1
|
Yu Z, Qiao X, Yu S, Gu X, Jin Y, Tang C, Niu J, Wang L, Song L. The involvement of interferon regulatory factor 8 in regulating the proliferation of haemocytes in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2024; 156:105172. [PMID: 38537730 DOI: 10.1016/j.dci.2024.105172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/18/2024] [Accepted: 03/24/2024] [Indexed: 05/03/2024]
Abstract
Interferon regulatory factor 8 (IRF8) is an important transcriptional regulatory factor involving in multiple biological process, such as the antiviral immune response, immune cell proliferation and differentiation. In the present study, the involvement of a previously identified IRF8 homologue (CgIRF8) in regulating haemocyte proliferation of oyster were further investigated. CgIRF8 mRNA transcripts were detectable in all the stages of C. gigas larvae with the highest level in D-veliger (1.76-fold of that in zygote, p < 0.05). Its mRNA transcripts were also detected in all the three haemocyte subpopulations of adult oysters with the highest expression in granulocytes (2.79-fold of that in agranulocytes, p < 0.01). After LPS stimulation, the mRNA transcripts of CgIRF8 in haemocytes significantly increased at 12 h and 48 h, which were 2.04-fold and 1.65-fold (p < 0.05) of that in control group, respectively. Meanwhile, the abundance of CgIRF8 protein in the haemocytes increased significantly at 12 h after LPS stimulation (1.71-fold of that in seawater, p < 0.05). The immunofluorescence assay and Western blot showed that LPS stimulation induced an obvious nucleus translocation of CgIRF8 protein in haemocytes. After the expression of CgIRF8 was inhibited by the injection of CgIRF8 siRNA, the percentage of EdU positive haemocytes, the proportion of granulocytes, and the mRNA expression levels of CgGATA and CgSCL all declined significantly at 12 h after LPS stimulation, which was 0.64-fold (p < 0.05), 0.7-fold (p < 0.05), 0.31-fold and 0.54-fold (p < 0.001) of that in the NC group, respectively. While the expression level of cell proliferation-related protein CgCDK2, CgCDC6, CgCDC45 and CgPCNA were significantly increased (1.99-fold, and 2.41-fold, 3.76-fold and 4.79-fold compared to that in the NC group respectively, p < 0.001). Dual luciferase reporter assay demonstrated that CgIRF8 was able to activate the CgGATA promoter in HEK293T cells after transfection of CgGATA and CgIRF8. These results collectively indicated that CgIRF8 promoted haemocyte proliferation by regulating the expression of CgGATA and other related genes in the immune response of oyster.
Collapse
Affiliation(s)
- Zhuo Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Simiao Yu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Xiaoyu Gu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Yuhao Jin
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Chunyu Tang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Jixiang Niu
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Laboratory of Marine Fisheries Science and Food Production Process, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266235, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
2
|
Butina TV, Zemskaya TI, Bondaryuk AN, Petrushin IS, Khanaev IV, Nebesnykh IA, Bukin YS. Viral Diversity in Samples of Freshwater Gastropods Benedictia baicalensis (Caenogastropoda: Benedictiidae) Revealed by Total RNA-Sequencing. Int J Mol Sci 2023; 24:17022. [PMID: 38069344 PMCID: PMC10707223 DOI: 10.3390/ijms242317022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/22/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Previously, the main studies were focused on viruses that cause disease in commercial and farmed shellfish and cause damage to food enterprises (for example, Ostreavirusostreidmalaco1, Aurivirus haliotidmalaco1 and Aquabirnavirus tellinae). Advances in high-throughput sequencing technologies have extended the studies to natural populations of mollusks (and other invertebrates) as unexplored niches of viral diversity and possible sources of emerging diseases. These studies have revealed a huge diversity of mostly previously unknown viruses and filled gaps in the evolutionary history of viruses. In the present study, we estimated the viral diversity in samples of the Baikal endemic gastropod Benedictia baicalensis using metatranscriptomic analysis (total RNA-sequencing); we were able to identify a wide variety of RNA-containing viruses in four samples (pools) of mollusks collected at three stations of Lake Baikal. Most of the identified viral genomes (scaffolds) had only distant similarities to known viruses or (in most cases) to metagenome-assembled viral genomes from various natural samples (mollusks, crustaceans, insects and others) mainly from freshwater ecosystems. We were able to identify viruses similar to those previously identified in mollusks (in particular to the picornaviruses Biomphalaria virus 1 and Biomphalaria virus 3 from the freshwater gastropods); it is possible that picorna-like viruses (as well as a number of other identified viruses) are pathogenic for Baikal gastropods. Our results also suggested that Baikal mollusks, like other species, may bioaccumulate or serve as a reservoir for numerous viruses that infect a variety of organisms (including vertebrates).
Collapse
Affiliation(s)
| | - Tamara I. Zemskaya
- Limnological Institute Siberian Branch of the Russian Academy of Sciences, 664033 Irkutsk, Russia; (T.V.B.); (A.N.B.); (I.S.P.); (I.V.K.); (I.A.N.); (Y.S.B.)
| | | | | | | | | | | |
Collapse
|
3
|
Divilov K, Merz N, Schoolfield B, Green TJ, Langdon C. Genome-wide allele frequency studies in Pacific oyster families identify candidate genes for tolerance to ostreid herpesvirus 1 (OsHV-1). BMC Genomics 2023; 24:631. [PMID: 37872508 PMCID: PMC10594793 DOI: 10.1186/s12864-023-09744-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/14/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Host genetics influences the development of infectious diseases in many agricultural animal species. Identifying genes associated with disease development has the potential to make selective breeding for disease tolerance more likely to succeed through the selection of different genes in diverse signaling pathways. In this study, four families of Pacific oysters (Crassostrea gigas) were identified to be segregating for a quantitative trait locus (QTL) on chromosome 8. This QTL was previously found to be associated with basal antiviral gene expression and survival to ostreid herpesvirus 1 (OsHV-1) mortality events in Tomales Bay, California. Individuals from these four families were phenotyped and genotyped in an attempt to find candidate genes associated with the QTL on chromosome 8. RESULTS Genome-wide allele frequencies of oysters from each family prior to being planting in Tomales Bay were compared with the allele frequencies of oysters from respective families that survived an OsHV-1 mortality event. Six significant unique QTL were identified in two families in these genome-wide allele frequency studies, all of which were located on chromosome 8. Three QTL were assigned to candidate genes (ABCA1, PIK3R1, and WBP2) that have been previously associated with antiviral innate immunity in vertebrates. CONCLUSION The identification of vertebrate antiviral innate immunity genes as candidate genes involved in molluscan antiviral innate immunity reinforces the similarities between the innate immune systems of these two groups. Causal variant identification in these candidate genes will enable future functional studies of these genes in an effort to better understand their antiviral modes of action.
Collapse
Affiliation(s)
- Konstantin Divilov
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR, 97365, USA.
| | - Noah Merz
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR, 97365, USA
| | - Blaine Schoolfield
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR, 97365, USA
| | - Timothy J Green
- Centre for Shellfish Research, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
| | - Chris Langdon
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Hatfield Marine Science Center, Newport, OR, 97365, USA
| |
Collapse
|
4
|
Gawra J, Valdivieso A, Roux F, Laporte M, de Lorgeril J, Gueguen Y, Saccas M, Escoubas JM, Montagnani C, Destoumieux-Garzόn D, Lagarde F, Leroy MA, Haffner P, Petton B, Cosseau C, Morga B, Dégremont L, Mitta G, Grunau C, Vidal-Dupiol J. Epigenetic variations are more substantial than genetic variations in rapid adaptation of oyster to Pacific oyster mortality syndrome. SCIENCE ADVANCES 2023; 9:eadh8990. [PMID: 37683000 PMCID: PMC10491289 DOI: 10.1126/sciadv.adh8990] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 08/09/2023] [Indexed: 09/10/2023]
Abstract
Disease emergence is accelerating with global changes. Understanding by which mechanisms host populations can rapidly adapt will be crucial for management practices. Pacific oyster mortality syndrome (POMS) imposes a substantial and recurrent selective pressure on oyster populations, and rapid adaptation may arise through genetics and epigenetics. In this study, we used (epi)genome-wide association mapping to show that oysters differentially exposed to POMS displayed genetic and epigenetic signatures of selection. Consistent with higher resistance to POMS, the genes targeted included many genes in several pathways related to immunity. By combining correlation, DNA methylation quantitative trait loci, and variance partitioning, we revealed that a third of phenotypic variation was explained by interactions between the genetic and epigenetic information, ~14% by the genome, and up to 25% by the epigenome alone. Similar to genetically based adaptation, epigenetic mechanisms notably governing immune responses can contribute substantially to the rapid adaptation of hosts to emerging infectious diseases.
Collapse
Affiliation(s)
- Janan Gawra
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Alejandro Valdivieso
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Fabrice Roux
- LIPME, INRAE, CNRS, Université de Toulouse, Castanet-Tolosan, France
| | - Martin Laporte
- Division de l'expertise sur la faune Aquatique, Ministère des Forêts, de la Faune et des Parcs (MFFP), 880 chemin Sainte-Foy, G1S 4X4 Québec, Québec, Canada
| | - Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
- Ifremer, IRD, Université de la Nouvelle-Calédonie, Université de La Réunion, ENTROPIE, Nouméa, Nouvelle-Calédonie, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Mathilde Saccas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | | | - Franck Lagarde
- MARBEC, Université de Montpellier, CNRS, Ifremer, IRD, Sète, France
| | - Marc A. Leroy
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Philippe Haffner
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| | - Bruno Petton
- Université de Brest, Ifremer, CNRS, IRD, LEMAR, F-29280 Plouzané, France
| | - Céline Cosseau
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, ASIM, Adaptation Santé des Invertébrés Marins, La Tremblade, France
| | - Guillaume Mitta
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
- Université de la Polynésie Française, ILM, IRD, Ifremer, F-98719 Tahiti, French Polynesia, France
| | - Christoph Grunau
- IHPE, Université de Perpignan Via Domitia, CNRS, Ifremer, Université de Montpellier, Perpignan, France
| | - Jeremie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Montpellier, France
| |
Collapse
|
5
|
Saco A, Rey-Campos M, Novoa B, Figueras A. Mussel antiviral transcriptome response and elimination of viral haemorrhagic septicaemia virus (VHSV). FISH & SHELLFISH IMMUNOLOGY 2023; 136:108735. [PMID: 37044187 DOI: 10.1016/j.fsi.2023.108735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 03/31/2023] [Accepted: 04/05/2023] [Indexed: 06/19/2023]
Abstract
As filter-feeding bivalves, mussels have been traditionally studied as possible vectors of different bacterial or viral pathogens. The absence of a known viral pathogen in these bivalves makes it particularly interesting to study the interaction of the mussel innate immune system with a virus of interest. In the present work, mussels were challenged with viral haemorrhagic septicaemia virus (VHSV), which is a pathogen in several fish species. The viral load was eliminated after 24 h and mussels evidenced antiviral activity towards VHSV, demonstrating that the virus was recognized and eliminated by the immune system of the host and confirming that mussels are not VHSV vectors in the marine environment. The transcriptome activating the antiviral response was studied, revealing the involvement of cytoplasmic viral sensors with the subsequent activation of the JAK-STAT pathway and several downstream antiviral effectors. The inflammatory response was inhibited with the profound downregulation of MyD88, shifting the immune balance towards antiviral functions. High modulation of retrotransposon activity was observed, revealing a mechanism that facilitates the antiviral response and that had not been previously observed in these species. The expression of several inhibitors of apoptosis and apoptosis-promoting genes was modulated, although clear inhibition of apoptosis in bivalves after severe viral infection and subsequent disease was not observed in this study. Finally, the modulated expression of several long noncoding RNAs that were correlated with genes involved in the immune response was detected.
