1
|
Yan C, Yu F, Li M, Yang X, Sun R, Liang X, Lao X, Zhang H, Lv W, Hu Y, Lai Y, Ding Y, Zhang F. A bibliometric analysis of HIV-1 drug-resistant minority variants from 1999 to 2024. AIDS Res Ther 2025; 22:47. [PMID: 40211381 PMCID: PMC11984210 DOI: 10.1186/s12981-025-00739-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/29/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND The rapid initiation of antiretroviral therapy has become an international trend, necessitating lifelong medication for all HIV patients. Sanger sequencing, as the gold standard for clinically detecting HIV drug resistance, often fails to detect mutations comprising less than 20% of the total viral population. With the advancement of detection technologies, HIV-1 drug-resistant minority variants have garnered increasing attention. Few studies have analyzed the hotspots and trends in this field, which bibliometrics can effectively address. METHODS Publications related to HIV-1 DRMinVs from 1999 to 2024 were searched on the Web of Science Core Collection database. Visual knowledge maps and bibliometric analyses were generated using VOSviewer and Bibliometrix. RESULTS In total, 289 publications concerning HIV-1 drug-resistant minority variants were identified from 1999 to 2024, demonstrating a steady increase in publication output over the years. Although developed countries, led by the United States, are the main contributors, 9.57% and 2.48% of the research from the top five publishing countries focus on populations in Africa and other developing countries, respectively. Most contributing institutions are universities and public health organizations, with the University of Washington having the highest publication output. The Journal of Antimicrobial Chemotherapy holds the highest prominence among journals in this domain. The main hotspots include "drug classes," "drug resistance surveillance," "mother-to-child transmission," "treatment outcomes," and "targets of HIV-1 drug resistance testing," And we found several noteworthy shifts in research trends in HIV-1 drug-resistant minority variants studies, including changes in drug resistance testing technologies, the primary study population, and drug classes. CONCLUSIONS This is the first bibliometric analysis of publications related to HIV-1 DRMinVs from 1999 to 2024. We analyzed the key research contributions across countries, institutions and journals. Based on keyword co-occurrence and cluster analysis, we identified several noteworthy shifts in research trends in HIV-1 DRMinVs studies, including changes in drug resistance testing technologies, the primary study population, and drug classes.
Collapse
Affiliation(s)
- Chang Yan
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fengting Yu
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Mengying Li
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Medical School, University of Chinese Academy of Sciences, Beijing, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Yang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Rui Sun
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xuelei Liang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Xiaojie Lao
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Hanxi Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- WHO Collaborating Centre for Comprehensive Management of HIV Treatment and Care, Beijing Ditan Hospital Capital Medical University, Beijing, China
| | - Wenhao Lv
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Ying Hu
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yuan Lai
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Yi Ding
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China
| | - Fujie Zhang
- Beijing Ditan Hospital, Capital Medical University, Beijing, 100015, China.
- Clinical Center for HIV/AIDS, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Huebert DNG, Ghorbani A, Lam SYB, Larijani M. Coevolution of Lentiviral Vif with Host A3F and A3G: Insights from Computational Modelling and Ancestral Sequence Reconstruction. Viruses 2025; 17:393. [PMID: 40143321 PMCID: PMC11946711 DOI: 10.3390/v17030393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
The evolutionary arms race between host restriction factors and viral antagonists provides crucial insights into immune system evolution and viral adaptation. This study investigates the structural and evolutionary dynamics of the double-domain restriction factors A3F and A3G and their viral inhibitor, Vif, across diverse primate species. By constructing 3D structural homology models and integrating ancestral sequence reconstruction (ASR), we identified patterns of sequence diversity, structural conservation, and functional adaptation. Inactive CD1 (Catalytic Domain 1) domains displayed greater sequence diversity and more positive surface charges than active CD2 domains, aiding nucleotide chain binding and intersegmental transfer. Despite variability, the CD2 DNA-binding grooves remained structurally consistent with conserved residues maintaining critical functions. A3F and A3G diverged in loop 7' interaction strategies, utilising distinct molecular interactions to facilitate their roles. Vif exhibited charge variation linked to host species, reflecting its coevolution with A3 proteins. These findings illuminate how structural adaptations and charge dynamics enable both restriction factors and their viral antagonists to adapt to selective pressures. Our results emphasize the importance of studying structural evolution in host-virus interactions, with implications for understanding immune defense mechanisms, zoonotic risks, and viral evolution. This work establishes a foundation for further exploration of restriction factor diversity and coevolution across species.
Collapse
Affiliation(s)
- David Nicolas Giuseppe Huebert
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Atefeh Ghorbani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
| | - Shaw Yick Brian Lam
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| | - Mani Larijani
- Immunology and Infectious Diseases Program, Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John’s, NL A1C 5S7, Canada; (D.N.G.H.); (A.G.)
- Structural Biology and Immunology Program, Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC V5A 1S6, Canada;
| |
Collapse
|
3
|
Huang T, Campos AR, Wang J, Stukalov A, Díaz R, Maurya S, Motamedchaboki K, Hornburg D, Saciloto-de-Oliveira LR, Innocente-Alves C, Calegari-Alves YP, Batzoglou S, Beys-da-Silva WO, Santi L. Deep, Unbiased, and Quantitative Mass Spectrometry-Based Plasma Proteome Analysis of Individual Responses to mRNA COVID-19 Vaccine. J Proteome Res 2025; 24:1265-1274. [PMID: 39904632 DOI: 10.1021/acs.jproteome.4c00909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
Global campaign against COVID-19 have vaccinated a significant portion of the world population in recent years. Combating the COVID-19 pandemic with mRNA vaccines played a pivotal role in the global immunization effort. However, individual responses to a vaccine are diverse and lead to varying vaccination efficacy. Despite significant progress, a complete understanding of the molecular mechanisms driving the individual immune response to the COVID-19 vaccine remains elusive. To address this gap, we combined a novel nanoparticle-based proteomic workflow with tandem mass tag (TMT) labeling, to quantitatively assess the proteomic changes in a cohort of 12 volunteers following two doses of the Pfizer-BioNTech mRNA COVID-19 vaccine. This optimized protocol seamlessly integrates comprehensive proteome analysis with enhanced throughput by leveraging the enrichment of low-abundant plasma proteins by engineered nanoparticles. Our data demonstrate the ability of this workflow to quantify over 3,000 proteins, providing the deepest view into COVID-19 vaccine-related plasma proteome study. We identified 69 proteins with boosted responses post-second dose and 74 proteins differentially regulated between individuals who contracted COVID-19 despite vaccination and those who did not. These findings offer valuable insights into individual variability in response to vaccination, demonstrating the potential of personalized medicine approaches in vaccine development.
Collapse
Affiliation(s)
- Ting Huang
- Seer, Inc., Redwood City, California 94065, United States
| | - Alex Rosa Campos
- Sanford Burnham Prebys, San Diego, California 92037, United States
| | - Jian Wang
- Seer, Inc., Redwood City, California 94065, United States
| | | | - Ramón Díaz
- Sanford Burnham Prebys, San Diego, California 92037, United States
| | - Svetlana Maurya
- Sanford Burnham Prebys, San Diego, California 92037, United States
| | | | | | | | - Camila Innocente-Alves
- Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | | | | | - Walter O Beys-da-Silva
- Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| | - Lucélia Santi
- Federal University of Rio Grande do Sul, Porto Alegre, Rio Grande do Sul 90610-000, Brazil
| |
Collapse
|
4
|
Kravets E, Poschmann G, Hänsch S, Raba V, Weidtkamp-Peters S, Degrandi D, Stühler K, Pfeffer K. mGBP2 engages Galectin-9 for immunity against Toxoplasma gondii. PLoS One 2025; 20:e0316209. [PMID: 39854420 PMCID: PMC11761162 DOI: 10.1371/journal.pone.0316209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/06/2024] [Indexed: 01/26/2025] Open
Abstract
Guanylate binding proteins (GBPs) are large interferon-inducible GTPases, executing essential host defense activities against Toxoplasma gondii, an invasive intracellular apicomplexan protozoan parasite of global importance. T. gondii establishes a parasitophorous vacuole (PV) which shields the parasite from the host's intracellular defense mechanisms. Murine GBPs (mGBPs) recognize T. gondii PVs and assemble into supramolecular mGBP homo- and heterocomplexes that are required for the disruption of the membrane of PVs eventually resulting in the cell-autonomous immune control of vacuole-resident pathogens. We have previously shown that mGBP2 plays an important role in T. gondii immune control. Here, to unravel mGBP2 functions, we report Galectin-9 (Gal9) as a critical mGBP2 interaction partner engaged for immunity to T. gondii. Interestingly, Gal9 also accumulates and colocalizes with mGBP2 at the T. gondii PV. Furthermore, we could prove the requirement of Gal9 for growth control of T. gondii by CRISPR/Cas9 mediated gene editing. These discoveries clearly indicate that Gal9 is a crucial factor for the mGBP2-coordinated cell-autonomous host defense mechanism against T. gondii.
Collapse
Affiliation(s)
- Elisabeth Kravets
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Gereon Poschmann
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Sebastian Hänsch
- Center of Advanced Imaging, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Veronica Raba
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | | | - Daniel Degrandi
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Kai Stühler
- Institute of Molecular Medicine, Proteome Research, Medical Faculty and University Hospital, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Molecular Proteomics Laboratory, Biological and Medical Research Centre (BMFZ), Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Klaus Pfeffer
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
5
|
Li W, Qu M, Zhang T, Li G, Wang R, Tian Y, Wang J, Yu B, Wu J, Wang C, Yu X. The host restriction factor SERINC5 inhibits HIV-1 transcription by negatively regulating NF-κB signaling. J Biol Chem 2025; 301:108058. [PMID: 39653243 PMCID: PMC11750542 DOI: 10.1016/j.jbc.2024.108058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 11/26/2024] [Accepted: 11/29/2024] [Indexed: 01/02/2025] Open
Abstract
Serine incorporator 5 (SER5) can be incorporated into HIV-1 virions to block viral entry by disrupting the envelope glycoprotein-mediated viral fusion to the plasma membrane. Recent studies suggest that SER5 also inhibits HIV-1 mRNA transcription and the subsequent progeny virion biogenesis. However, the underlying mechanisms through which SER5 antagonizes the viral transcription remain poorly understood. Here, we demonstrate that SER5 inhibits HIV-1 transcription by negatively regulating NF-κB signaling, which is mediated by the retinoic acid-inducible gene I-like receptors, MDA5 and RIG-I. By recruiting TRIM40 as the E3 ubiquitination ligase to promote K48-linked polyubiquitination and proteasomal degradation of MDA5 and RIG-I, SER5 impedes nuclear translocation of the p50/p65 dimer, resulting in repression of HIV-1 LTR-driven gene expression. Hence, our findings strongly support a role for SER5 in restricting HIV-1 replication through inhibition of NF-κB-mediated viral gene expression.
