénard MV, Arretxe I, Wortelboer K, Harmsen HJM, Davids M, de Bruijn CMA, Benninga MA, Hugenholtz F, Herrema H, Ponsioen CY. Anaerobic Feces Processing for Fecal Microbiota Transplantation Improves Viability of Obligate Anaerobes. Microorganisms 2023; 11:2238. [PMID: 37764082 PMCID: PMC10535047 DOI: 10.3390/microorganisms11092238] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/28/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023] Open
Abstract
Fecal microbiota transplantation (FMT) is under investigation for several indications, including ulcerative colitis (UC). The clinical success of FMT depends partly on the engraftment of viable bacteria. Because the vast majority of human gut microbiota consists of anaerobes, the currently used aerobic processing protocols of donor stool may diminish the bacterial viability of transplanted material. This study assessed the effect of four processing techniques for donor stool (i.e., anaerobic and aerobic, both direct processing and after temporary cool storage) on bacterial viability. By combining anaerobic culturing on customized media for anaerobes with 16S rRNA sequencing, we could successfully culture and identify the majority of the bacteria present in raw fecal suspensions. We show that direct anaerobic processing of donor stool is superior to aerobic processing conditions for preserving the bacterial viability of obligate anaerobes and butyrate-producing bacteria related to the clinical response to FMT in ulcerative colitis patients, including Faecalibacterium, Eubacterium hallii, and Blautia. The effect of oxygen exposure during stool processing decreased when the samples were stored long-term. Our results confirm the importance of sample conditioning to preserve the bacterial viability of oxygen-sensitive gut bacteria. Anaerobic processing of donor stool may lead to increased clinical success of FMT, which should further be investigated in clinical trials.
Collapse
Affiliation(s)
- Mèlanie V. Bénard
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
- Department of Endocrinology and Metabolism, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Iñaki Arretxe
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
| | - Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.W.); (M.D.); (H.H.)
| | - Hermie J. M. Harmsen
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, 9700 RB Groningen, The Netherlands;
| | - Mark Davids
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.W.); (M.D.); (H.H.)
| | - Clara M. A. de Bruijn
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
- Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Marc A. Benninga
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
- Pediatric Gastroenterology, Hepatology and Nutrition, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
- Amsterdam Reproduction & Development Research Institute, Emma Children’s Hospital, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| | - Floor Hugenholtz
- Center for Experimental and Molecular Medicine, Amsterdam Medical Center, Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam Cardiovascular Sciences (ACS), Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (K.W.); (M.D.); (H.H.)
| | - Cyriel Y. Ponsioen
- Department of Gastroenterology and Hepatology, Amsterdam Gastroenterology Endocrinology Metabolism (AGEM), Amsterdam UMC, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.V.B.); (I.A.); (C.M.A.d.B.); (M.A.B.)
| |
Collapse
|
22
|
Van den Abbeele P, Poppe J, Deyaert S, Laurie I, Otto Gravert TK, Abrahamsson A, Baudot A, Karnik K, Risso D. Low-no-calorie sweeteners exert marked compound-specific impact on the human gut microbiota ex vivo. Int J Food Sci Nutr 2023; 74:630-644. [PMID: 37537786 DOI: 10.1080/09637486.2023.2240037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 07/05/2023] [Accepted: 07/18/2023] [Indexed: 08/05/2023]
Abstract
Low-no-calorie sweeteners (LNCS) are used as sugar substitutes as part of strategies to reduce the risk of chronic diseases related to high sugar intake (e.g. type 2 diabetes (T2D)). This study investigated how a range of sweeteners [tagatose (TA)/maltitol (MA)/sorbitol (SO)/stevia (ST)/sucralose (SU)/acesulfame K (ACK)] impact the gut microbiota of T2D subjects and healthy human adults using the ex vivo SIFR® technology (n = 12). The cohort covered clinically relevant interpersonal and T2D-related differences. ACK/SU remained intact while not impacting microbial composition and metabolite production. In contrast, TA/SO and ST/MA were respectively readily and gradually fermented. ST and particularly TA/SO/MA increased bacterial density and SCFA production product-specifically: SO increased acetate (∼Bifidobacterium adolescentis), whilst MA/ST increased propionate (∼Parabacteroides distasonis). TA exerted low specificity as it increased butyrate for healthy subjects, yet propionate for T2D subjects. Overall, LNCS exerted highly compound-specific effects stressing that results obtained for one LNCS cannot be generalised to other LNCS.
Collapse
|
23
|
Kim JY, Kang B, Oh S, Gil Y, Choi IG, Chang IS. Genome-Based Reclassification of Strain KIST612, Previously Classified as Eubacterium limosum, into a New Strain of Eubacterium callanderi. J Microbiol Biotechnol 2023; 33:1084-1090. [PMID: 37218441 PMCID: PMC10468676 DOI: 10.4014/jmb.2304.04011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 05/08/2023] [Indexed: 05/24/2023]
Abstract
The strain KIST612, initially identified as E. limosum, was a suspected member of E. callanderi due to differences in phenotype, genotype, and average nucleotide identity (ANI). Here, we found that E. limosum ATCC 8486T and KIST612 are genetically different in their central metabolic pathways, such as that of carbon metabolism. Although 16S rDNA sequencing of KIST612 revealed high identity with E. limosum ATCC 8486T (99.2%) and E. callanderi DSM 3662T (99.8%), phylogenetic analysis of housekeeping genes and genome metrics clearly indicated that KIST612 belongs to E. callanderi. The phylogenies showed that KIST612 is closer to E. callanderi DSM 3662T than to E. limosum ATCC 8486T. The ANI between KIST612 and E. callanderi DSM 3662T was 99.8%, which was above the species cut-off of 96%, Meanwhile, the ANI value with E. limosum ATCC 8486T was not significant, showing only 94.6%. The digital DNA-DNA hybridization (dDDH) results also supported the ANI values. The dDDH between KIST612 and E. callanderi DSM 3662T was 98.4%, whereas between KIST612 and E. limosum ATCC 8486T, it was 57.8%, which is lower than the species cut-off of 70%. Based on these findings, we propose the reclassification of E. limosum KIST612 as E. callanderi KIST612.
Collapse
Affiliation(s)
- Ji-Yeon Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Byeongchan Kang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Soyoung Oh
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Yeji Gil
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - In Seop Chang
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
- Research Center for Innovative Energy and Carbon Optimized Synthesis for Chemicals (inn-ECOSysChem), Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| |
Collapse
|
24
|
Koutsoumanis K, Allende A, Alvarez-Ordóñez A, Bolton D, Bover-Cid S, Chemaly M, De Cesare A, Hilbert F, Lindqvist R, Nauta M, Nonno R, Peixe L, Ru G, Simmons M, Skandamis P, Suffredini E, Cocconcelli PS, Fernández Escámez PS, Maradona MP, Querol A, Sijtsma L, Suarez JE, Sundh I, Barizzone F, Correia S, Herman L. Update of the list of qualified presumption of safety (QPS) recommended microbiological agents intentionally added to food or feed as notified to EFSA 18: Suitability of taxonomic units notified to EFSA until March 2023. EFSA J 2023; 21:e08092. [PMID: 37434788 PMCID: PMC10331572 DOI: 10.2903/j.efsa.2023.8092] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023] Open
Abstract
The qualified presumption of safety (QPS) approach was developed to provide a regularly updated generic pre-evaluation of the safety of microorganisms, intended for use in the food or feed chains, to support the work of EFSA's Scientific Panels. The QPS approach is based on an assessment of published data for each agent, with respect to its taxonomic identity, the body of relevant knowledge and safety concerns. Safety concerns identified for a taxonomic unit (TU) are, where possible, confirmed at the species/strain or product level and reflected by 'qualifications'. In the period covered by this Statement, no new information was found that would change the status of previously recommended QPS TUs. Of 38 microorganisms notified to EFSA between October 2022 and March 2023 (inclusive) (28 as feed additives, 5 as food enzymes, food additives and flavourings, 5 as novel foods), 34 were not evaluated because: 8 were filamentous fungi, 4 were Enterococcus faecium and 2 were Escherichia coli (taxonomic units that are excluded from the QPS evaluation) and 20 were taxonomic units (TUs) that already have a QPS status. Three of the other four TUs notified within this period were evaluated for the first time for a possible QPS status: Anaerobutyricum soehngenii, Stutzerimonas stutzeri (former Pseudomonas stutzeri) and Nannochloropsis oculata. Microorganism strain DSM 11798 has also been notified in 2015 and as its taxonomic unit is notified as a strain not a species, it is not suitable for the QPS approach. A. soehngenii and N. oculata are not recommended for the QPS status due to a limited body of knowledge of its use in the food and feed chains. S. stutzeri is not recommended for inclusion in the QPS list based on safety concerns and limited information about the exposure of animals and humans through the food and feed chains.
