1
|
Avril A, Guillier S, Rasetti-Escargueil C. Development of Effective Medical Countermeasures Against the Main Biowarfare Agents: The Importance of Antibodies. Microorganisms 2024; 12:2622. [PMID: 39770824 PMCID: PMC11677989 DOI: 10.3390/microorganisms12122622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 12/05/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
The COVID-19 and mpox crisis has reminded the world of the potentially catastrophic consequences of biological agents. Aside from the natural risk, biological agents can also be weaponized or used for bioterrorism. Dissemination in a population or among livestock could be used to destabilize a nation by creating a climate of terror, by negatively impacting the economy and undermining institutions. The Centers for Disease Control and Prevention (CDC) classify biological agents into three categories (A or Tier 1, B and C) according to the risk they pose to the public and national security. Category A or Tier 1 consists of the six pathogens with the highest risk to the population (Bacillus anthracis, Yersinia pestis, Francisella tularensis, botulinum neurotoxins, smallpox and viral hemorrhagic fevers). Several medical countermeasures, such as vaccines, antibodies and chemical drugs, have been developed to prevent or cure the diseases induced by these pathogens. This review presents an overview of the primary medical countermeasures, and in particular, of the antibodies available against the six pathogens on the CDC's Tier 1 agents list, as well as against ricin.
Collapse
Affiliation(s)
- Arnaud Avril
- Unité Interaction Hôte-Pathogène, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France
| | - Sophie Guillier
- Unité Bactériologie, Département Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, 91220 Brétigny-sur-Orge, France;
- UMR_MD1, Inserm U1261, 91220 Brétigny sur Orge, France
| | | |
Collapse
|
2
|
Pereira KE, Deslouches JT, Deslouches B, Woodley SK. In Vitro Investigation of the Antibacterial Activity of Salamander Skin Peptides. Curr Microbiol 2023; 80:214. [PMID: 37195436 DOI: 10.1007/s00284-023-03320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 05/02/2023] [Indexed: 05/18/2023]
Abstract
Given the current and future costs of antibiotic-resistant bacteria to human health and economic productivity, there is an urgent need to develop new antimicrobial compounds. Antimicrobial peptides are a promising alternative to conventional antibiotics and other antimicrobials. Amphibian skin is a rich source of bioactive compounds, but the antibacterial properties of salamander skin peptides have been neglected. Here, we examined the in vitro ability of skin peptides from 9 species of salamander representing 6 salamander families to inhibit the growth of ESKAPE pathogens, which are bacteria that have developed resistance to conventional antibiotics. We also examined whether the skin peptides caused lysis of human red blood cells. Skin peptides from Amphiuma tridactylum had the greatest antimicrobial properties, completely inhibiting the growth of all bacterial strains except for Enterococcus faecium. Likewise, skin peptides from Cryptobranchus alleganiensis completely inhibited the growth of several of the bacterial strains. In contrast, skin peptide mixtures from Ambystoma maculatum, Desmognathus fuscus, Eurycea bislineata, E. longicauda, Necturus beyeri, N. maculosus, and Siren intermedia did not completely inhibit bacterial growth even at the highest concentrations. Finally, none of the skin peptide mixtures caused lysis of human red blood cells. Together, we demonstrate that salamander skin produces peptides with potent antibacterial properties. It remains to elucidate the peptide sequences and their antibacterial mechanisms.
Collapse
Affiliation(s)
- Kenzie E Pereira
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | | | - Berthony Deslouches
- Department of Environmental and Occupational Health, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sarah K Woodley
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA.