Collapse
Affiliation(s)
- Amaro Saco
- Institute of Marine Research (IIM-CSIC), Vigo, Galicia, Spain
| | | | - Beatriz Novoa
- Institute of Marine Research (IIM-CSIC), Vigo, Galicia, Spain
| | | |
Collapse
|
6
|
Delisle L, Rolton A, Vignier J. Inactivated ostreid herpesvirus-1 induces an innate immune response in the Pacific oyster, Crassostrea gigas, hemocytes. Front Immunol 2023; 14:1161145. [PMID: 37187746 PMCID: PMC10175643 DOI: 10.3389/fimmu.2023.1161145] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
Infectious diseases are a major constraint to the expansion of shellfish production worldwide. Pacific oyster mortality syndrome (POMS), a polymicrobial disease triggered by the Ostreid herpesvirus-1 (OsHV-1), has devastated the global Pacific oyster (Crassostrea gigas) aquaculture industry. Recent ground-breaking research revealed that C. gigas possess an immune memory, capable of adaption, which improves the immune response upon a second exposure to a pathogen. This paradigm shift opens the door for developing 'vaccines' to improve shellfish survival during disease outbreaks. In the present study, we developed an in-vitro assay using hemocytes - the main effectors of the C. gigas immune system - collected from juvenile oysters susceptible to OsHV-1. The potency of multiple antigen preparations (e.g., chemically and physically inactivated OsHV-1, viral DNA, and protein extracts) to stimulate an immune response in hemocytes was evaluated using flow cytometry and droplet digital PCR to measure immune-related subcellular functions and gene expression, respectively. The immune response to the different antigens was benchmarked against that of hemocytes treated with Poly (I:C). We identified 10 antigen preparations capable of inducing immune stimulation in hemocytes (ROS production and positively expressed immune- related genes) after 1 h of exposure, without causing cytotoxicity. These findings are significant, as they evidence the potential for priming the innate immunity of oysters using viral antigens, which may enable cost-effective therapeutic treatment to mitigate OsHV-1/POMS. Further testing of these antigen preparations using an in-vivo infection model is essential to validate promising candidate pseudo-vaccines.
Collapse
Affiliation(s)
- Lizenn Delisle
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Anne Rolton
- Biosecurity Group, Cawthron Institute, Nelson, New Zealand
- *Correspondence: Lizenn Delisle, ; Anne Rolton,
| | - Julien Vignier
- Aquaculture Group, Cawthron Institute, Nelson, New Zealand
| |
Collapse
|
7
|
Abstract
The immune repertoires of mollusks beyond commercially important organisms such as the pacific oyster Crassostrea gigas or vectors for human pathogens like the bloodfluke planorb Biomphalaria glabrata are understudied. Despite being an important model for neural aging and the role of inflammation in neuropathic pain, the immune repertoire of Aplysia californica is poorly understood. Recent discovery of a neurotropic nidovirus in Aplysia has highlighted the need for a better understanding of the Aplysia immunome. To address this gap in the literature, the Aplysia reference genome was mined using InterProScan and OrthoFinder for putative immune genes. The Aplysia genome encodes orthologs of all critical components of the classical Toll-like receptor (TLR) signaling pathway. The presence of many more TLRs and TLR associated adapters than known from vertebrates suggest yet uncharacterized, novel TLR associated signaling pathways. Aplysia also retains many nucleotide receptors and antiviral effectors known to play a key role in viral defense in vertebrates. However, the absence of key antiviral signaling adapters MAVS and STING in the Aplysia genome suggests divergence from vertebrates and bivalves in these pathways. The resulting immune gene set of this in silico study provides a basis for interpretation of future immune studies in this important model organism.
Collapse
Affiliation(s)
- Nicholas S Kron
- Department of Marine Biology and Ecology, Rosenstiel School of Marine and Atmospheric Science, University of Miami, 4600 Rickenbacker Cswy, Miami, FL, 33149, USA.
| |
Collapse
|
8
|
Picot S, Faury N, Pelletier C, Arzul I, Chollet B, Dégremont L, Renault T, Morga B. Monitoring Autophagy at Cellular and Molecular Level in Crassostrea gigas During an Experimental Ostreid Herpesvirus 1 (OsHV-1) Infection. Front Cell Infect Microbiol 2022; 12:858311. [PMID: 35444958 PMCID: PMC9014014 DOI: 10.3389/fcimb.2022.858311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/01/2022] [Indexed: 12/03/2022] Open
Abstract
Mortality outbreaks of young Pacific oysters, Crassostrea gigas, have seriously affected the oyster-farming economy in several countries around the world. Although the causes of these mortality outbreaks appear complex, a viral agent has been identified as the main factor: a herpesvirus called ostreid herpesvirus 1 (OsHV-1). Autophagy is an important degradation pathway involved in the response to several pathologies including viral diseases. In C. gigas, recent studies indicate that this pathway is conserved and functional in at least haemocytes and the mantle. Furthermore, an experimental infection in combination with compounds known to inhibit or induce autophagy in mammals revealed that autophagy is involved in the response to OsHV-1 infection. In light of these results, the aim of this study was to determine the role of autophagy in the response of the Pacific oyster to infection by virus OsHV-1. For this purpose, an experimental infection in combination with a modulator of autophagy was performed on Pacific oysters known to have intermediate susceptibility to OsHV-1 infection. In haemolymph and the mantle, the autophagy response was monitored by flow cytometry, western blotting, and real-time PCR. At the same time, viral infection was evaluated by quantifying viral DNA and RNA amounts by real-time PCR. Although the results showed activation of autophagy in haemolymph and the mantle 14 hours post infection (after viral replication was initiated), they were also indicative of different regulatory mechanisms of autophagy in the two tissues, thus supporting an important function of autophagy in the response to virus OsHV-1.
Collapse
Affiliation(s)
- Sandy Picot
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Nicole Faury
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Camille Pelletier
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Isabelle Arzul
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Bruno Chollet
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Lionel Dégremont
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, La Tremblade, France
| | - Benjamin Morga
- Ifremer, ASIM, Adaptation Santé des invertébrés, La Tremblade, France
- *Correspondence: Benjamin Morga,
| |
Collapse
|
9
|
Watson A, Agius J, Ackerly D, Beddoe T, Helbig K. The Role of Anti-Viral Effector Molecules in Mollusc Hemolymph. Biomolecules 2022; 12:345. [PMID: 35327536 PMCID: PMC8945852 DOI: 10.3390/biom12030345] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/06/2022] [Accepted: 02/21/2022] [Indexed: 02/04/2023] Open
Abstract
Molluscs are major contributors to the international and Australian aquaculture industries, however, their immune systems remain poorly understood due to limited access to draft genomes and evidence of divergences from model organisms. As invertebrates, molluscs lack adaptive immune systems or 'memory', and rely solely on innate immunity for antimicrobial defence. Hemolymph, the circulatory fluid of invertebrates, contains hemocytes which secrete effector molecules with immune regulatory functions. Interactions between mollusc effector molecules and bacterial and fungal pathogens have been well documented, however, there is limited knowledge of their roles against viruses, which cause high mortality and significant production losses in these species. Of the major effector molecules, only the direct acting protein dicer-2 and the antimicrobial peptides (AMPs) hemocyanin and myticin-C have shown antiviral activity. A better understanding of these effector molecules may allow for the manipulation of mollusc proteomes to enhance antiviral and overall antimicrobial defence to prevent future outbreaks and minimize economic outbreaks. Moreover, effector molecule research may yield the description and production of novel antimicrobial treatments for a broad host range of animal species.
Collapse
Affiliation(s)
- Angus Watson
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Jacinta Agius
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| | - Danielle Ackerly
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Travis Beddoe
- Department of Animal, Plant and Soil Science, La Trobe University, Melbourne, VIC 3086, Australia;
| | - Karla Helbig
- Department of Physiology, Anatomy, and Microbiology, La Trobe University, Melbourne, VIC 3086, Australia; (A.W.); (J.A.)
| |
Collapse
|
10
|
de la Ballina NR, Villalba A, Cao A. Shotgun analysis to identify differences in protein expression between granulocytes and hyalinocytes of the European flat oyster Ostrea edulis. FISH & SHELLFISH IMMUNOLOGY 2021; 119:678-691. [PMID: 34748932 DOI: 10.1016/j.fsi.2021.10.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 10/19/2021] [Accepted: 10/31/2021] [Indexed: 06/13/2023]
Abstract
Recovery of wild populations of the European flat oyster Ostrea edulis is important for ecosystem health and conservation of this species, because native oyster populations have dramatically declined or disappeared in most European waters. Diseases have contributed to oyster decline and are important constrains for oyster recovery. Understanding oyster immune system should contribute to design effective strategies to fight oyster diseases. Haemocytes play a pivotal role in mollusc immune responses protecting from infection. Two main types of haemocytes, granulocytes and hyalinocytes, are distinguished in O. edulis. A study aiming to explore differential functions between both haemocyte types and, thus, to enrich the knowledge of Ostrea edulis immune system, was performed by comparing the proteome of the two haemolymph cell types, using a shotgun approach through liquid chromatography (LC) coupled to mass spectrometry (MS). Cells from oyster haemolymph were differentially separated by Percoll density gradient centrifugation. Shotgun LC-MS/MS performance allowed the identification of 145 proteins in hyalinocytes and 138 in the proteome of granulocytes. After a comparative analysis, 55 proteins with main roles in defence were identified, from which 28 were representative of granulocytes and 27 of hyalinocytes, plus 11 proteins shared by both cell types. Different proteins involved in signal transduction, apoptosis, oxidative response, processes related with the cytoskeleton and structure, recognition and wound healing were identified as representatives of each haemocyte type. Important signalling pathways in the immune response such as MAPK, Ras and NF-κβ seemed to be more relevant for granulocytes, while the Wnt signalling pathway, particularly relevant for wound healing, more relevant in hyalinocytes. The differences in proteins involved in recognition and in cytoskeleton and structure suggest differential specialisation in processes of phagocytosis and internalisation of pathogens between haemocyte types. Apoptosis seemed more active in granulocytes. The differences in proteins involved in oxidative response also suggest different redox processes in each cell type.