Collapse
Affiliation(s)
- Weiting Li
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Meng Qu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Tianxin Zhang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Guoqing Li
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Ruihong Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Yinghui Tian
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jialin Wang
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Bin Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Jiaxin Wu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China
| | - Chu Wang
- State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases/Key Laboratory for Zoonosis Research of the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China; National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China.
| | - Xianghui Yu
- National Engineering Laboratory for AIDS Vaccine, School of Life Sciences, Jilin University, Changchun, China; Key Laboratory for Molecular Enzymology and Engineering, the Ministry of Education, School of Life Sciences, Jilin University, Changchun, China.
| |
Collapse
|
6
|
Bobkova MR. Defective HIV proviruses: possible involvement in the HIV infection pathogenesis. Vopr Virusol 2024; 69:399-414. [PMID: 39527763 DOI: 10.36233/0507-4088-261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Indexed: 11/16/2024]
Abstract
This review article analyzes information obtained from a literature search on defective HIV genomes (HIV-1, Human Immunodeficiency Virus, Lentivirus, Orthoretrovirinae, Retroviridae). It discusses the origins of defective HIV genomes, their potential for transcription and translation, and the role of defective RNA and proteins in stimulating both innate and adaptive immunity. The article also explores their contribution to HIV pathogenesis, immune system hyperactivation despite successful antiretroviral therapy (ART), and the evolutionary processes in HIV proviral populations under ART. Additionally, it addresses challenges in reservoir elimination and HIV eradication that arise from the existence of defective HIV viruses.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
7
|
Long X, Liu G, Liu X, Zhang C, Shi L, Zhu Z. Identifying the HIV-Resistance-Related Factors and Regulatory Network via Multi-Omics Analyses. Int J Mol Sci 2024; 25:11757. [PMID: 39519306 PMCID: PMC11546959 DOI: 10.3390/ijms252111757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/04/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
For research on HIV/AIDS, it is important to elucidate the complex viral-host interaction, host dependency factors (HDFs), and restriction factors. However, the regulatory network of HIV-resistance-related factors remains not well understood. Therefore, we integrated four publicly available HIV-related transcriptome datasets, along with three datasets on HIV-infection-related DNA methylation, miRNA, and ChIP-seq, to predict the factors influencing HIV resistance and infection. Our approach involved differential analysis, functional annotation, and protein-protein interaction network analysis. Through comprehensive analyses, we identified 25 potential HIV-resistance-related genes (including shared EGF) and 24 HIV-infection-related hub genes (including shared JUN). Additionally, we pinpointed five key differentially methylated genes, five crucial differentially expressed microRNAs, and five significant pathways associated with HIV resistance. We mapped the potential regulatory pathways involving these HIV-resistance-related factors. Among the predicted factors, RHOA, RAD51, GATA1, IRF4, and CXCL8 have been validated as HDFs or restriction factors. The identified factors, such as JUN, EGF, and PLEK, are potential HDFs or restriction factors. This study uncovers the gene signatures and regulatory networks associated with HIV-1 resistance, suggesting potential targets for the development of new therapies against HIV/AIDS.
Collapse
Affiliation(s)
| | | | | | | | - Lei Shi
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; (X.L.); (G.L.); (X.L.); (C.Z.)
| | - Zhenglin Zhu
- School of Life Sciences, Chongqing University, No. 55 Daxuecheng South Road, Shapingba, Chongqing 401331, China; (X.L.); (G.L.); (X.L.); (C.Z.)
| |
Collapse
|
8
|
Kubo Y, Hans MB, Nakamura T, Hayashi H. The Furin Protease Dependence and Antiviral GBP2 Sensitivity of Murine Leukemia Virus Infection Are Determined by the Amino Acid Sequence at the Envelope Glycoprotein Cleavage Site. Int J Mol Sci 2024; 25:9987. [PMID: 39337476 PMCID: PMC11432233 DOI: 10.3390/ijms25189987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/10/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Host restriction factor GBP2 suppresses the replication of the ecotropic Moloney murine leukemia virus (E-MLV) by inhibiting furin protease, which cleaves the viral envelope glycoprotein (Env) into surface (SU) and transmembrane (TM) subunits. We analyzed the impacts of GBP2 on the infection efficiency mediated by MLV Envs of different strains of ecotropic Moloney, polytropic Friend, amphotropic, and xenotropic MLV-related (XMRV) viruses. Interestingly, the Envs of ecotropic Moloney and polytropic Friend MLV were sensitive to the antiviral activity of GBP2, while XMRV and amphotropic Envs showed resistance. Consistent with the sensitivity to GBP2, the amino acid sequences of the sensitive Envs at the SU-TM cleavage site were similar, as were the sequences of the resistant Envs. SU-TM cleavage of the GBP2-sensitive Env protein was inhibited by furin silencing, whereas that of GBP2-resistant Env was not. The substitution of the ecotropic Moloney cleavage site sequence with that of XMRV conferred resistance to both GBP2 and furin silencing. Reciprocally, the substitution of the XMRV cleavage site sequence with that of the ecotropic sequence conferred sensitivity to GBP2 and furin silencing. According to the SU-TM cleavage site sequence, there were sensitive and resistant variants among ecotropic, polytropic, and xenotropic MLVs. This study found that the dependence of MLV Env proteins on furin cleavage and GBP2-mediated restriction is determined by the amino acid sequences at the SU-TM cleavage site.
Collapse
Affiliation(s)
- Yoshinao Kubo
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Manya Bakatumana Hans
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
- Program for Nurturing Global Leaders in Tropical Medicine and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8523, Japan
| | - Taisuke Nakamura
- Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki 852-8523, Japan; (M.B.H.); (T.N.)
| | - Hideki Hayashi
- Medical University Research Administration, Nagasaki University School of Medicine, Nagasaki 852-8523, Japan;
| |
Collapse
|
9
|
Rashid F, Zaongo SD, Iqbal H, Harypursat V, Song F, Chen Y. Interactions between HIV proteins and host restriction factors: implications for potential therapeutic intervention in HIV infection. Front Immunol 2024; 15:1390650. [PMID: 39221250 PMCID: PMC11361988 DOI: 10.3389/fimmu.2024.1390650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024] Open
Abstract
Different host proteins target different HIV proteins and antagonize their functions, depending on the stage of the HIV life cycle and the stage of infection. Concurrently, HIV proteins also target and antagonize various different host proteins to facilitate HIV replication within host cells. The preceding quite specific area of knowledge in HIV pathogenesis, however, remains insufficiently understood. We therefore propose, in this review article, to examine and discuss the HIV proteins that counteract those host restriction proteins which results directly in increased infectivity of HIV. We elaborate on HIV proteins that antagonize host cellular proteins to promote HIV replication, and thus HIV infection. We examine the functions and mechanisms via which Nef, Vif, Vpu, Env, Vpr, and Vpx counteract host proteins such as Ser5, PSGL-1, IFITMS, A3G, tetherin, GBP5, SAMHD1, STING, HUSH, REAF, and TET2 to increase HIV infectivity. Nef antagonizes three host proteins, viz., Ser5, PSGL1, and IFITIMs, while Vpx also antagonizes three host restriction factors, viz., SAMHD1, STING, and HUSH complex; therefore, these proteins may be potential candidates for therapeutic intervention in HIV infection. Tetherin is targeted by Vpu and Env, PSGL1 is targeted by Nef and Vpu, while Ser5 is targeted by Nef and Env proteins. Finally, conclusive remarks and future perspectives are also presented.
Collapse
Affiliation(s)
- Farooq Rashid
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Silvere D. Zaongo
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Hifza Iqbal
- School of science, University of Management and Technology, Lahore, Pakistan
| | - Vijay Harypursat
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| | - Fangzhou Song
- Basic Medicine College, Chongqing Medical University, Chongqing, China
| | - Yaokai Chen
- Department of Infectious Diseases, Chongqing Public Health Medical Center, Chongqing, China
| |
Collapse
|
10
|
Holloway AJ, Saito TB, Naqvi KF, Huante MB, Fan X, Lisinicchia JG, Gelman BB, Endsley JJ, Endsley MA. Inhibition of caspase pathways limits CD4 + T cell loss and restores host anti-retroviral function in HIV-1 infected humanized mice with augmented lymphoid tissue. Retrovirology 2024; 21:8. [PMID: 38693565 PMCID: PMC11064318 DOI: 10.1186/s12977-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.
Collapse
Affiliation(s)
- Alex J Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Current at the Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 59840, Hamilton, MT, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Medicine, University of Toledo, 43614, Toledo, OH, USA
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA.
| |
Collapse
|
11
|
Yi B, Tanaka YL, Cornish D, Kosako H, Butlertanaka EP, Sengupta P, Lippincott-Schwartz J, Hultquist JF, Saito A, Yoshimura SH. Host ZCCHC3 blocks HIV-1 infection and production through a dual mechanism. iScience 2024; 27:109107. [PMID: 38384847 PMCID: PMC10879702 DOI: 10.1016/j.isci.2024.109107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Most mammalian cells prevent viral infection and proliferation by expressing various restriction factors and sensors that activate the immune system. Several host restriction factors that inhibit human immunodeficiency virus type 1 (HIV-1) have been identified, but most of them are antagonized by viral proteins. Here, we describe CCHC-type zinc-finger-containing protein 3 (ZCCHC3) as a novel HIV-1 restriction factor that suppresses the production of HIV-1 and other retroviruses, but does not appear to be directly antagonized by viral proteins. It acts by binding to Gag nucleocapsid (GagNC) via zinc-finger motifs, which inhibits viral genome recruitment and results in genome-deficient virion production. ZCCHC3 also binds to the long terminal repeat on the viral genome via the middle-folded domain, sequestering the viral genome to P-bodies, which leads to decreased viral replication and production. This distinct, dual-acting antiviral mechanism makes upregulation of ZCCHC3 a novel potential therapeutic strategy.
Collapse
Affiliation(s)
- Binbin Yi
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Yuri L. Tanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, 3-18-15 Kuramoto-cho, Tokushima 770-8503, Japan
| | - Erika P. Butlertanaka
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
| | - Prabuddha Sengupta
- Howard Hughes Medical Institute, Janelia Research Campus, 19700 Helix Drive, Ashburn, VA 20147, USA
| | | | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Akatsuki Saito
- Department of Veterinary Medicine, Faculty of Agriculture, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Center for Animal Disease Control, University of Miyazaki, 1-1 Gakuen Kibanadai-nishi, Miyazaki, Miyazaki 889-2192, Japan
- Graduate School of Medicine and Veterinary Medicine, University of Miyazaki, 5200 Kiyotakecho Kihara, Miyazaki, Miyazaki 889-1692, Japan
| | - Shige H. Yoshimura
- Graduate School of Biostudies, Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
- Center for Living Systems Information Science (CeLiSIS), Kyoto University, Yoshida-Konoe-Cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
12
|
Bobkova MR. Cellular proteins as potential targets for antiretroviral therapy. Vopr Virusol 2023; 68:488-504. [PMID: 38156565 DOI: 10.36233/0507-4088-207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Indexed: 12/30/2023]
Abstract
The review article conducts an in-depth analysis of information gleaned from a comprehensive literature search across Scopus, Web of Science, and MedLine databases. The focal point of this search revolves around the identification and exploration of the mechanisms orchestrated by host cell factors in the replication cycle of the human immunodeficiency virus (HIV-1, Retroviridae: Orthoretrovirinae: Lentivirus: Human immunodeficiency virus-1). The article delves into two primary categories of proteins, namely HIV dependence factors (such as CypA, LEDGF, TSG101) and restriction factors (including SERINС5, TRIM5α, APOBEC3G), providing illustrative examples. The current understanding of the functioning mechanisms of these proteins is elucidated, and an evaluation is presented on the potential development of drugs for treating HIV infection. These drugs aim to either inhibit or stimulate the activity of host factors, offering insights into promising avenues for future research and therapeutic advancements.