| |
Collapse
|
3
|
Pathogen-selective killing by guanylate-binding proteins as a molecular mechanism leading to inflammasome signaling. Nat Commun 2022; 13:4395. [PMID: 35906252 PMCID: PMC9338265 DOI: 10.1038/s41467-022-32127-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Inflammasomes are cytosolic signaling complexes capable of sensing microbial ligands to trigger inflammation and cell death responses. Here, we show that guanylate-binding proteins (GBPs) mediate pathogen-selective inflammasome activation. We show that mouse GBP1 and GBP3 are specifically required for inflammasome activation during infection with the cytosolic bacterium Francisella novicida. We show that the selectivity of mouse GBP1 and GBP3 derives from a region within the N-terminal domain containing charged and hydrophobic amino acids, which binds to and facilitates direct killing of F. novicida and Neisseria meningitidis, but not other bacteria or mammalian cells. This pathogen-selective recognition by this region of mouse GBP1 and GBP3 leads to pathogen membrane rupture and release of intracellular content for inflammasome sensing. Our results imply that GBPs discriminate between pathogens, confer activation of innate immunity, and provide a host-inspired roadmap for the design of synthetic antimicrobial peptides that may be of use against emerging and re-emerging pathogens. Guanylate-binding proteins (GBP) have a function in inflammasome formation and pathogen defence. Here the authors show that these GBP proteins are able to kill certain bacteria and promote selective inflammasome activation and that this is mediated by specific GBP protein regions.
Collapse
|
4
|
ELSALEM L, KHASAWNEH A, AL SHEBOUL S. WLBU2 Antimicrobial Peptide as a Potential Therapeutic for Treatment of Resistant Bacterial Infections. Turk J Pharm Sci 2022; 19:110-116. [DOI: 10.4274/tjps.galenos.2020.43078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
5
|
Elsalem L, Al Sheboul S, Khasawneh A. Synergism between WLBU2 peptide and antibiotics against methicillin-resistant Staphylococcus aureus and extended-spectrum beta-lactamase-producing Enterobacter cloacae. J Appl Biomed 2021; 19:14-25. [PMID: 34907712 DOI: 10.32725/jab.2021.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 01/04/2021] [Indexed: 02/06/2023] Open
Abstract
Infections caused by Methicillin-Resistant Staphylococcus aureus (MRSA) and Extended-Spectrum Beta-Lactamase (ESBL) producing Enterobacter cloacae are considered as major therapeutic challenge due to their multidrug-resistant (MDR) phenotype against conventional antibiotics. WLBU2 is an engineered cationic peptide with potent antimicrobial activity. This in-vitro study aimed to evaluate the effects of WLBU2 against clinical isolates of the aforementioned bacteria and assess whether synergistic effects can be achieved upon combination with conventional antibiotics. The minimum inhibitory concentrations (MICs) of antimicrobial agents against bacterial clinical isolates (n = 30/strain) were determined using the microbroth dilution assay. The minimum bactericidal concentrations (MBCs) of WLBU2 were determined from microbroth dilution (MICs) tests by subculturing to agar plates. MICs of WLBU2 were evaluated in the presence of physiological concentrations of salts including NaCl, CaCl2 and MgCl2. To identify bacterial resistance profile, MRSA were treated with Oxacillin, Erythromycin and Vancomycin, while Ceftazidime, Ceftriaxone, Ciprofloxacin and Imipenem were used against Enterobacter cloacae. Combination treatments of antibiotics and sub-inhibitory concentrations of WLBU2 were conducted when MICs indicated intermediate/resistant susceptibility. The MICs/MBCs of WLBU2 were identical for each respective bacteria with values of 0.78-6.25 μM and 1.5-12.5 μM against MRSA and Enterobacter cloacae, respectively. WLBU2 was found as salt resistant. Combination treatment showed that synergistic and additive effects were achieved in many isolates of MRSA and Enterobacter cloacae. Our data revealed that WLBU2 is a potent peptide with bactericidal activity. In addition, it demonstrated the selective advantage of WLBU2 as a potential therapeutic agent under physiological solutions. Our findings also support the combination of WLBU2 and conventional antibiotics with potential application for treatment of resistant bacteria.
Collapse
Affiliation(s)
- Lina Elsalem
- Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Suhaila Al Sheboul
- Jordan University of Science and Technology, Faculty of Applied Medical Sciences, Department of Medical Laboratory Sciences, Irbid, Jordan
| | - Ayat Khasawneh
- Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan.,The Jordanian Royal Medical Services, Department of Clinical Pathology and Microbiology, Amman, Jordan
| |
Collapse
|
6
|
Lipopolysaccharide of the Yersinia pseudotuberculosis Complex. Biomolecules 2021; 11:biom11101410. [PMID: 34680043 PMCID: PMC8533242 DOI: 10.3390/biom11101410] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/27/2021] [Accepted: 09/21/2021] [Indexed: 11/16/2022] Open
Abstract
Lipopolysaccharide (LPS), localized in the outer leaflet of the outer membrane, serves as the major surface component of the Gram-negative bacterial cell envelope responsible for the activation of the host's innate immune system. Variations of the LPS structure utilized by Gram-negative bacteria promote survival by providing resistance to components of the innate immune system and preventing recognition by TLR4. This review summarizes studies of the biosynthesis of Yersinia pseudotuberculosis complex LPSs, and the roles of their structural components in molecular mechanisms of yersiniae pathogenesis and immunogenesis.