Collapse
|
25
|
Dedon LR, Hilliard MA, Rani A, Daza-Merchan ZT, Story G, Briere CE, Sela DA. Fucosylated Human Milk Oligosaccharides Drive Structure-Specific Syntrophy between Bifidobacterium infantis and Eubacterium hallii within a Modeled Infant Gut Microbiome. Mol Nutr Food Res 2023; 67:e2200851. [PMID: 36938958 PMCID: PMC11010582 DOI: 10.1002/mnfr.202200851] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 03/23/2023] [Indexed: 03/21/2023]
Abstract
SCOPE Fucosylated human milk oligosaccharides (fHMOs) are metabolized by Bifidobacterium infantis and promote syntrophic interactions between microbiota that colonize the infant gut. The role of fHMO structure on syntrophic interactions and net microbiome function is not yet fully understood. METHODS AND RESULTS Metabolite production and microbial populations are tracked during mono- and co-culture fermentations of 2'fucosyllactose (2'FL) and difucosyllactose (DFL) by two B. infantis strains and Eubacterium hallii. This is also conducted in an in vitro modeled microbiome supplemented by B. infantis and/or E. hallii. Metabolites are quantified by high performance liquid chromatography. Total B. infantis and E. hallii populations are quantified through qRT-PCR and community composition through 16S amplicon sequencing. Differential metabolism of 2'FL and DFL by B. infantis strains gives rise to strain- and fHMO structure-specific syntrophy with E. hallii. Within the modeled microbial community, fHMO structure does not strongly alter metabolite production in aggregate, potentially due to functional redundancy within the modeled community. In contrast, community composition is dependent on fHMO structure. CONCLUSION Whereas short chain fatty acid production is not significantly altered by the specific fHMO structure introduced to the modeled community, specific fHMO structure influences the composition of the gut microbiome.
Collapse
Affiliation(s)
- Liv R. Dedon
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | - Margaret A. Hilliard
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
- Organismic and Evolutionary Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA United States
| | - Asha Rani
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | | | - Galaxie Story
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
| | - Carrie-Ellen Briere
- Elaine Marieb College of Nursing, University of Massachusetts Amherst, Amherst, MA, United States
| | - David A. Sela
- Department of Food Science, University of Massachusetts Amherst, Amherst, MA United States
- Department of Nutrition, University of Massachusetts Amherst, Amherst, MA, United States
- Department of Microbiology and Physiological Systems and Center for Microbiome Research, University of Massachusetts Medical School, Worcester, MA, United States
| |
Collapse
|
26
|
Yi SW, Lee HG, Kim E, Jung YH, Bok EY, Cho A, Do YJ, Hur TY, Oh SI. Raw potato starch diet supplement in weaned pigs could reduce Salmonella Typhimurium infection by altering microbiome composition and improving immune status. Front Vet Sci 2023; 10:1183400. [PMID: 37288274 PMCID: PMC10242040 DOI: 10.3389/fvets.2023.1183400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/02/2023] [Indexed: 06/09/2023] Open
Abstract
Backgorund Salmonella enterica serovar Typhimurium (ST) is one of the causative agents of gastroenteritis in pigs. Pigs fed a diet supplemented with raw potato starch (RPS) have improved gut health by the alteration of the microbiota composition and production of short-chain fatty acids (SCFAs). This study aimed to evaluate the effects of RPS supplementation in reducing infection severity and fecal shedding in ST-infected pigs. Methods The weaned experimental pigs were divided into two groups: CON (n = 6) fed a corn/soybean-based diet and TRT (n = 6) supplemented with 5% RPS. After 21 d, the pigs were inoculated with ST, and their body weight, clinical signs, and fecal shedding of ST were monitored for 14 d. At 14 d post-inoculation (dpi), the jejunum, cecum, ileum, and colon tissues were collected from euthanized pigs, and histopathological lesions and cytokine gene expression were compared. Additionally, blood samples at 2 dpi were analyzed for gene ontology enrichment. Moreover, the gutmicrobiome was analyzed using 16S rRNA metagenomic sequencing, and the SCFA concentration was measured using gas chromatography. Results The average daily weight gain was significantly higher in TRT than in CON during the ST infection period; however, histopathological lesion scores were significantly lower in TRT than in CON. The relative abundance of nine genera of butyrate- and acetate-producing bacteria significantly increased in TRT compared with that of only two acetate-producing bacteria in CON. Among the genes involved in the immune response, IL-18 expression level was significantly lower in the jejunum and colon in TRT than in CON. Furthermore, Reg3γ expression was significantly different in the cecum and colon of both groups. Conclusion The diet supplemented with RPS in weaned pigs could result in predominance of butyrate- and acetate-producing bacteria, reducing the severity of ST infection by improving the immune status.
Collapse
Affiliation(s)
- Seung-Won Yi
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Han Gyu Lee
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Eunju Kim
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Young-Hun Jung
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Eun-Yeong Bok
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Ara Cho
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Yoon Jung Do
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Tai-Young Hur
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
| | - Sang-Ik Oh
- Division of Animal Diseases and Health, National Institute of Animal Science, Rural Development Administration, Wanju-gun, Jeollabuk-do, Republic of Korea
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Jeonbuk National University, Iksan, Jeollabuk-do, Republic of Korea
| |
Collapse
|
27
|
Van den Abbeele P, Deyaert S, Albers R, Baudot A, Mercenier A. Carrot RG-I Reduces Interindividual Differences between 24 Adults through Consistent Effects on Gut Microbiota Composition and Function Ex Vivo. Nutrients 2023; 15:2090. [PMID: 37432238 PMCID: PMC10180869 DOI: 10.3390/nu15092090] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 07/12/2023] Open
Abstract
The human gut microbiota is characterized by large interpersonal differences, which are not only linked to health and disease but also determine the outcome of nutritional interventions. In line with the growing interest for developing targeted gut microbiota modulators, the selectivity of a carrot-derived rhamnogalacturonan I (cRG-I) was compared to substrates with demonstrated low (inulin, IN) and high selectivity (xanthan, XA), at a human equivalent dose (HED) of 1.5 g/d. The high throughput of the ex vivo SIFR® technology, validated to generate predictive insights for clinical findings, enabled the inclusion of 24 human adults. Such an unprecedented high number of samples in the context of in vitro gut microbiota modelling allowed a coverage of clinically relevant interpersonal differences in gut microbiota composition and function. A key finding was that cRG-I supplementation (already at an HED of 0.3 g/d) lowered interpersonal compositional differences due to the selective stimulation of taxa that were consistently present among human adults, including OTUs related to Bacteroides dorei/vulgatus and Bifidobacterium longum (suspected keystone species), Bacteroides thetaiotaomicron, Bifidobacterium adolescentis and butyrate-producing taxa such as Blautia sp., Anaerobutyricum hallii, and Faecalibacterium prausnitzii. In contrast, both IN and XA treatments increased interpersonal compositional differences. For IN, this followed from its low specificity. For XA, it was rather the extremely high selectivity of XA fermentation that caused large differences between 15 responders and 9 nonresponders, caused by the presence/absence of highly specific XA-fermenting taxa. While all test compounds significantly enhanced acetate, propionate, butyrate, and gas production, cRG-I resulted in a significantly higher acetate (+40%), propionate (+22%), yet a lower gas production (-44%) compared to IN. cRG-I could thus result in overall more robust beneficial effects, while also being better tolerated. Moreover, owing to its remarkable homogenization effect on microbial composition and metabolite production, cRG-I could lead to more predictable outcomes compared to substrates that are less specific or overly specific.