Collapse
Affiliation(s)
- M R Bobkova
- I. Mechnikov Research Institute for Vaccines and Sera
| |
Collapse
|
13
|
Maurya R, Swaminathan A, Shamim U, Arora S, Mishra P, Raina A, Ravi V, Tarai B, Budhiraja S, Pandey R. Co-evolution of SARS-CoV-2 variants and host immune response trajectories underlie COVID-19 pandemic to epidemic transition. iScience 2023; 26:108336. [PMID: 38025778 PMCID: PMC10663816 DOI: 10.1016/j.isci.2023.108336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/25/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
COVID-19 pandemic saw emergence of multiple SAR-CoV-2 variants. Exacerbated risk of severe outcome and hospital admissions led us to comprehend differential host-immune kinetics associated with SARS-CoV-2 variants. Longitudinal investigation was conducted through different time periods of Pre-VOC and VOCs (Delta & Omicron) mapping host transcriptome features. Robust antiviral type-1 interferon response marked Omicron infection, which was largely missing during Pre-VOC and Delta waves. SARS-CoV-2-host protein-protein interactions and docking complexes highlighted N protein to interact with HNRNPA1 in Pre-VOC, demonstrating its functional role for enhanced viral replication. Omicron revealed enhanced binding efficiency of LARP1 to N protein, probably potentiating antiviral effects of LARP1. Differential expression of zinc finger protein genes, especially in Omicron, mechanistically support induction of strong IFN (Interferon) response, thereby strengthening early viral clearance. Study highlights eventual adaptation of host to immune activation patterns that interrupt virus evolution with enhanced immune-evasion mutations and counteraction mechanisms, delimiting the next phase of COVID-19 pandemic.
Collapse
Affiliation(s)
- Ranjeet Maurya
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Aparna Swaminathan
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Uzma Shamim
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Smriti Arora
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Pallavi Mishra
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Aakarshan Raina
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Varsha Ravi
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
| | - Bansidhar Tarai
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Sandeep Budhiraja
- Max Super Speciality Hospital (A Unit of Devki Devi Foundation), Max Healthcare, Delhi 110017, India
| | - Rajesh Pandey
- Division of Immunology and Infectious Disease Biology, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Mall Road, Delhi 110007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Jiang C, Mei M, Liu Y, Hou M, Jiao J, Tan Y, Tan X. PSGL-1 is an evolutionarily conserved antiviral restriction factor. mBio 2023; 14:e0038723. [PMID: 37787515 PMCID: PMC10653843 DOI: 10.1128/mbio.00387-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/31/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Studying the co-evolution between viruses and humans is important for understanding why we are what we are now as well as for developing future antiviral drugs. Here we pinned down an evolutionary arms race between retroviruses and mammalian hosts at the molecular level by identifying the antagonism between a host antiviral restriction factor PSGL-1 and viral accessory proteins. We show that this antagonism is conserved from mouse to human and from mouse retrovirus to HIV. Further studying this antagonism might provide opportunities for developing new antiviral therapies.
Collapse
Affiliation(s)
- Chao Jiang
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Miao Mei
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
- Chinese Institutes for Medical Research, Beijing, China
| | - Ying Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Min Hou
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Jun Jiao
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Ya Tan
- Tsinghua-Peking Center for Life Sciences, MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Xu Tan
- Chinese Institutes for Medical Research, Beijing, China
| |
Collapse
|
15
|
Belbacha I, Azzouzi ME, Bensghir R, Marhoum KF, Hajjout K, Elharti EM, Sadki K, Oumzil H. The APOBEC3G gene rs2294367(C>G) variant is associated with HIV-1 infection in Moroccan subjects. Acta Trop 2023; 249:107045. [PMID: 39492490 DOI: 10.1016/j.actatropica.2023.107045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/04/2023] [Accepted: 10/19/2023] [Indexed: 11/05/2024]
Abstract
The APOBEC3G gene is one of the most important host factors thathas beenfound previously associated withHIV infection and AIDS progression. The host's susceptibility to viral infectionmay be influenced by any APOBEC3G genetic variation.The main aim of thecurrent study was to investigate the association of three SNPs in the APOBEC3G gene (rs8177832, rs35228531, and rs2294367) respectively, with disease outcomes in Moroccan HIV-1 infected patients. A case-control study was conducted in 194 HIV-1 infected patients and 195 healthy controls and the three selected APOBEC3G SNPs were genotyped in all participants using TaqMan® allelic discrimination assays. The rs2294367 CG genotype was found strongly associated with the protection profile against the HIV-1 infection (OR=0.44, 95% CI=0.28-0.67, p=0.0002). The rs2294367 CG genotype (p=0.0009) was found as a protective element while the rs2294367 GG genotype (p=0.015) has shown susceptibility against HIV-1 infection among females. Furthermore, the rs2294367CG genotype seemed to protect older subjects (>50 years) from infection (p=0.001). Haplotype analysis demonstrated that the GCC haplotype from (rs8177832, rs35228531, and rs2294367) observed could be associated with a high risk of HIV-1 infection in Morocco, OR=2.25, 95% CI=1.12-4.49, p=0.022). This study demonstrates significant associations between the studied polymorphisms in APOBEC3G with pVL variations during treatment. Thus, our findings confirm that genetic variations in the APOBEC3G gene might modulate the susceptibility to HIV-1 infection and the response to antiviral drugs in Moroccan individuals. However, it should be noted that the main limitation of this study is the moderate sample size, thus a validation study with a larger sample is warranted.
Collapse
Affiliation(s)
- Imane Belbacha
- National Reference Laboratory for HIV, Virology Department, National Institute of Hygiene, Rabat, Morocco; Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohamed V University, Rabat, Morocco.
| | - Meryem El Azzouzi
- Biology and Medical Research Unit, CNESTEN, Faculty of Medicine and Pharmacy of Rabat, Mohammed V University in Rabat, Rabat, Morocco
| | - Rajae Bensghir
- Infectious Diseases Service, the University Hospital IBN ROCHD, Casablanca, Morocco
| | - Kamal Filali Marhoum
- Infectious Diseases Service, the University Hospital IBN ROCHD, Casablanca, Morocco
| | - Khadija Hajjout
- National Center for Blood Transfusion, Immuno-hematology Unit, Rabat, Morocco
| | - El Mir Elharti
- National Reference Laboratory for HIV, Virology Department, National Institute of Hygiene, Rabat, Morocco
| | - Khalid Sadki
- Research Laboratory in Oral Biology and Biotechnology, Faculty of Dental Medicine, Mohamed V University, Rabat, Morocco.
| | - Hicham Oumzil
- National Reference Laboratory for HIV, Virology Department, National Institute of Hygiene, Rabat, Morocco; Microbiology RPU, Faculty of Medicine and Pharmacy, Mohamed V University, Rabat, Morocco.
| |
Collapse
|
16
|
Zhang Y, Xu J, Yu J, Si L, Chang L, Li T, Yan D. Identification of CCCH-type zinc finger antiviral protein 1 (ZAP) gene from Pacific white shrimp (Penaeus vannamei): Characterization and expression analysis in response to viral infection. FISH & SHELLFISH IMMUNOLOGY 2023; 140:108948. [PMID: 37453491 DOI: 10.1016/j.fsi.2023.108948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/18/2023]
Abstract
Zinc-finger proteins (ZFPs) are a huge family that exert multiple roles in the cells. ZFPs could be divided into nine types based on the numbers and positions of conserved Cys and His residues, in which CCCH-type ZFP was one of the most widely studied types. CCCH-type zinc finger antiviral protein 1 (ZAP), a CCCH-type ZFP that can inhibit the replication of certain RNA viruses and DNA viruses by mediating degradation of viral RNA and repressing mRNA translation, plays significant roles in the host innate immune defenses against viral infections. Presently, there have been numerous reports investigating the antiviral ability of ZAP, while no data is available about ZAP gene in the species of shrimps or even crustaceans. In this study, a novel protein containing CCCH-type zinc finger motifs (ZnF-CCCH), CCCH-type zinc finger antiviral protein 1 (ZAP) gene, was identified from Pacific white shrimp (Penaeus vannamei) and its role in antiviral immunity was further investigated. Similar to mammalian ZAPs, in addition to ZnF-CCCH, PvZAP also possesses central WWE domains and C-terminal PARP domain. Phylogenetic analysis showed that PvZAP was close to that of the crustacean Pacific oyster, separating from the cluster of vertebrate ZAP proteins. Upon in vivo infection by IHHNV, gene expression of PvZAP was strongly up-regulated in the hepatopancreas and gills of both adult and juvenile shrimps, where adult individuals showed higher fold changes of up-regulation than in juvenile individuals. These results suggested that PvZAP might play an important role in the innate immune defense of Pacific white shrimp against IHHNV infection. This allows us to gain new insights into the immunological function of ZAP in the innate immunity of shrimp species and even crustaceans.
Collapse
Affiliation(s)
- Yingying Zhang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiahui Xu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Jiyue Yu
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Lingjun Si
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Linrui Chang
- School of Agriculture, Ludong University, Yantai, 264025, PR China
| | - Ting Li
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| | - Dongchun Yan
- School of Agriculture, Ludong University, Yantai, 264025, PR China.
| |
Collapse
|
17
|
Shen W, Liu C, Hu Y, Ding Q, Feng J, Liu Z, Kong X. Spastin is required for human immunodeficiency virus-1 efficient replication through cooperation with the endosomal sorting complex required for transport (ESCRT) protein. Virol Sin 2023:S1995-820X(23)00054-8. [PMID: 37172824 DOI: 10.1016/j.virs.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 05/08/2023] [Indexed: 05/15/2023] Open
Abstract
Human immunodeficiency virus-1 (HIV-1) encodes simply 15 proteins and thus depends on multiple host cellular factors for virus reproduction. Spastin, a microtubule severing protein, is an identified HIV-1 dependency factor, but the mechanism regulating HIV-1 is unclear. Here, the study showed that knockdown of spastin inhibited the production of the intracellular HIV-1 Gag protein and new virions through enhancing Gag lysosomal degradation. Further investigation showed that increased sodium tolerance 1 (IST1), the subunit of endosomal sorting complex required for transport (ESCRT), could interact with the MIT domain of spastin to regulate the intracellular Gag production. In summary, spastin is required for HIV-1 replication, while spastin-IST1 interaction facilitates virus production by regulating HIV-1 Gag intracellular trafficking and degradation. Spastin may serve as new target for HIV-1 prophylactic and therapy.
Collapse
Affiliation(s)
- Wenyuan Shen
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Spine Surgery, the Second Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250033, China; International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin Key Laboratory of Spine and Spinal Cord Injury, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Chang Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Yue Hu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China; Department of Infectious Diseases, Tianjin Second People's Hospital, Tianjin 300192, China
| | - Qian Ding
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Jiabin Feng
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Zhou Liu
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China
| | - Xiaohong Kong
- Laboratory of Medical Molecular Virology, School of Medicine, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
18
|
Bi M, Kang W, Sun Y. Expression of HSPA14 in patients with acute HIV-1 infection and its effect on HIV-1 replication. Front Immunol 2023; 14:1123600. [PMID: 36845091 PMCID: PMC9947146 DOI: 10.3389/fimmu.2023.1123600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/30/2023] [Indexed: 02/11/2023] Open
Abstract
Introduction Heat shock protein (HSPs) are important intracellular factors, which are often involved in the regulation of viral replication including HIV-1 in infected individuals as molecular chaperone proteins. Heat shock proteins 70 (HSP70/HSPA) family play important roles in HIV replication, but this family contain many subtypes, and it is unclear how these subtypes participate in and affect HIV replication. Methods To detect the interaction between HSPA14 and HspBP1 by CO-IP. Simulating HIV infection status in vitro to detect the change of intracellular HSPA14 expression after HIV infection in different cells. Constructing HSPA14 overexpression or knockdown cells to detect intracellular HIV replication levels after in vitro infection. Detecting the difference of HSPA expression levels in CD4+ T cells of untreated acute HIV-infected patients with different viral load. Results In this study, we found that HIV infection can lead to changes in the transcriptional level of many HSPA subtypes, among which HSPA14 interacts with HIV transcriptional inhibitor HspBP1. The expression of HSPA14 in Jurkat and primary CD4+T cells infected with HIV were inhibited, overexpression of HSPA14 inhibited HIV replication, while knocking down HSPA14 promoted HIV replication. We also found that the expression level of HSPA14 is higher in peripheral blood CD4+T cells of untreated acute HIV infection patients with low viral load. Conclusion HSPA14 is a potential HIV replication inhibitor and may restrict HIV replication by regulating the transcriptional inhibitor HspBP1. Further studies are needed to determine the specific mechanism by which HSPA14 regulates viral replication.
