1
|
Hernandez-Valencia JC, Muñoz-Laiton P, Gómez GF, Correa MM. Evidence of endogenous non-retroviral RNA virus sequences into the genome and transcriptome of the malaria vector Anopheles darlingi. Acta Trop 2024; 260:107469. [PMID: 39549981 DOI: 10.1016/j.actatropica.2024.107469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/26/2024] [Accepted: 11/11/2024] [Indexed: 11/18/2024]
Abstract
The characterization of non-retroviral integrated RNA virus sequences (NIRVS) in mosquitoes has emerged as a significant area of research that could yield insight into virus-host interactions. This study aimed to characterize NIRVS in the Anopheles darlingi reference genome and identify putative transcribed NIRVS in field-collected mosquitoes from Colombia. The An. darlingi reference genome was analyzed to identify and characterize NIRVS by conducting a BLAST query with all the virus sequences previously identified in arthropods available in the NCBI-virus repository. In addition, An. darlingi field-collected mosquitoes were examined for NIRVS using a metatranscriptomic approach. As a result, 44 NIRVS were identified in the An. darlingi genome, constituting integrations of negative single-stranded RNA viruses (ssRNA-) from the families Rhabdoviridae, Chuviridae and Phasmaviridae, and integrations of double-stranded RNA viruses (dsRNA) from the families Partitiviridae and Sedoreoviridae. These NIRVS were not randomly distributed but clustered in specific regions of the genome enriched with BEL/Pao and Ty3/Gypsy long terminal repeat elements. Furthermore, putative NIRVS-like sequences were present in the transcriptomic data from all the Colombian An. darlingi natural populations. This study is significant as it represents the first identification of NIRVS in the most important malaria vector of the Neotropics. The findings help in understanding the intricate relationship between the mosquito and its virome, and the regulation of viruses' mechanisms in the Anopheles genus.
Collapse
Affiliation(s)
- Juan C Hernandez-Valencia
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Paola Muñoz-Laiton
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia
| | - Giovan F Gómez
- Dirección Académica, Escuela de Pregrados, Universidad Nacional de Colombia, Sede de La Paz, La Paz 202017, Colombia
| | - Margarita M Correa
- Grupo Microbiología Molecular, Escuela de Microbiología, Universidad de Antioquia, Medellín 050010, Colombia.
| |
Collapse
|
2
|
Blair CD. A Brief History of the Discovery of RNA-Mediated Antiviral Immune Defenses in Vector Mosquitos. Microbiol Mol Biol Rev 2023; 87:e0019121. [PMID: 36511720 PMCID: PMC10029339 DOI: 10.1128/mmbr.00191-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Arthropod-borne viruses (arboviruses) persist in a natural cycle that includes infections of humans or other vertebrates and transmission between vertebrates by infected arthropods, most commonly mosquitos. Arboviruses can cause serious, sometimes fatal diseases in humans and other vertebrates but cause little pathology in their mosquito vectors. Knowledge of the interactions between mosquito vectors and the arboviruses that they transmit is an important facet of developing schemes to control transmission. Mosquito innate immune responses to virus infection modulate virus replication in the vector, and understanding the components and mechanisms of the immune response could lead to improved methods for interrupting the transmission cycle. The most important aspect of mosquito antiviral defense is the exogenous small interfering RNA (exo-siRNA) pathway, one arm of the RNA interference (RNAi) silencing response. Our research as well as that of many other groups over the past 25 years to define this pathway are reviewed here. A more recently recognized but less well-understood RNA-mediated mosquito defense against arbovirus infections, the PIWI-interacting RNA (piRNA) pathway, is also described.
