1
|
Koeda S, Fortes IM, Rodríguez-López MJ, Fernández-Muñoz R, Moriones E. Resistance to the Insect Vector Bemisia tabaci Enhances the Robustness and Durability of Tomato Yellow Leaf Curl Virus Resistance Conferred by Ty-1. PLANT DISEASE 2025; 109:399-409. [PMID: 39306688 DOI: 10.1094/pdis-06-24-1281-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a begomovirus (genus Begomovirus, family Geminiviridae) transmitted persistently by the whitefly Bemisia tabaci. It causes tomato yellow leaf curl disease (TYLCD), resulting in significant yield losses worldwide. TYLCD is controlled mainly by using F1 hybrid tomato cultivars harboring the TYLCV resistance gene Ty-1. However, infected Ty-1-bearing tomato plants accumulate viral DNA, which may eventually lead to the emergence of a resistance-breaking TYLCV variant. Recently, a B. tabaci-resistant tomato line derived from the introgression of type IV leaf glandular trichomes and acylsucrose secretion from wild tomato (Solanum pimpinellifolium) was shown to effectively control the spread of TYLCV. In this study, we combined B. tabaci resistance and Ty-1-based TYLCV resistance to increase the robustness and durability of the TYLCD resistance mediated by Ty-1 in tomato plants. Specifically, we characterized and used a Group 2-like isolate of the Israel strain of TYLCV (TYLCV-IL-G2) that contributes to TYLCD epidemics in southeastern Spain. A comparison with isolates of the previously identified TYLCV variant revealed TYLCV-IL-G2 has a similar host range, but it induces a slightly more severe TYLCD in Ty-1-bearing tomato plants. Moreover, we demonstrated that acylsucrose-producing B. tabaci-resistant tomato plants can limit the spread of TYLCV-IL-G2 better than a near-isogenic line lacking type IV trichomes and unable to secrete acylsucrose. Pyramiding Ty-1-based TYLCV resistance and B. tabaci resistance provided by type IV glandular trichomes helped to decrease the effects of TYLCV on Ty-1-bearing tomato plants as well as the likelihood of TYLCV evolution in infected plants.
Collapse
Affiliation(s)
- Sota Koeda
- Faculty of Agriculture, Kindai University, Nara 631-8505, Japan
| | - Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Maria J Rodríguez-López
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora" E-29750, Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
2
|
Li Z, Tang Y, She X, Yu L, Lan G, Ding S, He Z. Characterisation of a Betasatellite Associated With Tomato Yellow Leaf Curl Guangdong Virus and Discovery of an Unusual Modulation of Virus Infection Associated With C4 Protein. MOLECULAR PLANT PATHOLOGY 2025; 26:e70051. [PMID: 39810290 PMCID: PMC11732742 DOI: 10.1111/mpp.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/26/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025]
Abstract
Tomato yellow leaf curl Guangdong virus (TYLCGdV), a monopartite begomovirus first identified in 2004, remains poorly characterised. In this study, we demonstrate that TYLCGdV associates with a betasatellite, TYLCGdB, and the βC1 protein encoded by TYLCGdB is essential for symptom development. We also explore the role of TYLCGdV C4 protein by generating a C4-deficient infectious clone (TYLCGdVmC4), revealing a dynamic role for TYLCGdV C4. Specifically, viral accumulation in TYLCGdVmC4/TYLCGdB-inoculated plants was significantly lower than that in TYLCGdV/TYLCGdB-inoculated plants at 7 and 14 days post-inoculation (dpi), but surpassed that of TYLCGdV/TYLCGdB-inoculated plants by 25 dpi. Furthermore, although C4 proteins in other begomoviruses typically exhibit one or more of the following properties: (i) suppression of post-transcriptional gene silencing (PTGS), (ii) suppression of transcriptional gene silencing (TGS), (iii) enhancement of pathogenicity in potato virus X (PVX) and (iv) symptom induction when transgenically expressed, TYLCGdV C4 did not exhibit any of these properties. However, the dynamic role of TYLCGdV C4 in viral infection appears to result from its effects on viral DNA methylation. At 7 dpi, the cytosine methylation level in the TYLCGdVmC4 genome was notably elevated compared to that of the wild-type virus. However, this trend reversed by 14 dpi, with the wild-type virus exhibiting a higher methylation level. By 25 dpi, the cytosine methylation levels of both TYLCGdVmC4 and TYLCGdV were comparable. These results indicate that TYLCGdV C4 modulates viral infection via an unconventional mechanism. This novel observation highlights the need for further investigation into the diverse roles of C4 proteins in begomoviruses.
Collapse
Affiliation(s)
- Zhenggang Li
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Yafei Tang
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Xiaoman She
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Lin Yu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Guobing Lan
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Shanwen Ding
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| | - Zifu He
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research InstituteGuangdong Academy of Agricultural SciencesGuangzhouChina
| |
Collapse
|
3
|
Wei J, Li Y, Chen X, Tan P, Muhammad T, Liang Y. Advances in understanding the interaction between Solanaceae NLR resistance proteins and the viral effector Avr. PLANT SIGNALING & BEHAVIOR 2024; 19:2382497. [PMID: 39312190 PMCID: PMC11421380 DOI: 10.1080/15592324.2024.2382497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/10/2024] [Accepted: 07/12/2024] [Indexed: 09/26/2024]
Abstract
The rising prevalence of viral-induced diseases, particularly those caused by certain strains, poses a substantial risk to the genetic diversity of Solanaceae crops and the overall safety of horticultural produce. According to the "gene-for-gene" hypothesis, resistance proteins are capable of selectively identifying nontoxic effectors produced by pathogens, as they are under purview of the host's immune defenses. The sensitivity and responsiveness of Solanaceae plants to viral attacks play a crucial role in shaping the outcomes of their interactions with viruses. Pathogenic organisms, devise an array of infection tactics aimed at circumventing or neutralizing the host's immune defenses to facilitate effective invasion. The invasion often accomplishes by suppressing or disrupting the host's defensive mechanisms or immune signals, which are integral to the infection strategies of such invading pathogens. This comprehensive review delves into the myriad approaches that pathogenic viruses employ to infiltrate and overcome the sophisticated immune system of tomatoes. Furthermore, the review explores the possibility of utilizing these viral strategies to bolster the resilience of horticultural crops, presenting a hopeful direction for forthcoming progress in plant health and agricultural stability.
Collapse
Affiliation(s)
- Jianming Wei
- College of Agriculture, Guizhou University, Guiyang, China
| | - Yunzhou Li
- College of Agriculture, Guizhou University, Guiyang, China
| | - Xiangru Chen
- College of Agriculture, Guizhou University, Guiyang, China
| | - Ping Tan
- Field management station, Guiyang Agricultural Test Center, Guiyang, China
| | - Tayeb Muhammad
- Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
4
|
Fouad N, Granier M, Blanc S, Thébaud G, Urbino C. Demonstration of Insect Vector-Mediated Transfer of a Betasatellite between Two Helper Viruses. Viruses 2024; 16:1420. [PMID: 39339896 PMCID: PMC11436227 DOI: 10.3390/v16091420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/31/2024] [Accepted: 09/02/2024] [Indexed: 09/30/2024] Open
Abstract
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments.
Collapse
Affiliation(s)
| | | | | | | | - Cica Urbino
- PHIM Plant Health Institute, CIRAD, INRAE, Univ Montpellier, Institut Agro, IRD, 34398 Montpellier Cedex 5, France
| |
Collapse
|
5
|
Jammes M, Golyaev V, Fuentes A, Laboureau N, Urbino C, Plissonneau C, Peterschmitt M, Pooggin MM. Transcriptome and small RNAome profiling uncovers how a recombinant begomovirus evades RDRγ-mediated silencing of viral genes and outcompetes its parental virus in mixed infection. PLoS Pathog 2024; 20:e1011941. [PMID: 38215155 PMCID: PMC10810479 DOI: 10.1371/journal.ppat.1011941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/25/2024] [Accepted: 01/03/2024] [Indexed: 01/14/2024] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) causes severe disease of cultivated tomatoes. Geminiviruses replicate circular single-stranded genomic DNA via rolling-circle and recombination-dependent mechanisms, frequently generating recombinants in mixed infections. Circular double-stranded intermediates of replication also serve as templates for Pol II bidirectional transcription. IS76, a recombinant derivative of TYLCV with a short sequence in the bidirectional promoter/origin-of-replication region acquired from a related begomovirus, outcompetes TYLCV in mixed infection and breaks disease resistance in tomato Ty-1 cultivars. Ty-1 encodes a γ-clade RNA-dependent RNA polymerase (RDRγ) implicated in Dicer-like (DCL)-mediated biogenesis of small interfering (si)RNAs directing gene silencing. Here, we profiled transcriptome and small RNAome of Ty-1 resistant and control susceptible plants infected with TYLCV, IS76 or their combination at early and late infection stages. We found that RDRγ boosts production rates of 21, 22 and 24 nt siRNAs from entire genomes of both viruses and modulates DCL activities in favour of 22 and 24 nt siRNAs. Compared to parental TYLCV, IS76 undergoes faster transition to the infection stage favouring rightward transcription of silencing suppressor and coat protein genes, thereby evading RDRγ activity and facilitating its DNA accumulation in both single and mixed infections. In coinfected Ty-1 plants, IS76 efficiently competes for host replication and transcription machineries, thereby impairing TYLCV replication and transcription and forcing its elimination associated with further increased siRNA production. RDRγ is constitutively overexpressed in Ty-1 plants, which correlates with begomovirus resistance, while siRNA-generating DCLs (DCL2b/d, DCL3, DCL4) and genes implicated in siRNA amplification (α-clade RDR1) and function (Argonaute2) are upregulated to similar levels in TYLCV- and IS76-infected susceptible plants. Collectively, IS76 recombination facilitates replication and promotes expression of silencing suppressor and coat proteins, which allows the recombinant virus to evade the negative impact of RDRγ-boosted production of viral siRNAs directing transcriptional and posttranscriptional silencing.