Collapse
Affiliation(s)
- Nuria R de la Ballina
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| | - Antonio Villalba
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871, Alcalá de Henares, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), 48620, Plentzia, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas (CIMA), Consellería do Mar, Xunta de Galicia, 36620, Vilanova de Arousa, Spain
| |
Collapse
|
11
|
Pedler RL, Speck PG. Marine mollusc extracts-Potential source of SARS-CoV-2 antivirals. Rev Med Virol 2021; 32:e2310. [PMID: 34726308 PMCID: PMC8646538 DOI: 10.1002/rmv.2310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/10/2021] [Accepted: 10/11/2021] [Indexed: 12/28/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) is a novel human coronavirus and the causative agent of coronavirus disease 2019 (Covid‐19). There is an urgent need for effective antivirals to treat current Covid‐19 cases and protect those unable to be vaccinated against SARS‐CoV‐2. Marine molluscs live in an environment containing high virus densities (>107 virus particles per ml), and there are an estimated 100,000 species in the phylum Mollusca, demonstrating the success of their innate immune system. Mollusc‐derived antivirals are yet to be used clinically despite the activity of many extracts, including against human viruses, being demonstrated in vitro. Hemolymph of the Pacific oyster (Crassostrea gigas) has in vitro antiviral activity against herpes simplex virus and human adenovirus, while antiviral action against SARS‐CoV‐2 has been proposed by in silico studies. Such evidence suggests that molluscs, and in particular C. gigas hemolymph, may represent a source of antivirals for human coronaviruses.
Collapse
Affiliation(s)
- Rebecca L Pedler
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| | - Peter G Speck
- College of Science and Engineering, Flinders University, Bedford Park, South Australia, Australia
| |
Collapse
|
12
|
Qiao X, Wang L, Song L. The primitive interferon-like system and its antiviral function in molluscs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 118:103997. [PMID: 33444647 DOI: 10.1016/j.dci.2021.103997] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/05/2021] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The phylum mollusca is a very important group in the animal kingdom for the large number and diversified species. Recently, interest in molluscan immunity has increased due to their phylogenetic position and importance in worldwide aquaculture and aquatic environment. As the main aquaculture animal, most molluscs live in the water environment and they have to cope with many pathogen challenges, in which virus is one of the primary causes for the mass mortality. In vertebrates, interferon (IFN) system is generally recognized as the first line of defence against viral infection, while the antiviral mechanisms in molluscs remain to be clearly illuminated. Recently, some IFN-like proteins and IFN-related components have been characterized from molluscs, such as pattern recognition receptors (PRRs), interferon regulatory factors (IRFs), IFN-like receptors, JAK/STAT and IFN-stimulated genes (ISGs), which reinforce the existence of IFN-like system in molluscs. This system can be activated by virus or poly (I:C) challenges and further regulate the antiviral response of haemocytes in molluscs. This review summarizes the research progresses of IFN-like system in molluscs with the emphases on the uniformity and heterogeneity of IFN-like system of molluscs compared to that of other animals, which will be helpful for elucidating the antiviral modulation in molluscs and understanding the origin and evolution of IFN system.
Collapse
Affiliation(s)
- Xue Qiao
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, 116023, China; Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai, 519000, China; Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, 116023, China; Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control, Dalian Ocean University, Dalian, 116023, China.
| |
Collapse
|
13
|
Leprêtre M, Faury N, Segarra A, Claverol S, Degremont L, Palos-Ladeiro M, Armengaud J, Renault T, Morga B. Comparative Proteomics of Ostreid Herpesvirus 1 and Pacific Oyster Interactions With Two Families Exhibiting Contrasted Susceptibility to Viral Infection. Front Immunol 2021; 11:621994. [PMID: 33537036 PMCID: PMC7848083 DOI: 10.3389/fimmu.2020.621994] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
Massive mortality outbreaks affecting Pacific oysters (Crassostrea gigas) spat/juveniles are often associated with the detection of a herpesvirus called ostreid herpesvirus type 1 (OsHV-1). In this work, experimental infection trials of C. gigas spat with OsHV-1 were conducted using two contrasted Pacific oyster families for their susceptibility to viral infection. Live oysters were sampled at 12, 26, and 144 h post infection (hpi) to analyze host-pathogen interactions using comparative proteomics. Shotgun proteomics allowed the detection of seven viral proteins in infected oysters, some of them with potential immunomodulatoy functions. Viral proteins were mainly detected in susceptible oysters sampled at 26 hpi, which correlates with the mortality and viral load observed in this oyster family. Concerning the Pacific oyster proteome, more than 3,000 proteins were identified and contrasted proteomic responses were observed between infected A- and P-oysters, sampled at different post-injection times. Gene ontology (GO) and KEGG pathway enrichment analysis performed on significantly modulated proteins uncover the main immune processes (such as RNA interference, interferon-like pathway, antioxidant defense) which contribute to the defense and resistance of Pacific oysters to viral infection. In the more susceptible Pacific oysters, results suggest that OsHV-1 manipulate the molecular machinery of host immune response, in particular the autophagy system. This immunomodulation may lead to weakening and consecutively triggering death of Pacific oysters. The identification of several highly modulated and defense-related Pacific oyster proteins from the most resistant oysters supports the crucial role played by the innate immune system against OsHV-1 and the viral infection. Our results confirm the implication of proteins involved in an interferon-like pathway for efficient antiviral defenses and suggest that proteins involved in RNA interference process prevent viral replication in C. gigas. Overall, this study shows the interest of multi-omic approaches applied on groups of animals with differing sensitivities and provides novel insight into the interaction between Pacific oyster and OsHV-1 with key proteins involved in viral infection resistance.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, Reims, France
| | - Nicole Faury
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| | - Amélie Segarra
- Department of Anatomy, Physiology & Cell Biology, School of Veterinary Medicine, University of California, Davis, CA, United States
| | - Stéphane Claverol
- Centre Génomique Fonctionnelle de Bordeaux, Plateforme Protéome, Université de Bordeaux, Bordeaux, France
| | - Lionel Degremont
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, Reims, France
| | - Jean Armengaud
- Université Paris-Saclay, CEA, INRAE, DépartementMédicaments et Technologies pour la Santé (DMTS), SPI, Bagnols-sur-Cèze, France
| | - Tristan Renault
- Département Ressources Biologiques Et Environnement, Ifremer, Nantes, France
| | - Benjamin Morga
- SG2M-LGPMM, Laboratoire De Génétique Et Pathologie Des Mollusques Marins, Ifremer, La Tremblade, France
| |
Collapse
|
14
|
Huang S, Yoshitake K, Asaduzzaman M, Kinoshita S, Watabe S, Asakawa S. Discovery and functional understanding of MiRNAs in molluscs: a genome-wide profiling approach. RNA Biol 2021; 18:1702-1715. [PMID: 33356816 DOI: 10.1080/15476286.2020.1867798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Small non-coding RNAs play a pivotal role in gene regulation, repression of transposable element and viral activity in various organisms. Among the various categories of these small non-coding RNAs, microRNAs (miRNAs) guide post-translational gene regulation in cellular development, proliferation, apoptosis, oncogenesis, and differentiation. Here, we performed a genome-wide computational prediction of miRNAs to improve the understanding of miRNA observation and function in molluscs. As an initial step, hundreds of conserved miRNAs were predicted in 35 species of molluscs through genome scanning. Afterwards, the miRNAs' population, isoforms, organization, and function were characterized in detail. Furthermore, the key miRNA biogenesis factors, including AGO2, DGCR8, DICER, DROSHA, TRABP2, RAN, and XPO5, were elucidated based on homologue sequence searching. We also summarized the miRNAs' function in biomineralization, immune and stress response, as well as growth and development in molluscs. Because miRNAs play a vital role in various lifeforms, this study will provide insight into miRNA biogenesis and function in molluscs, as well as other invertebrates.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Md Asaduzzaman
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Sagamihara, Kanagawa, Japan
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
15
|
The noncoding small RNA SsrA is released by Vibrio fischeri and modulates critical host responses. PLoS Biol 2020; 18:e3000934. [PMID: 33141816 PMCID: PMC7665748 DOI: 10.1371/journal.pbio.3000934] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 11/13/2020] [Accepted: 09/22/2020] [Indexed: 01/13/2023] Open
Abstract
The regulatory noncoding small RNAs (sRNAs) of bacteria are key elements influencing gene expression; however, there has been little evidence that beneficial bacteria use these molecules to communicate with their animal hosts. We report here that the bacterial sRNA SsrA plays an essential role in the light-organ symbiosis between Vibrio fischeri and the squid Euprymna scolopes. The symbionts load SsrA into outer membrane vesicles, which are transported specifically into the epithelial cells surrounding the symbiont population in the light organ. Although an SsrA-deletion mutant (ΔssrA) colonized the host to a normal level after 24 h, it produced only 2/10 the luminescence per bacterium, and its persistence began to decline by 48 h. The host's response to colonization by the ΔssrA strain was also abnormal: the epithelial cells underwent premature swelling, and host robustness was reduced. Most notably, when colonized by the ΔssrA strain, the light organ differentially up-regulated 10 genes, including several encoding heightened immune-function or antimicrobial activities. This study reveals the potential for a bacterial symbiont's sRNAs not only to control its own activities but also to trigger critical responses promoting homeostasis in its host. In the absence of this communication, there are dramatic fitness consequences for both partners.
Collapse
|
16
|
Gardon T, Morvan L, Huvet A, Quillien V, Soyez C, Le Moullac G, Le Luyer J. Microplastics induce dose-specific transcriptomic disruptions in energy metabolism and immunity of the pearl oyster Pinctada margaritifera. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115180. [PMID: 32673975 DOI: 10.1016/j.envpol.2020.115180] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/19/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
A combined approach integrating bioenergetics and major biological activities is essential to properly understand the impact of microplastics (MP) on marine organisms. Following experimental exposure of polystyrene microbeads (micro-PS of 6 and 10 μm) at 0.25, 2.5, and 25 μg L-1, which demonstrated a dose-dependent decrease of energy balance in the pearl oyster Pinctada margaritifera, a transcriptomic study was conducted on mantle tissue. Transcriptomic data helped us to decipher the molecular mechanisms involved in P. margaritifera responses to micro-PS and search more broadly for effects on energetically expensive maintenance functions. Genes related to the detoxification process were impacted by long-term micro-PS exposure through a decrease in antioxidant response functioning, most likely leading to oxidative stress and damage, especially at higher micro-PS doses. The immune response was also found to be dose-specific, with a stress-related activity stimulated by the lowest dose present after a 2-month exposure period. This stress response was not observed following exposure to higher doses, reflecting an energy-limited capacity of pearl oysters to cope with prolonged stress and a dramatic shift to adjust to pessimum conditions, mostly limited and hampered by a lowered energetic budget. This preliminary experiment lays the foundation for exploring pathways and gene expression in P. margaritifera, and marine mollusks in general, under MP exposure. We also propose a conceptual framework to properly assess realistic MP effects on organisms and population resilience in future investigations.