Collapse
Affiliation(s)
| | - Stef Deyaert
- Cryptobiotix SA, 9052 Ghent, Belgium; (P.V.d.A.); (S.D.); (A.B.)
| | - Ruud Albers
- Nutrileads BV, 6708 WH Wageningen, The Netherlands;
| | - Aurélien Baudot
- Cryptobiotix SA, 9052 Ghent, Belgium; (P.V.d.A.); (S.D.); (A.B.)
| | | |
Collapse
|
28
|
Chen C, Liao C, Liu YY. Teasing out missing reactions in genome-scale metabolic networks through hypergraph learning. Nat Commun 2023; 14:2375. [PMID: 37185345 PMCID: PMC10130184 DOI: 10.1038/s41467-023-38110-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
GEnome-scale Metabolic models (GEMs) are powerful tools to predict cellular metabolism and physiological states in living organisms. However, due to our imperfect knowledge of metabolic processes, even highly curated GEMs have knowledge gaps (e.g., missing reactions). Existing gap-filling methods typically require phenotypic data as input to tease out missing reactions. We still lack a computational method for rapid and accurate gap-filling of metabolic networks before experimental data is available. Here we present a deep learning-based method - CHEbyshev Spectral HyperlInk pREdictor (CHESHIRE) - to predict missing reactions in GEMs purely from metabolic network topology. We demonstrate that CHESHIRE outperforms other topology-based methods in predicting artificially removed reactions over 926 high- and intermediate-quality GEMs. Furthermore, CHESHIRE is able to improve the phenotypic predictions of 49 draft GEMs for fermentation products and amino acids secretions. Both types of validation suggest that CHESHIRE is a powerful tool for GEM curation to reveal unknown links between reactions and observed metabolic phenotypes.
Collapse
Affiliation(s)
- Can Chen
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA
| | - Chen Liao
- Program for Computational and Systems Biology, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Yang-Yu Liu
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115, USA.
- Center for Artificial Intelligence and Modeling, The Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Champaign, IL, 61801, USA.
| |
Collapse
|
29
|
Vallianou NG, Kounatidis D, Tsilingiris D, Panagopoulos F, Christodoulatos GS, Evangelopoulos A, Karampela I, Dalamaga M. The Role of Next-Generation Probiotics in Obesity and Obesity-Associated Disorders: Current Knowledge and Future Perspectives. Int J Mol Sci 2023; 24:ijms24076755. [PMID: 37047729 PMCID: PMC10095285 DOI: 10.3390/ijms24076755] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Obesity and obesity-associated disorders pose a major public health issue worldwide. Apart from conventional weight loss drugs, next-generation probiotics (NGPs) seem to be very promising as potential preventive and therapeutic agents against obesity. Candidate NGPs such as Akkermansia muciniphila, Faecalibacterium prausnitzii, Anaerobutyricum hallii, Bacteroides uniformis, Bacteroides coprocola, Parabacteroides distasonis, Parabacteroides goldsteinii, Hafnia alvei, Odoribacter laneus and Christensenella minuta have shown promise in preclinical models of obesity and obesity-associated disorders. Proposed mechanisms include the modulation of gut flora and amelioration of intestinal dysbiosis, improvement of intestinal barrier function, reduction in chronic low-grade inflammation and modulation of gut peptide secretion. Akkermansia muciniphila and Hafnia alvei have already been administered in overweight/obese patients with encouraging results. However, safety issues and strict regulations should be constantly implemented and updated. In this review, we aim to explore (1) current knowledge regarding NGPs; (2) their utility in obesity and obesity-associated disorders; (3) their safety profile; and (4) their therapeutic potential in individuals with overweight/obesity. More large-scale, multicentric and longitudinal studies are mandatory to explore their preventive and therapeutic potential against obesity and its related disorders.
Collapse
Affiliation(s)
- Natalia G. Vallianou
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitris Kounatidis
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Dimitrios Tsilingiris
- First Department of Internal Medicine, University Hospital of Alexandroupolis, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Fotis Panagopoulos
- Department of Internal Medicine, Evangelismos General Hospital, 45-47 Ipsilantou Street, 10676 Athens, Greece
| | - Gerasimos Socrates Christodoulatos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
- Department of Microbiology, Sismanogleio General Hospital, 1 Sismanogleiou Street, 15126 Athens, Greece
| | - Angelos Evangelopoulos
- Roche Hellas Diagnostics S.A., 18-20 Amarousiou-Chalandriou Street, 15125 Athens, Greece
| | - Irene Karampela
- 2nd Department of Critical Care, Medical School, University of Athens, Attikon General University Hospital, 1 Rimini Street, 12462 Athens, Greece
| | - Maria Dalamaga
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Street, 11527 Athens, Greece
| |
Collapse
|
30
|
Gaffney J, Embree J, Gilmore S, Embree M. Chordicoccus furentiruminis, gen. nov., sp. nov., a novel succinic acid producing bacterium isolated from a steer on a high grain diet. Int J Syst Evol Microbiol 2023; 73. [PMID: 36861667 DOI: 10.1099/ijsem.0.005751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
This study presents MP1D12T (=NRRL B-67553T=NCTC 14480T), an isolate from the ruminal content of an Angus steer fed a high grain diet. Phenotypic and genotypic traits of the isolate were explored. MP1D12T was found to be a strictly anaerobic, catalase-negative, oxidase-negative, coccoid bacterium that frequently grows in chains. Analysis of metabolic products as a result of carbohydrate fermentation showed succinic acid as the major organic acid produced with lactic acid and acetic acid as minor products. Phylogenetic analysis of MP1D12T based on 16S rRNA nucleotide sequence and amino acid sequences from the whole genome presents a divergent lineage from other members in the family Lachnospiraceae. 16S rRNA sequence comparison, whole genome average nucleotide identity digital DNA-DNA hybridization and average amino acid identity results suggest that MP1D12T represents a novel species in a novel genus within the family Lachnospiraceae. We propose the creation of the genus Chordicoccus in which MP1D12T represents the type strain for the novel species Chordicoccus furentiruminis.
Collapse
Affiliation(s)
- James Gaffney
- Native Microbials, 10255 Science Center Drive Suite C2, San Diego, CA 92121, USA
| | - Jordan Embree
- Native Microbials, 10255 Science Center Drive Suite C2, San Diego, CA 92121, USA
| | - Sean Gilmore
- Native Microbials, 10255 Science Center Drive Suite C2, San Diego, CA 92121, USA
| | - Mallory Embree
- Native Microbials, 10255 Science Center Drive Suite C2, San Diego, CA 92121, USA
| |
Collapse
|
31
|
Van den Abbeele P, Deyaert S, Thabuis C, Perreau C, Bajic D, Wintergerst E, Joossens M, Firrman J, Walsh D, Baudot A. Bridging preclinical and clinical gut microbiota research using the ex vivo SIFR ® technology. Front Microbiol 2023; 14:1131662. [PMID: 37187538 PMCID: PMC10178071 DOI: 10.3389/fmicb.2023.1131662] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/20/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction While modulation of the human adult gut microbiota is a trending strategy to improve health, the underlying mechanisms are poorly understood. Methods This study aimed to assess the predictive value of the ex vivo, reactor-based, high-throughput SIFR® (Systemic Intestinal Fermentation Research) technology for clinical findings using three structurally different prebiotics [inulin (IN), resistant dextrin (RD) and 2'-fucosyllactose (2'FL)]. Results The key finding was that data obtained within 1-2 days were predictive for clinical findings upon repeated prebiotic intake over weeks: among hundreds of microbes, IN stimulated Bifidobacteriaceae, RD boosted Parabacteroides distasonis, while 2'FL specifically increased Bifidobacterium adolescentis and Anaerobutyricum hallii. In line with metabolic capabilities of these taxa, specific SCFA (short-chain fatty acids) were produced thus providing insights that cannot be obtained in vivo where such metabolites are rapidly absorbed. Further, in contrast to using single or pooled fecal microbiota (approaches used to circumvent low throughput of conventional models), working with 6 individual fecal microbiota enabled correlations that support mechanistic insights. Moreover, quantitative sequencing removed the noise caused by markedly increased cell densities upon prebiotic treatment, thus allowing to even rectify conclusions of previous clinical trials related to the tentative selectivity by which prebiotics modulate the gut microbiota. Counterintuitively, not the high but rather the low selectivity of IN caused only a limited number of taxa to be significantly affected. Finally, while a mucosal microbiota (enriched with Lachnospiraceae) can be integrated, other technical aspects of the SIFR® technology are a high technical reproducibility, and most importantly, a sustained similarity between the ex vivo and original in vivo microbiota. Discussion By accurately predicting in vivo results within days, the SIFR® technology can help bridge the so-called "Valley of Death" between preclinical and clinical research. Facilitating development of test products with better understanding of their mode of action could dramatically increase success rate of microbiome modulating clinical trials.Graphical Abstract.