Collapse
Affiliation(s)
- Margaux Jammes
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Nathalie Laboureau
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Cica Urbino
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | | | - Michel Peterschmitt
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| |
Collapse
|
6
|
Billard E, Barro M, Sérémé D, Bangratz M, Wonni I, Koala M, Kassankogno AI, Hébrard E, Thébaud G, Brugidou C, Poulicard N, Tollenaere C. Dynamics of the rice yellow mottle disease in western Burkina Faso: Epidemic monitoring, spatio-temporal variation of viral diversity, and pathogenicity in a disease hotspot. Virus Evol 2023; 9:vead049. [PMID: 37649958 PMCID: PMC10465090 DOI: 10.1093/ve/vead049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/04/2023] [Accepted: 08/20/2023] [Indexed: 09/01/2023] Open
Abstract
The rice yellow mottle virus (RYMV) is a model in plant virus molecular epidemiology, with the reconstruction of historical introduction routes at the scale of the African continent. However, information on patterns of viral prevalence and viral diversity over multiple years at a local scale remains scarce, in spite of potential implications for crop protection. Here, we describe a 5-year (2015-9) monitoring of RYMV prevalence in six sites from western Burkina Faso (geographic areas of Bama, Banzon, and Karfiguela). It confirmed one irrigated site as a disease hotspot and also found one rainfed lowland (RL) site with occasional high prevalence levels. Within the studied fields, a pattern of disease aggregation was evidenced at a 5-m distance, as expected for a mechanically transmitted virus. Next, we monitored RYMV genetic diversity in the irrigated disease hotspot site, revealing a high viral diversity, with the current coexistence of various distinct genetic groups at the site scale (ca. 520 ha) and also within various specific fields (25 m side). One genetic lineage, named S1bzn, is the most recently emerged group and increased in frequency over the studied period (from 20 per cent or less in 2015-6 to more than 65 per cent in 2019). Its genome results from a recombination between two other lineages (S1wa and S1ca). Finally, experimental work revealed that three rice varieties commonly cultivated in Burkina Faso were not different in terms of resistance level, and we also found no significant effect of RYMV genetic groups on symptom expression and viral load. We found, however, that infection outcome depended on the specific RYMV isolate, with two isolates from the lineage S1bzn accumulating at the highest level at early infections. Overall, this study documents a case of high viral prevalence, high viral diversity, and co-occurrence of divergent genetic lineages at a small geographic scale. A recently emerged lineage, which comprises viral isolates inducing severe symptoms and high accumulation under controlled conditions, could be recently rising through natural selection. Following up the monitoring of RYMV diversity is required to confirm this trend and further understand the factors driving the local maintenance of viral diversity.
Collapse
Affiliation(s)
- Estelle Billard
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Mariam Barro
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Drissa Sérémé
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Virologie et de Biologie Végétale, Kamboinsé, Burkina Faso
| | - Martine Bangratz
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Issa Wonni
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Moustapha Koala
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Virologie et de Biologie Végétale, Kamboinsé, Burkina Faso
| | - Abalo Itolou Kassankogno
- INERA, Institut de l’Environnement et de Recherches Agricoles, Laboratoire de Phytopathologie, Bobo-Dioulasso, Burkina Faso
| | - Eugénie Hébrard
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Gaël Thébaud
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Christophe Brugidou
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Nils Poulicard
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| | - Charlotte Tollenaere
- PHIM, Plant Health Institute of Montpellier, Univ. Montpellier, IRD, CIRAD, INRAE, Institute Agro, Montpellier, France
| |
Collapse
|
7
|
Fan Y, Zhong Y, Pan L, Wang X, Ding M, Liu S. A shift of vector specificity acquired by a begomovirus through natural homologous recombination. MOLECULAR PLANT PATHOLOGY 2023; 24:882-895. [PMID: 37191666 PMCID: PMC10346445 DOI: 10.1111/mpp.13351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 04/26/2023] [Accepted: 04/26/2023] [Indexed: 05/17/2023]
Abstract
Recombination is common in plant viruses such as geminiviruses, but the ecological and pathogenic consequences have been explored only in a few cases. Here, we found that a new begomovirus, tomato yellow leaf curl Shuangbai virus (TYLCSbV), probably originated from the recombination of Ageratum yellow vein China virus (AYVCNV) and tobacco curl shoot virus (TbCSV). Agrobacterium-mediated inoculation showed that TYLCSbV and AYVCNV have similar levels of infectivity on tomato and tobacco plants. However, the two viruses exhibit contrasting specificities for vector transmission, that is, TYLCSbV was efficiently transmitted by the whitefly Bemisia tabaci Mediterranean (MED) rather than by the whitefly B. tabaci Middle East-Asia Minor 1 (MEAM1), whereas AYVCNV was more efficiently transmitted by MEAM1. We also showed that the transmission efficiencies of TYLCSbV and AYVCNV are positively correlated with the accumulation of the viruses in whitefly whole bodies and organs/tissues. The key coat protein amino acids that determine their accumulation are between positions 147 and 256. Moreover, field surveys suggest that MED has displaced MEAM1 in some regions where TYLCSbV was collected. Viral competition assays indicated that TYLCSbV outcompeted AYVCNV when transmitted by MED, while the outcome was the opposite when transmitted by MEAM1. Our findings suggest that recombination has resulted in a shift of vector specificity that could provide TYLCSbV with a potential selective transmission advantage, and the population shift of whitefly cryptic species could have influenced virus evolution towards an extended trajectory of transmission.
Collapse
Affiliation(s)
- Yun‐Yun Fan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Yu‐Wei Zhong
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Li‐Long Pan
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Xiao‐Wei Wang
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| | - Ming Ding
- Biotechnology and Germplasm Resources InstituteYunnan Academy of Agricultural SciencesKunmingChina
| | - Shu‐Sheng Liu
- State Key Laboratory of Rice Biology, Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Key Laboratory of Biology of Crop Pathogens and Insects of Zhejiang ProvinceInstitute of Insect Sciences, Zhejiang UniversityHangzhouChina
| |
Collapse
|
8
|
Fortes IM, Fernández-Muñoz R, Moriones E. Crinivirus Tomato Chlorosis Virus Compromises the Control of Tomato Yellow Leaf Curl Virus in Tomato Plants by the Ty-1 Gene. PHYTOPATHOLOGY 2023; 113:1347-1359. [PMID: 36690608 DOI: 10.1094/phyto-09-22-0334-r] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Tomato yellow leaf curl disease (TYLCD) causes severe damage to tomato crops in warm regions of the world, and is associated with infections of several whitefly (Bemisia tabaci)-transmitted single-stranded (ss)DNA begomoviruses (genus Begomovirus, family Geminiviridae). The most widespread begomovirus isolates associated with TYLCD are those of the type strain of the Tomato yellow leaf curl virus species, known as Israel (TYLCV-IL). The Ty-1 gene is widely used in commercial tomato cultivars to control TYLCV-IL damage, providing resistance to the virus by restricting viral accumulation and tolerance to TYLCD by inhibiting disease symptoms. However, several reports suggest that TYLCV-IL-like isolates are adapting to the Ty-1 gene and are causes of concern for possibly overcoming the provided control. This is the case with TYLCV-IL IS76-like recombinants that have a small genome fragment acquired by genetic exchange from an isolate of Tomato yellow leaf curl Sardinia virus, another begomovirus species associated with TYLCD. Here we show that TYLCV-IL IS76-like isolates partially break down the TYLCD-tolerance provided by the Ty-1 gene and that virulence differences might exist between isolates. Interestingly, we demonstrate that mixed infections with an isolate of the crinivirus (genus Crinivirus, family Closteroviridae) species Tomato chlorosis virus (ToCV), an ssRNA virus also transmitted by B. tabaci and emerging worldwide in tomato crops, boosts the breakdown of the TYLCD-tolerance provided by the Ty-1 gene either with TYLCV-IL IS76-like or canonical TYLCV-IL isolates. Moreover, we demonstrate the incorporation of the Ty-2 gene in Ty-1-commercial tomatoes to restrict (no virus or virus traces, no symptoms) systemic infections of recombinant TYLCV-IL IS76-like and canonical TYLCV-IL isolates, even in the presence of ToCV infections, which provides more robust and durable control of TYLCD.