Collapse
Affiliation(s)
- Carol D Blair
- Center for Vector-Borne Infectious Diseases, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
3
|
Walsh E, Torres TZB, Rückert C. Culex Mosquito Piwi4 Is Antiviral against Two Negative-Sense RNA Viruses. Viruses 2022; 14:2758. [PMID: 36560761 PMCID: PMC9781653 DOI: 10.3390/v14122758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/06/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
Culex spp. mosquitoes transmit several pathogens concerning public health, including West Nile virus and Saint Louis encephalitis virus. Understanding the antiviral immune system of Culex spp. mosquitoes is important for reducing the transmission of these viruses. Mosquitoes rely on RNA interference (RNAi) to control viral replication. While the siRNA pathway in mosquitoes is heavily studied, less is known about the piRNA pathway. The piRNA pathway in mosquitoes has recently been connected to mosquito antiviral immunity. In Aedes aegypti, Piwi4 has been implicated in antiviral responses. The antiviral role of the piRNA pathway in Culex spp. mosquitoes is understudied compared to Ae. aegypti. Here, we aimed to identify the role of PIWI genes and piRNAs in Culex quinquefasciatus and Culex tarsalis cells during virus infection. We examined the effect of PIWI gene silencing on virus replication of two arboviruses and three insect-specific viruses in Cx. quinquefasciatus derived cells (Hsu) and Cx. tarsalis derived (CT) cells. We show that Piwi4 is antiviral against the La Crosse orthobunyavirus (LACV) in Hsu and CT cells, and the insect-specific rhabdovirus Merida virus (MERDV) in Hsu cells. None of the silenced PIWI genes impacted replication of the two flaviviruses Usutu virus (USUV) and Calbertado virus, or the phasivirus Phasi-Charoen-like virus. We further used small RNA sequencing to determine that LACV-derived piRNAs, but not USUV-derived piRNAs were generated in Hsu cells and that PIWI gene silencing resulted in a small reduction in vpiRNAs. Finally, we determined that LACV-derived DNA was produced in Hsu cells during infection, but whether this viral DNA is required for vpiRNA production remains unclear. Overall, we expanded our knowledge on the piRNA pathway and how it relates to the antiviral response in Culex spp mosquitoes.
Collapse
Affiliation(s)
| | | | - Claudia Rückert
- Department of Biochemistry and Molecular Biology, College of Agriculture, Biotechnology & Natural Resources, University of Nevada, Reno, NV 89557, USA
| |
Collapse
|
4
|
Palatini U, Alfano N, Carballar RL, Chen XG, Delatte H, Bonizzoni M. Virome and nrEVEome diversity of Aedes albopictus mosquitoes from La Reunion Island and China. Virol J 2022; 19:190. [DOI: 10.1186/s12985-022-01918-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 11/04/2022] [Indexed: 11/19/2022] Open
Abstract
Abstract
Background
Aedes albopictus is a public health threat for its worldwide spread and ability to transmit arboviruses. Understanding mechanisms of mosquito immunity can provide new tools to control arbovirus spread. The genomes of Aedes mosquitoes contain hundreds of nonretroviral endogenous viral elements (nrEVEs), which are enriched in piRNA clusters and produce piRNAs, with the potential to target cognate viruses. Recently, one nrEVE was shown to limit cognate viral infection through nrEVE-derived piRNAs. These findings suggest that nrEVEs constitute an archive of past viral infection and that the landscape of viral integrations may be variable across populations depending on their viral exposure.
Methods
We used bioinformatics and molecular approaches to identify known and novel (i.e. absent in the reference genome) viral integrations in the genome of wild collected Aedes albopictus mosquitoes and characterize their virome.
Results
We showed that the landscape of viral integrations is dynamic with seven novel viral integrations being characterized, but does not correlate with the virome, which includes both viral species known and unknown to infect mosquitoes. However, the small RNA coverage profile of nrEVEs and the viral genomic contigs we identified confirmed an interaction among these elements and the piRNA and siRNA pathways in mosquitoes.
Conclusions
Mosquitoes nrEVEs have been recently described as a new form of heritable, sequence-specific mechanism of antiviral immunity. Our results contribute to understanding the dynamic distribution of nrEVEs in the genomes of wild Ae. albopictus and their interaction with mosquito viruses.