Collapse
Affiliation(s)
| | - Wen Kang
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| | - Yongtao Sun
- Department of Infectious Diseases, Tangdu Hospital, Air Force Medical University, Xi’an, China
| |
Collapse
|
19
|
Hussein M, Molina MA, Berkhout B, Herrera-Carrillo E. A CRISPR-Cas Cure for HIV/AIDS. Int J Mol Sci 2023; 24:1563. [PMID: 36675077 PMCID: PMC9863116 DOI: 10.3390/ijms24021563] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 12/28/2022] [Accepted: 01/02/2023] [Indexed: 01/14/2023] Open
Abstract
Human immunodeficiency virus (HIV) infections and HIV-induced acquired immunodeficiency syndrome (AIDS) continue to represent a global health burden. There is currently no effective vaccine, nor any cure, for HIV infections; existing antiretroviral therapy can suppress viral replication, but only as long as antiviral drugs are taken. HIV infects cells of the host immune system, and it can establish a long-lived viral reservoir, which can be targeted and edited through gene therapy. Gene editing platforms based on the clustered regularly interspaced palindromic repeat-Cas system (CRISPR-Cas) have been recognized as promising tools in the development of gene therapies for HIV infections. In this review, we evaluate the current landscape of CRISPR-Cas-based therapies against HIV, with an emphasis on the infection biology of the virus as well as the activity of host restriction factors. We discuss the potential of a combined CRISPR-Cas approach that targets host and viral genes to activate antiviral host factors and inhibit viral replication simultaneously. Lastly, we focus on the challenges and potential solutions of CRISPR-Cas gene editing approaches in achieving an HIV cure.
Collapse
Affiliation(s)
| | | | | | - Elena Herrera-Carrillo
- Laboratory of Experimental Virology, Department of Medical Microbiology, Amsterdam UMC, Academic Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
20
|
Meseguer S, Rubio MP, Lainez B, Pérez-Benavente B, Pérez-Moraga R, Romera-Giner S, García-García F, Martinez-Macias O, Cremades A, Iborra FJ, Candelas-Rivera O, Almazan F, Esplugues E. SARS-CoV-2-encoded small RNAs are able to repress the host expression of SERINC5 to facilitate viral replication. Front Microbiol 2023; 14:1066493. [PMID: 36876111 PMCID: PMC9978209 DOI: 10.3389/fmicb.2023.1066493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/26/2023] [Indexed: 02/18/2023] Open
Abstract
Serine incorporator protein 5 (SERINC5) is a key innate immunity factor that operates in the cell to restrict the infectivity of certain viruses. Different viruses have developed strategies to antagonize SERINC5 function but, how SERINC5 is controlled during viral infection is poorly understood. Here, we report that SERINC5 levels are reduced in COVID-19 patients during the infection by SARS-CoV-2 and, since no viral protein capable of repressing the expression of SERINC5 has been identified, we hypothesized that SARS-CoV-2 non-coding small viral RNAs (svRNAs) could be responsible for this repression. Two newly identified svRNAs with predicted binding sites in the 3'-untranslated region (3'-UTR) of the SERINC5 gene were characterized and we found that the expression of both svRNAs during the infection was not dependent on the miRNA pathway proteins Dicer and Argonaute-2. By using svRNAs mimic oligonucleotides, we demonstrated that both viral svRNAs can bind the 3'UTR of SERINC5 mRNA, reducing SERINC5 expression in vitro. Moreover, we found that an anti-svRNA treatment to Vero E6 cells before SARS-CoV-2 infection recovered the levels of SERINC5 and reduced the levels of N and S viral proteins. Finally, we showed that SERINC5 positively controls the levels of Mitochondrial Antiviral Signalling (MAVS) protein in Vero E6. These results highlight the therapeutic potential of targeting svRNAs based on their action on key proteins of the innate immune response during SARS-CoV-2 viral infection.
Collapse
Affiliation(s)
- Salvador Meseguer
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Mari-Paz Rubio
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Begoña Lainez
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Beatriz Pérez-Benavente
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Raúl Pérez-Moraga
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Sergio Romera-Giner
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | - Francisco García-García
- Bioinformatics and Biostatistics Unit, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain
| | | | | | - Francisco J Iborra
- Biological Noise and Cell Plasticity Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Associated Unit to Instituto de Biomedicina de Valencia-CSIC, Valencia, Spain
| | - Oscar Candelas-Rivera
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Fernando Almazan
- Molecular and Cellular Biology Department, Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
| | - Enric Esplugues
- Molecular and Cellular Immunology Laboratory, Centro de Investigación Príncipe Felipe (CIPF), Valencia, Spain.,Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, United States
| |
Collapse
|
21
|
Bonaventure B, Rebendenne A, Chaves Valadão AL, Arnaud‐Arnould M, Gracias S, Garcia de Gracia F, McKellar J, Labaronne E, Tauziet M, Vivet‐Boudou V, Bernard E, Briant L, Gros N, Djilli W, Courgnaud V, Parrinello H, Rialle S, Blaise M, Lacroix L, Lavigne M, Paillart J, Ricci EP, Schulz R, Jouvenet N, Moncorgé O, Goujon C. The
DEAD
box
RNA
helicase
DDX42
is an intrinsic inhibitor of positive‐strand
RNA
viruses. EMBO Rep 2022; 23:e54061. [PMID: 36161446 PMCID: PMC9638865 DOI: 10.15252/embr.202154061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 08/30/2022] [Accepted: 09/07/2022] [Indexed: 11/29/2022] Open
Abstract
Genome‐wide screens are powerful approaches to unravel regulators of viral infections. Here, a CRISPR screen identifies the RNA helicase DDX42 as an intrinsic antiviral inhibitor of HIV‐1. Depletion of endogenous DDX42 increases HIV‐1 DNA accumulation and infection in cell lines and primary cells. DDX42 overexpression inhibits HIV‐1 infection, whereas expression of a dominant‐negative mutant increases infection. Importantly, DDX42 also restricts LINE‐1 retrotransposition and infection with other retroviruses and positive‐strand RNA viruses, including CHIKV and SARS‐CoV‐2. However, DDX42 does not impact the replication of several negative‐strand RNA viruses, arguing against an unspecific effect on target cells, which is confirmed by RNA‐seq analysis. Proximity ligation assays show DDX42 in the vicinity of viral elements, and cross‐linking RNA immunoprecipitation confirms a specific interaction of DDX42 with RNAs from sensitive viruses. Moreover, recombinant DDX42 inhibits HIV‐1 reverse transcription in vitro. Together, our data strongly suggest a direct mode of action of DDX42 on viral ribonucleoprotein complexes. Our results identify DDX42 as an intrinsic viral inhibitor, opening new perspectives to target the life cycle of numerous RNA viruses.
Collapse
Affiliation(s)
| | | | | | | | - Ségolène Gracias
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | | | | | | - Valérie Vivet‐Boudou
- Université de Strasbourg, CNRS, Architecture et Réactivité de l'ARN, UPR 9002 Strasbourg France
| | | | | | - Nathalie Gros
- CEMIPAI, CNRS Université de Montpellier Montpellier France
| | | | | | - Hugues Parrinello
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | - Stéphanie Rialle
- Montpellier GenomiX (MGX), Biocampus, CNRS, INSERM Université de Montpellier Montpellier France
| | | | - Laurent Lacroix
- Institut de Biologie de l'Ecole Normale Supérieure (IBENS), Ecole Normale Supérieure, CNRS, INSERM Université PSL Paris France
| | - Marc Lavigne
- Department of Virology Institut Pasteur Paris France
| | | | | | - Reiner Schulz
- Department of Medical & Molecular Genetics King's College London London UK
| | - Nolwenn Jouvenet
- Virus Sensing and Signaling Unit, Department of Virology, Institut Pasteur Université de Paris Cité, CNRS UMR 3569 Paris France
| | | | | |
Collapse
|
22
|
Jiang L, Zhang Q, Xiao S, Si F. Deep decoding of codon usage strategies and host adaption preferences of soybean mosaic virus. Int J Biol Macromol 2022; 222:803-817. [PMID: 36167098 DOI: 10.1016/j.ijbiomac.2022.09.179] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022]
Abstract
Soybean mosaic virus (SMV) has threatened the global yield of Leguminosae crops, but the mechanism of its infection, spread, and evolution remains unknown. A systemic analysis of 107 SMV strains was performed to explore the genome-wide codon usage profile and the various factors influencing the codon usage patterns of SMV, which provides insight into its molecular evolution and elucidates its unknown host adaptation pattern. The overall nucleotide composition and correlation analysis revealed that the preferred synonymous codons mostly end with A/U. Clustering by RSCU value of each strain and phylogenetic tree analysis showed that the SMV isolates studied were divided into four clades, with a low overall extent of codon usage bias (CUB) in SMV. According to the ENC, PR2, neutrality plot, and correspondence analysis, natural selection of geographical diversity may play a critical role in the CUB. Higher adaptability was shown in Glycine with SMV and more pressure was received by clade III. These findings could not only provide valuable information about the overall codon usage pattern of the SMV genome, but could also aid in the clarification of the involved mechanisms that dominate the codon usage patterns and genetic evolution of the SMV genome.
Collapse
Affiliation(s)
- Li Jiang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qiang Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shimin Xiao
- Shanwei Marine Industry Institute, Shanwei Institute of Technology, Shanwei 516600, China.
| | - Fusheng Si
- Institute of Animal Science and Veterinary Medicine, Shanghai Academy of Agricultural Sciences, Shanghai Key Laboratory of Agricultural Genetics and Breeding, Shanghai Engineering Research Center of Breeding Pig, Shanghai 201106, China.
| |
Collapse
|
23
|
Desai D, Londhe R, Chandane M, Kulkarni S. Altered HIV-1 Viral Copy Number and Gene Expression Profiles of Peripheral (CEM CCR5+) and Mucosal (A3R5.7) T Cell Lines Co-Infected with HSV-2 In Vitro. Viruses 2022; 14:v14081715. [PMID: 36016337 PMCID: PMC9413683 DOI: 10.3390/v14081715] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 01/27/2023] Open
Abstract
Co-infecting pathogens have been speculated to influence Human Immunodeficiency Virus (HIV) disease progression. Herpes Simplex Virus Type-2 (HSV-2), another sexually transmitted pathogen, is commonly observed in individuals with HIV-1. Some clinical studies have observed an increase in HIV-1 viral copy number in HSV-2 co-infected individuals. In vitro studies have also demonstrated an increase in the expression of HIV-1 co-receptors on immune cells infected with HSV-2. Although both the viruses show distinctive persistent infection, the influence of HSV-2 on HIV-1 is poorly understood. Here we present a comparative analysis of primary CD4+ T-cells and four different T-cell lines (PM-1, CEM CCR5+, MOLT4 CCR5+, and A3R5.7) to assess the influence of HSV-2 co-infection on HIV-1 replication in vitro. Cell lines indicating significant changes in HIV-1 viral copy number [CEM CCR5+ (0.61 Log10), A3R5.7 (0.78 Log10)] were further evaluated for the infectivity of HIV-1 virions and the changes in gene expression profiles of HSV-2/HIV-1 co-infected and mono-infected cells, which were further confirmed by qPCR. Significant changes in NUP, MED, and VPS mRNA expression were observed in the gene expression profiles in co-infected CEM CCR5+ and A3R5.7 cells. In both cell lines, it was observed that the WNT signaling, PI3 kinase, apoptosis, and T-cell activation pathways were negatively affected in co-infected cells. The data suggest that HSV-2 infection of T-cells may influence the expression of genes that have been previously shown to affect HIV-1 replication in vitro. This idea needs to be explored further to identify anti-viral targets for HSV-2 and HIV-1.