Collapse
Affiliation(s)
| | | | | | | | - Danica Bajic
- Glycom A/S-DSM Nutritional Products Ltd., Hørsholm, Denmark
| | | | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
| | - Jenni Firrman
- United States Department of Agriculture, Agricultural Research Service, Eastern Regional Research Center, Wyndmoor, PA, United States
| | | | | |
Collapse
|
32
|
Wortelboer K, Koopen AM, Herrema H, de Vos WM, Nieuwdorp M, Kemper EM. From fecal microbiota transplantation toward next-generation beneficial microbes: The case of Anaerobutyricum soehngenii. Front Med (Lausanne) 2022; 9:1077275. [PMID: 36544495 PMCID: PMC9760881 DOI: 10.3389/fmed.2022.1077275] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
The commensal gut microbiota is important for human health and well-being whereas deviations of the gut microbiota have been associated with a multitude of diseases. Restoration of a balanced and diverse microbiota by fecal microbiota transplantation (FMT) has emerged as a potential treatment strategy and promising tool to study causality of the microbiota in disease pathogenesis. However, FMT comes with logistical challenges and potential safety risks, such as the transfer of pathogenic microorganisms, undesired phenotypes or an increased risk of developing disease later in life. Therefore, a more controlled, personalized mixture of cultured beneficial microbes might prove a better alternative. Most of these beneficial microbes will be endogenous commensals to the host without a long history of safe and beneficial use and are therefore commonly referred to as next-generation probiotics (NGP) or live biotherapeutic products (LBP). Following a previous FMT study within our group, the commensal butyrate producer Anaerobutyricum spp. (previously named Eubacterium hallii) was found to be associated with improved insulin-sensitivity in subjects with the metabolic syndrome. After the preclinical testing with Anaerobutyricum soehngenii in mice models was completed, the strain was produced under controlled conditions and several clinical studies evaluating its safety and efficacy in humans were performed. Here, we describe and reflect on the development of A. soehngenii for clinical use, providing practical guidance for the development and testing of NGPs and reflecting on the current regulatory framework.
Collapse
Affiliation(s)
- Koen Wortelboer
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Annefleur M. Koopen
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| | - Hilde Herrema
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
| | - Willem M. de Vos
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Laboratory of Microbiology, Wageningen University, Wageningen, Netherlands
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Department of Experimental Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Amsterdam Cardiovascular Sciences, Diabetes and Metabolism, Amsterdam, Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Endocrinology, Metabolism and Nutrition, Amsterdam, Netherlands
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
- Diabetes Center, Department of Internal Medicine, Amsterdam UMC, Location VUMC, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - E. Marleen Kemper
- Department of Pharmacy, Amsterdam UMC, Location AMC, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
33
|
Effects of Dietary Supplementation of Solubles from Shredded, Steam-Exploded Pine Particles on the Performance and Cecum Microbiota of Acute Heat-Stressed Broilers. Microorganisms 2022; 10:microorganisms10091795. [PMID: 36144397 PMCID: PMC9504121 DOI: 10.3390/microorganisms10091795] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 08/30/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
Heat stress (HS) negatively influences livestock productivity, but it can be, at least in part, mitigated by nutritional interventions. One such intervention is to use byproducts from various sources that are likely to be included in the consumer chain. Thus, the present study investigated the effects of dietary supplementation of solubles from shredded, steam-exploded pine particles (SSPPs) on the performance and cecum microbiota in broilers subjected to acute HS. One-week-old Ross 308 broilers (n = 108) were fed 0%, 0.1%, or 0.4% SSPP in their diets. On the 37th day, forty birds were allocated to one of four groups; namely, a group fed a control diet without SSPPs at thermoneutral temperature (NT) (0% NT) and acute heat-stressed birds with 0% (0% HS), 0.1% (0.1% HS), and 0.4% (0.4% HS) SSPP-supplemented diets. The NT was maintained at 21.0 °C, while the HS room was increased to 31 °C. The final BW, percent difference in body weight (PDBW), and feed intake (FI) were lower in HS birds, but PDBW was reversely associated with dietary SSPP. Similarly, HS birds had a higher rectal temperature (RT) and ΔT in comparison to birds kept at NT. The FI of SSPP-supplemented birds was not significant, indicating lower HS effects. Plasma triglyceride was decreased in HS birds but not affected in 0.1% HS birds in comparison to 0% NT birds. OTUs and Chao1 were increased by 0.1% HS compared to 0% NT. Unweighted Unifrac distances for 0.1% HS were different from 0% NT and 0.4% HS. The favorable bacterial phylum (Tenericutes) and genera (Faecalibacterium and Anaerofustis) were increased, while the pathogenic genus (Enterococcus) was decreased, in SSPP-supplemented birds. In sum, production performances are negatively affected under acute HS. Dietary supplementation of SSPPs is beneficial for improving community richness indices and unweighted Unifrac distances, and it enhanced the advantageous bacterial phyla and reduced virulent genera and triglyceride hydrolysis in acute HS broilers. Our results indicate that dietary SSPPs modulates the microbial profile of the cecum while resulting in relatively less weight loss and lower rectal temperature compared to control.
Collapse
|
34
|
Dynamic metabolic interactions and trophic roles of human gut microbes identified using a minimal microbiome exhibiting ecological properties. THE ISME JOURNAL 2022; 16:2144-2159. [PMID: 35717467 PMCID: PMC9381525 DOI: 10.1038/s41396-022-01255-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 04/30/2022] [Accepted: 05/25/2022] [Indexed: 11/08/2022]
Abstract
AbstractMicrobe–microbe interactions in the human gut are influenced by host-derived glycans and diet. The high complexity of the gut microbiome poses a major challenge for unraveling the metabolic interactions and trophic roles of key microbes. Synthetic minimal microbiomes provide a pragmatic approach to investigate their ecology including metabolic interactions. Here, we rationally designed a synthetic microbiome termed Mucin and Diet based Minimal Microbiome (MDb-MM) by taking into account known physiological features of 16 key bacteria. We combined 16S rRNA gene-based composition analysis, metabolite measurements and metatranscriptomics to investigate community dynamics, stability, inter-species metabolic interactions and their trophic roles. The 16 species co-existed in the in vitro gut ecosystems containing a mixture of complex substrates representing dietary fibers and mucin. The triplicate MDb-MM’s followed the Taylor’s power law and exhibited strikingly similar ecological and metabolic patterns. The MDb-MM exhibited resistance and resilience to temporal perturbations as evidenced by the abundance and metabolic end products. Microbe-specific temporal dynamics in transcriptional niche overlap and trophic interaction network explained the observed co-existence in a competitive minimal microbiome. Overall, the present study provides crucial insights into the co-existence, metabolic niches and trophic roles of key intestinal microbes in a highly dynamic and competitive in vitro ecosystem.