Collapse
|
5
|
Aonuma H, Iizuka I, Li JC, Ote M, Tajima S, Saijo M, Chen CH, Kanuka H. LAMP Detection of Virus-Derived DNA of Zika Virus in Vector Mosquito. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.759375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Detection of infectious viruses in mosquitoes is one of the prerequisite measures to monitor the prevalence of vector-borne viral diseases. Determining which mosquitoes are currently infected with arboviruses such as Zika, dengue, and chikungunya virus is not yet practical in endemic areas due to multiple causes including the difficulty of dealing with the virus’ unstable RNA. In this study, instead of handling viral RNA, virus-derived DNA (vDNA) was introduced as a target template for nucleic acid amplification. In combination with loop-mediated isothermal amplification (LAMP), we examined a LAMP-based vDNA detection assay (vDNA-LAMP) targeting Zika virus (ZIKV). The vDNA-LAMP reaction amplifying part of the NS3 region of ZIKV successfully detected its vDNA from crude DNA purified from artificially infected cultured cells and Aedes mosquitoes. This rapid, simple, and versatile method may provide a promising field-surveillance method for arbovirus circulation via vector mosquitoes.
Collapse
|
6
|
Virus-Derived DNA Forms Mediate the Persistent Infection of Tick Cells by Hazara Virus and Crimean-Congo Hemorrhagic Fever Virus. J Virol 2021; 95:e0163821. [PMID: 34613808 DOI: 10.1128/jvi.01638-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Crimean-Congo hemorrhagic fever (CCHF) is a severe disease of humans caused by CCHF virus (CCHFV), a biosafety level (BSL)-4 pathogen. Ticks of the genus Hyalomma are the viral reservoir, and they represent the main vector transmitting the virus to its hosts during blood feeding. We have previously shown that CCHFV can persistently infect Hyalomma-derived tick cell lines. However, the mechanism allowing the establishment of persistent viral infections in ticks is still unknown. Hazara virus (HAZV) can be used as a BSL-2 model virus instead of CCHFV to study virus/vector interactions. To investigate the mechanism behind the establishment of a persistent infection, we developed an in vitro model with Hyalomma-derived tick cell lines and HAZV. As expected, HAZV, like CCHFV, persistently infects tick cells without any sign of cytopathic effect, and the infected cells can be cultured for more than 3 years. Most interestingly, we demonstrated the presence of short viral-derived DNA forms (vDNAs) after HAZV infection. Furthermore, we demonstrated that the antiretroviral drug azidothymine triphosphate could inhibit the production of vDNAs, suggesting that vDNAs are produced by an endogenous retrotranscriptase activity in tick cells. Moreover, we collected evidence that vDNAs are continuously synthesized, thereby downregulating viral replication to promote cell survival. Finally, vDNAs were also detected in CCHFV-infected tick cells. In conclusion, vDNA synthesis might represent a strategy to control the replication of RNA viruses in ticks allowing their persistent infection. IMPORTANCE Crimean-Congo hemorrhagic fever (CCHF) is an emerging tick-borne viral disease caused by CCHF virus (CCHFV). Ticks of the genus Hyalomma can be persistently infected with CCHFV representing the viral reservoir, and the main vector for viral transmission. Here we showed that tick cells infected with Hazara virus, a nonpathogenic model virus closely related to CCHFV, contained short viral-derived DNA forms (vDNAs) produced by endogenous retrotranscriptase activity. vDNAs are transitory molecules requiring viral RNA replication for their continuous synthesis. Interestingly, vDNA synthesis seemed to be correlated with downregulation of viral replication and promotion of tick cell viability. We also detected vDNAs in CCHFV-infected tick cells suggesting that they could represent a key element in the cell response to nairovirus infection and might represent a more general mechanism of innate immunity against RNA viral infection.