Collapse
Affiliation(s)
- Tony Gardon
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Lucie Morvan
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Arnaud Huvet
- Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Virgile Quillien
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France; Univ Brest, Ifremer, CNRS, IRD, LEMAR, F-29280, Plouzané, France
| | - Claude Soyez
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Gilles Le Moullac
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France
| | - Jérémy Le Luyer
- Ifremer, Institut Louis-Malardé, IRD, Univ Polynésie Française, EIO, F-98719, Taravao, Tahiti, Polynésie française, France.
| |
Collapse
|
17
|
Rosani U, Abbadi M, Green T, Bai CM, Turolla E, Arcangeli G, Wegner KM, Venier P. Parallel analysis of miRNAs and mRNAs suggests distinct regulatory networks in Crassostrea gigas infected by Ostreid herpesvirus 1. BMC Genomics 2020; 21:620. [PMID: 32912133 PMCID: PMC7488030 DOI: 10.1186/s12864-020-07026-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/25/2020] [Indexed: 12/17/2022] Open
Abstract
Background Since 2008, the aquaculture production of Crassostrea gigas was heavily affected by mass mortalities associated to Ostreid herpesvirus 1 (OsHV-1) microvariants worldwide. Transcriptomic studies revealed the major antiviral pathways of the oyster immune response while other findings suggested that also small non-coding RNAs (sncRNA) such as microRNAs might act as key regulators of the oyster response against OsHV-1. To explore the explicit connection between small non-coding and protein-coding transcripts, we performed paired whole transcriptome analysis of sncRNA and messenger RNA (mRNA) in six oysters selected for different intensities of OsHV-1 infection. Results The mRNA profiles of the naturally infected oysters were mostly governed by the transcriptional activity of OsHV-1, with several differentially expressed genes mapping to the interferon, toll, apoptosis, and pro-PO pathways. In contrast, miRNA profiles suggested more complex regulatory mechanisms, with 15 differentially expressed miRNAs (DE-miRNA) pointing to a possible modulation of the host response during OsHV-1 infection. We predicted 68 interactions between DE-miRNAs and oyster 3′-UTRs, but only few of them involved antiviral genes. The sncRNA reads assigned to OsHV-1 rather resembled mRNA degradation products, suggesting the absence of genuine viral miRNAs. Conclusions We provided data describing the miRNAome during OsHV-1 infection in C. gigas. This information can be used to understand the role of miRNAs in healthy and diseased oysters, to identify new targets for functional studies and, eventually to disentangle cause and effect relationships during viral infections in marine mollusks.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 35121, Padova, Italy. .,Coastal Ecology Section, AWI - Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992, List, Germany.
| | - Miriam Abbadi
- Istituto Zooprofilattico delle Venezie, Legnaro, Italy
| | - Timothy Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC, V9R 5S5, Canada
| | - Chang-Ming Bai
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | | | | | - K Mathias Wegner
- Coastal Ecology Section, AWI - Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Wadden Sea Station Sylt, 25992, List, Germany
| | - Paola Venier
- Department of Biology, University of Padova, 35121, Padova, Italy.
| |
Collapse
|
18
|
Mendes AF, Goncalves P, Serrano-Solis V, Silva PMD. Identification of candidate microRNAs from Ostreid herpesvirus-1 (OsHV-1) and their potential role in the infection of Pacific oysters (Crassostrea gigas). Mol Immunol 2020; 126:153-164. [PMID: 32853878 DOI: 10.1016/j.molimm.2020.08.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/21/2022]
Abstract
Oyster production is an economic activity of great interest worldwide. Recently, oysters have been suffering significant mortalities from OsHV-1infection, which has resulted in substantial economic loses in several countries around the world. Understanding viral pathogenicity mechanisms is of central importance for the establishment of disease control measures. Thus, the present work aimed to identify and characterize miRNAs from OsHV-1 as well as to predict their target transcripts in the virus and the host. OsHV-1 genome was used for the in silico discovery of pre-miRNAs. Subsequently, viral and host target transcripts of the OsHV-1 miRNAs were predicted according to the base pairing interaction between mature miRNAs and mRNA 3' untranslated regions (UTRs). Six unique pre-miRNAs were found in different regions of the viral genome, ranging in length from 85 to 172 nucleotides. A complex network of self-regulation of viral gene expression mediated by the miRNAs was identified. These sequences also seem to have a broad ability to regulate the expression of host immune-related genes, especially those associated with pathogen recognition. Our results suggest that OsHV-1 encodes miRNAs with important functions in the infection process, inducing self-regulation of viral transcripts, as well as affecting the regulation of Pacific oyster transcripts related to immunity. Understanding the molecular basis of host-pathogen interactions can help mitigate the recurrent events of oyster mass mortalities by OsHV-1 observed worldwide.
Collapse
Affiliation(s)
- Andrei Félix Mendes
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Priscila Goncalves
- Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9FE, UK
| | - Victor Serrano-Solis
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil
| | - Patricia Mirella da Silva
- Laboratório de Imunologia e Patologia de Invertebrados (LABIPI), Departamento de Biologia Molecular, Universidade Federal da Paraíba (UFPB), 58051-900, João Pessoa, Paraíba, Brazil.
| |
Collapse
|
19
|
Leprêtre M, Palos-Ladeiro M, Faugere J, Almunia C, Lemoine J, Armengaud J, Geffard A, Salvador A. From shotgun to targeted proteomics: rapid Scout-MRM assay development for monitoring potential immunomarkers in Dreissena polymorpha. Anal Bioanal Chem 2020; 412:7333-7347. [DOI: 10.1007/s00216-020-02868-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/27/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
|
20
|
Immune Control of Herpesvirus Infection in Molluscs. Pathogens 2020; 9:pathogens9080618. [PMID: 32751093 PMCID: PMC7460283 DOI: 10.3390/pathogens9080618] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Molluscan herpesviruses that are capable of infecting economically important species of abalone and oysters have caused significant losses in production due to the high mortality rate of infected animals. Current methods in preventing and controlling herpesviruses in the aquacultural industry are based around biosecurity measures which are impractical and do not contain the virus as farms source their water from oceans. Due to the lack of an adaptive immune system in molluscs, vaccine related therapies are not a viable option; therefore, a novel preventative strategy known as immune priming was recently explored. Immune priming has been shown to provide direct protection in oysters from Ostreid herpesvirus-1, as well as to their progeny through trans-generational immune priming. The mechanisms of these processes are not completely understood, however advancements in the characterisation of the oyster immune response has assisted in formulating potential hypotheses. Limited literature has explored the immune response of abalone infected with Haliotid herpesvirus as well as the potential for immune priming in these species, therefore, more research is required in this area to determine whether this is a practical solution for control of molluscan herpesviruses in an aquaculture setting.
Collapse
|
21
|
Leprêtre M, Almunia C, Armengaud J, Le Guernic A, Salvador A, Geffard A, Palos-Ladeiro M. Identification of immune-related proteins of Dreissena polymorpha hemocytes and plasma involved in host-microbe interactions by differential proteomics. Sci Rep 2020; 10:6226. [PMID: 32277127 PMCID: PMC7148315 DOI: 10.1038/s41598-020-63321-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/27/2020] [Indexed: 12/04/2022] Open
Abstract
Biological responses of zebra mussel Dreissena polymorpha are investigated to assess the impact of contaminants on aquatic organisms and ecosystems. In addition to concentrate chemical contaminants in their tissues, zebra mussels accumulate several microorganisms such as viruses, protozoa and bacteria. In order to understand the molecular mechanisms involved in the defence against microorganisms this study aims at identifying immune proteins from D. polymorpha hemolymph involved in defence against protozoa and viruses. For this purpose, hemolymph were exposed ex vivo to Cryptosporidium parvum and RNA poly I:C. Differential proteomics on both hemocytes and plasma revealed immune proteins modulated under exposures. Different patterns of response were observed after C. parvum and RNA poly I:C exposures. The number of modulated proteins per hemolymphatic compartments suggest that C. parvum is managed in cells while RNA poly I:C is managed in plasma after 4 h exposure. BLAST annotation and GO terms enrichment analysis revealed further characteristics of immune mechanisms. Results showed that many proteins involved in the recognition and destruction of microorganisms were modulated in both exposure conditions, while proteins related to phagocytosis and apoptosis were exclusively modulated by C. parvum. This differential proteomic analysis highlights in zebra mussels modulated proteins involved in the response to microorganisms, which reflect a broad range of immune mechanisms such as recognition, internalization and destruction of microorganisms. This study paves the way for the identification of new markers of immune processes that can be used to assess the impact of both chemical and biological contaminations on the health status of aquatic organisms.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207, Bagnols-sur-Cèze, France
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100, Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO Stress Environnementaux et BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039, 51687, Reims, CEDEX, France.
| |
Collapse
|
22
|
Abstract
Viral diseases cause significant losses in aquaculture. Prophylactic measures, such as immune priming, are promising control strategies. Treatment of the Pacific oyster (Crassostrea gigas) with the double-stranded RNA analog poly(I·C) confers long-term protection against infection with ostreid herpesvirus 1, the causative agent of Pacific oyster mortality syndrome. In a recent article in mBio, Lafont and coauthors (M. Lafont, A. Vergnes, J. Vidal-Dupiol, J. Viral diseases cause significant losses in aquaculture. Prophylactic measures, such as immune priming, are promising control strategies. Treatment of the Pacific oyster (Crassostrea gigas) with the double-stranded RNA analog poly(I·C) confers long-term protection against infection with ostreid herpesvirus 1, the causative agent of Pacific oyster mortality syndrome. In a recent article in mBio, Lafont and coauthors (M. Lafont, A. Vergnes, J. Vidal-Dupiol, J. de Lorgeril, et al., mBio 11:e02777-19, 2020, https://doi.org/10.1128/mBio.02777-19) characterized the transcriptome of oysters treated with poly(I·C). This immune stimulator induced genes related to the interferon and apoptosis pathways. This response overlaps the response to viral infection, and high expression levels of potential effector genes are maintained for up to 4 months. This work opens the door to characterization of the phenomena of immune priming in a poorly studied invertebrate model. It also highlights the importance of interferon-like responses for invertebrate antiviral immunity.
Collapse
|
23
|
A Sustained Immune Response Supports Long-Term Antiviral Immune Priming in the Pacific Oyster, Crassostrea gigas. mBio 2020; 11:mBio.02777-19. [PMID: 32156821 PMCID: PMC7064767 DOI: 10.1128/mbio.02777-19] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Over the last decade, innate immune priming has been evidenced in many invertebrate phyla. If mechanistic models have been proposed, molecular studies aiming to substantiate these models have remained scarce. We reveal here the transcriptional signature associated with immune priming in the oyster Crassostrea gigas Oysters were fully protected against Ostreid herpesvirus 1 (OsHV-1), a major oyster pathogen, after priming with poly(I·C), which mimics viral double-stranded RNA. Global analysis through RNA sequencing of oyster and viral genes after immune priming and viral infection revealed that poly(I·C) induces a strong antiviral response that impairs OsHV-1 replication. Protection is based on a sustained upregulation of immune genes, notably genes involved in the interferon pathway and apoptosis, which control subsequent viral infection. This persistent antiviral alert state remains active over 4 months and supports antiviral protection in the long term. This acquired resistance mechanism reinforces the molecular foundations of the sustained response model of immune priming. It further opens the way to applications (pseudovaccination) to cope with a recurrent disease that causes dramatic economic losses in the shellfish farming industry worldwide.IMPORTANCE In the last decade, important discoveries have shown that resistance to reinfection can be achieved without a functional adaptive immune system, introducing the concept of innate immune memory in invertebrates. However, this field has been constrained by the limited number of molecular mechanisms evidenced to support these phenomena. Taking advantage of an invertebrate species, the Pacific oyster (Crassostrea gigas), in which we evidenced one of the longest and most effective periods of protection against viral infection observed in an invertebrate, we provide the first comprehensive transcriptomic analysis of antiviral innate immune priming. We show that priming with poly(I·C) induced a massive upregulation of immune-related genes, which control subsequent viral infection, and it was maintained for over 4 months after priming. This acquired resistant mechanism reinforces the molecular foundations of the sustained response model of immune priming. It opens the way to pseudovaccination to prevent the recurrent diseases that currently afflict economically or ecologically important invertebrates.