Collapse
Affiliation(s)
- Isabel M Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Rafael Fernández-Muñoz
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM), Universidad de Málaga-Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora", E-29750 Algarrobo-Costa, Málaga, Spain
| |
Collapse
|
9
|
Al-Ali E, Al-Hashash H, Akbar A, Al-Aqeel H, Al-Shayji N, Alotaibi M, Ben Hejji A. Genetic recombination among tomato yellow leaf curl virus isolates in commercial tomato crops in Kuwait drives emergence of virus diversity: a comparative genomic analysis. BMC Res Notes 2023; 16:71. [PMID: 37150821 PMCID: PMC10164301 DOI: 10.1186/s13104-023-06319-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 03/30/2023] [Indexed: 05/09/2023] Open
Abstract
OBJECTIVE Whitefly-transmitted tomato yellow leaf curl virus (TYLCV) continues to be a major constraint to tomato production in Kuwait. However, very limited information is available about the population structure and genetic diversity of TYLCV infecting tomato in Kuwait. RESULTS Whole genome sequences of 31 isolates of TYLCV, collected from commercial tomato crops grown in northern (Abdally) and southern (Al Wafra) parts of Kuwait, were deciphered. Eighteen isolates of TYLCV are identified as potential genetic recombinants. The isolates Abdally 6A and Abdally 3B reported in this study were identified to be potential recombinants. Compared to the 15 isolates from the Abdally area, and the three previously reported KISR isolates of Kuwait, six out of sixteen Al Wafra isolates showed an insertion of 19 extra nucleotides near the 5'-end. There are also four nucleotide variations before the 19-extra-nucleotides. The additional 19 nucleotides observed in nine isolates indicate that these isolates might have resulted from a single gene recombination/insertion event. Molecular phylogeny based on complete genome sequences of TYLCV isolates suggests transboundary movement of virus isolates due to geographic proximity. The information presented herein is quite useful for the comprehension of TYLCV biology, epidemiology and would aid in the management of disease in the long run.
Collapse
Affiliation(s)
- Ebtisam Al-Ali
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait.
| | - Hanadi Al-Hashash
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Abrar Akbar
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Hamed Al-Aqeel
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Nabila Al-Shayji
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Mohammed Alotaibi
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| | - Ahmed Ben Hejji
- Kuwait Institute for Scientific Research, Environmental and Life Science Research Center, Biotechnology Program, 13109, Safat, Kuwait
| |
Collapse
|
10
|
Jammes M, Urbino C, Diouf MB, Peterschmitt M. Refining the emergence scenario of the invasive recombinant Tomato yellow leaf curl virus -IS76. Virology 2023; 578:71-80. [PMID: 36473279 DOI: 10.1016/j.virol.2022.11.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/02/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022]
Abstract
TYLCV-IS76, a unique recombinant between tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), has replaced its parental viruses in southern Morocco. To refine its emergence scenario, its fitness was monitored experimentally in conditions aiming at reproducing natural situations, i.e. superinfection of plants already infected with parental viruses and competition with other TYLCV/TYLCSV recombinants (LSRec) automatically generated in plants coinfected with TYLCV and TYLCSV. TYLCV-IS76 accumulated significantly more than parental viruses regardless of plant age and superinfection delay. Although TYLCV-IS76 and LSRec both accumulated more than parental viruses in laboratory conditions, LSRec were displaced by TYLCV-IS76 in nature like parental viruses were. TYLCV-IS76 did not exhibit any vector transmission advantage over LSRec and TYLCV the most competitive parental virus. Thus, it is apparently only in the plant compartment that the recombination event that generated TYLCV-IS76, induced the competitiveness advantage by which the last became first.
Collapse
Affiliation(s)
- Margaux Jammes
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Cica Urbino
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Mame Boucar Diouf
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France
| | - Michel Peterschmitt
- CIRAD, UMR PHIM, F-34398, Montpellier, France; PHIM, Univ Montpellier, CIRAD, INRAE, Institut Agro, IRD, Montpellier, France.
| |
Collapse
|
11
|
Diouf MB, Festus R, Silva G, Guyader S, Umber M, Seal S, Teycheney PY. Viruses of Yams (Dioscorea spp.): Current Gaps in Knowledge and Future Research Directions to Improve Disease Management. Viruses 2022; 14:v14091884. [PMID: 36146691 PMCID: PMC9501508 DOI: 10.3390/v14091884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 12/24/2022] Open
Abstract
Viruses are a major constraint for yam production worldwide. They hamper the conservation, movement, and exchange of yam germplasm and are a threat to food security in tropical and subtropical areas of Africa and the Pacific where yam is a staple food and a source of income. However, the biology and impact of yam viruses remains largely unknown. This review summarizes current knowledge on yam viruses and emphasizes gaps that exist in the knowledge of the biology of these viruses, their diagnosis, and their impact on production. It provides essential information to inform the implementation of more effective virus control strategies.
Collapse
Affiliation(s)
- Mame Boucar Diouf
- INRAE, UR ASTRO, F-97170 Petit-Bourg, France
- CIRAD, UMR AGAP Institut, F-97130 Capesterre-Belle-Eau, France
- UMR AGAP Institut, University Montpellier, CIRAD, INRAE, Institut Agro, F-97130 Capesterre-Belle-Eau, France
| | - Ruth Festus
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Gonçalo Silva
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | | | - Marie Umber
- INRAE, UR ASTRO, F-97170 Petit-Bourg, France
| | - Susan Seal
- Natural Resources Institute, University of Greenwich, Central Avenue, Chatham Maritime, Kent ME4 4TB, UK
| | - Pierre Yves Teycheney
- CIRAD, UMR PVBMT, F-97410 Saint Pierre, France
- UMR PVBMT, Université de la Réunion, F-97410 Saint-Pierre, France
- Correspondence: ; Tel.: +33-262-492-819
| |
Collapse
|
12
|
Marchant WG, Gautam S, Dutta B, Srinivasan R. Whitefly-Mediated Transmission and Subsequent Acquisition of Highly Similar and Naturally Occurring Tomato Yellow Leaf Curl Virus Variants. PHYTOPATHOLOGY 2022; 112:720-728. [PMID: 34370554 DOI: 10.1094/phyto-06-21-0248-r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Begomoviruses are whitefly-transmitted viruses that infect many agricultural crops. Numerous reports exist on individual host plants harboring two or more begomoviruses. Mixed infection allows recombination events to occur among begomoviruses. However, very few studies have examined mixed infection of different isolates/variants/strains of a Begomovirus species in hosts. In this study, the frequency of mixed infection of tomato yellow leaf curl virus (TYLCV) variants in field-grown tomato was evaluated. At least 60% of symptomatic field samples were infected with more than one TYLCV variant. These variants differed by a few nucleotides and amino acids, resembling a quasispecies. Subsequently, in the greenhouse, single and mixed infection of two TYLCV variants (variant #2 and variant #4) that shared 99.5% nucleotide identity and differed by a few amino acids was examined. Plant-virus variant-whitefly interactions including transmission of one and/or two variants, variants' concentrations, competition between variants in inoculated tomato plants, and whitefly acquisition of one and/or two variants were assessed. Whiteflies transmitted both variants to tomato plants at similar frequencies; however, the accumulation of variant #4 was greater than that of variant #2 in tomato plants. Despite differences in variants' accumulation in inoculated tomato plants, whiteflies acquired variant #2 and variant #4 at similar frequencies. Also, whiteflies acquired greater amounts of TYLCV from singly infected plants than from mixed-infected plants. These results demonstrated that even highly similar TYLCV variants could differentially influence component (whitefly-variant-plant) interactions.