Collapse
|
7
|
Nag DK, Payne AF, Dieme C, Ciota AT, Kramer LD. Zika virus infects Aedes aegypti ovaries. Virology 2021; 561:58-64. [PMID: 34147955 PMCID: PMC10117528 DOI: 10.1016/j.virol.2021.06.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/13/2022]
Abstract
Pathogens are transmitted from one host to another either by vertical transmission (VT) or horizontal transmission (HT). Mosquito-borne arboviruses (arthropod-borne viruses), including several clinically important viruses such as dengue, Zika, West Nile and chikungunya viruses persist in nature by both VT and HT. VT may also serve as an essential link in the transmission cycle during adverse environmental conditions. VT rates (VTRs) vary between virus families and even among viruses within the same genus. The mechanism behind these differences in VTRs among viruses is poorly understood. For efficient VT to occur, viruses must infect the mosquito germline. Here, we show that Zika virus infects mosquito ovaries and is transmitted vertically at a low rate. The infected progeny derive from mosquitoes with infected ovaries. The prevalence of ovary infection increases after a second non-infectious blood meal following an infectious blood meal.
Collapse
Affiliation(s)
- Dilip K Nag
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA.
| | - Anne F Payne
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Constentin Dieme
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA
| | - Alexander T Ciota
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA
| | - Laura D Kramer
- Arbovirus Laboratory, Wadsworth Center, New York State Department of Health, Slingerlands, NY 12159, USA; Department of Biomedical Sciences, School of Public Health, State University of New York, Albany, NY 12208, USA
| |
Collapse
|
8
|
Marconcini M, Pischedda E, Houé V, Palatini U, Lozada-Chávez N, Sogliani D, Failloux AB, Bonizzoni M. Profile of Small RNAs, vDNA Forms and Viral Integrations in Late Chikungunya Virus Infection of Aedes albopictus Mosquitoes. Viruses 2021; 13:553. [PMID: 33806250 PMCID: PMC8066115 DOI: 10.3390/v13040553] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/07/2021] [Accepted: 03/23/2021] [Indexed: 12/11/2022] Open
Abstract
The Asian tiger mosquito Aedes albopictus is contributing to the (re)-emergence of Chikungunya virus (CHIKV). To gain insights into the molecular underpinning of viral persistence, which renders a mosquito a life-long vector, we coupled small RNA and whole genome sequencing approaches on carcasses and ovaries of mosquitoes sampled 14 days post CHIKV infection and investigated the profile of small RNAs and the presence of vDNA fragments. Since Aedes genomes harbor nonretroviral Endogenous Viral Elements (nrEVEs) which confers tolerance to cognate viral infections in ovaries, we also tested whether nrEVEs are formed after CHIKV infection. We show that while small interfering (si)RNAs are evenly distributed along the full viral genome, PIWI-interacting (pi)RNAs mostly arise from a ~1000 bp window, from which a unique vDNA fragment is identified. CHIKV infection does not result in the formation of new nrEVEs, but piRNAs derived from existing nrEVEs correlate with differential expression of an endogenous transcript. These results demonstrate that all three RNAi pathways contribute to the homeostasis during the late stage of CHIKV infection, but in different ways, ranging from directly targeting the viral sequence to regulating the expression of mosquito transcripts and expand the role of nrEVEs beyond immunity against cognate viruses.
Collapse
Affiliation(s)
- Michele Marconcini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Vincent Houé
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Umberto Palatini
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Nabor Lozada-Chávez
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Davide Sogliani
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| | - Anna-Bella Failloux
- Arbovirus and Insect Vectors Unit, Department of Virology, Institut Pasteur, 25-28 Rue du Dr Roux, 75015 Paris, France; (V.H.); (A.-B.F.)
| | - Mariangela Bonizzoni
- Department of Biology and Biotechnology, University of Pavia, via Ferrata, 27100 Pavia, Italy; (M.M.); (E.P.); (U.P.); (N.L.-C.); (D.S.)