Collapse
|
24
|
de Lorgeril J, Petton B, Lucasson A, Perez V, Stenger PL, Dégremont L, Montagnani C, Escoubas JM, Haffner P, Allienne JF, Leroy M, Lagarde F, Vidal-Dupiol J, Gueguen Y, Mitta G. Differential basal expression of immune genes confers Crassostrea gigas resistance to Pacific oyster mortality syndrome. BMC Genomics 2020; 21:63. [PMID: 31959106 PMCID: PMC6971885 DOI: 10.1186/s12864-020-6471-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 01/08/2020] [Indexed: 02/08/2023] Open
Abstract
Background As a major threat to the oyster industry, Pacific Oyster Mortality Syndrome (POMS) is a polymicrobial disease affecting the main oyster species farmed across the world. POMS affects oyster juveniles and became panzootic this last decade, but POMS resistance in some oyster genotypes has emerged. While we know some genetic loci associated with resistance, the underlying mechanisms remained uncharacterized. So, we developed a comparative transcriptomic approach using basal gene expression profiles between different oyster biparental families with contrasted phenotypes when confronted to POMS (resistant or susceptible). Results We showed that POMS resistant oysters show differential expression of genes involved in stress responses, protein modifications, maintenance of DNA integrity and repair, and immune and antiviral pathways. We found similarities and clear differences among different molecular pathways in the different resistant families. These results suggest that the resistance process is polygenic and partially varies according to the oyster genotype. Conclusions We found differences in basal expression levels of genes related to TLR-NFκB, JAK-STAT and STING-RLR pathways. These differences could explain the best antiviral response, as well as the robustness of resistant oysters when confronted to POMS. As some of these genes represent valuable candidates for selective breeding, we propose future studies should further examine their function.
Collapse
Affiliation(s)
- Julien de Lorgeril
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Bruno Petton
- Ifremer, LEMAR UMR 6539, UBO/CNRS/IRD/Ifremer, 11 presqu'île du vivier, 29840, Argenton-en-Landunvez, France
| | - Aude Lucasson
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Valérie Perez
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Pierre-Louis Stenger
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.,Ifremer, UMR 241 Écosystèmes Insulaires Océaniens, Labex Corail, Centre Ifremer du Pacifique, BP 49, 98725, Tahiti, French Polynesia
| | - Lionel Dégremont
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, Avenue du Mus de Loup, 17930, La Tremblade, France
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Jean-Michel Escoubas
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Philippe Haffner
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Jean-François Allienne
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Marc Leroy
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Franck Lagarde
- MARBEC, Université de Montpellier, CNRS, IRD, Ifremer, 87 Avenue Jean Monnet, 34200, Sète, France
| | - Jérémie Vidal-Dupiol
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Yannick Gueguen
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France
| | - Guillaume Mitta
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, Place E. Bataillon, CC080, 34095, Montpellier, France.
| |
Collapse
|
25
|
Neave MJ, Corbeil S, McColl KA, Crane MSJ. Investigating the natural resistance of blackfoot p-a%%KERN_ERR%%ua Haliotis iris to abalone viral ganglioneuritis using whole transcriptome analysis. DISEASES OF AQUATIC ORGANISMS 2019; 135:107-119. [PMID: 31342912 DOI: 10.3354/dao03390] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The natural resistance of New Zealand blackfoot p-a%%%%%%%%%%%%%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%KERN_ERR%%ua Haliotis iris to infection by haliotid herpesvirus-1 (HaHV-1) and to the disease abalone viral ganglioneuritis was investigated in experimentally challenged p-aua using high throughput RNA-sequencing. HaHV-1-challenged p-aua up-regulated broad classes of genes that contained chitin-binding peritrophin-A domains, which seem to play diverse roles in the p-aua immune response. The p-aua also up-regulated vascular adhesion protein-1 (VAP-1), an important adhesion molecule for lymphocytes, and chitotriosidase-1 (CHIT-1), an immunologically important gene in mammalian immune systems. Moreover, several blood coagulation pathways were dysregulated in the p-aua, possibly indicating viral modulation. We also saw several indications that neurological tissues were specifically affected by HaHV-1, including the dysregulation of beta-1,4-N-acetylgalactosaminyltransferase (B4GALNT), GM2 ganglioside, neuroligin-4 and the Notch signalling pathway. This research may support the development of molecular therapeutics useful to control and/or manage viral outbreaks in abalone culture.
Collapse
Affiliation(s)
- Matthew J Neave
- Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| | | | | | | |
Collapse
|
26
|
Leprêtre M, Almunia C, Armengaud J, Salvador A, Geffard A, Palos-Ladeiro M. The immune system of the freshwater zebra mussel, Dreissena polymorpha, decrypted by proteogenomics of hemocytes and plasma compartments. J Proteomics 2019; 202:103366. [PMID: 31015035 DOI: 10.1016/j.jprot.2019.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/20/2019] [Accepted: 04/17/2019] [Indexed: 12/21/2022]
Abstract
The immune system of bivalves is of great interest since it reflects the health status of these organisms during stressful conditions. While immune molecular responses are well documented for marine bivalves, few information is available for continental bivalves such as the zebra mussel, Dreissena polymorpha. A proteogenomic approach was conducted on both hemocytes and plasma to identified immune proteins of this non-model species. Combining transcriptomic sequences with mass spectrometry data acquired on proteins is a relevant strategy since 3020 proteins were identified, representing the largest protein inventory for this sentinel organism. Functional annotation and gene ontology (GO) analysis performed on the identified proteins described the main molecular players of hemocytes and plasma in immunity. GO analysis highlights the complementary immune functions of these two compartments in the management of micro-organisms. Functional annotation revealed new mechanisms in the immune defence of the zebra mussel. Proteins rarely observed in the hemolymph of bivalves were pinpointed such as natterin-like and thaumatin-like proteins. Furthermore, the high abundance of complement-related proteins observed in plasma suggested a strong implication of the complement system in the immune defence of D. polymorpha. This work brings a better understanding of the molecular mechanisms involved in zebra mussel immunity. SIGNIFICANCE: Although the molecular mechanisms of marine bivalves are widely investigated, little information is known for continental bivalves. Moreover, few proteomic studies described the complementarity of both hemolymphatic compartments (cellular and plasmatic) in the immune defence of invertebrates. The recent proteogenomics concept made it possible to discover proteins in non-model organisms. Here, we propose a proteogenomic strategy with the zebra mussel, a key sentinel species for biomonitoring of freshwater, to identify and describe the molecular actors involved in the immune system in both hemocytes and plasma compartments. More widely, this study provided new insight into bivalve immunity.
Collapse
Affiliation(s)
- Maxime Leprêtre
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France; Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Christine Almunia
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Jean Armengaud
- Laboratoire Innovations Technologiques pour la Détection et le Diagnostic (Li2D), Service de Pharmacologie et Immunoanalyse (SPI), CEA, INRA, F-30207 Bagnols-sur-Cèze, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, F-69100 Villeurbanne, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne UMR-I 02 INERIS-URCA-ULH SEBIO Unité Stress Environnementaux et, BIOsurveillance des milieux aquatiques, UFR Sciences Exactes et Naturelles, Campus du Moulin de la Housse, BP 1039 51687, Reims, CEDEX, France.
| |
Collapse
|
27
|
Lafont M, Goncalves P, Guo X, Montagnani C, Raftos D, Green T. Transgenerational plasticity and antiviral immunity in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus 1 (OsHV-1). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:17-25. [PMID: 30278186 DOI: 10.1016/j.dci.2018.09.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 09/03/2018] [Accepted: 09/26/2018] [Indexed: 06/08/2023]
Abstract
The oyster's immune system is capable of adapting upon exposure to a pathogen-associated molecular pattern (PAMP) to have an enhanced secondary response against the same type of pathogen. This has been demonstrated using poly(I:C) to elicit an antiviral response in the Pacific oyster (Crassostrea gigas) against Ostreid herpesvirus (OsHV-1). Improved survival following exposure to poly(I:C) has been found in later life stages (within-generational immune priming) and in the next generation (transgenerational immune priming). The mechanism that the oyster uses to transfer immunity to the next generation is unknown. Here we show that oyster larvae have higher survival to OsHV-1 when their mothers, but not their fathers, are exposed to poly(I:C) prior to spawning. RNA-seq provided no evidence to suggest that parental exposure to poly(I:C) reconfigures antiviral gene expression in unchallenged larvae. We conclude that the improved survival of larvae might occur via maternal provisioning of antiviral compounds in the eggs.
Collapse
Affiliation(s)
- Maxime Lafont
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - Priscila Goncalves
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Rutgers University, Port Norris, NJ, USA
| | - Caroline Montagnani
- IHPE, Université de Montpellier, CNRS, Ifremer, Université de Perpignan Via Domitia, France
| | - David Raftos
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia
| | - Timothy Green
- Sydney Institute of Marine Science, Chowder Bay, Sydney, Australia; Macquarie University, Department of Biological Sciences, Sydney, Australia.
| |
Collapse
|
28
|
RNA-seq of HaHV-1-infected abalones reveals a common transcriptional signature of Malacoherpesviruses. Sci Rep 2019; 9:938. [PMID: 30700734 PMCID: PMC6353905 DOI: 10.1038/s41598-018-36433-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 10/31/2018] [Indexed: 12/21/2022] Open
Abstract
Haliotid herpesvirus-1 (HaHV-1) is the viral agent causative of abalone viral ganglioneuritis, a disease that has severely affected gastropod aquaculture. Although limited, the sequence similarity between HaHV-1 and Ostreid herpesvirus-1 supported the assignment of both viruses to Malacoherpesviridae, a Herpesvirales family distantly related with other viruses. In this study, we reported the first transcriptional data of HaHV-1, obtained from an experimental infection of Haliotis diversicolor supertexta. We also sequenced the genome draft of the Chinese HaHV-1 variant isolated in 2003 (HaHV-1-CN2003) by PacBio technology. Analysis of 13 million reads obtained from 3 RNA samples at 60 hours post injection (hpi) allowed the prediction of 51 new ORFs for a total of 117 viral genes and the identification of 207 variations from the reference genome, consisting in 135 Single Nucleotide Polymorphisms (SNPs) and 72 Insertions or Deletions (InDels). The pairing of genomic and transcriptomic data supported the identification of 60 additional SNPs, representing viral transcriptional variability and preferentially grouped in hotspots. The expression analysis of HaHV-1 ORFs revealed one putative secreted protein, two putative capsid proteins and a possible viral capsid protease as the most expressed genes and demonstrated highly synchronized viral expression patterns of the 3 infected animals at 60 hpi. Quantitative reverse transcription data of 37 viral genes supported the burst of viral transcription at 30 and 60 hpi during the 72 hours of the infection experiment, and allowed the distinction between early and late viral genes.