Collapse
Affiliation(s)
- Wendy G Marchant
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA 30223
| | - Bhabesh Dutta
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793
| | | |
Collapse
|
13
|
Voorburg CM, Bai Y, Kormelink R. Small RNA Profiling of Susceptible and Resistant Ty-1 Encoding Tomato Plants Upon Tomato Yellow Leaf Curl Virus Infection. FRONTIERS IN PLANT SCIENCE 2021; 12:757165. [PMID: 34868151 PMCID: PMC8637622 DOI: 10.3389/fpls.2021.757165] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/04/2021] [Indexed: 06/13/2023]
Abstract
Ty-1 presents an atypical dominant resistance gene that codes for an RNA-dependent RNA polymerase (RDR) of the gamma class and confers resistance to tomato yellow leaf curl virus (TYLCV) and other geminiviruses. Tomato lines bearing Ty-1 not only produce relatively higher amounts of viral small interfering (vsi)RNAs, but viral DNA also exhibits a higher amount of cytosine methylation. Whether Ty-1 specifically enhances posttranscriptional gene silencing (PTGS), leading to a degradation of RNA target molecules and primarily relying on 21-22 nucleotides (nts) siRNAs, and/or transcriptional gene silencing (TGS), leading to the methylation of cytosines within DNA target sequences and relying on 24-nts siRNAs, was unknown. In this study, small RNAs were isolated from systemically TYLCV-infected leaves of Ty-1 encoding tomato plants and susceptible tomato Moneymaker (MM) and sequence analyzed. While in susceptible tomato plants vsiRNAs of the 21-nt size class were predominant, their amount was drastically reduced in tomato containing Ty-1. The latter, instead, revealed elevated levels of vsiRNAs of the 22- and 24-nt size classes. In addition, the genomic distribution profiles of the vsiRNAs were changed in Ty-1 plants compared with those from susceptible MM. In MM three clear hotspots were seen, but these were less pronounced in Ty-1 plants, likely due to enhanced transitive silencing to neighboring viral genomic sequences. The largest increase in the amount of vsiRNAs was observed in the intergenic region and the V1 viral gene. The results suggest that Ty-1 enhances an antiviral TGS response. Whether the elevated levels of 22 nts vsiRNAs contribute to an enhanced PTGS response or an additional TGS response involving a noncanonical pathway of RNA dependent DNA methylation remains to be investigated.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
14
|
Crespo-Bellido A, Hoyer JS, Dubey D, Jeannot RB, Duffy S. Interspecies Recombination Has Driven the Macroevolution of Cassava Mosaic Begomoviruses. J Virol 2021; 95:e0054121. [PMID: 34106000 PMCID: PMC8354330 DOI: 10.1128/jvi.00541-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
Begomoviruses (family Geminiviridae, genus Begomovirus) significantly hamper crop production and threaten food security around the world. The frequent emergence of new begomovirus genotypes is facilitated by high mutation frequencies and the propensity to recombine and reassort. Homologous recombination has been especially implicated in the emergence of novel cassava mosaic begomovirus (CMB) genotypes, which cause cassava mosaic disease (CMD). Cassava (Manihot esculenta) is a staple food crop throughout Africa and an important industrial crop in Asia, two continents where production is severely constrained by CMD. The CMD species complex is comprised of 11 bipartite begomovirus species with ample distribution throughout Africa and the Indian subcontinent. While recombination is regarded as a frequent occurrence for CMBs, a revised, systematic assessment of recombination and its impact on CMB phylogeny is currently lacking. We assembled data sets of all publicly available, full-length DNA-A (n = 880) and DNA-B (n = 369) nucleotide sequences from the 11 recognized CMB species. Phylogenetic networks and complementary recombination detection methods revealed extensive recombination among the CMB sequences. Six out of the 11 species descended from unique interspecies recombination events. Estimates of recombination and mutation rates revealed that all species experience mutation more frequently than recombination, but measures of population divergence indicate that recombination is largely responsible for the genetic differences between species. Our results support that recombination has significantly impacted the CMB phylogeny and has driven speciation in the CMD species complex. IMPORTANCE Cassava mosaic disease (CMD) is a significant threat to cassava production throughout Africa and Asia. CMD is caused by a complex comprised of 11 recognized virus species exhibiting accelerated rates of evolution, driven by high frequencies of mutation and genetic exchange. Here, we present a systematic analysis of the contribution of genetic exchange to cassava mosaic virus species-level diversity. Most of these species emerged as a result of genetic exchange. This is the first study to report the significant impact of genetic exchange on speciation in a group of viruses.
Collapse
Affiliation(s)
- Alvin Crespo-Bellido
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - J. Steen Hoyer
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Divya Dubey
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Ronica B. Jeannot
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| | - Siobain Duffy
- Department of Ecology, Evolution and Natural Resources, School of Environmental and Biological Sciences, Rutgers State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
15
|
Yan Z, Wolters AMA, Navas-Castillo J, Bai Y. The Global Dimension of Tomato Yellow Leaf Curl Disease: Current Status and Breeding Perspectives. Microorganisms 2021; 9:740. [PMID: 33916319 PMCID: PMC8066563 DOI: 10.3390/microorganisms9040740] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Tomato yellow leaf curl disease (TYLCD) caused by tomato yellow leaf curl virus (TYLCV) and a group of related begomoviruses is an important disease which in recent years has caused serious economic problems in tomato (Solanum lycopersicum) production worldwide. Spreading of the vectors, whiteflies of the Bemisia tabaci complex, has been responsible for many TYLCD outbreaks. In this review, we summarize the current knowledge of TYLCV and TYLV-like begomoviruses and the driving forces of the increasing global significance through rapid evolution of begomovirus variants, mixed infection in the field, association with betasatellites and host range expansion. Breeding for host plant resistance is considered as one of the most promising and sustainable methods in controlling TYLCD. Resistance to TYLCD was found in several wild relatives of tomato from which six TYLCV resistance genes (Ty-1 to Ty-6) have been identified. Currently, Ty-1 and Ty-3 are the primary resistance genes widely used in tomato breeding programs. Ty-2 is also exploited commercially either alone or in combination with other Ty-genes (i.e., Ty-1, Ty-3 or ty-5). Additionally, screening of a large collection of wild tomato species has resulted in the identification of novel TYLCD resistance sources. In this review, we focus on genetic resources used to date in breeding for TYLCVD resistance. For future breeding strategies, we discuss several leads in order to make full use of the naturally occurring and engineered resistance to mount a broad-spectrum and sustainable begomovirus resistance.
Collapse
Affiliation(s)
- Zhe Yan
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Anne-Marie A. Wolters
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas Universidad de Málaga (IHSM-CSIC-UMA), Avenida Dr. Weinberg s/n, 29750 Algarrobo-Costa, Málaga, Spain;
| | - Yuling Bai
- Plant Breeding, Wageningen University & Research, P.O. Box 386, 6700 AJ Wageningen, The Netherlands; (Z.Y.); (A.-M.A.W.)
| |
Collapse
|
16
|
Prasad A, Sharma N, Hari-Gowthem G, Muthamilarasan M, Prasad M. Tomato Yellow Leaf Curl Virus: Impact, Challenges, and Management. TRENDS IN PLANT SCIENCE 2020; 25:897-911. [PMID: 32371058 DOI: 10.1016/j.tplants.2020.03.015] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 05/26/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is one of the most studied plant viral pathogens because it is the most damaging virus for global tomato production. In order to combat this global threat, it is important that we understand the biology of TYLCV and devise management approaches. The prime objective of this review is to highlight management strategies for efficiently tackling TYLCV epidemics and global spread. For that purpose, we focus on the impact TYLCV has on worldwide agriculture and the role of recent advances for our understanding of TYLCV interaction with its host and vector. Another important focus is the role of recombination and mutations in shaping the evolution of TYLCV genome and geographical distribution.
Collapse
Affiliation(s)
- Ashish Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Namisha Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | - Manoj Prasad
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India.
| |
Collapse
|
17
|
Souza TA, Silva JMF, Nagata T, Martins TP, Nakasu EYT, Inoue-Nagata AK. A Temporal Diversity Analysis of Brazilian Begomoviruses in Tomato Reveals a Decrease in Species Richness between 2003 and 2016. FRONTIERS IN PLANT SCIENCE 2020; 11:1201. [PMID: 32849745 PMCID: PMC7424291 DOI: 10.3389/fpls.2020.01201] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Understanding the molecular evolution and diversity changes of begomoviruses is crucial for predicting future outbreaks of the begomovirus disease in tomato crops. Thus, a molecular diversity study using high-throughput sequencing (HTS) was carried out on samples of infected tomato leaves collected between 2003 and 2016 from Central Brazil. DNA samples were subjected to rolling circle amplification and pooled in three batches, G1 (2003-2005, N = 107), G2 (2009-2011, N = 118), and G3 (2014-2016, N = 129) prior to HTS. Nineteen genome-sized geminivirus sequences were assembled, but only 17 were confirmed by PCR. In the G1 library, five begomoviruses and one capula-like virus were detected, but the number of identified viruses decreased to three begomoviruses in the G2 and G3 libraries. The bipartite begomovirus tomato severe rugose virus (ToSRV) and the monopartite tomato mottle leaf curl virus (ToMoLCV) were found to be the most prevalent begomoviruses in this survey. Our analyses revealed a significant increase in both relative abundance and genetic diversity of ToMoLCV from G1 to G3, and ToSRV from G1 to G2; however, both abundance and diversity decreased from G2 to G3. This suggests that ToMoLCV and ToSRV outcompeted other begomoviruses from G1 to G2 and that ToSRV was being outcompeted by ToMoLCV from G2 to G3. The possible evolutionary history of begomoviruses that were likely transferred from wild native plants and weeds to tomato crops after the introduction of the polyphagous vector Bemisia tabaci MEAM1 and the wide use of cultivars carrying the Ty-1 resistance gene are discussed, as well as the strengths and limitations of the use of HTS in identification and diversity analysis of begomoviruses.