| |
Collapse
|
9
|
Insulin Potentiates JAK/STAT Signaling to Broadly Inhibit Flavivirus Replication in Insect Vectors. Cell Rep 2020; 29:1946-1960.e5. [PMID: 31722209 PMCID: PMC6871768 DOI: 10.1016/j.celrep.2019.10.029] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 09/03/2019] [Accepted: 10/08/2019] [Indexed: 12/13/2022] Open
Abstract
The World Health Organization estimates that more than half of the world’s population is at risk for vector-borne diseases, including arboviruses. Because many arboviruses are mosquito borne, investigation of the insect immune response will help identify targets to reduce the spread of arboviruses. Here, we use a genetic screening approach to identify an insulin-like receptor as a component of the immune response to arboviral infection. We determine that vertebrate insulin reduces West Nile virus (WNV) replication in Drosophila melanogaster as well as WNV, Zika, and dengue virus titers in mosquito cells. Mechanistically, we show that insulin signaling activates the JAK/STAT, but not RNAi, pathway via ERK to control infection in Drosophila cells and Culex mosquitoes through an integrated immune response. Finally, we validate that insulin priming of adult female Culex mosquitoes through a blood meal reduces WNV infection, demonstrating an essential role for insulin signaling in insect antiviral responses to human pathogens. The world’s population is at risk for infection with several flaviviruses. Ahlers et al. use a living library of insects to determine that an insulin-like receptor controls West Nile virus infection. Insulin signaling is antiviral via the JAK/STAT pathway in both fly and mosquito models and against a range of flaviviruses.
Collapse
|
10
|
Oliveira JH, Bahia AC, Vale PF. How are arbovirus vectors able to tolerate infection? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103514. [PMID: 31585195 DOI: 10.1016/j.dci.2019.103514] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/20/2019] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
One of the defining features of mosquito vectors of arboviruses such as Dengue and Zika is their ability to tolerate high levels of virus proliferation without suffering significant pathology. This adaptation is central to vector competence and disease spread. The molecular mechanisms, pathways, cellular and metabolic adaptations responsible for mosquito disease tolerance are still largely unknown and may represent effective ways to control mosquito populations and prevent arboviral diseases. In this review article, we describe the key link between disease tolerance and pathogen transmission, and how vector control methods may benefit by focusing efforts on dissecting the mechanisms underlying mosquito tolerance of arboviral infections. We briefly review recent work investigating tolerance mechanisms in other insects, describe the state of the art regarding the mechanisms of disease tolerance in mosquitos, and highlight the emerging role of gut microbiota in mosquito immunity and disease tolerance.
Collapse
Affiliation(s)
- José Henrique Oliveira
- Departamento de Microbiologia, Imunologia e Parasitologia, Universidade Federal de Santa Catarina, Florianopolis, SC, Brazil.
| | - Ana Cristina Bahia
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Pedro F Vale
- Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
11
|
Blair CD. Deducing the Role of Virus Genome-Derived PIWI-Associated RNAs in the Mosquito-Arbovirus Arms Race. Front Genet 2019; 10:1114. [PMID: 31850054 PMCID: PMC6901949 DOI: 10.3389/fgene.2019.01114] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 10/16/2019] [Indexed: 01/26/2023] Open
Abstract