Collapse
|
29
|
Nucleic Acid Sensing in Invertebrate Antiviral Immunity. NUCLEIC ACID SENSING AND IMMUNITY - PART B 2019; 345:287-360. [DOI: 10.1016/bs.ircmb.2018.11.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
30
|
Lopp A, Reintamm T, Kuusksalu A, Olspert A, Kelve M. Identification of a novel member of 2H phosphoesterases, 2',5'-oligoadenylate degrading ribonuclease from the oyster Crassostrea gigas. Biochimie 2018; 156:181-195. [PMID: 30195052 DOI: 10.1016/j.biochi.2018.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/03/2018] [Indexed: 11/16/2022]
Abstract
Several genes of IFN-mediated pathways in vertebrates, among them the genes that participate in the 2',5'-oligoadenylate synthetase (OAS)/RNase L pathway, have been identified in C. gigas. In the present study, we identified genes, which encode proteins having 2',5'-oligoadenylate degrading activity in C. gigas. These proteins belong to the 2H phosphoesterase superfamily and have sequence similarity to the mammalian A kinase anchoring protein 7 (AKAP7) central domain, which is responsible for the 2',5'-phosphodiesterase (2',5'-PDE) activity. Comparison of the genomic structures of C. gigas proteins with that of AKAP7 suggests that these enzymes originate from a direct common ancestor. However, the identified nucleases are not typical 2',5'-PDEs. The found enzymes catalyse the degradation of 2',5'-linked oligoadenylates in a metal-ion-independent way, yielding products with 2',3' -cyclic phosphate and 5'-OH termini similarly to the 3'-5' bond cleavage in RNA, catalyzed by metal-independent ribonucleases. 3',5'-linked oligoadenylates are not substrates for them. The preferred substrates for the C. gigas enzymes are 5'-triphosphorylated 2',5'-oligoadenylates, whose major cleavage reaction results in the removal of the 5'-triphosphorylated 2',3'-cyclic phosphate derivative, leaving behind the respective unphosphorylated 2',5'-oligoadenylate. Such a cleavage reaction results in the direct inactivation of the biologically active 2-5A molecule. The 2',5'-ribonucleases (2',5'-RNases) from C. gigas could be members of the ancient group of ribonucleases, specific to 2'-5' phosphodiester bond, together with the enzyme that was characterized previously from the marine sponge Tethya aurantium. The novel 2',5'-RNases may play a role in the control of cellular 2-5A levels, thereby limiting damage to host cells after viral infection.
Collapse
Affiliation(s)
- Annika Lopp
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia.
| | - Tõnu Reintamm
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Anne Kuusksalu
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Allan Olspert
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| | - Merike Kelve
- Department of Chemistry and Biotechnology, Division of Gene Technology, Tallinn University of Technology, Akadeemia Tee 15, Tallinn, 12618, Estonia
| |
Collapse
|
31
|
Lu M, Yang C, Li M, Yi Q, Lu G, Wu Y, Qu C, Wang L, Song L. A conserved interferon regulation factor 1 (IRF-1) from Pacific oyster Crassostrea gigas functioned as an activator of IFN pathway. FISH & SHELLFISH IMMUNOLOGY 2018; 76:68-77. [PMID: 29458094 DOI: 10.1016/j.fsi.2018.02.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 06/08/2023]
Abstract
Interferon regulatory factors (IRFs), a family of transcription factors with a novel helix-turn-helix DNA-binding motif, play important roles in regulating the expression of interferons (IFNs) and IFN-stimulated genes. In the present study, an interferon regulation factor 1 was identified from oyster Crassostrea gigas (designated CgIRF-1), and its immune function was characterized to understand the regulatory mechanism of interferon system against viral infection in invertebrates. The open reading frame (ORF) of CgIRF-1 was 990 bp, encoding a polypeptide of 329 amino acids with a typical IRF domain (also known as DNA-binding domain). The mRNA transcripts of CgIRF-1 were detected in all the tested tissues with the highest expression level in hemocyte. CgIRF-1 protein was distributed in both nucleus and cytoplasm of the oyster hemocyte. The mRNA expression of CgIRF-1 in hemocytes was significantly up-regulated at 48 h after poly (I:C) stimulation (p < 0.05). The recombinant CgIRF-1 (rCgIRF-1) could interact with classically IFN-stimulated response elements (ISRE) in vitro. The relative luciferase activity of interferon-like protein promotor reporter gene (pGL-CgIFNLP promotor) was significantly (p < 0.05) enhanced in HEK293T cell after transfection of CgIRF-1. These results indicated that CgIRF-1 could bind ISRE and regulate the expression of CgIFNLP as a transcriptional regulatory factor, and participated in the antiviral immune response of oysters.
Collapse
Affiliation(s)
- Mengmeng Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chuanyan Yang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Qilin Yi
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Guangxia Lu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Yichen Wu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Chen Qu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China.
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian 116023, China; Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266235, China; Liaoning Key Laboratory of Marine Animal Immunology & Disease Control, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
32
|
Green TJ, Speck P. Antiviral Defense and Innate Immune Memory in the Oyster. Viruses 2018; 10:v10030133. [PMID: 29547519 PMCID: PMC5869526 DOI: 10.3390/v10030133] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 03/06/2018] [Accepted: 03/14/2018] [Indexed: 12/17/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, is becoming a valuable model for investigating antiviral defense in the Lophotrochozoa superphylum. In the past five years, improvements to laboratory-based experimental infection protocols using Ostreid herpesvirus I (OsHV-1) from naturally infected C. gigas combined with next-generation sequencing techniques has revealed that oysters have a complex antiviral response involving the activation of all major innate immune pathways. Experimental evidence indicates C. gigas utilizes an interferon-like response to limit OsHV-1 replication and spread. Oysters injected with a viral mimic (polyI:C) develop resistance to OsHV-1. Improved survival following polyI:C injection was found later in life (within-generational immune priming) and in the next generation (multi-generational immune priming). These studies indicate that the oyster's antiviral defense system exhibits a form of innate immune-memory. An important priority is to identify the molecular mechanisms responsible for this phenomenon. This knowledge will motivate the development of practical and cost-effective treatments for improving oyster health in aquaculture.
Collapse
Affiliation(s)
- Timothy J Green
- Centre for Shellfish Research & Department of Fisheries and Aquaculture, Vancouver Island University, Nanaimo, BC V9R 5S5, Canada.
- Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Peter Speck
- College of Science and Engineering, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.
| |
Collapse
|
33
|
Aguado LC, tenOever BR. RNase III Nucleases and the Evolution of Antiviral Systems. Bioessays 2017; 40. [PMID: 29266287 DOI: 10.1002/bies.201700173] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 10/26/2017] [Indexed: 01/15/2023]
Abstract
Every living entity requires the capacity to defend against viruses in some form. From bacteria to plants to arthropods, cells retain the capacity to capture genetic material, process it in a variety of ways, and subsequently use it to generate pathogen-specific small RNAs. These small RNAs can then be used to provide specificity to an otherwise non-specific nuclease, generating a potent antiviral system. While small RNA-based defenses in chordates are less utilized, the protein-based antiviral invention in this phylum appears to have derived from components of the same ancestral small RNA machinery. Based on recent evidence, it would seem that RNase III nucleases have been reiteratively repurposed over billions of years to provide cells with the capacity to recognize and destroy unwanted genetic material. Here we describe an overview of what is known on this subject and provide a model for how these defenses may have evolved.
Collapse
Affiliation(s)
- Lauren C Aguado
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, New York, USA
| | - Benjamin R tenOever
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, 10029, New York, USA
| |
Collapse
|
34
|
Lafont M, Petton B, Vergnes A, Pauletto M, Segarra A, Gourbal B, Montagnani C. Long-lasting antiviral innate immune priming in the Lophotrochozoan Pacific oyster, Crassostrea gigas. Sci Rep 2017; 7:13143. [PMID: 29030632 PMCID: PMC5640609 DOI: 10.1038/s41598-017-13564-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/25/2017] [Indexed: 12/16/2022] Open
Abstract
In the last decade, a paradigm shift has emerged in comparative immunology. Invertebrates can no longer be considered to be devoid of specific recognition and immune memory. However, we still lack a comprehensive view of these phenomena and their molecular mechanisms across phyla, especially in terms of duration, specificity, and efficiency in a natural context. In this study, we focused on a Lophotrochozoan/virus interaction, as antiviral priming is mostly overlooked in molluscs. Juvenile Crassostrea gigas oysters experience reoccurring mass mortalities events from Ostreid herpes virus 1 with no existing therapeutic treatment. Our results showed that various nucleic acid injections can prime oysters to trigger an antiviral state ultimately protecting them against a subsequent viral infection. Focusing on poly(I:C) as elicitor, we evidenced that it protected from an environmental infection, by mitigating viral replication. That protection seemed to induce a specific antiviral response as poly(I:C) fails to protect against a pathogenic bacteria. Finally, we showed that this phenomenon was long-lasting, persisting for at least 5 months thus suggesting for the first time the existence of innate immune memory in this invertebrate species. This study strengthens the emerging hypotheses about the broad conservation of innate immune priming and memory mechanisms in Lophotrochozoans.
Collapse
Affiliation(s)
- Maxime Lafont
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.,Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Bruno Petton
- Ifremer, LEMAR UMR6539, F-29840, Argenton-en-Landunvez, France
| | - Agnès Vergnes
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020, Legnaro (PD), Italy
| | - Amélie Segarra
- Univ. Brest Occidentale, LEMAR UMR 6539 CNRS/UBO/IRD/Ifremer, Institut Universitaire Européen de la Mer, F-29280, Plouzané, France
| | - Benjamin Gourbal
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, F-66860, Perpignan, France
| | - Caroline Montagnani
- Ifremer, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France.
| |
Collapse
|
35
|
Huang B, Zhang L, Du Y, Xu F, Li L, Zhang G. Characterization of the Mollusc RIG-I/MAVS Pathway Reveals an Archaic Antiviral Signalling Framework in Invertebrates. Sci Rep 2017; 7:8217. [PMID: 28811654 PMCID: PMC5557890 DOI: 10.1038/s41598-017-08566-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/11/2017] [Indexed: 12/19/2022] Open
Abstract
Despite the mitochondrial antiviral signalling protein (MAVS)-dependent RIG-I-like receptor (RLR) signalling pathway in the cytosol plays an indispensable role in the antiviral immunity of the host, surprising little is known in invertebrates. Here we characterized the major members of RLR pathway and investigated their signal transduction a Molluscs. We show that genes involved in RLR pathway were significantly induced during virus challenge, including CgRIG-I-1, CgMAVS, CgTRAF6 (TNF receptor-associated factor 6), and CgIRFs (interferon regulatory factors. Similar to human RIG-I, oyster RIG-I-1 could bind poly(I:C) directly in vitro and interact with oyster MAVS via its caspase activation and recruitment domains. We also show that transmembrane domain-dependent self-association of CgMAVS may be crucial for its signalling and that CgMAVS can recruit the downstream signalling molecule, TRAF6, which can subsequently activate NF-κB signal pathway. Moreover, oyster IRFs appeared to function downstream of CgMAVS and were able to activate the interferon β promoter and interferon stimulated response elements in mammalian cells. These results establish invertebrate MAVS-dependent RLR signalling for the first time and would be helpful for deciphering the antiviral mechanisms of invertebrates and understanding the development of the vertebrate RLR network.