Collapse
|
35
|
Koopen A, Witjes J, Wortelboer K, Majait S, Prodan A, Levin E, Herrema H, Winkelmeijer M, Aalvink S, Bergman JJGHM, Havik S, Hartmann B, Levels H, Bergh PO, van Son J, Balvers M, Bastos DM, Stroes E, Groen AK, Henricsson M, Kemper EM, Holst J, Strauch CM, Hazen SL, Bäckhed F, De Vos WM, Nieuwdorp M, Rampanelli E. Duodenal Anaerobutyricum soehngenii infusion stimulates GLP-1 production, ameliorates glycaemic control and beneficially shapes the duodenal transcriptome in metabolic syndrome subjects: a randomised double-blind placebo-controlled cross-over study. Gut 2022; 71:1577-1587. [PMID: 34697034 PMCID: PMC9279853 DOI: 10.1136/gutjnl-2020-323297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 10/09/2021] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Although gut dysbiosis is increasingly recognised as a pathophysiological component of metabolic syndrome (MetS), the role and mode of action of specific gut microbes in metabolic health remain elusive. Previously, we identified the commensal butyrogenic Anaerobutyricum soehngenii to be associated with improved insulin sensitivity in subjects with MetS. In this proof-of-concept study, we investigated the potential therapeutic effects of A. soehngenii L2-7 on systemic metabolic responses and duodenal transcriptome profiles in individuals with MetS. DESIGN In this randomised double-blind placebo-controlled cross-over study, 12 male subjects with MetS received duodenal infusions of A. soehngenii/ placebo and underwent duodenal biopsies, mixed meal tests (6 hours postinfusion) and 24-hour continuous glucose monitoring. RESULTS A. soehngenii treatment provoked a markedly increased postprandial excursion of the insulinotropic hormone glucagon-like peptide 1 (GLP-1) and an elevation of plasma secondary bile acids, which were positively associated with GLP-1 levels. Moreover, A. soehngenii treatment robustly shaped the duodenal expression of 73 genes, with the highest fold induction in the expression of regenerating islet-protein 1B (REG1B)-encoding gene. Strikingly, duodenal REG1B expression positively correlated with GLP-1 levels and negatively correlated with peripheral glucose variability, which was significantly diminished in the 24 hours following A. soehngenii intake. Mechanistically, Reg1B expression is induced upon sensing butyrate or bacterial peptidoglycan. Importantly, A. soehngenii duodenal administration was safe and well tolerated. CONCLUSIONS A single dose of A. soehngenii improves peripheral glycaemic control within 24 hours; it specifically stimulates intestinal GLP-1 production and REG1B expression. Further studies are needed to delineate the specific pathways involved in REG1B induction and function in insulin sensitivity. TRIAL REGISTRATION NUMBER NTR-NL6630.
Collapse
Affiliation(s)
- Annefleur Koopen
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Julia Witjes
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Koen Wortelboer
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Soumia Majait
- Clinical Pharmacy, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Andrei Prodan
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Evgeni Levin
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Hilde Herrema
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Maaike Winkelmeijer
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Steven Aalvink
- Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Stephan Havik
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Bolette Hartmann
- Biomedical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Denmark
| | - Han Levels
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Per-Olof Bergh
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Jamie van Son
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Manon Balvers
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | | | - Erik Stroes
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Albert K Groen
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Marcus Henricsson
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | | | - Jens Holst
- Biomedical Sciences, University of Copenhagen Novo Nordisk Foundation Center for Basic Metabolic Research, Kobenhavn, Denmark
| | - Christopher M Strauch
- Center for Microbiome and Human Health, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Stanley L Hazen
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Fredrik Bäckhed
- Wallenberg Laboratory for Cardiovascular and Metabolic Research, University of Gothenburg, Goteborg, Sweden
| | - Willem M De Vos
- Human Microbiome Research Program, University of Helsinki, Helsinki, Finland
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| | - Elena Rampanelli
- Experimental Vascular Medicine, Amsterdam UMC Locatie AMC, Amsterdam, The Netherlands
| |
Collapse
|
36
|
Kean IRL, Wagner J, Wijeyesekera A, De Goffau M, Thurston S, Clark JA, White DK, Ridout J, Agrawal S, Kayani R, O'Donnell R, Ramnarayan P, Peters MJ, Klein N, Holmes E, Parkhill J, Baker S, Pathan N. Profiling gut microbiota and bile acid metabolism in critically ill children. Sci Rep 2022; 12:10432. [PMID: 35729169 PMCID: PMC9213539 DOI: 10.1038/s41598-022-13640-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/26/2022] [Indexed: 11/08/2022] Open
Abstract
Broad-spectrum antimicrobial use during the treatment of critical illness influences gastrointestinal fermentation endpoints, host immune response and metabolic activity including the conversion of primary to secondary bile acids. We previously observed reduced fermentation capacity in the faecal microbiota of critically ill children upon hospital admission. Here, we further explore the timecourse of the relationship between the microbiome and bile acid profile in faecal samples collected from critically ill children. The microbiome was assayed by sequencing of the 16S rRNA gene, and faecal water bile acids were measured by liquid chromatography mass spectrometry. In comparison to admission faecal samples, members of the Lachnospiraceae recovered during the late-acute phase (days 8-10) of hospitalisation. Patients with infections had a lower proportion of Lachnospiraceae in their gut microbiota than controls and patients with primary admitting diagnoses. Keystone species linked to ecological recovery were observed to decline with the length of PICU admission. These species were further suppressed in patients with systemic infection, respiratory failure, and undergoing surgery. Bile acid composition recovers quickly after intervention for critical illness which may be aided by the compositional shift in Lachnospiraceae. Our findings suggest gut microbiota recovery can be readily assessed via measurement of faecal bile acids.
Collapse
Affiliation(s)
| | - Joseph Wagner
- The Peter Doherty Institute for Infection and Immunity, Melbourne Health, Melbourne, Australia
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Anisha Wijeyesekera
- Department of Food and Nutritional Sciences, University of Reading, Reading, United Kingdom
| | - Marcus De Goffau
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Experimental Vascular Medicine, Amsterdam UMC Location University of Amsterdam, Amsterdam, The Netherlands
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Sarah Thurston
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Department of Haematology, University of Cambridge, Cambridge, United Kingdom
| | - John A Clark
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Deborah K White
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
| | - Jenna Ridout
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- EACH, Milton, Cambridge, United Kingdom
| | - Shruti Agrawal
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Riaz Kayani
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Roddy O'Donnell
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| | - Padmanabhan Ramnarayan
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- St Mary's Hospital, London, United Kingdom
| | - Mark J Peters
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Nigel Klein
- Paediatric Intensive Care Unit, Great Ormond Street Hospital for Children NHS Foundation Trust, London, United Kingdom
- UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Elaine Holmes
- Section of Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - Julian Parkhill
- Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Veterinary Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Stephen Baker
- Cambridge Institute of Therapeutic Immunology and Infectious Disease, Jeffrey Cheah Biomedical Centre, University of Cambridge, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nazima Pathan
- Department of Paediatrics, University of Cambridge, Cambridge, United Kingdom
- Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge, United Kingdom
| |
Collapse
|
37
|
Human Milk Oligosaccharides and Lactose Differentially Affect Infant Gut Microbiota and Intestinal Barrier In Vitro. Nutrients 2022; 14:nu14122546. [PMID: 35745275 PMCID: PMC9227761 DOI: 10.3390/nu14122546] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/17/2022] [Indexed: 02/06/2023] Open
Abstract
Background: The infant gut microbiota establishes during a critical window of opportunity when metabolic and immune functions are highly susceptible to environmental changes, such as diet. Human milk oligosaccharides (HMOs) for instance are suggested to be beneficial for infant health and gut microbiota. Infant formulas supplemented with the HMOs 2′-fucosyllactose (2′-FL) and lacto-N-neotetraose (LNnT) reduce infant morbidity and medication use and promote beneficial bacteria in the infant gut ecosystem. To further improve infant formula and achieve closer proximity to human milk composition, more complex HMO mixtures could be added. However, we currently lack knowledge about their effects on infants’ gut ecosystems. Method: We assessed the effect of lactose, 2′-FL, 2′-FL + LNnT, and a mixture of six HMOs (HMO6: consisting of 2′-FL, LNnT, difucosyllactose, lacto-N-tetraose, 3′- and 6′-sialyllactose) on infant gut microbiota and intestinal barrier integrity using a combination of in vitro models to mimic the microbial ecosystem (baby M-SHIME®) and the intestinal epithelium (Caco-2/HT29-MTX co-culture). Results: All the tested products had bifidogenic potential and increased SCFA levels; however, only the HMOs’ fermented media protected against inflammatory intestinal barrier disruption. 2′-FL/LNnT and HMO6 promoted the highest diversification of OTUs within the Bifidobactericeae family, whereas beneficial butyrate-producers were specifically enriched by HMO6. Conclusion: These results suggest that increased complexity in HMO mixture composition may benefit the infant gut ecosystem, promoting different bifidobacterial communities and protecting the gut barrier against pro-inflammatory imbalances.