Collapse
Affiliation(s)
- Tadeu Araujo Souza
- Department of Plant Pathology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
| | | | - Tatsuya Nagata
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | - Thaís Pereira Martins
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
- Department of Cell Biology, University of Brasilia, Brasilia, Brazil
| | | | - Alice Kazuko Inoue-Nagata
- Department of Plant Pathology, University of Brasilia, Brasilia, Brazil
- Laboratory of Virology, Embrapa Vegetables, Brasilia, Brazil
| |
Collapse
|
18
|
Maio F, Helderman TA, Arroyo-Mateos M, van der Wolf M, Boeren S, Prins M, van den Burg HA. Identification of Tomato Proteins That Interact With Replication Initiator Protein (Rep) of the Geminivirus TYLCV. FRONTIERS IN PLANT SCIENCE 2020; 11:1069. [PMID: 32760417 PMCID: PMC7373745 DOI: 10.3389/fpls.2020.01069] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 06/29/2020] [Indexed: 05/23/2023]
Abstract
Geminiviruses are plant-infecting DNA viruses that reshape the intracellular environment of their host in order to create favorable conditions for viral replication and propagation. Viral manipulation is largely mediated via interactions between viral and host proteins. Identification of this protein network helps us to understand how these viruses manipulate their host and therefore provides us potentially with novel leads for resistance against this class of pathogens, as genetic variation in the corresponding plant genes could subvert viral manipulation. Different studies have already yielded a list of host proteins that interact with one of the geminiviral proteins. Here, we use affinity purification followed by mass spectrometry (AP-MS) to further expand this list of interacting proteins, focusing on an important host (tomato) and the Replication initiator protein (Rep, AL1, C1) from Tomato yellow leaf curl virus (TYLCV). Rep is the only geminiviral protein proven to be essential for geminiviral replication and it forms an integral part of viral replisomes, a protein complex that consists of plant and viral proteins that allows for viral DNA replication. Using AP-MS, fifty-four 'high confidence' tomato proteins were identified that specifically co-purified with Rep. For two of them, an unknown EWS-like RNA-binding protein (called Geminivirus Rep interacting EWS-like protein 1 or GRIEP1) and an isoform of the THO complex subunit 4A (ALY1), we were able to confirm this interaction with Rep in planta using a second method, bimolecular fluorescence complementation (BiFC). The THO subunit 4 is part of the THO/TREX (TRanscription-EXport) complex, which controls RNA splicing and nuclear export of mRNA to the cytoplasm and is also connected to plant disease resistance. This work represents the first step towards characterization of novel host factors with a putative role in the life cycle of TYLCV and possibly other geminiviruses.
Collapse
Affiliation(s)
- Francesca Maio
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Tieme A. Helderman
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Manuel Arroyo-Mateos
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Miguel van der Wolf
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University, Wageningen, Netherlands
| | - Marcel Prins
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
- Keygene N.V., Wageningen, Netherlands
| | - Harrold A. van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences (SILS), University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
19
|
Reconstruction and Characterization of Full-Length Begomovirus and Alphasatellite Genomes Infecting Pepper through Metagenomics. Viruses 2020; 12:v12020202. [PMID: 32054104 PMCID: PMC7077291 DOI: 10.3390/v12020202] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 01/10/2020] [Accepted: 01/16/2020] [Indexed: 01/18/2023] Open
Abstract
In northwestern Argentina (NWA), pepper crops are threatened by the emergence of begomoviruses due to the spread of its vector, Bemisia tabaci (Gennadius). The genus Begomovirus includes pathogens that can have a monopartite or bipartite genome and are occasionally associated with sub-viral particles called satellites. This study characterized the diversity of begomovirus and alphasatellite species infecting pepper in NWA using a metagenomic approach. Using RCA-NGS (rolling circle amplification-next generation sequencing), 19 full-length begomovirus genomes (DNA-A and DNA-B) and one alphasatellite were assembled. This ecogenomic approach revealed six begomoviruses in single infections: soybean blistering mosaic virus (SbBMV), tomato yellow spot virus (ToYSV), tomato yellow vein streak virus (ToYVSV), tomato dwarf leaf virus (ToDfLV), sida golden mosaic Brazil virus (SiGMBRV), and a new proposed species, named pepper blistering leaf virus (PepBLV). SbBMV was the most frequently detected species, followed by ToYSV. Moreover, a new alphasatellite associated with ToYSV, named tomato yellow spot alphasatellite 2 (ToYSA-2), was reported for the first time in Argentina. For the Americas, this was the first report of an alphasatellite found in a crop (pepper) and in a weed (Leonurus japonicus). We also detected intra-species and inter-species recombination.
Collapse
|
20
|
Voorburg CM, Yan Z, Bergua‐Vidal M, Wolters AA, Bai Y, Kormelink R. Ty-1, a universal resistance gene against geminiviruses that is compromised by co-replication of a betasatellite. MOLECULAR PLANT PATHOLOGY 2020; 21:160-172. [PMID: 31756021 PMCID: PMC6988424 DOI: 10.1111/mpp.12885] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV), a begomovirus, causes large yield losses and breeding for resistance is an effective way to combat this viral disease. The resistance gene Ty-1 codes for an RNA-dependent RNA polymerase and has recently been shown to enhance transcriptional gene silencing of TYLCV. Whereas Ty-1 was earlier shown to also confer resistance to a bipartite begomovirus, here it is shown that Ty-1 is probably generic to all geminiviruses. A tomato Ty-1 introgression line, but also stable transformants of susceptible tomato cv. Moneymaker and Nicotiana benthamiana (N. benthamiana) expressing the Ty-1 gene, exhibited resistance to begomoviruses as well as to the distinct, leafhopper-transmitted beet curly top virus, a curtovirus. Stable Ty-1 transformants of N. benthamiana and tomato showed fewer symptoms and reduced viral titres on infection compared to wild-type plants. TYLCV infections in wild-type N. benthamiana plants in the additional presence of a betasatellite led to increased symptom severity and a consistent, slightly lowered virus titre relative to the high averaged levels seen in the absence of the betasatellite. On the contrary, in Ty-1 transformed N. benthamiana viral titres increased in the presence of the betasatellite. The same was observed when these Ty-1-encoding plants were challenged with TYLCV and a potato virus X construct expressing the RNA interference suppressor protein βC1 encoded by the betasatellite. The resistance spectrum of Ty-1 and the durability of the resistance are discussed in light of antiviral RNA interference and viral counter defence strategies.
Collapse
Affiliation(s)
- Corien M. Voorburg
- Laboratory of VirologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Zhe Yan
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Maria Bergua‐Vidal
- Laboratory of VirologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Anne‐Marie A. Wolters
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Yuling Bai
- Plant BreedingWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| | - Richard Kormelink
- Laboratory of VirologyWageningen University & ResearchDroevendaalsesteeg 1Wageningen6708PBNetherlands
| |
Collapse
|
21
|
Urbino C, Regragui ZF, Granier M, Peterschmitt M. Fitness advantage of inter-species TYLCV recombinants induced by beneficial intra-genomic interactions rather than by specific mutations. Virology 2020; 542:20-27. [PMID: 31957662 DOI: 10.1016/j.virol.2020.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 12/09/2019] [Accepted: 01/02/2020] [Indexed: 11/19/2022]
Abstract
Tomato yellow leaf curl virus (TYLCV) and its related viruses are prone to recombination. It was reported that random homologous recombination between 20% diverging TYLCV related species is rarely deleterious and may be associated with a fitness advantage. Indeed, TYLCV-IS76, a recombinant between the 20% divergent TYLCV and tomato yellow leaf curl Sardinia virus (TYLCSV), exhibited a higher fitness than that of parental viruses. As this typical fitness advantage was observed with TYLCV-IS76 representatives of different pedigrees, it was thought that it is induced by beneficial intra-genomic interactions rather than by specific mutations. This hypothesis was further supported with TYLCV-IS141, a TYLCV recombinant with a short TYLCSV inherited fragment of around 141 nts, slightly longer than that of TYLCV-IS76. Indeed, the typical fitness advantage was detected irrespective of the position of the recombination breakpoint (loci 76 or 141) and the sequences of the TYLCV and TYLCSV inherited fragments.