The P-element-induced wimpy testis (PIWI)-associated RNA (piRNA) pathway is known for its role in the protection of genome integrity in the germline of Drosophila melanogaster by silencing transposable elements. The piRNAs that target transposons originate from piRNA clusters in transposon-rich regions of the Drosophila genome and are processed by three PIWI family proteins. In Aedes aegypti and Aedes albopictus mosquitoes, which are two of the most important vectors of arthropod-borne viruses (arboviruses), the number of PIWI family genes has expanded and some are expressed in somatic, as well as germline, tissues. These discoveries have led to active research to explore the possible expanded functional roles of the piRNA pathway in vector mosquitoes. Virus genome-derived piRNAs (which will be referred to as (virus name) vpiRNAs) have been demonstrated in Aedes spp. cultured cells and mosquitoes after infection by arthropod-borne alpha-, bunya-, and flaviviruses. However, although Culex quinquefasciatus also is an important arbovirus vector and has an expansion of PIWI family genes, vpiRNAs have seldom been documented in this genus after arbovirus infection. Generation of complementary DNA (cDNA) fragments from RNA genomes of alpha-, bunya-, and flaviviruses (viral-derived cDNAs, vDNAs) has been demonstrated in cultured Aedes spp. cells and mosquitoes, and endogenous viral elements (EVEs), cDNA fragments of non-retroviral RNA virus genomes, are found more abundantly in genomes of Ae. aegypti and Ae. albopictus than other vector mosquitoes. These observations have led to speculation that vDNAs are integrated into vector genomes to form EVEs, which serve as templates for the transcription of antiviral vpiRNA precursors. However, no EVEs derived from alphavirus genomes have been demonstrated in genomes of any vector mosquito. In addition, although EVEs have been shown to be a source of piRNAs, the preponderance of EVEs described in Aedes spp. vectors are more closely related to the genomes of persistently infecting insect-specific viruses than to acutely infecting arboviruses. Furthermore, the signature patterns of the “ping-pong” amplification cycle that maintains transposon-targeting piRNAs in Drosophila are also evident in alphavirus and bunyavirus vpiRNAs, but not in vpiRNAs of flaviviruses. These divergent observations have rendered deciphering the mechanism(s) of biogenesis and potential role of vpiRNAs in the mosquito–arbovirus arms race difficult, and the focus of this review will be to assemble major findings regarding vpiRNAs and antiviral immunity in the important arbovirus vectors from Aedes and Culex genera.
Collapse
Affiliation(s)
- Carol D Blair
- Arthropod-borne and Infectious Diseases Laboratory, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
12
|
Houé V, Bonizzoni M, Failloux AB. Endogenous non-retroviral elements in genomes of Aedes mosquitoes and vector competence. Emerg Microbes Infect 2019; 8:542-555. [PMID: 30938223 PMCID: PMC6455143 DOI: 10.1080/22221751.2019.1599302] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Recent extensive (re)emergences of arthropod-borne viruses (arboviruses) such as chikungunya (CHIKV), zika (ZIKV) and dengue (DENV) viruses highlight the role of the epidemic vectors, Aedes aegypti and Aedes albopictus, in their spreading. Differences of vector competence to arboviruses highlight different virus/vector interactions. While both are highly competent to transmit CHIKV (Alphavirus,Togaviridae), only Ae. albopictus is considered as a secondary vector for DENV (Flavivirus, Flaviviridae). Among other factors such as environmental temperature, mosquito antiviral immunity and microbiota, the presence of non-retroviral integrated RNA virus sequences (NIRVS) in both mosquito genomes may modulate the vector competence. Here we review the current knowledge on these elements, highlighting the mechanisms by which they are produced and endogenized into Aedes genomes. Additionally, we describe their involvement in antiviral immunity as a stimulator of the RNA interference pathways and in some rare cases, as producer of viral-interfering proteins. Finally, we mention NIRVS as a tool for understanding virus/vector co-evolution. The recent discovery of endogenized elements shows that virus/vector interactions are more dynamic than previously thought, and genetic markers such as NIRVS could be one of the potential targets to reduce arbovirus transmission.