Collapse
|
38
|
Kim R, Wang Y, Sims CE, Allbritton NL. A Platform for Co-Culture of Primary Human Colonic Epithelium With Anaerobic Probiotic Bacteria. Front Bioeng Biotechnol 2022; 10:890396. [PMID: 35757791 PMCID: PMC9213686 DOI: 10.3389/fbioe.2022.890396] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/09/2022] [Indexed: 11/17/2022] Open
Abstract
An in vitro platform was designed and optimized for the co-culture of probiotic anaerobic bacteria with a primary human colonic epithelium having a goal of assessing the anti-inflammatory impact of the probiotic bacteria. The device maintained a luminal O2 concentration at <1% while also supporting an oxygenated basal compartment at 10% for at least 72 h. Measurement of the transepithelial resistance of a confluent colonic epithelium showed high monolayer integrity while fluorescence assays demonstrated that the monolayer was comprised primarily of goblet cells and colonocytes, the two major differentiated cell subtypes of the colonic epithelium. High monolayer barrier function and viability were maintained during co-culture of the epithelium with the probiotic obligate anaerobe Anaerobutyricum hallii (A. hallii). Importantly the device supported a static co-culture of microbes and colonic epithelium mimicking the largely static or low flow conditions within the colonic lumen. A model inflamed colonic epithelium was generated by the addition of tumor necrosis factor-α (TNF-α) and lipopolysaccharide (LPS) to the basal and luminal epithelium sides, respectively. Co-culture of A. hallii with the LPS/TNF-α treated intestine diminished IL-8 secretion by ≥40% which could be mimicked by co-culture with the A. hallii metabolite butyrate. In contrast, co-culture of the inflamed epithelium with two strains of lactic acid-producing bacteria, Lactobacillus rhamnosus GG (LGG) and Bifidobacterium adolescentis (B. adolescentis), did not diminish epithelial IL-8 secretion. Co-culture with colonic epithelial cells from different donors demonstrated a consistent anti-inflammatory effect by A. hallii, but distinct responses to co-culture with LGG and B. adolescentis. The demonstrated system offers a simple and easily adopted platform for examining the physiologic impact of alterations in the intestinal epithelium that occur in the presence of probiotic bacteria and their metabolites.
Collapse
Affiliation(s)
- Raehyun Kim
- Department of Biological and Chemical Engineering, Hongik University, Sejong, South Korea
| | - Yuli Wang
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Christopher E. Sims
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Nancy L. Allbritton
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
Yao H, Lu S, Williams BA, Flanagan BM, Gidley MJ, Mikkelsen D. Absolute abundance values reveal microbial shifts and co-occurrence patterns during gut microbiota fermentation of dietary fibres in vitro. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Composition Characterization and Transformation Mechanism of Dissolved Organic Matters in a Full-Scale Membrane Bioreactor Treating Co-Digestion Wastewater of Food Waste and Sewage Sludge. SUSTAINABILITY 2022. [DOI: 10.3390/su14116556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The membrane bioreactor (MBR) serves as the most widely used technology in anaerobic digestion wastewater treatment, but the composition and transformation of the dissolved organic matters (DOMs) are vague. This study focused on the composition characterization and transformation mechanism of DOMs in real co-digestion wastewater of food waste and sewage sludge from a full-scale MBR via molecular weight cut-off, 3D-EEM, FT-IR, and SPME-GC/MS. The results indicated that the co-digestion wastewater mainly comprised organics with molecular weight (MW) lower than 1 kDa and dominated by tryptophane-protein-like substances. The hydrolytic/acidogenic process improved the biodegradability with the conversion of high-MW organics into low-MW organics, while the two-stage A/O process possessed the highest contribution to the organic removal with the consumption of most DOMs. However, the deficient removal of refractory organics (MW < 5 kDa) in the ultrafiltration unit led to the residual DOMs in the effluent. The potential functional bacteria in the biological processes have also been identified and were principally affiliated with Proteobacteria and Firmicutes. These findings could help to advance the understanding of the co-digestion wastewater and provide fundamental information for the optimization and development of MBR in anaerobic digestion wastewater treatment.
Collapse
|
41
|
Louis P, Duncan SH, Sheridan PO, Walker AW, Flint HJ. Microbial lactate utilisation and the stability of the gut microbiome. GUT MICROBIOME (CAMBRIDGE, ENGLAND) 2022; 3:e3. [PMID: 39295779 PMCID: PMC11406415 DOI: 10.1017/gmb.2022.3] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/05/2022] [Accepted: 04/07/2022] [Indexed: 09/21/2024]
Abstract
The human large intestinal microbiota thrives on dietary carbohydrates that are converted to a range of fermentation products. Short-chain fatty acids (acetate, propionate and butyrate) are the dominant fermentation acids that accumulate to high concentrations in the colon and they have health-promoting effects on the host. Although many gut microbes can also produce lactate, it usually does not accumulate in the healthy gut lumen. This appears largely to be due to the presence of a relatively small number of gut microbes that can utilise lactate and convert it to propionate, butyrate or acetate. There is increasing evidence that these microbes play important roles in maintaining a healthy gut environment. In this review, we will provide an overview of the different microbes involved in lactate metabolism within the gut microbiota, including biochemical pathways utilised and their underlying energetics, as well as regulation of the corresponding genes. We will further discuss the potential consequences of perturbation of the microbiota leading to lactate accumulation in the gut and associated disease states and how lactate-utilising bacteria may be employed to treat such diseases.
Collapse
Affiliation(s)
- Petra Louis
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | | | | | | | - Harry James Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| |
Collapse
|
42
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
43
|
Abstract
The gut microbiota is now considered as one of the key elements contributing to the regulation of host health. Virtually all our body sites are colonised by microbes suggesting different types of crosstalk with our organs. Because of the development of molecular tools and techniques (ie, metagenomic, metabolomic, lipidomic, metatranscriptomic), the complex interactions occurring between the host and the different microorganisms are progressively being deciphered. Nowadays, gut microbiota deviations are linked with many diseases including obesity, type 2 diabetes, hepatic steatosis, intestinal bowel diseases (IBDs) and several types of cancer. Thus, suggesting that various pathways involved in immunity, energy, lipid and glucose metabolism are affected.In this review, specific attention is given to provide a critical evaluation of the current understanding in this field. Numerous molecular mechanisms explaining how gut bacteria might be causally linked with the protection or the onset of diseases are discussed. We examine well-established metabolites (ie, short-chain fatty acids, bile acids, trimethylamine N-oxide) and extend this to more recently identified molecular actors (ie, endocannabinoids, bioactive lipids, phenolic-derived compounds, advanced glycation end products and enterosynes) and their specific receptors such as peroxisome proliferator-activated receptor alpha (PPARα) and gamma (PPARγ), aryl hydrocarbon receptor (AhR), and G protein-coupled receptors (ie, GPR41, GPR43, GPR119, Takeda G protein-coupled receptor 5).Altogether, understanding the complexity and the molecular aspects linking gut microbes to health will help to set the basis for novel therapies that are already being developed.