Collapse
Affiliation(s)
- Baoyu Huang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Linlin Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yishuai Du
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Fei Xu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Li Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Fisheries and Aquaculture, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| | - Guofan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China. .,Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China. .,National & Local Joint Engineering Laboratory of Ecological Mariculture, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
| |
Collapse
|
36
|
Rosani U, Venier P. Oyster RNA-seq Data Support the Development of Malacoherpesviridae Genomics. Front Microbiol 2017; 8:1515. [PMID: 28848525 PMCID: PMC5552708 DOI: 10.3389/fmicb.2017.01515] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 07/27/2017] [Indexed: 12/24/2022] Open
Abstract
The family of double-stranded DNA (dsDNA) Malacoherpesviridae includes viruses able to infect marine mollusks and detrimental for worldwide aquaculture production. Due to fast-occurring mortality and a lack of permissive cell lines, the available data on the few known Malacoherpesviridae provide only partial support for the study of molecular virus features, life cycle, and evolutionary history. Following thorough data mining of bivalve and gastropod RNA-seq experiments, we used more than five million Malacoherpesviridae reads to improve the annotation of viral genomes and to characterize viral InDels, nucleotide stretches, and SNPs. Both genome and protein domain analyses confirmed the evolutionary diversification and gene uniqueness of known Malacoherpesviridae. However, the presence of Malacoherpesviridae-like sequences integrated within genomes of phylogenetically distant invertebrates indicates broad diffusion of these viruses and indicates the need for confirmatory investigations. The manifest co-occurrence of OsHV-1 genotype variants in single RNA-seq samples of Crassostrea gigas provide further support for the Malacoherpesviridae diversification. In addition to simple sequence motifs inter-punctuating viral ORFs, recombination-inducing sequences were found to be enriched in the OsHV-1 and AbHV1-AUS genomes. Finally, the highly correlated expression of most viral ORFs in multiple oyster samples is consistent with the burst of viral proteins during the lytic phase.
Collapse
Affiliation(s)
| | - Paola Venier
- Department of Biology, University of PaduaPadua, Italy
| |
Collapse
|
37
|
Paces J, Nic M, Novotny T, Svoboda P. Literature review of baseline information to support the risk assessment of RNAi‐based GM plants. ACTA ACUST UNITED AC 2017. [PMCID: PMC7163844 DOI: 10.2903/sp.efsa.2017.en-1246] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jan Paces
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| | | | | | - Petr Svoboda
- Institute of Molecular Genetics of the Academy of Sciences of the Czech Republic (IMG)
| |
Collapse
|
38
|
Corbeil S, McColl KA, Williams LM, Slater J, Crane MSJ. Innate resistance of New Zealand paua to abalone viral ganglioneuritis. J Invertebr Pathol 2017; 146:31-35. [PMID: 28431886 DOI: 10.1016/j.jip.2017.04.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/05/2017] [Accepted: 04/16/2017] [Indexed: 10/19/2022]
Abstract
The susceptibility of New Zealand paua (Haliotis iris) to infection by abalone herpesvirus (Haliotid herpesvirus 1; HaHV) and to the disease abalone viral ganglioneuritis (AVG) was determined. Infection challenges performed by intra-muscular injection and by immersion in infectious water containing HaHV demonstrated that New Zealand paua were highly resistant to infection by Haliotid herpesvirus 1 and were fully resistant to the disease AVG.
Collapse
Affiliation(s)
- Serge Corbeil
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia.
| | - Kenneth A McColl
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| | - Lynette M Williams
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| | - Joanne Slater
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| | - Mark St J Crane
- CSIRO Australian Animal Health Laboratory, Private Bag 24, Geelong, VIC 3220, Australia
| |
Collapse
|
39
|
Arzul I, Corbeil S, Morga B, Renault T. Viruses infecting marine molluscs. J Invertebr Pathol 2017; 147:118-135. [PMID: 28189502 DOI: 10.1016/j.jip.2017.01.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 01/20/2017] [Accepted: 01/23/2017] [Indexed: 11/19/2022]
Abstract
Although a wide range of viruses have been reported in marine molluscs, most of these reports rely on ultrastructural examination and few of these viruses have been fully characterized. The lack of marine mollusc cell lines restricts virus isolation capacities and subsequent characterization works. Our current knowledge is mostly restricted to viruses affecting farmed species such as oysters Crassostrea gigas, abalone Haliotis diversicolor supertexta or the scallop Chlamys farreri. Molecular approaches which are needed to identify virus affiliation have been carried out for a small number of viruses, most of them belonging to the Herpesviridae and birnaviridae families. These last years, the use of New Generation Sequencing approach has allowed increasing the number of sequenced viral genomes and has improved our capacity to investigate the diversity of viruses infecting marine molluscs. This new information has in turn allowed designing more efficient diagnostic tools. Moreover, the development of experimental infection protocols has answered some questions regarding the pathogenesis of these viruses and their interactions with their hosts. Control and management of viral diseases in molluscs mostly involve active surveillance, implementation of effective bio security measures and development of breeding programs. However factors triggering pathogen development and the life cycle and status of the viruses outside their mollusc hosts still need further investigations.
Collapse
Affiliation(s)
- Isabelle Arzul
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Serge Corbeil
- CSIRO Australian Animal Health Laboratory, 5 Portarlington Road, Geelong East, Victoria 3220, Australia
| | - Benjamin Morga
- Ifremer, SG2M-LGPMM, Station La Tremblade, 17390 La Tremblade, France
| | - Tristan Renault
- Ifremer, RBE, Centre Atlantique, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 03, France.
| |
Collapse
|
40
|
Pauletto M, Segarra A, Montagnani C, Quillien V, Faury N, Le Grand J, Miner P, Petton B, Labreuche Y, Fleury E, Fabioux C, Bargelloni L, Renault T, Huvet A. Long dsRNAs promote an anti-viral response in Pacific oyster hampering ostreid herpesvirus 1 replication. J Exp Biol 2017; 220:3671-3685. [DOI: 10.1242/jeb.156299] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 08/07/2017] [Indexed: 12/24/2022]
Abstract
Double stranded RNA-mediated genetic interference (RNAi) is a widely used reverse genetic tool for determining the loss-of-function phenotype of a gene. Here, the possible induction of an immune response by long dsRNA was tested in a marine bivalve, i.e. Crassostrea gigas, as well as the specific role of the subunit 2 of the nuclear factor κB inhibitor (IκB2). This gene is a candidate of particular interest for functional investigations in the context of massive mortality oyster events as Cg-IκB2 mRNA levels exhibited significant variation depending on the amount of ostreid herpesvirus 1 (OsHV-1) DNA detected. In the present study, dsRNAs targeting Cg-IκB2 and Green Fluorescence Protein genes were injected in vivo into oysters before being challenged by OsHV-1. Survival appeared close to 100% in both dsRNA injected conditions associated with a low detection of viral DNA and a low expression of a panel of 39 OsHV-1 genes as compared to infected control. Long dsRNA molecules, both Cg-IκB2- and GFP-dsRNA, may have induced an anti-viral state controlling the OsHV-1 replication and precluding the understanding of the Cg-IκB2 specific role. Immune-related genes including Cg-IκB1, Cg-Rel1, Cg-IFI44, Cg-PKR, and Cg-IAP appeared activated in dsRNA-injected condition potentially hampering viral replication and thus conferring a better resistance to OsHV-1 infection. We revealed that long dsRNA-mediated genetic interference triggered an anti-viral state in the oyster, emphasizing the need of new reverse genetics tools for assessing immune gene function and avoiding off-target effects in bivalves.
Collapse
Affiliation(s)
- Marianna Pauletto
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Amélie Segarra
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | - Caroline Montagnani
- Ifremer, IHPE UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Virgile Quillien
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Nicole Faury
- Ifremer, Laboratoire de Génétique et Pathologie des Mollusques Marins, 17390 La Tremblade, France
| | | | - Philippe Miner
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Bruno Petton
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Yannick Labreuche
- Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff cedex, France
| | - Elodie Fleury
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Caroline Fabioux
- Institut Universitaire Européen de la Mer, Université de Bretagne Occidentale, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| | - Luca Bargelloni
- Department of Comparative Biomedicine and Food Science. University of Padova, Viale dell'Università 16, 35020 Legnaro (PD), Italy
| | - Tristan Renault
- Ifremer, Département Ressources Biologiques et Environnement, rue de l'Ile d'Yeu, 44000 Nantes, France
| | - Arnaud Huvet
- Ifremer, UMR 6539 CNRS/UBO/IRD/Ifremer, LEMAR, 29280 Plouzané, France
| |
Collapse
|
41
|
Pardo BG, Álvarez-Dios JA, Cao A, Ramilo A, Gómez-Tato A, Planas JV, Villalba A, Martínez P. Construction of an Ostrea edulis database from genomic and expressed sequence tags (ESTs) obtained from Bonamia ostreae infected haemocytes: Development of an immune-enriched oligo-microarray. FISH & SHELLFISH IMMUNOLOGY 2016; 59:331-344. [PMID: 27815201 DOI: 10.1016/j.fsi.2016.10.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 10/17/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
The flat oyster, Ostrea edulis, is one of the main farmed oysters, not only in Europe but also in the United States and Canada. Bonamiosis due to the parasite Bonamia ostreae has been associated with high mortality episodes in this species. This parasite is an intracellular protozoan that infects haemocytes, the main cells involved in oyster defence. Due to the economical and ecological importance of flat oyster, genomic data are badly needed for genetic improvement of the species, but they are still very scarce. The objective of this study is to develop a sequence database, OedulisDB, with new genomic and transcriptomic resources, providing new data and convenient tools to improve our knowledge of the oyster's immune mechanisms. Transcriptomic and genomic sequences were obtained using 454 pyrosequencing and compiled into an O. edulis database, OedulisDB, consisting of two sets of 10,318 and 7159 unique sequences that represent the oyster's genome (WG) and de novo haemocyte transcriptome (HT), respectively. The flat oyster transcriptome was obtained from two strains (naïve and tolerant) challenged with B. ostreae, and from their corresponding non-challenged controls. Approximately 78.5% of 5619 HT unique sequences were successfully annotated by Blast search using public databases. A total of 984 sequences were identified as being related to immune response and several key immune genes were identified for the first time in flat oyster. Additionally, transcriptome information was used to design and validate the first oligo-microarray in flat oyster enriched with immune sequences from haemocytes. Our transcriptomic and genomic sequencing and subsequent annotation have largely increased the scarce resources available for this economically important species and have enabled us to develop an OedulisDB database and accompanying tools for gene expression analysis. This study represents the first attempt to characterize in depth the O. edulis haemocyte transcriptome in response to B. ostreae through massively sequencing and has aided to improve our knowledge of the immune mechanisms of flat oyster. The validated oligo-microarray and the establishment of a reference transcriptome will be useful for large-scale gene expression studies in this species.