Collapse
|
24
|
Mechanism of Viral Suppression among HIV Elite Controllers and Long-Term Nonprogressors in Nigeria and South Africa. Viruses 2022; 14:v14061270. [PMID: 35746741 PMCID: PMC9228396 DOI: 10.3390/v14061270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 12/30/2022] Open
Abstract
A subgroup among people living with HIV (PLHIV) experience viral suppression, sometimes to an undetectable level in the blood and/or are able to maintain a healthy CD4+ T-cell count without the influence of antiretroviral (ARV) therapy. One out of three hundred PLHIV fall into this category, and a large sample of this group can be found in areas with a high prevalence of HIV infection such as Nigeria and South Africa. Understanding the mechanism underpinning the nonprogressive phenotype in this subgroup may provide insights into the control of the global HIV epidemic. This work provides mechanisms of the elite control and nonprogressive phenotype among PLHIV in Nigeria and South Africa and identifies research gaps that will contribute to a better understanding on HIV controllers among PLHIV.
Collapse
|
25
|
Xu S, Zheng Z, Pathak JL, Cheng H, Zhou Z, Chen Y, Wu Q, Wang L, Zeng M, Wu L. The Emerging Role of the Serine Incorporator Protein Family in Regulating Viral Infection. Front Cell Dev Biol 2022; 10:856468. [PMID: 35433679 PMCID: PMC9010877 DOI: 10.3389/fcell.2022.856468] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 03/09/2022] [Indexed: 11/25/2022] Open
Abstract
Serine incorporator (SERINC) proteins 1–5 (SERINC1-5) are involved in the progression of several diseases. SERINC2-4 are carrier proteins that incorporate the polar amino acid serine into membranes to facilitate the synthesis of phosphatidylserine and sphingolipids. SERINC genes are also differentially expressed in tumors. Abnormal expression of SERINC proteins occurs in human cancers of the breast, lung, colon, liver, and various glands, as well as in mouse testes. SERINC proteins also affect cleft lip and palate and nerve-related diseases, such as seizure Parkinsonism and borderline personality. Moreover, SERINC proteins have garnered significant interest as retroviral restriction factors, spurring efforts to define their function and elucidate the mechanisms through which they operate when associated with viruses. Human SERINC proteins possess antiviral potential against human immunodeficiency virus (HIV), SARS-COV-2, murine leukemia virus (MLV), equine infectious anemia virus (EIAV), and hepatitis B virus (HBV). Furthermore, the crystal structure is known, and the critical residues of SERINC5 that act against HIV have been identified. In this review, we discuss the most prevalent mechanisms by which SERINC3 and SERINC5 antagonize viruses and focus on the potential therapeutic applications of SERINC5/3 against HIV.
Collapse
Affiliation(s)
- Shaofen Xu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhichao Zheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
| | - Janak L. Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Haoyu Cheng
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ziliang Zhou
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanping Chen
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
| | - Qiuyu Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou Higher Education Mega Center, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Mingtao Zeng
- Center of Emphasis in Infectious Diseases, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, United States
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| | - Lihong Wu
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Basic Oral Medicine, Guangzhou Medical University School and Hospital of Stomatology, Guangzhou, China
- *Correspondence: Lihong Wu, ; Mingtao Zeng, ; Lijing Wang,
| |
Collapse
|
26
|
Esposito S, D’Abrosca G, Antolak A, Pedone PV, Isernia C, Malgieri G. Host and Viral Zinc-Finger Proteins in COVID-19. Int J Mol Sci 2022; 23:ijms23073711. [PMID: 35409070 PMCID: PMC8998646 DOI: 10.3390/ijms23073711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 01/08/2023] Open
Abstract
An unprecedented effort to tackle the ongoing COVID-19 pandemic has characterized the activity of the global scientific community over the last two years. Hundreds of published studies have focused on the comprehension of the immune response to the virus and on the definition of the functional role of SARS-CoV-2 proteins. Proteins containing zinc fingers, both belonging to SARS-CoV-2 or to the host, play critical roles in COVID-19 participating in antiviral defenses and regulation of viral life cycle. Differentially expressed zinc finger proteins and their distinct activities could thus be important in determining the severity of the disease and represent important targets for drug development. Therefore, we here review the mechanisms of action of host and viral zinc finger proteins in COVID-19 as a contribution to the comprehension of the disease and also highlight strategies for therapeutic developments.
Collapse
|
27
|
The low abundance of CpG in the SARS-CoV-2 genome is not an evolutionarily signature of ZAP. Sci Rep 2022; 12:2420. [PMID: 35165300 PMCID: PMC8844275 DOI: 10.1038/s41598-022-06046-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/28/2021] [Indexed: 12/23/2022] Open
Abstract
The zinc finger antiviral protein (ZAP) is known to restrict viral replication by binding to the CpG rich regions of viral RNA, and subsequently inducing viral RNA degradation. This enzyme has recently been shown to be capable of restricting SARS-CoV-2. These data have led to the hypothesis that the low abundance of CpG in the SARS-CoV-2 genome is due to an evolutionary pressure exerted by the host ZAP. To investigate this hypothesis, we performed a detailed analysis of many coronavirus sequences and ZAP RNA binding preference data. Our analyses showed neither evidence for an evolutionary pressure acting specifically on CpG dinucleotides, nor a link between the activity of ZAP and the low CpG abundance of the SARS-CoV-2 genome.
Collapse
|
28
|
When good turns bad: how viruses exploit innate immunity factors. Curr Opin Virol 2021; 52:60-67. [PMID: 34872031 DOI: 10.1016/j.coviro.2021.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/11/2021] [Accepted: 11/18/2021] [Indexed: 12/12/2022]
Abstract
Humans evolved numerous cell-intrinsic restriction factors as a first line of defense against viral pathogens. Typically, they inhibit efficient viral replication and thus prevent viral zoonoses and pandemics. However, viruses show enormous adaptability and are well known for their ability to counteract antiviral mechanisms. Accumulating evidence shows that some viruses are even capable of exploiting antiviral factors for efficient infection. In addition, antiviral factors may exert enhancing effects under specific circumstances. While much progress has been made in understanding the antiviral mechanisms of restriction factors, their proviral effects are poorly defined. Here, we summarize current knowledge on how viral pathogens may exploit otherwise antiviral cellular factors for efficient infection and replication.
Collapse
|
29
|
Hadpech S, Moonmuang S, Chupradit K, Yasamut U, Tayapiwatana C. Updating on Roles of HIV Intrinsic Factors: A Review of Their Antiviral Mechanisms and Emerging Functions. Intervirology 2021; 65:67-79. [PMID: 34464956 DOI: 10.1159/000519241] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Accepted: 08/24/2021] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Host restriction factors are cellular proteins that inhibit specific steps of the viral life cycle. Since the 1970s, several new factors have been identified, including human immunodeficiency virus-1 (HIV-1) replication restriction. Evidence accumulated in the last decade has substantially broadened our understanding of the molecular mechanisms utilized to abrogate the HIV-1 life cycle. SUMMARY In this review, we focus on the interaction between host restriction factors participating in the early phase of HIV-1 infection, particularly CA-targeting proteins. Host factors involved in the late phase of the replication cycle, such as viral assembly and egress factors, are also described. Additionally, current reports on well-known antiviral intrinsic factors, as well as other viral restriction factors with their emerging roles, are included. CONCLUSION A comprehensive understanding of the interactions between viruses and hosts is expected to provide insight into the design of novel HIV-1 therapeutic interventions.
Collapse
Affiliation(s)
- Sudarat Hadpech
- Division of Pharmacology and Biopharmacy, Faculty of Pharmaceutical Sciences, Burapha University, Chon Buri, Thailand
| | - Sutpirat Moonmuang
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Koollawat Chupradit
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Siriraj Center for Regenerative Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Umpa Yasamut
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Chatchai Tayapiwatana
- Division of Clinical Immunology, Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Biomolecular Therapy and Diagnostic, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand.,Center of Innovative Immunodiagnostic Development, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai, Thailand
| |
Collapse
|
30
|
Chintala K, Mohareer K, Banerjee S. Dodging the Host Interferon-Stimulated Gene Mediated Innate Immunity by HIV-1: A Brief Update on Intrinsic Mechanisms and Counter-Mechanisms. Front Immunol 2021; 12:716927. [PMID: 34394123 PMCID: PMC8358655 DOI: 10.3389/fimmu.2021.716927] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 07/14/2021] [Indexed: 12/12/2022] Open
Abstract
Host restriction factors affect different phases of a viral life cycle, contributing to innate immunity as the first line of defense against viruses, including HIV-1. These restriction factors are constitutively expressed, but triggered upon infection by interferons. Both pre-integration and post-integration events of the HIV-1 life cycle appear to play distinct roles in the induction of interferon-stimulated genes (ISGs), many of which encode antiviral restriction factors. However, HIV-1 counteracts the mechanisms mediated by these restriction factors through its encoded components. Here, we review the recent findings of pathways that lead to the induction of ISGs, and the mechanisms employed by the restriction factors such as IFITMs, APOBEC3s, MX2, and ISG15 in preventing HIV-1 replication. We also reflect on the current understanding of the counter-mechanisms employed by HIV-1 to evade innate immune responses and overcome host restriction factors. Overall, this mini-review provides recent insights into the HIV-1-host cross talk bridging the understanding between intracellular immunity and research avenues in the field of therapeutic interventions against HIV-1.
Collapse
|
31
|
Tavares LA, Januário YC, daSilva LLP. HIV-1 Hijacking of Host ATPases and GTPases That Control Protein Trafficking. Front Cell Dev Biol 2021; 9:622610. [PMID: 34307340 PMCID: PMC8295591 DOI: 10.3389/fcell.2021.622610] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/07/2021] [Indexed: 12/22/2022] Open
Abstract
The human immunodeficiency virus (HIV-1) modifies the host cell environment to ensure efficient and sustained viral replication. Key to these processes is the capacity of the virus to hijack ATPases, GTPases and the associated proteins that control intracellular protein trafficking. The functions of these energy-harnessing enzymes can be seized by HIV-1 to allow the intracellular transport of viral components within the host cell or to change the subcellular distribution of antiviral factors, leading to immune evasion. Here, we summarize how energy-related proteins deviate from their normal functions in host protein trafficking to aid the virus in different phases of its replicative cycle. Recent discoveries regarding the interplay among HIV-1 and host ATPases and GTPases may shed light on potential targets for pharmacological intervention.