Collapse
Affiliation(s)
- Willem M de Vos
- Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.,Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Herbert Tilg
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology & Metabolism, Medical University Innsbruck, Innsbruck, Austria
| | - Matthias Van Hul
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| | - Patrice D Cani
- Louvain Drug Research Institute (LDRI), Metabolism and Nutrition research group (MNUT), UCLouvain, Université catholique de Louvain, Walloon Excellence in Life Sciences and BIOtechnology (WELBIO), Brussels, Belgium
| |
Collapse
|
44
|
Shetty SA, Kuipers B, Atashgahi S, Aalvink S, Smidt H, de Vos WM. Inter-species Metabolic Interactions in an In-vitro Minimal Human Gut Microbiome of Core Bacteria. NPJ Biofilms Microbiomes 2022; 8:21. [PMID: 35395818 PMCID: PMC8993927 DOI: 10.1038/s41522-022-00275-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/18/2022] [Indexed: 12/13/2022] Open
Abstract
Knowledge of the functional roles and interspecies interactions are crucial for improving our understanding of the human intestinal microbiome in health and disease. However, the complexity of the human intestinal microbiome and technical challenges in investigating it pose major challenges. In this proof-of-concept study, we rationally designed, assembled and experimentally tested a synthetic Diet-based Minimal Microbiome (Db-MM) consisting of ten core intestinal bacterial species that together are capable of efficiently converting dietary fibres into short chain fatty acids (SCFAs). Despite their genomic potential for metabolic competition, all ten bacteria coexisted during growth on a mixture of dietary fibres, including pectin, inulin, xylan, cellobiose and starch. By integrated analyses of metabolite production, community composition and metatranscriptomics-based gene expression data, we identified interspecies metabolic interactions leading to production of key SCFAs such as butyrate and propionate. While public goods, such as sugars liberated from colonic fibres, are harvested by non-degraders, some species thrive by cross-feeding on energetically challenging substrates, including the butyrogenic conversion of acetate and lactate. Using a reductionist approach in an in-vitro system combined with functional measurements, our study provides key insights into the complex interspecies metabolic interactions between core intestinal bacterial species.
Collapse
Affiliation(s)
- Sudarshan A Shetty
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.,Department of Medical Microbiology and Infection prevention, Virology and Immunology Research Group, University Medical Center Groningen, Groningen, The Netherlands
| | - Ben Kuipers
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Siavash Atashgahi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands.,Department of Microbiology, Radboud University, Nijmegen, The Netherlands
| | - Steven Aalvink
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Willem M de Vos
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands. .,Human Microbiome Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
45
|
Sheridan PO, Louis P, Tsompanidou E, Shaw S, Harmsen HJ, Duncan SH, Flint HJ, Walker AW. Distribution, organization and expression of genes concerned with anaerobic lactate utilization in human intestinal bacteria. Microb Genom 2022; 8. [PMID: 35077342 PMCID: PMC8914356 DOI: 10.1099/mgen.0.000739] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Lactate accumulation in the human gut is linked to a range of deleterious health impacts. However, lactate is consumed and converted to the beneficial short-chain fatty acids butyrate and propionate by indigenous lactate-utilizing bacteria. To better understand the underlying genetic basis for lactate utilization, transcriptomic analyses were performed for two prominent lactate-utilizing species from the human gut, Anaerobutyricum soehngenii and Coprococcus catus, during growth on lactate, hexose sugar or hexose plus lactate. In A. soehngenii L2-7 six genes of the lactate utilization (lct) cluster, including NAD-independent d-lactate dehydrogenase (d-iLDH), were co-ordinately upregulated during growth on equimolar d- and l-lactate (dl-lactate). Upregulated genes included an acyl-CoA dehydrogenase related to butyryl-CoA dehydrogenase, which may play a role in transferring reducing equivalents between reduction of crotonyl-CoA and oxidation of lactate. Genes upregulated in C. catus GD/7 included a six-gene cluster (lap) encoding propionyl CoA-transferase, a putative lactoyl-CoA epimerase, lactoyl-CoA dehydratase and lactate permease, and two unlinked acyl-CoA dehydrogenase genes that are candidates for acryloyl-CoA reductase. A d-iLDH homologue in C. catus is encoded by a separate, partial lct, gene cluster, but not upregulated on lactate. While C. catus converts three mols of dl-lactate via the acrylate pathway to two mols propionate and one mol acetate, some of the acetate can be re-used with additional lactate to produce butyrate. A key regulatory difference is that while glucose partially repressed lct cluster expression in A. soehngenii, there was no repression of lactate-utilization genes by fructose in the non-glucose utilizer C. catus. This suggests that these species could occupy different ecological niches for lactate utilization in the gut, which may be important factors to consider when developing lactate-utilizing bacteria as novel candidate probiotics.
Collapse
Affiliation(s)
- Paul O Sheridan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Petra Louis
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Eleni Tsompanidou
- Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Sophie Shaw
- Centre for Genome-Enabled Biology and Medicine, 23 St. Machar Drive, AB24 3RY Aberdeen, UK
| | - Hermie J Harmsen
- Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| | - Alan W Walker
- Gut Health Group, Rowett Institute, University of Aberdeen, Foresterhill, AB25 2ZD Aberdeen, UK
| |
Collapse
|
46
|
McMurdie PJ, Stoeva MK, Justice N, Nemchek M, Sieber CMK, Tyagi S, Gines J, Skennerton CT, Souza M, Kolterman O, Eid J. Increased circulating butyrate and ursodeoxycholate during probiotic intervention in humans with type 2 diabetes. BMC Microbiol 2022; 22:19. [PMID: 34996347 PMCID: PMC8742391 DOI: 10.1186/s12866-021-02415-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/07/2021] [Indexed: 02/07/2023] Open
Abstract
Background An increasing body of evidence implicates the resident gut microbiota as playing a critical role in type 2 diabetes (T2D) pathogenesis. We previously reported significant improvement in postprandial glucose control in human participants with T2D following 12-week administration of a 5-strain novel probiotic formulation (‘WBF-011’) in a double-blind, randomized, placebo controlled setting (NCT03893422). While the clinical endpoints were encouraging, additional exploratory measurements were needed in order to link the motivating mechanistic hypothesis - increased short-chain fatty acids - with markers of disease. Results Here we report targeted and untargeted metabolomic measurements on fasting plasma (n = 104) collected at baseline and end of intervention. Butyrate and ursodeoxycholate increased among participants randomized to WBF-011, along with compelling trends between butyrate and glycated haemoglobin (HbA1c). In vitro monoculture experiments demonstrated that the formulation’s C. butyricum strain efficiently synthesizes ursodeoxycholate from the primary bile acid chenodeoxycholate during butyrogenic growth. Untargeted metabolomics also revealed coordinated decreases in intermediates of fatty acid oxidation and bilirubin, potential secondary signatures for metabolic improvement. Finally, improvement in HbA1c was limited almost entirely to participants not using sulfonylurea drugs. We show that these drugs can inhibit growth of formulation strains in vitro. Conclusion To our knowledge, this is the first description of an increase in circulating butyrate or ursodeoxycholate following a probiotic intervention in humans with T2D, adding support for the possibility of a targeted microbiome-based approach to assist in the management of T2D. The efficient synthesis of UDCA by C. butyricum is also likely of interest to investigators of its use as a probiotic in other disease settings. The potential for inhibitory interaction between sulfonylurea drugs and gut microbiota should be considered carefully in the design of future studies. Supplementary Information The online version contains supplementary material available at 10.1186/s12866-021-02415-8.