Collapse
Affiliation(s)
- Cica Urbino
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Zohra Fatima Regragui
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Martine Granier
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Michel Peterschmitt
- CIRAD, UMR BGPI, Montpellier, France; BGPI, CIRAD, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France.
| |
Collapse
|
22
|
Marchant WG, Gautam S, Hutton SF, Srinivasan R. Tomato Yellow Leaf Curl Virus-Resistant and -Susceptible Tomato Genotypes Similarly Impact the Virus Population Genetics. FRONTIERS IN PLANT SCIENCE 2020; 11:599697. [PMID: 33365041 PMCID: PMC7750400 DOI: 10.3389/fpls.2020.599697] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 11/13/2020] [Indexed: 05/14/2023]
Abstract
Tomato yellow leaf curl virus is a species in the genus Begomovirus and family Geminiviridae. Tomato yellow leaf curl virus (TYLCV) infection induces severe symptoms on tomato plants and causes serious yield losses worldwide. TYLCV is persistently transmitted by the sweetpotato whitefly, Bemisia tabaci (Gennadius). Cultivars and hybrids with a single or few genes conferring resistance against TYLCV are often planted to mitigate TYLCV-induced losses. These resistant genotypes (cultivars or hybrids) are not immune to TYLCV. They typically develop systemic infection, display mild symptoms, and produce more marketable tomatoes than susceptible genotypes under TYLCV pressure. In several pathosystems, extensive use of resistant cultivars with single dominant resistance-conferring gene has led to intense selection pressure on the virus, development of highly virulent strains, and resistance breakdown. This study assessed differences in TYLCV genomes isolated from susceptible and resistant genotypes in Florida and Georgia. Phylogenetic analyses indicated that Florida and Georgia isolates were distinct from each other. Population genetics analyses with genomes field-collected from resistant and susceptible genotypes from Florida and/or Georgia provided no evidence of a genetic structure between the resistant and susceptible genotypes. No codons in TYLCV genomes from TYLCV-resistant or susceptible genotypes were under positive selection, suggesting that highly virulent or resistance-breaking TYLCV strains might not be common in tomato farmscapes in Florida and Georgia. With TYLCV-resistant genotypes usage increasing recently and multiple tomato crops being planted during a calendar year, host resistance-induced selection pressure on the virus remains a critical issue. To address the same, a greenhouse selection experiment with one TYLCV-resistant and susceptible genotype was conducted. Each genotype was challenged with TYLCV through whitefly-mediated transmission serially 10 times (T1-T10). Population genetics parameters at the genome level were assessed at T1, T5, and T10. Results indicated that genomes from resistant and susceptible genotypes did not differentiate with increasing transmission number, no specific mutations were repeatedly observed, and no positive selection was detected. These results reiterate that resistance in tomato might not be exerting selection pressure against TYLCV to facilitate development of resistance-breaking strains. TYLCV populations rather seem to be shaped by purifying selection and/or population expansion.
Collapse
Affiliation(s)
- Wendy G. Marchant
- Department of Entomology, University of Georgia, Tifton, GA, United States
| | - Saurabh Gautam
- Department of Entomology, University of Georgia, Griffin, GA, United States
| | - Samuel F. Hutton
- Horticulture Sciences Department, University of Florida, Wimauma, FL, United States
| | - Rajagopalbabu Srinivasan
- Department of Entomology, University of Georgia, Griffin, GA, United States
- *Correspondence: Rajagopalbabu Srinivasan
| |
Collapse
|
23
|
García-Arenal F, Zerbini FM. Life on the Edge: Geminiviruses at the Interface Between Crops and Wild Plant Hosts. Annu Rev Virol 2019; 6:411-433. [PMID: 31180812 DOI: 10.1146/annurev-virology-092818-015536] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Viruses constitute the largest group of emerging pathogens, and geminiviruses (plant viruses with circular, single-stranded DNA genomes) are the major group of emerging plant viruses. With their high potential for genetic variation due to mutation and recombination, their efficient spread by vectors, and their wide host range as a group, including both wild and cultivated hosts, geminiviruses are attractive models for the study of the evolutionary and ecological factors driving virus emergence. Studies on the epidemiological features of geminivirus diseases have traditionally focused primarily on crop plants. Nevertheless, knowledge of geminivirus infection in wild plants, and especially at the interface between wild and cultivated plants, is necessary to provide a complete view of their ecology, evolution, and emergence. In this review, we address the most relevant aspects of geminivirus variability and evolution in wild and crop plants and geminiviruses' potential to emerge in crops.
Collapse
Affiliation(s)
- Fernando García-Arenal
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28223 Pozuelo de Alarcón, Madrid, Spain;
| | - Francisco Murilo Zerbini
- Departamento de Fitopatologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), and National Research Institute for Plant-Pest Interactions, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil;
| |
Collapse
|
24
|
Díaz-Pendón JA, Sánchez-Campos S, Fortes IM, Moriones E. Tomato Yellow Leaf Curl Sardinia Virus, a Begomovirus Species Evolving by Mutation and Recombination: A Challenge for Virus Control. Viruses 2019; 11:E45. [PMID: 30634476 PMCID: PMC6356960 DOI: 10.3390/v11010045] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 12/28/2018] [Accepted: 01/08/2019] [Indexed: 12/12/2022] Open
Abstract
The tomato leaf curl disease (TYLCD) is associated with infections of several species of begomoviruses (genus Begomovirus, family Geminiviridae) and causes severe damage to tomatoes throughout tropical and sub-tropical regions of the world. Among others, the Tomato yellow leaf curl Sardinia virus (TYLCSV) species causes damage in the Mediterranean Basin since early outbreaks occurred. Nevertheless, scarce information is available about the diversity of TYLCSV. Here, we study this aspect based on the sequence information accessible in databases. Isolates of two taxonomically differentiated TYLCSV strains can be found in natural epidemics. Their evolution is mostly associated with mutation combined with selection and random genetic drift and also with inter-species recombination which is frequent in begomoviruses. Moreover, a novel putative inter-strain recombinant is reported. Although no significantly new biological behaviour was observed for this latter recombinant, its occurrence supports that as shown for other related begomoviruses, recombination continues to play a central role in the evolution of TYLCD-associated viruses and the dynamism of their populations. The confrontation of resistant tomatoes with isolates of different TYLCD-associated viruses including the novel recombinant demonstrates the existence of a variable virus x plant genotype interaction. This has already been observed for other TYLCD-associated viruses and is a challenge for the control of their impact on tomato production.
Collapse
Affiliation(s)
- Juan A Díaz-Pendón
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Isabel María Fortes
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora" (IHSM-UMA-CSIC), Consejo Superior de Investigaciones Científicas, Estación Experimental "La Mayora". Av. Dr. Wienberg s/n, Algarrobo-Costa, 29750 Málaga, Spain.
| |
Collapse
|
25
|
Torre C, Donaire L, Gómez-Aix C, Juárez M, Peterschmitt M, Urbino C, Hernando Y, Agüero J, Aranda MA. Characterization of Begomoviruses Sampled during Severe Epidemics in Tomato Cultivars Carrying the Ty-1 Gene. Int J Mol Sci 2018; 19:E2614. [PMID: 30177671 PMCID: PMC6164481 DOI: 10.3390/ijms19092614] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 08/25/2018] [Accepted: 08/28/2018] [Indexed: 12/27/2022] Open
Abstract
Tomato yellow leaf curl virus (TYLCV, genus Begomovirus, family Geminiviridae) is a major species that causes a tomato disease for which resistant tomato hybrids (mainly carriers of the Ty-1/Ty-3 gene) are being used widely. We have characterized begomoviruses severely affecting resistant tomato crops in Southeast Spain. Circular DNA was prepared from samples by rolling circle amplification, and sequenced by massive sequencing (2015) or cloning and Sanger sequencing (2016). Thus, 23 complete sequences were determined, all belonging to the TYLCV Israel strain (TYLCV-IL). Massive sequencing also revealed the absence of other geminiviral and beta-satellite sequences. A phylogenetic analysis showed that the Spanish isolates belonged to two groups, one related to early TYLCV-IL isolates in the area (Group 1), and another (Group 2) closely related to El Jadida (Morocco) isolates, suggesting a recent introduction. The most parsimonious evolutionary scenario suggested that the TYLCV isolates of Group 2 are back recombinant isolates derived from TYLCV-IS76, a recombinant virus currently predominating in Moroccan epidemics. Thus, an infectious Group 2 clone (TYLCV-Mu15) was constructed and used in in planta competition assays against TYLCV-IS76. TYLCV-Mu15 predominated in single infections, whereas TYLCV-IS76 did so in mixed infections, providing credibility to a scenario of co-occurrence of both types of isolates.