Collapse
Affiliation(s)
- Belén G Pardo
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| | - José Antonio Álvarez-Dios
- Departamento de Matemática Aplicada, Facultad de Matemáticas, Universidade de Santiago de Compostela, 15781 Santiago de Compostela, Spain.
| | - Asunción Cao
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
| | - Andrea Ramilo
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain.
| | - Antonio Gómez-Tato
- Departamento de Matemáticas, Facultad de Matemáticas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Josep V Planas
- Departament de Fisiologia i Immunologia, Facultat de Biologia, Universitat de Barcelona and Institut de Biomedicina de la Universitat de Barcelona (IBUB), 08007, Barcelona, Spain.
| | - Antonio Villalba
- Centro de Investigacións Mariñas, Consellería do Mar, Xunta de Galicia, 36620 Vilanova de Arousa, Spain; Departamento de Ciencias de la Vida, Universidad de Alcalá, 28871 Alcalá de Henares, Spain.
| | - Paulino Martínez
- Departamento de Zoología, Genética y Antropología Física, Facultad de Veterinaria, Universidade de Santiago de Compostela, Campus de Lugo, 27002 Lugo, Spain.
| |
Collapse
|
42
|
Rosani U, Gerdol M. A bioinformatics approach reveals seven nearly-complete RNA-virus genomes in bivalve RNA-seq data. Virus Res 2016; 239:33-42. [PMID: 27769778 DOI: 10.1016/j.virusres.2016.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 10/17/2016] [Accepted: 10/17/2016] [Indexed: 01/17/2023]
Abstract
Viral metagenomics (viromics) can provide a great contribution in expanding the knowledge of viruses and the relationship with their hosts. Viromic studies on marine organisms are still at a very early stage and only little efforts have been spent in the identification of viruses associated to marine invertebrates to date, leaving the complexity of marine viromes associated to bivalve hosts almost completely unexplored. However, the potential use of viromic approaches in the management of viral diseases affecting aquacultured species has been recently evidenced by the flourishing of studies on the Ostreid herpesvirus type-1, which has been associated with bivalve mortality events. Herein we discuss an effective pipeline to retrieve and reconstruct nearly complete and previously unreported viral genomes from existing host RNA-seq data. As a case study, we report the identification of seven RNA-virus genomes within the frame of a highly diversified viral community that characterizes both Crassostrea gigas and Mytilus galloprovincialis samples collected from the lagoon of Goro (Italy).
Collapse
Affiliation(s)
- Umberto Rosani
- Dept. of Biology, University of Padua, Via U. Bassi 58/B, 35121 Padova Italy.
| | - Marco Gerdol
- Dept. of Life Sciences, University of Trieste, Via L. Giorgieri 5, 34127 Trieste Italy
| |
Collapse
|
43
|
Green TJ, Helbig K, Speck P, Raftos DA. Primed for success: Oyster parents treated with poly(I:C) produce offspring with enhanced protection against Ostreid herpesvirus type I infection. Mol Immunol 2016; 78:113-120. [PMID: 27616590 DOI: 10.1016/j.molimm.2016.09.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/31/2016] [Accepted: 09/01/2016] [Indexed: 12/17/2022]
Abstract
The Pacific oyster (Crassostrea gigas) is farmed globally. Ostreid herpesvirus (OsHV-1) causes severe mortalities of farmed C. gigas. Management of OsHV-1 has proven difficult. Oysters treated with poly(I:C) exhibit enhanced protection (EP) against OsHV-1. This chemical treatment is highly effective, but it is not feasible to treat every oyster on a farm. To circumvent this practical limitation, previous studies on arthropods have suggested that EP can be transferred from parents to their offspring (trans-generational EP, TGEP). This suggests that the treatment of relatively few parents could be used to produce large numbers of offspring with TGEP. Here, we investigated TGEP in oysters to test whether it might be used as a cost effective management tool to control OsHV-1. We found that offspring (D-veliger larvae) produced from poly(I:C)-treated parents had double the chance of surviving exposure to OsHV-1 compared to controls. Furthermore, the larvae of poly(I:C)-treated parents contained elevated levels of mRNA encoding a key transcription factor that regulates antiviral immunity (IRF2). Poly(I:C) treatment had no effect on the survival of oyster parents. Hence, the enhanced immunity of their offspring could not be explained by genetic selection, and instead may reflect epigenetic reprogramming or maternal provisioning.
Collapse
Affiliation(s)
- Timothy J Green
- Macquarie University, Department of Biological Sciences, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, NSW, Australia.
| | - Karla Helbig
- La Trobe University, Department of Physiology, Anatomy and Microbiology, School of Life Sciences, Melbourne, Victoria, Australia
| | - Peter Speck
- Flinders University, Department of Biological Sciences, Adelaide, South Australia, Australia
| | - David A Raftos
- Macquarie University, Department of Biological Sciences, Sydney, NSW, Australia; Sydney Institute of Marine Science, Chowder Bay, Mosman, NSW, Australia
| |
Collapse
|
44
|
Green TJ, Vergnes A, Montagnani C, de Lorgeril J. Distinct immune responses of juvenile and adult oysters (Crassostrea gigas) to viral and bacterial infections. Vet Res 2016; 47:72. [PMID: 27439510 PMCID: PMC4955271 DOI: 10.1186/s13567-016-0356-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 05/02/2016] [Indexed: 12/24/2022] Open
Abstract
Since 2008, massive mortality events of Pacific oysters (Crassostrea gigas) have been reported worldwide and these disease events are often associated with Ostreid herpesvirus type 1 (OsHV-1). Epidemiological field studies have also reported oyster age and other pathogens of the Vibrio genus are contributing factors to this syndrome. We undertook a controlled laboratory experiment to simultaneously investigate survival and immunological response of juvenile and adult C. gigas at different time-points post-infection with OsHV-1, Vibrio tasmaniensis LGP32 and V. aestuarianus. Our data corroborates epidemiological studies that juveniles are more susceptible to OsHV-1, whereas adults are more susceptible to Vibrio. We measured the expression of 102 immune-genes by high-throughput RT-qPCR, which revealed oysters have different transcriptional responses to OsHV-1 and Vibrio. The transcriptional response in the early stages of OsHV-1 infection involved genes related to apoptosis and the interferon-pathway. Transcriptional response to Vibrio infection involved antimicrobial peptides, heat shock proteins and galectins. Interestingly, oysters in the later stages of OsHV-1 infection had a transcriptional response that resembled an antibacterial response, which is suggestive of the oyster’s microbiome causing secondary infections (dysbiosis-driven pathology). This study provides molecular evidence that oysters can mount distinct immune response to viral and bacterial pathogens and these responses differ depending on the age of the host.
Collapse
Affiliation(s)
- Timothy J Green
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.,Department of Biological Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France.
| | - Julien de Lorgeril
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, 34095, Montpellier, France
| |
Collapse
|
45
|
Green TJ, Speck P, Geng L, Raftos D, Beard MR, Helbig KJ. Oyster viperin retains direct antiviral activity and its transcription occurs via a signalling pathway involving a heat-stable haemolymph protein. J Gen Virol 2016; 96:3587-3597. [PMID: 26407968 DOI: 10.1099/jgv.0.000300] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Little is known about the response of non-model invertebrates, such as oysters, to virus infection. The vertebrate innate immune system detects virus-derived nucleic acids to trigger the type I IFN pathway, leading to the transcription of hundreds of IFN-stimulated genes (ISGs) that exert antiviral functions. Invertebrates were thought to lack the IFN pathway based on the absence of IFN or ISGs encoded in model invertebrate genomes. However, the oyster genome encodes many ISGs, including the well-described antiviral protein viperin. In this study, we characterized oyster viperin and showed that it localizes to caveolin-1 and inhibits dengue virus replication in a heterologous model. In a second set of experiments, we have provided evidence that the haemolymph from poly(I : C)-injected oysters contains a heat-stable, protease-susceptible factor that induces haemocyte transcription of viperin mRNA in conjunction with upregulation of IFN regulatory factor. Collectively, these results support the concept that oysters have antiviral systems that are homologous to the vertebrate IFN pathway.
Collapse
Affiliation(s)
- Timothy J Green
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia.,Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Peter Speck
- School of Biological Sciences, Flinders University, GPO Box 2100, Adelaide, SA 5001, Australia
| | - Lu Geng
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - David Raftos
- Department of Biological Sciences and Sydney Institute of Marine Science, Macquarie University, NSW 2109, Australia
| | - Michael R Beard
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| | - Karla J Helbig
- School of Biological Sciences, University of Adelaide, SA 5001, Australia
| |
Collapse
|
46
|
Green TJ, Rolland JL, Vergnes A, Raftos D, Montagnani C. OsHV-1 countermeasures to the Pacific oyster's anti-viral response. FISH & SHELLFISH IMMUNOLOGY 2015; 47:435-443. [PMID: 26384844 DOI: 10.1016/j.fsi.2015.09.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Revised: 09/06/2015] [Accepted: 09/14/2015] [Indexed: 06/05/2023]
Abstract
The host-pathogen interactions between the Pacific oyster (Crassostrea gigas) and Ostreid herpesvirus type 1 (OsHV-1) are poorly characterised. Herpesviruses are a group of large, DNA viruses that are known to encode gene products that subvert their host's antiviral response. It is likely that OsHV-1 has also evolved similar strategies as its genome encodes genes with high homology to C. gigas inhibitors of apoptosis (IAPs) and an interferon-stimulated gene (termed CH25H). The first objective of this study was to simultaneously investigate the expression of C. gigas and OsHV-1 genes that share high sequence homology during an acute infection. Comparison of apoptosis-related genes revealed that components of the extrinsic apoptosis pathway (TNF) were induced in response to OsHV-1 infection, but we failed to observe evidence of apoptosis using a combination of biochemical and molecular assays. IAPs encoded by OsHV-1 were highly expressed during the acute stage of infection and may explain why we didn't observe evidence of apoptosis. However, C. gigas must have an alternative mechanism to apoptosis for clearing OsHV-1 from infected gill cells as we observed a reduction in viral DNA between 27 and 54 h post-infection. The reduction of viral DNA in C. gigas gill cells occurred after the up-regulation of interferon-stimulated genes (viperin, PKR, ADAR). In a second objective, we manipulated the host's anti-viral response by injecting C. gigas with a small dose of poly I:C at the time of OsHV-1 infection. This small dose of poly I:C was unable to induce transcription of known antiviral effectors (ISGs), but these oysters were still capable of inhibiting OsHV-1 replication. This result suggests dsRNA induces an anti-viral response that is additional to the IFN-like pathway.
Collapse
Affiliation(s)
- Timothy J Green
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia.
| | - Jean-Luc Rolland
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - Agnes Vergnes
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| | - David Raftos
- Department of Biological Sciences, Macquarie University, NSW, 2109, Australia; Sydney Institute of Marine Science, Chowder Bay Road, Mosman, NSW, 2088, Australia
| | - Caroline Montagnani
- IFREMER, IHPE, UMR 5244, Univ. Perpignan Via Domitia, CNRS, Univ. Montpellier, F-34095, Montpellier, France
| |
Collapse
|