Collapse
Affiliation(s)
- Lucas A Tavares
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Yunan C Januário
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Luis L P daSilva
- Department of Cell and Molecular Biology, Center for Virology Research, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
32
|
De Scheerder MA, Van Hecke C, Zetterberg H, Fuchs D, De Langhe N, Rutsaert S, Vrancken B, Trypsteen W, Noppe Y, Van Der Gucht B, Pelgrom J, Van Wanzeele F, Palmer S, Lemey P, Gisslén M, Vandekerckhove L. Evaluating predictive markers for viral rebound and safety assessment in blood and lumbar fluid during HIV-1 treatment interruption. J Antimicrob Chemother 2021; 75:1311-1320. [PMID: 32053203 DOI: 10.1093/jac/dkaa003] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Validated biomarkers to evaluate HIV-1 cure strategies are currently lacking, therefore requiring analytical treatment interruption (ATI) in study participants. Little is known about the safety of ATI and its long-term impact on patient health. OBJECTIVES ATI safety was assessed and potential biomarkers predicting viral rebound were evaluated. METHODS PBMCs, plasma and CSF were collected from 11 HIV-1-positive individuals at four different timepoints during ATI (NCT02641756). Total and integrated HIV-1 DNA, cell-associated (CA) HIV-1 RNA transcripts and restriction factor (RF) expression were measured by PCR-based assays. Markers of neuroinflammation and neuronal injury [neurofilament light chain (NFL) and YKL-40 protein] were measured in CSF. Additionally, neopterin, tryptophan and kynurenine were measured, both in plasma and CSF, as markers of immune activation. RESULTS Total HIV-1 DNA, integrated HIV-1 DNA and CA viral RNA transcripts did not differ pre- and post-ATI. Similarly, no significant NFL or YKL-40 increases in CSF were observed between baseline and viral rebound. Furthermore, markers of immune activation did not increase during ATI. Interestingly, the RFs SLFN11 and APOBEC3G increased after ATI before viral rebound. Similarly, Tat-Rev transcripts were increased preceding viral rebound after interruption. CONCLUSIONS ATI did not increase viral reservoir size and it did not reveal signs of increased neuronal injury or inflammation, suggesting that these well-monitored ATIs are safe. Elevation of Tat-Rev transcription and induced expression of the RFs SLFN11 and APOBEC3G after ATI, prior to viral rebound, indicates that these factors could be used as potential biomarkers predicting viral rebound.
Collapse
Affiliation(s)
- Marie-Angélique De Scheerder
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Clarissa Van Hecke
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Dietmar Fuchs
- Division of Biological Chemistry, Biocenter, Medical University of Innsbruck, Innrain 52, Christoph-Probst-Platz, 6020 Innsbruck, Austria
| | - Nele De Langhe
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sofie Rutsaert
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bram Vrancken
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Wim Trypsteen
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Ytse Noppe
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Bea Van Der Gucht
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Jolanda Pelgrom
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Filip Van Wanzeele
- Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| | - Sarah Palmer
- Centre for Virus Research, The Westmead Institute for Medical Research, The University of Sydney, 176 Hawkesbury Rd, Westmead, New South Wales 2145, Australia
| | - Philippe Lemey
- KU Leuven Department of Microbiology and Immunology, Rega Institute, Laboratory of Evolutionary and Computational Virology, Leuven, Belgium
| | - Magnus Gisslén
- Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Wallinsgatan 6, Mölndal, Sweden.,Department of Infectious Diseases, Sahlgrenska University Hospital, 11 Region Västra Götaland, Gothenburg, Sweden
| | - Linos Vandekerckhove
- HIV Cure Research Center, Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University and Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium.,Department of General Internal Medicine and Infectious Diseases, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium
| |
Collapse
|
33
|
Zinc finger antiviral protein (ZAP) inhibits small ruminant morbillivirus replication in vitro. Vet Microbiol 2021; 260:109163. [PMID: 34311269 DOI: 10.1016/j.vetmic.2021.109163] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/18/2021] [Indexed: 11/23/2022]
Abstract
Small ruminant morbillivirus (SRMV) is a highly contagious and economically important viral disease of small domestic and wild ruminants. Difficulty with its stable proliferation in ovis aries-derived cells has led to a relative lag in the study of its natural immunity and pathogenesis. Here we report the antiviral properties of ZAP against SRMV, a single-stranded negative-stranded RNA virus of the genus Morbillivirus. ZAP expression was significantly induced in sheep endometrial epithelial cells following SRMV infection. ZAP inhibited SRMV replication in cells after infection, while its overexpression in Vero-SLAM cells significantly increased their resistance to SRMV replication. The ZAP protein co-localized with SRMV RNA in the cytoplasm and ZAP-responsive elements were mapped to the 5' untranslated region of SRMV nucleocapsid, phosphoprotein, matrix, and fusion. In summary, ZAP confers resistance to SRMV infection by directly targeting viral RNA and inhibiting viral replication. Our findings further extend the ranges of viral targets of ZAP and help elucidate the mechanism of SRMV replication.
Collapse
|
34
|
Downregulation of SERINC5 expression in buffy coats of HIV-1-infected patients with detectable or undetectable viral load. Mol Biol Rep 2021; 48:4247-4252. [PMID: 34097204 DOI: 10.1007/s11033-021-06438-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 05/26/2021] [Indexed: 10/21/2022]
Abstract
Among the host restriction factors against HIV, SERINC5 has been described in vitro, but the mRNA level of SERINC5 in vivo has been little studied. We compare SERINC5 expression in subjects with HIV-1 (highly active antiretroviral treatment (HAART) and HAART-naïve) with and without suppression of viral load. A cross-sectional study was performed with 107 individuals distributed as follows: 24 with HAART-naïve and detectable viral load (> 50 copies/mL), 13 with HAART and detectable viral load (> 50 copies/mL), 50 with HAART and undetectable viral load (≤ 50 copies/mL), and 20 without HIV-1. SERINC5 expression in buffy coats was determined using RT-qPCR. The viral load was determined using real-time PCR and the amount of CD4 + and CD8 + T-lymphocytes was measured using flow cytometry. The data were normalized with the Shapiro-Wilk test and the Kruskal-Wallis test was subsequently performed. The relative expression was compared with a T-test and the remaining data with the Mann-Whitney U-test. ANCOVA multiple linear regression analysis was performed between characteristics of patients with SERINC5 expression. The mean and SD of the SERINC5 expression in the three groups with HIV-1 was 0.9 ± 0.2 and without HIV-1 was 1.7 ± 0.14 (P < 0.001). Multiple linear regression did not show the participation of CD4 +, CD8 + , viral load, infection time, or treatment time. No differences in the SERINC5 expression were found among the studied groups of patients with HIV-1. When comparing the groups with and without HIV-1 infection, SERINC5 was downregulation in the HIV-1 groups.
Collapse
|
35
|
Abstract
Viral envelope glycoproteins are an important structural component on the surfaces of enveloped viruses that direct virus binding and entry and also serve as targets for the host adaptive immune response. In this study, we investigate the mechanism of action of the MARCH family of cellular proteins that disrupt the trafficking and virion incorporation of viral glycoproteins across several virus families. An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP, and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.
Collapse
|
36
|
Lun CM, Waheed AA, Majadly A, Powell N, Freed EO. Mechanism of Viral Glycoprotein Targeting by Membrane-associated-RING-CH Proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021:2021.01.25.428025. [PMID: 33532773 PMCID: PMC7852266 DOI: 10.1101/2021.01.25.428025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
An emerging class of cellular inhibitory proteins has been identified that targets viral glycoproteins. These include the membrane-associated RING-CH (MARCH) family of E3 ubiquitin ligases that, among other functions, downregulate cell-surface proteins involved in adaptive immunity. The RING-CH domain of MARCH proteins is thought to function by catalyzing the ubiquitination of the cytoplasmic tails (CTs) of target proteins, leading to their degradation. MARCH proteins have recently been reported to target retroviral envelope glycoproteins (Env) and vesicular stomatitis virus G glycoprotein (VSV-G). However, the mechanism of antiviral activity remains poorly defined. Here we show that MARCH8 antagonizes the full-length forms of HIV-1 Env, VSV-G, Ebola virus glycoprotein (EboV-GP), and the spike (S) protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) thereby impairing the infectivity of virions pseudotyped with these viral glycoproteins. This MARCH8-mediated targeting of viral glycoproteins requires the E3 ubiquitin ligase activity of the RING-CH domain. We observe that MARCH8 protein antagonism of VSV-G is CT dependent. In contrast, MARCH8-mediated targeting of HIV-1 Env, EboV-GP and SARS-CoV-2 S protein by MARCH8 does not require the CT, suggesting a novel mechanism of MARCH-mediated antagonism of these viral glycoproteins. Confocal microscopy data demonstrate that MARCH8 traps the viral glycoproteins in an intracellular compartment. We observe that the endogenous expression of MARCH8 in several relevant human cell types is rapidly inducible by type I interferon. These results help to inform the mechanism by which MARCH proteins exert their antiviral activity and provide insights into the role of cellular inhibitory factors in antagonizing the biogenesis, trafficking, and virion incorporation of viral glycoproteins.
Collapse
Affiliation(s)
- Cheng Man Lun
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Abdul A. Waheed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Alhlam Majadly
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Nicole Powell
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| | - Eric O. Freed
- Virus-Cell Interaction Section, HIV Dynamics and Replication Program, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
37
|
Sauter D, Kirchhoff F. Evolutionary conflicts and adverse effects of antiviral factors. eLife 2021; 10:e65243. [PMID: 33450175 PMCID: PMC7811402 DOI: 10.7554/elife.65243] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/06/2021] [Indexed: 12/13/2022] Open
Abstract
Human cells are equipped with a plethora of antiviral proteins protecting them against invading viral pathogens. In contrast to apoptotic or pyroptotic cell death, which serves as ultima ratio to combat viral infections, these cell-intrinsic restriction factors may prevent or at least slow down viral spread while allowing the host cell to survive. Nevertheless, their antiviral activity may also have detrimental effects on the host. While the molecular mechanisms underlying the antiviral activity of restriction factors are frequently well investigated, potential undesired effects of their antiviral functions on the host cell are hardly explored. With a focus on antiretroviral proteins, we summarize in this review how individual restriction factors may exert adverse effects as trade-off for efficient defense against attacking pathogens.
Collapse
Affiliation(s)
- Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
- Institute of Medical Virology and Epidemiology of Viral Diseases, University Hospital TübingenTübingenGermany
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical CenterUlmGermany
| |
Collapse
|
38
|
Mustelin T, Ukadike KC. How Retroviruses and Retrotransposons in Our Genome May Contribute to Autoimmunity in Rheumatological Conditions. Front Immunol 2020; 11:593891. [PMID: 33281822 PMCID: PMC7691656 DOI: 10.3389/fimmu.2020.593891] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/19/2020] [Indexed: 12/14/2022] Open
Abstract
More than 200 human disorders include various manifestations of autoimmunity. The molecular events that lead to these diseases are still incompletely understood and their causes remain largely unknown. Numerous potential triggers of autoimmunity have been proposed over the years, but very few of them have been conclusively confirmed or firmly refuted. Viruses have topped the lists of suspects for decades, and it seems that many viruses, including those of the Herpesviridae family, indeed can influence disease initiation and/or promote exacerbations by a number of mechanisms that include prolonged anti-viral immunity, immune subverting factors, and mechanisms, and perhaps “molecular mimicry”. However, no specific virus has yet been established as being truly causative. Here, we discuss a different, but perhaps mechanistically related possibility, namely that retrotransposons or retroviruses that infected us in the past and left a lasting copy of themselves in our genome still can provoke an escalating immune response that leads to autoimmune disease. Many of these loci still encode for retroviral proteins that have retained some, or all, of their original functions. Importantly, these endogenous proviruses cannot be eliminated by the immune system the way it can eliminate exogenous viruses. Hence, if not properly controlled, they may drive a frustrated and escalating chronic, or episodic, immune response to the point of a frank autoimmune disorder. Here, we discuss the evidence and the proposed mechanisms, and assess the therapeutic options that emerge from the current understanding of this field.