Collapse
Affiliation(s)
- Covadonga Torre
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Livia Donaire
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain.
| | - Cristina Gómez-Aix
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Miguel Juárez
- Escuela Politécnica Superior de Orihuela, Universidad Miguel Hernández de Elche, Ctra. de Beniel, Km 3.2, 03312 Alicante, Spain.
| | - Michel Peterschmitt
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR-BGPI, Equipe Interactions Virus-Insecte-Plante, TA A-54/K, Campus International de Baillarguet, CEDEX 5, 34398 Monptellier, France.
| | - Cica Urbino
- Centre de Coopération Internationale en Recherche Agronomique Pour le Développement (CIRAD), UMR-BGPI, Equipe Interactions Virus-Insecte-Plante, TA A-54/K, Campus International de Baillarguet, CEDEX 5, 34398 Monptellier, France.
| | - Yolanda Hernando
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Jesús Agüero
- Abiopep S.L., Departamento de I + D + i, Parque Científico de Murcia, Ctra. de Madrid, Km 388, Complejo de Espinardo, Edf. R, 2°, 30100 Murcia, Spain.
| | - Miguel A Aranda
- Centro de Edafología y Biología Aplicada del Segura (CEBAS)-CSIC, Departamento de Biología del Estrés y Patología Vegetal, P.O. Box 164, 30100 Murcia, Spain.
| |
Collapse
|
26
|
Rojas MR, Macedo MA, Maliano MR, Soto-Aguilar M, Souza JO, Briddon RW, Kenyon L, Rivera Bustamante RF, Zerbini FM, Adkins S, Legg JP, Kvarnheden A, Wintermantel WM, Sudarshana MR, Peterschmitt M, Lapidot M, Martin DP, Moriones E, Inoue-Nagata AK, Gilbertson RL. World Management of Geminiviruses. ANNUAL REVIEW OF PHYTOPATHOLOGY 2018; 56:637-677. [PMID: 30149794 DOI: 10.1146/annurev-phyto-080615-100327] [Citation(s) in RCA: 157] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Management of geminiviruses is a worldwide challenge because of the widespread distribution of economically important diseases caused by these viruses. Regardless of the type of agriculture, management is most effective with an integrated pest management (IPM) approach that involves measures before, during, and after the growing season. This includes starting with resistant cultivars and virus- and vector-free transplants and propagative plants. For high value vegetables, protected culture (e.g., greenhouses and screenhouses) allows for effective management but is limited owing to high cost. Protection of young plants in open fields is provided by row covers, but other measures are typically required. Measures that are used for crops in open fields include roguing infected plants and insect vector management. Application of insecticide to manage vectors (whiteflies and leafhoppers) is the most widely used measure but can cause undesirable environmental and human health issues. For annual crops, these measures can be more effective when combined with host-free periods of two to three months. Finally, given the great diversity of the viruses, their insect vectors, and the crops affected, IPM approaches need to be based on the biology and ecology of the virus and vector and the crop production system. Here, we present the general measures that can be used in an IPM program for geminivirus diseases, specific case studies, and future challenges.
Collapse
Affiliation(s)
- Maria R Rojas
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Monica A Macedo
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Minor R Maliano
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Maria Soto-Aguilar
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Juliana O Souza
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| | - Rob W Briddon
- National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Rafael F Rivera Bustamante
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Unidad Irapuato, Irapuato, Guanajuato, Mexico 36821
| | - F Murilo Zerbini
- Departamento de Fitopatologia/Bioagro, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Scott Adkins
- US Department of Agriculture, Agricultural Research Service, Fort Pierce, Florida 34945, USA
| | - James P Legg
- International Institute of Tropical Agriculture, Dar-Es-Salaam, Tanzania
| | - Anders Kvarnheden
- Department of Plant Biology, Swedish University of Agricultural Sciences, Uppsala BioCenter and Linnean Center for Plant Biology in Uppsala, 75007 Uppsala, Sweden
| | - William M Wintermantel
- US Department of Agriculture, Agricultural Research Service, Salinas, California 93905, USA
| | - Mysore R Sudarshana
- US Department of Agriculture, Agricultural Research Service, and Department of Plant Pathology, University of California, Davis, California 95616, USA
| | - Michel Peterschmitt
- Centre de Coopération Internationale en Recherche Agronomique pour le Développement, UMR Biologie et Génétique des Interactions Plante-Parasite, F-34398 Montpellier, France
| | - Moshe Lapidot
- Department of Vegetable Research, Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Rishon LeZion 7505101, Israel
| | - Darren P Martin
- Computational Biology Division, Department of Integrative Biomedical Sciences, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town 7925, South Africa
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea "La Mayora," Universidad de Málaga-Consejo Superior de Investigaciones Cientficas (IHSM-UMA-CSIC), Estación Experimental "La Mayora," Algarrobo-Costa, Málaga 29750, Spain
| | | | - Robert L Gilbertson
- Department of Plant Pathology, University of California, Davis, California 95616, USA; , ,
| |
Collapse
|
27
|
Yan Z, Pérez-de-Castro A, Díez MJ, Hutton SF, Visser RGF, Wolters AMA, Bai Y, Li J. Resistance to Tomato Yellow Leaf Curl Virus in Tomato Germplasm. FRONTIERS IN PLANT SCIENCE 2018; 9:1198. [PMID: 30177938 PMCID: PMC6110163 DOI: 10.3389/fpls.2018.01198] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 07/26/2018] [Indexed: 05/19/2023]
Abstract
Tomato yellow leaf curl virus (TYLCV) is a virus species causing epidemics in tomato (Solanum lycopersicum) worldwide. Many efforts have been focused on identification of resistance sources by screening wild tomato species. In many cases, the accession numbers were either not provided in publications or not provided in a consistent manner, which led to redundant screenings. In the current study, we summarized efforts on the screenings of wild tomato species for TYLCV resistance from various publications. In addition, we screened 708 accessions from 13 wild tomato species using different inoculation assays (i.e., whitefly natural infection and Agrobacterium-mediated inoculation) from which 138 accessions exhibited no tomato yellow leaf curl disease (TYLCD) symptoms. These symptomless accessions include 14 accessions from S. arcanum, 43 from S. chilense, 1 from S. chmielewskii, 28 from S. corneliomulleri, 5 from S. habrochaites, 4 from S. huaylasense, 2 from S. neorickii, 1 from S. pennellii, 39 from S. peruvianum, and 1 from S. pimpinellifolium. Most of the screened S. chilense accessions remained symptomless. Many symptomless accessions were also identified in S. arcanum, S. corneliomulleri, and S. peruvianum. A large number of S. pimpinellifolium accessions were screened. However, almost all of the tested accessions showed TYLCD symptoms. Further, we studied allelic variation of the Ty-1/Ty-3 gene in few S. chilense accessions by applying virus-induced gene silencing and allele mining, leading to identification of a number of allele-specific polymorphisms. Taken together, we present a comprehensive overview on TYLCV resistance and susceptibility in wild tomato germplasm, and demonstrate how to study allelic variants of the cloned Ty-genes in TYLCV-resistant accessions.