Collapse
Affiliation(s)
- Paul J McMurdie
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA.
| | - Magdalena K Stoeva
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Nicholas Justice
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Madeleine Nemchek
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Surabhi Tyagi
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Jessica Gines
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | | | - Michael Souza
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - Orville Kolterman
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| | - John Eid
- Pendulum Therapeutics, Inc, 933 20th Street, San Francisco, CA, 94107, USA
| |
Collapse
|
47
|
Zhang Q, Hu WM, Deng YL, Wan JJ, Wang YJ, Jin P. Dysbiosis of gut microbiota and decreased propionic acid associated with metabolic abnormality in Cushing's syndrome. Front Endocrinol (Lausanne) 2022; 13:1095438. [PMID: 36755580 PMCID: PMC9901362 DOI: 10.3389/fendo.2022.1095438] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 12/30/2022] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE Chronic hypercortisolism leads to a phenotype resembling metabolic syndrome. We aimed to investigate the association between gut microbiota and metabolic abnormalities in endogenous hypercortisolism (Cushing's syndrome). METHODS A total of 23 patients with Cushing's syndrome (18 female and 5 men, aged 47.24 ± 12.99 years) and 30 age-, sex-and BMI-matched healthy controls (18 female and 12 men, aged 45.03 ± 6.69 years) were consecutively recruited. Differences in gut microbiota and plasma short-chain fatty acid (SCFAs) concentrations between the Cushing's syndrome patients and controls were analyzed by 16S rRNA sequencing and gas chromatography-mass spectrometry (GC-MS). RESULTS Compared to the controls, the Simpson and Pielou indices of α diversity were dramatically decreased in Cushing's syndrome (P < 0.05). The gut microbiota community structure differed significantly between Cushing's syndrome patients and controls. Compared to controls, the bacterial communities of the Cushing's syndrome patients were enriched in Proteobacteria and Escherichia-Shigella, and depleted in Firmicutes, including Agathobacter, Blautia, Anaerostipes, Eubacterium_eligens_group, and Lachnospira. Spearman analysis demonstrated that HbA1c, SBP, DBP, and cortisol levels were significantly positively correlated with Proteobacteria and Escherichia-Shigella, whereas negatively correlated with Agathobacter, Blautia, Anaerostipes, Eubacterium_hallii_group, and Lachnospira, etc. Cushing's syndrome patients also had a lower propionic acid concentration (0.151±0.054 vs. 0.205±0.032 µg/mL, P=0.039) than controls. Furthermore, the level of propionic acid was negatively correlated with systolic pressure and cortisol levels (P<0.05). CONCLUSION Gut microbiota dysbiosis and decreased propionic acid levels were observed in patients with Cushing's, suggesting that the gut microbiota may be a potential therapeutic intervention target to improve hypercortisolism-related metabolic abnormalities.
Collapse
Affiliation(s)
- Qin Zhang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Wen-mu Hu
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yu-ling Deng
- Health Management Center, The Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jin-jing Wan
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Yu-jun Wang
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
| | - Ping Jin
- Department of Endocrinology, The Third Xiangya Hospital of Central South University, Changsha, Hunan Province, China
- *Correspondence: Ping Jin,
| |
Collapse
|
48
|
Kumari M, Singh P, Nataraj BH, Kokkiligadda A, Naithani H, Azmal Ali S, Behare PV, Nagpal R. Fostering next-generation probiotics in human gut by targeted dietary modulation: An emerging perspective. Food Res Int 2021; 150:110716. [PMID: 34865747 DOI: 10.1016/j.foodres.2021.110716] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 08/07/2021] [Accepted: 09/15/2021] [Indexed: 12/16/2022]
Abstract
Emerging evidence and an in-depth understanding of the microbiome have helped in identifying beneficial commensals and their therapeutic potentials. Specific commensal taxa/ strains of the human gut microbiome have been positively associated with human health and recently termed as next-generation probiotics (NGPs). Of these, Akkermansia muciniphila, Ruminococcus bromii, Faecalibacterium prausnitzii, Anaerobutyricum hallii, and Roseburia intestinalis are the five most relevant gut-derived NGPs that have demonstrated therapeutic potential in managing metabolic diseases. Specific and natural dietary interventions can modulate the abundance and activity of these beneficial bacteria in the gut. Hence, the understanding of targeted stimulation of specific NGP by specific probiotic-targeted diets (PTD) is indispensable for the rational application of their combination. The supplementation of NGP with its specific PTD will help the strain(s) to compete with harmful microbes and acquire its niche. This combination would enhance the effectiveness of NGPs to be used as "live biotherapeutic products" or food nutraceuticals. Under the current milieu, we review various PTDs that influence the abundance of specific potential NGPs, and contemplates potential interactions between diet, microbes, and their effects on host health. Taking into account the study mentioned, we propose that combining NGPs will provide an alternate solution for developing the new diet in conjunction with PTD.
Collapse
Affiliation(s)
- Manorama Kumari
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Parul Singh
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Basavaprabhu H Nataraj
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Anusha Kokkiligadda
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Harshita Naithani
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Syed Azmal Ali
- Proteomics and Cell Biology Lab, Animal Biotechnology Center, National Dairy Research Institute, Karnal 132001, Haryana, India
| | - Pradip V Behare
- Technofunctional Starters Lab, National Collection of Dairy Cultures, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal 132001, Haryana, India.
| | - Ravinder Nagpal
- Department of Nutrition and Integrative Physiology, Florida State University, Tallahassee, FL 32306, USA.
| |
Collapse
|
49
|
Li L, Zhang Y, Speakman JR, Hu S, Song Y, Qin S. The gut microbiota and its products: Establishing causal relationships with obesity related outcomes. Obes Rev 2021; 22:e13341. [PMID: 34490704 DOI: 10.1111/obr.13341] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 08/10/2021] [Accepted: 08/10/2021] [Indexed: 12/12/2022]
Abstract
Gut microorganisms not only participate in the metabolism of carbohydrate, lipids, protein, and polypeptides in the intestine but also directly affect the metabolic phenotypes of the host. Although many studies have described the apparent effects of gut microbiota on human health, the development of metagenomics and culturomics in the past decade has generated a large amount of evidence suggesting a causal relationship between gut microbiota and obesity. The interaction between the gut microbiota and host is realized by microbial metabolites with multiple biological functions. We concentrated here on several representative beneficial species connected with obesity as well as the mechanisms, with particular emphasis on microbiota-dependent metabolites. Finally, we consider the potential clinical significance of these relationships to fuel the conception and realization of novel therapeutic and preventive strategies.
Collapse
Affiliation(s)
- Lili Li
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| | - Yubing Zhang
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,College of Life Sciences, Yantai University, Yantai, China
| | - John Roger Speakman
- Shenzhen Key Laboratory for Metabolic Health, Center for Energy Metabolism and Reproduction, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Shanliang Hu
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Yantai, China
| | - Song Qin
- Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China.,Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China
| |
Collapse
|
50
|
Ulmus macrocarpa Hance extract modulates intestinal microbiota in healthy adults: a randomized, placebo-controlled clinical trial. J Microbiol 2021; 59:1150-1156. [PMID: 34697783 DOI: 10.1007/s12275-021-1329-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/27/2021] [Accepted: 09/27/2021] [Indexed: 10/20/2022]
Abstract
The stem and root bark of Ulmus macrocarpa Hance has been used as traditional pharmacological agent against inflammation related disorders. The objective of this study was to explore the impact of Ulmus macrocarpa Hance extract (UME) on human gut microbiota. A randomized placebo-controlled clinical study was conducted in healthy adults. The study subjects were given 500 mg/day of UME or placebo orally for 4 weeks. Eighty fecal samples were collected at baseline and 4 weeks of UME or placebo intervention. The gut microbiota variation was evaluated by 16S rRNA profiling. The microbial response was highly personalized, and no statistically significant differences was observed in both species richness and abundance. The number of bacterial species identified in study subjects ranged from 86 to 182 species. The analysis for taxonomical changes revealed an increase in Eubacterium ventriosum, Blautia faecis, Ruminococcus gnavus in the UME group. Functional enrichment of bacterial genes showed an increase in primary and secondary bile acid biosynthesis in UME group. Having known from previous studies Eubacterium regulated bile acid homeostasis in protecting gut microbial architecture and immunity, we suggest that UME supplementation might enhance host immunity by modulating gut microbiota. This is the first stage study and forthcoming clinical studies with larger participants are needed to confirm these findings.
Collapse
|