Collapse
Affiliation(s)
- Tomas Mustelin
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| | - Kennedy C Ukadike
- Division of Rheumatology, Department of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
39
|
Nchioua R, Kmiec D, Müller JA, Conzelmann C, Groß R, Swanson CM, Neil SJD, Stenger S, Sauter D, Münch J, Sparrer KMJ, Kirchhoff F. SARS-CoV-2 Is Restricted by Zinc Finger Antiviral Protein despite Preadaptation to the Low-CpG Environment in Humans. mBio 2020; 11:e01930-20. [PMID: 33067384 PMCID: PMC7569149 DOI: 10.1128/mbio.01930-20] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Recent evidence shows that severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is sensitive to interferons (IFNs). However, the most effective types of IFNs and the underlying antiviral effectors remain to be defined. Here, we show that zinc finger antiviral protein (ZAP), which preferentially targets CpG dinucleotides in viral RNA sequences, restricts SARS-CoV-2. We further demonstrate that ZAP and its cofactors KHNYN and TRIM25 are expressed in human lung cells. Type I, II, and III IFNs all strongly inhibited SARS-CoV-2 and further induced ZAP expression. Comprehensive sequence analyses revealed that SARS-CoV-2 and its closest relatives from horseshoe bats showed the strongest CpG suppression among all known human and bat coronaviruses, respectively. Nevertheless, endogenous ZAP expression restricted SARS-CoV-2 replication in human lung cells, particularly upon treatment with IFN-α or IFN-γ. Both the long and the short isoforms of human ZAP reduced SARS-CoV-2 RNA expression levels, but the former did so with greater efficiency. Finally, we show that the ability to restrict SARS-CoV-2 is conserved in ZAP orthologues of the reservoir bat and potential intermediate pangolin hosts of human coronaviruses. Altogether, our results show that ZAP is an important effector of the innate response against SARS-CoV-2, although this pandemic pathogen emerged from zoonosis of a coronavirus that was preadapted to the low-CpG environment in humans.IMPORTANCE Although interferons inhibit SARS-CoV-2 and have been evaluated for treatment of coronavirus disease 2019 (COVID-19), the most effective types and antiviral effectors remain to be defined. Here, we show that IFN-γ is particularly potent in restricting SARS-CoV-2 and in inducing expression of the antiviral factor ZAP in human lung cells. Knockdown experiments revealed that endogenous ZAP significantly restricts SARS-CoV-2. We further show that CpG dinucleotides which are specifically targeted by ZAP are strongly suppressed in the SARS-CoV-2 genome and that the two closest horseshoe bat relatives of SARS-CoV-2 show the lowest genomic CpG content of all coronavirus sequences available from this reservoir host. Nonetheless, both the short and long isoforms of human ZAP reduced SARS-CoV-2 RNA levels, and this activity was conserved in horseshoe bat and pangolin ZAP orthologues. Our findings indicating that type II interferon is particularly efficient against SARS-CoV-2 and that ZAP restricts this pandemic viral pathogen might promote the development of effective immune therapies against COVID-19.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Dorota Kmiec
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Janis A Müller
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Carina Conzelmann
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Rüdiger Groß
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Chad M Swanson
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Stuart J D Neil
- Department of Infectious Diseases, School of Immunology and Microbial Sciences, King's College London, London, United Kingdom
| | - Steffen Stenger
- Institute of Medical Microbiology and Hygiene, Ulm University Medical Center, Ulm, Germany
| | - Daniel Sauter
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | - Jan Münch
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| | | | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
40
|
Abstract
Acquired immunodeficiency syndrome (AIDS) was first reported more than 30 years ago among homosexuals in the United States. The epidemiology of this disease indicates that there are three modes of transmission: Blood, mother-to-child, and sexual contact transmission. The pathogen of AIDS is human immunodeficiency virus (HIV), primarily HIV-1. HIV-1 could not break through the structurally and functionally integral skin, and primarily invades the human body through the mucosa irrespective of their integrity. Therefore, the mucosae are the natural transmission routes for HIV-1. The mucosae involved in HIV-1 transmission include the mucosae of the gastrointestinal tract and the urogenital tract. The risks of HIV-1 transmission vary significantly between mucosal sites and individuals, and are associated with mucosal integrity, abundance of target cells, immune status of the host, commensal microbes, and host genetic background. Many factors are closely related to the barrier function of the mucosa, and studies on their roles in HIV-1 invasion could promote the prevention and control of mucosal transmission of HIV-1.
Collapse
Affiliation(s)
- Gui-Bo Yang
- National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China
| |
Collapse
|
41
|
Zou S. Variation of CCR5AS lncRNA Enhances HIV-1 Infection Through Regulation of CCR5 Expression. Viral Immunol 2020; 33:536-538. [PMID: 32877293 DOI: 10.1089/vim.2020.0034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The long noncoding RNA (lncRNA), which could bind to target DNA, RNA, or protein, plays a vital role in the pathogenesis of viral replication and disease progression. Exploring how lncRNA regulates HIV infection is crucial for studying the pathogenesis, disease progression, and effective treatment of AIDS. Recently, Kulkarni et al. convincingly provided a molecular basis for association between CCR5AS lncRNA and outcome of HIV infection. Such results open a new avenue for the treatment and prevention of viral infections. In this study, we retell this story for a broad audience about how a new lncRNA enhances HIV-1 infection in easy-to-understand and jargon-free language.
Collapse
Affiliation(s)
- Sen Zou
- NHC Key Laboratory of Biotechnology of Antibiotics, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
42
|
Zhang B, Goraya MU, Chen N, Xu L, Hong Y, Zhu M, Chen JL. Zinc Finger CCCH-Type Antiviral Protein 1 Restricts the Viral Replication by Positively Regulating Type I Interferon Response. Front Microbiol 2020; 11:1912. [PMID: 32922375 PMCID: PMC7456897 DOI: 10.3389/fmicb.2020.01912] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 07/21/2020] [Indexed: 01/09/2023] Open
Abstract
Zinc finger CCCH-type antiviral protein 1 (ZC3HAV1) is a host antiviral factor that can repress translation and promote degradation of specific viral mRNAs. In this study, we found that expression of ZC3HAV1 was significantly induced by infection with influenza A virus (IAV) and Sendai virus (Sev). It was shown that deficiency of IFNAR resulted in a dramatic decrease in the virus-induced expression of ZC3HAV1. Furthermore, transfection with poly(I:C) and treatment with interferon β (IFN-β) induced the ZC3HAV1 expression. Interference with the endogenous expression of ZC3HAV1 enhanced the replication of influenza virus by impairing the production of IFN-β and MxA, following the infection of influenza virus. In contrast, ectopic expression of ZC3HAV1 significantly restricted the replication of influenza virus by increasing the IFN-β expression. In addition, ZC3HAV1 also promoted the induction of tumor necrosis factor and interleukin 6. These results suggest that ZC3HAV1 is induced by IFN-β/IFNAR signaling during IAV and Sev infection and involved in positive regulation of IFN-dependent innate antiviral response.
Collapse
Affiliation(s)
- Baoge Zhang
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Mohsan Ullah Goraya
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Na Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Lifeng Xu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yan Hong
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Meiyi Zhu
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ji-Long Chen
- Key Laboratory of Fujian-Taiwan Animal Pathogen Biology, College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, China.,State Key Laboratory of Food Safety Technology for Meat Products, Xiamen, China.,CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
43
|
Schmitt K, Curlin J, Remling-Mulder L, Moriarty R, Goff K, O'Connor S, Stenglein M, Marx P, Akkina R. Cross-Species Transmission and Evolution of SIV Chimpanzee Progenitor Viruses Toward HIV-1 in Humanized Mice. Front Microbiol 2020; 11:1889. [PMID: 32849468 PMCID: PMC7432304 DOI: 10.3389/fmicb.2020.01889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The genetic evolution of HIV-1 from its progenitor virus SIV following cross-species transmission is not well understood. Here we simulated the SIVcpz initial transmission to humans using humanized mice and followed the viral evolution during serial passages lasting more than a year. All three SIVcpz progenitor viruses used, namely LB715 and MB897 (group M) as well as EK505 (group N) readily infected hu-mice resulting in chronic viremia. Viral loads increased progressively to higher set-points and the CD4+ T cell decline became more pronounced by the end of the second serial passage indicating viral adaptation and increased pathogenicity. Viral genomes sequenced at different time points revealed many non-synonymous variants not previously reported that occurred throughout the viral genome, including the gag, pol, env, and nef genes. These results shed light on the potential changes that the SIVcpz genome had undergone during the initial stages of human infection and subsequent spread.
Collapse
Affiliation(s)
- Kimberly Schmitt
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - James Curlin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Leila Remling-Mulder
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Ryan Moriarty
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Kelly Goff
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States
| | - Shelby O'Connor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Mark Stenglein
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Preston Marx
- Tulane National Primate Research Center, Tulane University, Covington, LA, United States.,Department of Tropical Medicine, School of Public Health & Tropical Medicine, Tulane University, New Orleans, LA, United States
| | - Ramesh Akkina
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|
44
|
Nekongo EE, Ponomarenko AI, Dewal MB, Butty VL, Browne EP, Shoulders MD. HSF1 Activation Can Restrict HIV Replication. ACS Infect Dis 2020; 6:1659-1666. [PMID: 32502335 DOI: 10.1021/acsinfecdis.0c00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Host protein folding stress responses can play important roles in RNA virus replication and evolution. Prior work suggested a complicated interplay between the cytosolic proteostasis stress response, controlled by the transcriptional master regulator heat shock factor 1 (HSF1), and human immunodeficiency virus-1 (HIV-1). We sought to uncouple HSF1 transcription factor activity from cytotoxic proteostasis stress and thereby better elucidate the proposed role(s) of HSF1 in the HIV-1 lifecycle. To achieve this objective, we used chemical genetic, stress-independent control of HSF1 activity to establish whether and how HSF1 influences HIV-1 replication. Stress-independent HSF1 induction decreased both the total quantity and infectivity of HIV-1 virions. Moreover, HIV-1 was unable to escape HSF1-mediated restriction over the course of several serial passages. These results clarify the interplay between the host's heat shock response and HIV-1 infection and motivate continued investigation of chaperones as potential antiviral therapeutic targets.
Collapse
Affiliation(s)
- Emmanuel E. Nekongo
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Anna I. Ponomarenko
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Mahender B. Dewal
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Vincent L. Butty
- BioMicro Center, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Edward P. Browne
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina 27516, United States
| | - Matthew D. Shoulders
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
45
|
Abstract
The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is responsible for the current COVID-19 pandemic. An unbalanced immune response, characterized by a weak production of type I interferons (IFN-Is) and an exacerbated release of proinflammatory cytokines, contributes to the severe forms of the disease. SARS-CoV-2 is genetically related to SARS-CoV and Middle East respiratory syndrome-related coronavirus (MERS-CoV), which caused outbreaks in 2003 and 2013, respectively. Although IFN treatment gave some encouraging results against SARS-CoV and MERS-CoV in animal models, its potential as a therapeutic against COVID-19 awaits validation. Here, we describe our current knowledge of the complex interplay between SARS-CoV-2 infection and the IFN system, highlighting some of the gaps that need to be filled for a better understanding of the underlying molecular mechanisms. In addition to the conserved IFN evasion strategies that are likely shared with SARS-CoV and MERS-CoV, novel counteraction mechanisms are being discovered in SARS-CoV-2-infected cells. Since the last coronavirus epidemic, we have made considerable progress in understanding the IFN-I response, including its spatiotemporal regulation and the prominent role of plasmacytoid dendritic cells (pDCs), which are the main IFN-I-producing cells. While awaiting the results of the many clinical trials that are evaluating the efficacy of IFN-I alone or in combination with antiviral molecules, we discuss the potential benefits of a well-timed IFN-I treatment and propose strategies to boost pDC-mediated IFN responses during the early stages of viral infection.