Collapse
Affiliation(s)
- Zhe Yan
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Ana Pérez-de-Castro
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Ciudad Politécnica de la Innovación, Universitat Politècnica de València, Valencia, Spain
| | - Maria J. Díez
- Instituto Universitario de Conservación y Mejora de la Agrodiversidad Valenciana, Ciudad Politécnica de la Innovación, Universitat Politècnica de València, Valencia, Spain
| | - Samuel F. Hutton
- Gulf Coast Research and Education Center, University of Florida, Gainesville, FL, United States
| | - Richard G. F. Visser
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Anne-Marie A. Wolters
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Yuling Bai
- Plant Breeding, Graduate School Experimental Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| | - Junming Li
- The Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
28
|
Sánchez-Campos S, Domínguez-Huerta G, Díaz-Martínez L, Tomás DM, Navas-Castillo J, Moriones E, Grande-Pérez A. Differential Shape of Geminivirus Mutant Spectra Across Cultivated and Wild Hosts With Invariant Viral Consensus Sequences. FRONTIERS IN PLANT SCIENCE 2018; 9:932. [PMID: 30013589 PMCID: PMC6036239 DOI: 10.3389/fpls.2018.00932] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 06/11/2018] [Indexed: 05/12/2023]
Abstract
Geminiviruses (family Geminiviridae) possess single-stranded circular DNA genomes that are replicated by cellular polymerases in plant host cell nuclei. In their hosts, geminivirus populations behave as ensembles of mutant and recombinant genomes, known as viral quasispecies. This favors the emergence of new geminiviruses with altered host range, facilitating new or more severe diseases or overcoming resistance traits. In warm and temperate areas several whitefly-transmitted geminiviruses of the genus Begomovirus cause the tomato yellow leaf curl disease (TYLCD) with significant economic consequences. TYLCD is frequently controlled in commercial tomatoes by using the dominant Ty-1 resistance gene. Over a 45 day period we have studied the diversification of three begomoviruses causing TYLCD: tomato yellow leaf curl virus (TYLCV), tomato yellow leaf curl Sardinia virus (TYLCSV) and tomato yellow leaf curl Malaga virus (TYLCMaV, a natural recombinant between TYLCV and TYLCSV). Viral quasispecies resulting from inoculation of geminivirus infectious clones were examined in plants of susceptible tomato (ty-1/ty-1), heterozygous resistant tomato (Ty-1/ty-1), common bean, and the wild reservoir Solanum nigrum. Differences in virus fitness across hosts were observed while viral consensus sequences remained invariant. However, the complexity and heterogeneity of the quasispecies were high, especially in common bean and the wild host. Interestingly, the presence or absence of the Ty-1 allele in tomato did not lead to differences in begomovirus mutant spectra. However, the fitness decrease of TYLCSV and TYLCV in tomato at 45 dpi might be related to an increase in CP (Coat protein) mutation frequency. In Solanum nigrum the recombinant TYLCMaV, which showed lower fitness than TYLCSV, at 45 dpi actively explored Rep (Replication associated protein) ORF but not the overlapping C4. Our results underline the importance of begomovirus mutant spectra during infections. This is especially relevant in the wild reservoir of the viruses, which has the potential to maintain highly diverse mutant spectra without modifying their consensus sequences.
Collapse
Affiliation(s)
- Sonia Sánchez-Campos
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Guillermo Domínguez-Huerta
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Luis Díaz-Martínez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| | - Diego M. Tomás
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Jesús Navas-Castillo
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Enrique Moriones
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Estación Experimental “La Mayora,” Algarrobo-Costa, Málaga, Spain
| | - Ana Grande-Pérez
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora,” Consejo Superior de Investigaciones Científicas-Universidad de Málaga, Área de Genética, Facultad de Ciencias, Campus de Teatinos, Málaga, Spain
| |
Collapse
|
29
|
Conflon D, Granier M, Tiendrébéogo F, Gentit P, Peterschmitt M, Urbino C. Accumulation and transmission of alphasatellite, betasatellite and tomato yellow leaf curl virus in susceptible and Ty-1-resistant tomato plants. Virus Res 2018; 253:124-134. [PMID: 29908896 DOI: 10.1016/j.virusres.2018.06.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 11/16/2022]
Abstract
Begomoviruses (family Geminiviridae) are frequently associated with alphasatellites and betasatellites in the Old World. Tomato yellow leaf curl virus, one of the most damaging begomovirus species worldwide, was recently found associated with betasatellites in the eastern coast of the Mediterranean Sea, and in the Middle East region. Tomato yellow leaf curl virus (TYLCV)/betasatellite associations were shown to increase TYLCV virulence in experimental conditions. The sustainability of TYLCV/satellite associations in tomato was assessed here by estimating accumulation levels of satellites in comparison to TYLCV, vector transmission efficiency, and by testing how far the popular Ty-1 resistance gene used in most TYLCV-resistant tomato cultivars in the Mediterranean Basin is effective against betasatellites. Three satellites previously isolated from okra in Burkina Faso-of the species Cotton leaf curl Gezira betasatellite, Cotton leaf curl Gezira alphasatellite and Okra leaf curl Burkina Faso alphasatellite-were shown to accumulate at levels similar to, or higher than, the helper virus TYLCV-Mld in tomato plants from 32 to 150 days post inoculation (dpi). Cotton leaf curl Gezira betasatellite (CLCuGB) reduced TYLCV-Mld accumulation whereas alphasatellites did not. Transmission tests were performed with B. tabaci from plants infected with TYLCV-Mld/CLCuGB- or TYLCV-Mld/Okra leaf curl Burkina Faso alphasatellite. At 32 dpi, both satellites were transmitted to more than 50% of TYLCV-infected test plants. Betasatellite transmission, tested further with 150 dpi source plants was successful in more than 30% of TYLCV-infected test plants. Ty-1 resistant tomato plants co-infected with TYLCV (-Mld or -IL) and CLCuGB exhibited mild leaf curling and mosaic symptoms at the early stage of infection associated with a positive effect on TYLCV-IL accumulation, while resistant plants infected with TYLCV only, were asymptomatic. Together with previous experimental studies, these results further emphasize the potential risk of betasatellites to tomato cultivation, including with Ty-1 resistant cultivars.
Collapse
Affiliation(s)
- Déborah Conflon
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Martine Granier
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Fidèle Tiendrébéogo
- Laboratoire de Virologie et de Biotechnologies Végétales (LVBV), INERA, 01 BP 476, Ouagadougou 01, Burkina Faso; Laboratoire Mixte International Patho-Bios, IRD-INERA, 01 BP 476, Ouagadougou 01, Burkina Faso
| | - Pascal Gentit
- ANSES, Plant Health Laboratory, Unité de Bactériologie, Virologie et détection des OGM, 7 rue Jean Dixméras, 49044, Angers Cedex 01, France
| | - Michel Peterschmitt
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France
| | - Cica Urbino
- CIRAD, UMR BGPI, F-34398, Montpellier, France; BGPI, Univ Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, France.
| |
Collapse
|
30
|
Belabess Z, Urbino C, Granier M, Tahiri A, Blenzar A, Peterschmitt M. The typical RB76 recombination breakpoint of the invasive recombinant tomato yellow leaf curl virus of Morocco can be generated experimentally but is not positively selected in tomato. Virus Res 2017; 243:44-51. [PMID: 28988981 DOI: 10.1016/j.virusres.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
TYLCV-IS76 is an unusual recombinant between the highly recombinogenic tomato yellow leaf curl virus (TYLCV) and tomato yellow leaf curl Sardinia virus (TYLCSV), two Mediterranean begomoviruses (Geminiviridae). In contrast with the previously reported TYLCV/TYLCSV recombinants, it has a TYLCSV derived fragment of only 76 nucleotides, and has replaced its parental viruses in natural conditions (Morocco, Souss region). The viral population shift coincided with the deployment of the popular Ty-1 resistant tomato cultivars, and according to experimental studies, has been driven by a strong positive selection in such resistant plants. However, although Ty-1 cultivars were extensively used in Mediterranean countries, TYLCV-IS76 was not reported outside Morocco. This, in combination with its unusual recombination pattern suggests that it was generated through a rare and possibly multistep process. The potential generation of a recombination breakpoint (RB) at locus 76 (RB76) was investigated over time in 10 Ty-1 resistant and 10 nearly isogenic susceptible tomato plants co-inoculated with TYLCV and TYLCSV clones. RB76 could not be detected in the recombinant progeny using the standard PCR/sequencing approach that was previously designed to monitor the emergence of TYLCV-IS76 in Morocco. Using a more sensitive PCR test, RB76 was detected in one resistant and five susceptible plants. The results are consistent with a very low intra-plant frequency of RB76 bearing recombinants throughout the test and support the hypothesis of a rare emergence of TYLCV-IS76. More generally, RBs were more scattered in resistant than in susceptible plants and an unusual RB at position 141 (RB141) was positively selected in the resistant cultivar; interestingly, RB141 bearing recombinants were detected in resistant tomato plants from the field. Scenarios of TYLCV-IS76 pre-emergence are proposed.
Collapse
Affiliation(s)
- Z Belabess
- CIRAD, UMR BGPI, 34398 Montpellier, France; Ecole Nationale d'Agriculture de Meknès, BPS 40 Meknès, Morocco; Faculté des Sciences de Meknès, BP 11201, Avenue Zitoune, Meknès, Morocco
| | - C Urbino
- CIRAD, UMR BGPI, 34398 Montpellier, France
| | - M Granier
- CIRAD, UMR BGPI, 34398 Montpellier, France
| | - A Tahiri
- Ecole Nationale d'Agriculture de Meknès, BPS 40 Meknès, Morocco
| | - A Blenzar
- Faculté des Sciences de Meknès, BP 11201, Avenue Zitoune, Meknès, Morocco
| | | |
Collapse
|