Collapse
Affiliation(s)
- Vincent Houé
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France.,b Collège Doctoral , Sorbonne Université , Paris , France
| | | | - Anna-Bella Failloux
- a Department of Virology, Arboviruses and Insect Vectors , Institut Pasteur , Paris , France
| |
Collapse
|
13
|
Rückert C, Prasad AN, Garcia-Luna SM, Robison A, Grubaugh ND, Weger-Lucarelli J, Ebel GD. Small RNA responses of Culex mosquitoes and cell lines during acute and persistent virus infection. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 109:13-23. [PMID: 30959110 PMCID: PMC6516063 DOI: 10.1016/j.ibmb.2019.04.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/31/2023]
Abstract
RNA interference is a crucial antiviral mechanism in arthropods, including in mosquito vectors of arthropod-borne viruses (arboviruses). Although the exogenous small interfering RNA (siRNA) pathway constitutes an efficient antiviral response in mosquitoes, virus-derived P-element induced wimpy testis (PIWI)-interacting RNAs (piRNAs) have been implicated in the response to alpha-, bunya- and flaviviruses in Aedes spp. mosquitoes. Culex mosquitoes transmit several medically important viruses including West Nile virus (WNV), but are considerably less well studied than Aedes mosquitoes and little is known about antiviral RNA interference in Culex mosquitoes. Therefore, we sequenced small RNA (sRNA) libraries from different Culex cell lines and tissues infected with WNV. The clear majority of virus-derived sRNA reads were 21 nt siRNAs in all cell lines and tissues tested, with no evidence for a role of WNV-derived piRNAs. Additionally, we aligned sRNA reads from Culex quinquefasciatus Hsu cells to the insect-specific rhabdovirus, Merida virus, which persistently replicates in these cells. We found that a significant proportion of the sRNA response to Merida virus consisted of piRNAs. Since viral DNA forms have been implicated in siRNA and piRNA responses of Aedes spp. mosquitoes, we also tested for viral DNA forms in WNV infected Culex cells. We detected viral DNA in Culex tarsalis cells infected with WNV and, to a lesser amount, WNV and Merida virus-derived DNA in Culex quinquefasciatus Hsu cells. In conclusion, Hsu cells generated Merida virus-derived piRNAs, but our data suggests that the major sRNA response of Culex cells and mosquitoes to WNV infection is the exogenous siRNA response. It is also evident that sRNA responses differ significantly between specific virus-mosquito combinations. Future work using additional Culex-borne viruses may further elucidate how virus-derived piRNAs are generated in Culex cells and what role they may play in controlling replication of different viruses.
Collapse
Affiliation(s)
- Claudia Rückert
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Abhishek N Prasad
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA; Department of Pathology, Galveston National Laboratory, University of Texas Medical Branch, Galveston, TX, USA
| | - Selene M Garcia-Luna
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA; Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Alexis Robison
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA
| | - Nathan D Grubaugh
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA; Yale School of Public Health, Department of Epidemiology of Microbial Diseases, Laboratory of Epidemiology of Public Health, New Haven, CT, USA
| | - James Weger-Lucarelli
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA; Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Gregory D Ebel
- Department of Microbiology, Immunology and Pathology, College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, CO, 80523, USA.
| |
Collapse
|
14
|
Lee WS, Webster JA, Madzokere ET, Stephenson EB, Herrero LJ. Mosquito antiviral defense mechanisms: a delicate balance between innate immunity and persistent viral infection. Parasit Vectors 2019; 12:165. [PMID: 30975197 PMCID: PMC6460799 DOI: 10.1186/s13071-019-3433-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 04/04/2019] [Indexed: 01/24/2023] Open
Abstract
Mosquito-borne diseases are associated with major global health burdens. Aedes spp. and Culex spp. are primarily responsible for the transmission of the most medically important mosquito-borne viruses, including dengue virus, West Nile virus and Zika virus. Despite the burden of these pathogens on human populations, the interactions between viruses and their mosquito hosts remain enigmatic. Viruses enter the midgut of a mosquito following the mosquito’s ingestion of a viremic blood meal. During infection, virus recognition by the mosquito host triggers their antiviral defense mechanism. Of these host defenses, activation of the RNAi pathway is the main antiviral mechanism, leading to the degradation of viral RNA, thereby inhibiting viral replication and promoting viral clearance. However, whilst antiviral host defense mechanisms limit viral replication, the mosquito immune system is unable to effectively clear the virus. As such, these viruses can establish persistent infection with little or no fitness cost to the mosquito vector, ensuring life-long transmission to humans. Understanding of the mosquito innate immune response enables the discovery of novel antivectorial strategies to block human transmission. This review provides an updated and concise summary of recent studies on mosquito antiviral immune responses, which is a key determinant for successful virus transmission. In addition, we will also discuss the factors that may contribute to persistent infection in mosquito hosts. Finally, we will discuss current mosquito transmission-blocking strategies that utilize genetically modified mosquitoes and Wolbachia-infected mosquitoes for resistance to pathogens.