Collapse
Affiliation(s)
- Margarida Sa Ribero
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | | | - Marlène Dreux
- CIRI, Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, École Normale Supérieure de Lyon, Univ Lyon, Lyon, France
| | - Sébastien Nisole
- IRIM, CNRS UMR9004, Université de Montpellier, Montpellier, France
| |
Collapse
|
46
|
Maillet S, Fernandez J, Decourcelle M, El Koulali K, Blanchet FP, Arhel NJ, Maarifi G, Nisole S. Daxx Inhibits HIV-1 Reverse Transcription and Uncoating in a SUMO-Dependent Manner. Viruses 2020; 12:v12060636. [PMID: 32545337 PMCID: PMC7354551 DOI: 10.3390/v12060636] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/05/2020] [Accepted: 06/09/2020] [Indexed: 02/07/2023] Open
Abstract
Death domain-associated protein 6 (Daxx) is a multifunctional, ubiquitously expressed and highly conserved chaperone protein involved in numerous cellular processes, including apoptosis, transcriptional repression, and carcinogenesis. In 2015, we identified Daxx as an antiretroviral factor that interfered with HIV-1 replication by inhibiting the reverse transcription step. In the present study, we sought to unravel the molecular mechanism of Daxx-mediated restriction and, in particular, to identify the protein(s) that Daxx targets in order to achieve its antiviral activity. First, we show that the SUMO-interacting motif (SIM) located at the C-terminus of the protein is strictly required for Daxx to inhibit HIV-1 reverse transcription. By performing a quantitative proteomic screen combined with classical biochemical analyses, we found that Daxx associated with incoming HIV-1 cores through a SIM-dependent interaction with cyclophilin A (CypA) and capsid (CA). Daxx was found to reside within a multiprotein complex associated with viral capsids, also containing TNPO3, TRIM5α, and TRIM34. Given the well-known influence of these cellular factors on the stability of HIV-1 cores, we investigated the effect of Daxx on the cytoplasmic fate of incoming cores and found that Daxx prevented HIV-1 uncoating in a SIM-dependent manner. Altogether, our findings suggest that, by recruiting TNPO3, TRIM5α, and TRIM34 and possibly other proteins onto incoming HIV-1 cores through a SIM-dependent interaction with CA-bound CypA, Daxx increases their stability, thus preventing uncoating and reverse transcription. Our study uncovers a previously unknown function of Daxx in the early steps of HIV-1 infection and further illustrates how reverse transcription and uncoating are two tightly interdependent processes.
Collapse
Affiliation(s)
- Sarah Maillet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Juliette Fernandez
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Mathilde Decourcelle
- BCM, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (M.D.); (K.E.K.)
| | - Khadija El Koulali
- BCM, Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France; (M.D.); (K.E.K.)
| | - Fabien P. Blanchet
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Nathalie J. Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Ghizlane Maarifi
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
| | - Sébastien Nisole
- Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, CNRS, 34090 Montpellier, France; (S.M.); (J.F.); (F.P.B.); (N.J.A.); (G.M.)
- Correspondence:
| |
Collapse
|
47
|
Liu Y, Wang H, Zhang J, Yang J, Bai L, Zheng B, Zheng T, Wang Y, Li J, Zhang W. SERINC5 Inhibits the Secretion of Complete and Genome-Free Hepatitis B Virions Through Interfering With the Glycosylation of the HBV Envelope. Front Microbiol 2020; 11:697. [PMID: 32431673 PMCID: PMC7216740 DOI: 10.3389/fmicb.2020.00697] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 03/25/2020] [Indexed: 12/22/2022] Open
Abstract
Serine incorporator 3 (SERINC3) and SERINC5 were recently identified as host intrinsic factors against human immunodeficiency virus (HIV)-1 and counteracted by HIV-1 Nef. However, whether they inhibit hepatitis B virus (HBV), which is a severe health problem worldwide, is unknown. Here, we demonstrate that SERINC5 potently inhibited HBV virion secretion in the supernatant without affecting intracellular core particle-associated DNA and the total RNA, but SERINC3 and SERINC1 did not. Further investigation discovered that SERINC5 increased the non-glycosylation of LHB, MHB, and SHB proteins of HBV and slightly decreased HBs proteins levels, which led to the decreased HBV secretion. Importantly, SERINC5 co-localized with LHB proteins in the Golgi apparatus, which is important for glycan processing and transport. In addition, we determined the functional domain in SERINC5 required for HBV inhibition, which was completely different from that required for HIV-1 restriction, whereas phosphorylation and glycosylation sites in SERINC5 were dispensable for HBV restriction. Taken together, our results demonstrate that SERINC5 suppresses HBV virion secretion through interfering with the glycosylation of HBV proteins, suggesting that SERINC5 might possess broad-spectrum antiviral activity.
Collapse
Affiliation(s)
- Yue Liu
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
- Department of Echocardiography, The First Hospital of Jilin University, Changchun, China
| | - Hong Wang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Jun Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Jing Yang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Lu Bai
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Baisong Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Tianhang Zheng
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| | - Yingchao Wang
- Department of Hepatobiliary Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Medical Molecular Virology, Ministry of Education and Health, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wenyan Zhang
- Institute of Virology and AIDS Research, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
48
|
Nchioua R, Bosso M, Kmiec D, Kirchhoff F. Cellular Factors Targeting HIV-1 Transcription and Viral RNA Transcripts. Viruses 2020; 12:v12050495. [PMID: 32365692 PMCID: PMC7290996 DOI: 10.3390/v12050495] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/24/2020] [Accepted: 04/27/2020] [Indexed: 02/06/2023] Open
Abstract
Restriction factors are structurally and functionally diverse cellular proteins that constitute a first line of defense against viral pathogens. Exceptions exist, but typically these proteins are upregulated by interferons (IFNs), target viral components, and are rapidly evolving due to the continuous virus–host arms race. Restriction factors may target HIV replication at essentially each step of the retroviral replication cycle, and the suppression of viral transcription and the degradation of viral RNA transcripts are emerging as major innate immune defense mechanisms. Recent data show that some antiviral factors, such as the tripartite motif-containing protein 22 (TRIM22) and the γ-IFN-inducible protein 16 (IFI16), do not target HIV-1 itself but limit the availability of the cellular transcription factor specificity protein 1 (Sp1), which is critical for effective viral gene expression. In addition, several RNA-interacting cellular factors including RNAse L, the NEDD4-binding protein 1 (N4BP1), and the zinc finger antiviral protein (ZAP) have been identified as important immune effectors against HIV-1 that may be involved in the maintenance of the latent viral reservoirs, representing the major obstacle against viral elimination and cure. Here, we review recent findings on specific cellular antiviral factors targeting HIV-1 transcription or viral RNA transcripts and discuss their potential role in viral latency.
Collapse
Affiliation(s)
- Rayhane Nchioua
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.N.); (M.B.)
| | - Matteo Bosso
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.N.); (M.B.)
| | - Dorota Kmiec
- Department of Infectious Diseases, King’s College London, Guy’s Hospital, London SE1 9RT, UK;
| | - Frank Kirchhoff
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany; (R.N.); (M.B.)
- Correspondence: ; Tel.: +49-731-5006-5150
| |
Collapse
|
49
|
Izumida M, Togawa K, Hayashi H, Matsuyama T, Kubo Y. Production of Vesicular Stomatitis Virus Glycoprotein-Pseudotyped Lentiviral Vector Is Enhanced by Ezrin Silencing. Front Bioeng Biotechnol 2020; 8:368. [PMID: 32411688 PMCID: PMC7201057 DOI: 10.3389/fbioe.2020.00368] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 04/02/2020] [Indexed: 11/17/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1)-based viral vector is widely used as a biomaterial to transfer a gene of interest into target cells in many biological study fields including gene therapy. Vesicular stomatitis virus glycoprotein (VSV-G)-containing HIV-1 vector much more efficiently transduces various mammalian cells than other viral envelope proteins-containing vectors. Understanding the mechanism would contribute to development of a novel method of efficient HIV-1 vector production. HIV-1 vector is generally constructed by transient transfection of human 293T or African green monkey COS7 cells. It was found in this study that HIV-1 Gag protein is constitutively digested in lysosomes of African green monkey cells. Surprisingly, VSV-G elevated HIV-1 Gag protein levels, suggesting that VSV-G protects Gag protein from the lysosomal degradation. Unphosphorylated ezrin, but not phosphorylated ezrin, was detected in COS7 cells, and ezrin silencing elevated Gag protein levels in the presence of VSV-G. Expression of unphosphorylated ezrin reduced Gag protein amounts. These results indicate that unphosphorylated ezrin proteins inhibit the VSV-G-mediated stabilization of HIV-1 Gag protein. Trafficking of HIV-1 Gag-associated intracellular vesicles may be controlled by ezrin. Finally, this study found that ezrin silencing yields higher amount of VSV-G-pseudotyped HIV-1 vector.
Collapse
Affiliation(s)
- Mai Izumida
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Kei Togawa
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hideki Hayashi
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Medical University Research Administrator, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Toshifumi Matsuyama
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Cancer Stem Cell Biology, Institute of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshinao Kubo
- Department of Molecular Microbiology and Immunology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Program for Nurturing Global Leaders in Tropical and Emerging Communicable Diseases, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Clinical Medicine, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| |
Collapse
|
50
|
Criscitiello MF, Kraev I, Petersen LH, Lange S. Deimination Protein Profiles in Alligator mississippiensis Reveal Plasma and Extracellular Vesicle-Specific Signatures Relating to Immunity, Metabolic Function, and Gene Regulation. Front Immunol 2020; 11:651. [PMID: 32411128 PMCID: PMC7198796 DOI: 10.3389/fimmu.2020.00651] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 03/23/2020] [Indexed: 12/13/2022] Open
Abstract
Alligators are crocodilians and among few species that endured the Cretaceous-Paleogene extinction event. With long life spans, low metabolic rates, unusual immunological characteristics, including strong antibacterial and antiviral ability, and cancer resistance, crocodilians may hold information for molecular pathways underlying such physiological traits. Peptidylarginine deiminases (PADs) are a group of calcium-activated enzymes that cause posttranslational protein deimination/citrullination in a range of target proteins contributing to protein moonlighting functions in health and disease. PADs are phylogenetically conserved and are also a key regulator of extracellular vesicle (EV) release, a critical part of cellular communication. As little is known about PAD-mediated mechanisms in reptile immunology, this study was aimed at profiling EVs and protein deimination in Alligator mississippiensis. Alligator plasma EVs were found to be polydispersed in a 50-400-nm size range. Key immune, metabolic, and gene regulatory proteins were identified to be posttranslationally deiminated in plasma and plasma EVs, with some overlapping hits, while some were unique to either plasma or plasma EVs. In whole plasma, 112 target proteins were identified to be deiminated, while 77 proteins were found as deiminated protein hits in plasma EVs, whereof 31 were specific for EVs only, including proteins specific for gene regulatory functions (e.g., histones). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis revealed KEGG pathways specific to deiminated proteins in whole plasma related to adipocytokine signaling, while KEGG pathways of deiminated proteins specific to EVs included ribosome, biosynthesis of amino acids, and glycolysis/gluconeogenesis pathways as well as core histones. This highlights roles for EV-mediated export of deiminated protein cargo with roles in metabolism and gene regulation, also related to cancer. The identification of posttranslational deimination and EV-mediated communication in alligator plasma revealed here contributes to current understanding of protein moonlighting functions and EV-mediated communication in these ancient reptiles, providing novel insight into their unusual immune systems and physiological traits. In addition, our findings may shed light on pathways underlying cancer resistance, antibacterial and antiviral resistance, with translatable value to human pathologies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX, United States
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX, United States
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes, United Kingdom
| | - Lene H. Petersen
- Department of Marine Biology, Texas A&M University at Galvestone, Galveston, TX, United States
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, United Kingdom
| |
Collapse
|