Collapse
Affiliation(s)
- Wai-Suet Lee
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Julie A Webster
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eugene T Madzokere
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Eloise B Stephenson
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.,Environmental Futures Research Institute, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia
| | - Lara J Herrero
- Institute for Glycomics, Griffith University, Gold Coast Campus, Southport, QLD, 4215, Australia.
| |
Collapse
|
15
|
Pischedda E, Scolari F, Valerio F, Carballar-Lejarazú R, Catapano PL, Waterhouse RM, Bonizzoni M. Insights Into an Unexplored Component of the Mosquito Repeatome: Distribution and Variability of Viral Sequences Integrated Into the Genome of the Arboviral Vector Aedes albopictus. Front Genet 2019; 10:93. [PMID: 30809249 PMCID: PMC6379468 DOI: 10.3389/fgene.2019.00093] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 01/29/2019] [Indexed: 01/01/2023] Open
Abstract
The Asian tiger mosquito Aedes albopictus is an invasive mosquito and a competent vector for public-health relevant arboviruses such as Chikungunya (Alphavirus), Dengue and Zika (Flavivirus) viruses. Unexpectedly, the sequencing of the genome of this mosquito revealed an unusually high number of integrated sequences with similarities to non-retroviral RNA viruses of the Flavivirus and Rhabdovirus genera. These Non-retroviral Integrated RNA Virus Sequences (NIRVS) are enriched in piRNA clusters and coding sequences and have been proposed to constitute novel mosquito immune factors. However, given the abundance of NIRVS and their variable viral origin, their relative biological roles remain unexplored. Here we used an analytical approach that intersects computational, evolutionary and molecular methods to study the genomic landscape of mosquito NIRVS. We demonstrate that NIRVS are differentially distributed across mosquito genomes, with a core set of seemingly the oldest integrations with similarity to Rhabdoviruses. Additionally, we compare the polymorphisms of NIRVS with respect to that of fast and slow-evolving genes within the Ae. albopictus genome. Overall, NIRVS appear to be less polymorphic than slow-evolving genes, with differences depending on whether they occur in intergenic regions or in piRNA clusters. Finally, two NIRVS that map within the coding sequences of genes annotated as Rhabdovirus RNA-dependent RNA polymerase and the nucleocapsid-encoding gene, respectively, are highly polymorphic and are expressed, suggesting exaptation possibly to enhance the mosquito's antiviral responses. These results greatly advance our understanding of the complexity of the mosquito repeatome and the biology of viral integrations in mosquito genomes.
Collapse
Affiliation(s)
- Elisa Pischedda
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Francesca Scolari
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Federica Valerio
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Rebeca Carballar-Lejarazú
- Department of Microbiology & Molecular Genetics, University of California, Irvine, Irvine, CA, United States
| | | | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | | |
Collapse
|
16
|
Abstract
There are several RNA interference (RNAi) pathways in insects. The small interfering RNA pathway is considered to be the main antiviral mechanism of the innate immune system; however, virus-specific P-element-induced Wimpy testis gene (PIWI)-interacting RNAs (vpiRNAs) have also been described, especially in mosquitoes. Understanding the antiviral potential of the RNAi pathways is important, given that many human and animal pathogens are transmitted by mosquitoes, such as Zika virus, dengue virus and chikungunya virus. In recent years, significant progress has been made to characterize the piRNA pathway in mosquitoes (including the possible antiviral activity) and to determine the differences between mosquitoes and the model organism Drosophila melanogaster. The new findings, especially regarding vpiRNA in mosquitoes, as well as important questions that need to be tackled in the future, are discussed in this review.
Collapse
Affiliation(s)
- Margus Varjak
- 1MRC - University of Glasgow Centre for Virus Research, Glasgow, G61 1QH, UK
| | - Mayke Leggewie
- 2Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,3German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Hamburg 20359, Germany
| | - Esther Schnettler
- 2Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Strasse 74, 20359 Hamburg, Germany.,3German Centre for Infection Research (DZIF), partner site Hamburg-Luebeck-Borstel-Riems, Hamburg 20359, Germany
| |
Collapse
|