Collapse
|
7
|
Sebbane F, Lemaître N. Antibiotic Therapy of Plague: A Review. Biomolecules 2021; 11:724. [PMID: 34065940 PMCID: PMC8151713 DOI: 10.3390/biom11050724] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/04/2021] [Accepted: 05/07/2021] [Indexed: 12/15/2022] Open
Abstract
Plague-a deadly disease caused by the bacterium Yersinia pestis-is still an international public health concern. There are three main clinical forms: bubonic plague, septicemic plague, and pulmonary plague. In all three forms, the symptoms appear suddenly and progress very rapidly. Early antibiotic therapy is essential for countering the disease. Several classes of antibiotics (e.g., tetracyclines, fluoroquinolones, aminoglycosides, sulfonamides, chloramphenicol, rifamycin, and β-lactams) are active in vitro against the majority of Y. pestis strains and have demonstrated efficacy in various animal models. However, some discrepancies have been reported. Hence, health authorities have approved and recommended several drugs for prophylactic or curative use. Only monotherapy is currently recommended; combination therapy has not shown any benefits in preclinical studies or case reports. Concerns about the emergence of multidrug-resistant strains of Y. pestis have led to the development of new classes of antibiotics and other therapeutics (e.g., LpxC inhibitors, cationic peptides, antivirulence drugs, predatory bacteria, phages, immunotherapy, host-directed therapy, and nutritional immunity). It is difficult to know which of the currently available treatments or therapeutics in development will be most effective for a given form of plague. This is due to the lack of standardization in preclinical studies, conflicting data from case reports, and the small number of clinical trials performed to date.
Collapse
Affiliation(s)
- Florent Sebbane
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Nadine Lemaître
- Univ. Lille, Inserm, CNRS, Institut Pasteur Lille, U1019—UMR 9017—CIIL—Center for Infection and Immunity of Lille, F-59000 Lille, France
- Laboratoire de Bactériologie-Hygiène, Centre Hospitalier Universitaire Amiens Picardie, UR 4294, Agents Infectieux, Résistance et Chimiothérapie (AGIR), Université de Picardie Jules Verne, F-80000 Amiens, France
| |
Collapse
|
8
|
Beumer JH, Guo J, Ray EC, Scemama J, Parise RA, Deslouches B, Steckbeck JD, Montelaro RC, Eiseman JL. Mass Balance Study of the Engineered Cationic Antimicrobial Peptide, WLBU2, Following a Single Intravenous Dose of 14C-WLBU2 in Mice. Curr Rev Clin Exp Pharmacol 2020; 16:263-272. [PMID: 32778037 DOI: 10.2174/1574884715666200810094201] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/17/2020] [Accepted: 06/15/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND To address multidrug resistance, we developed engineered Cationic Antimicrobial Peptides (eCAPs). Lead eCAP WLBU2 displays potent activity against drug-resistant bacteria and effectively treats lethal bacterial infections in mice, reducing bacterial loads to undetectable levels in diverse organs. OBJECTIVE To support the development of WLBU2, we conducted a mass balance study. METHODS CD1 mice were administered 10, 15, 20 and 30 mg/kg of QDx5 WLBU2 or a single dose of [14C]-WLBU2 at 15 mg/kg IV. Tolerability, tissue distribution and excretion were evaluated with liquid scintillation and HPLC-radiochromatography. RESULTS The maximum tolerated dose of WLBU2 is 20 mg/kg IV. We could account for greater than >96% of the radioactivity distributed within mouse tissues at 5 and 15 min. By 24h, only ~40-50% of radioactivity remained in the mice. The greatest % of the dose was present in liver, accounting for ~35% of radioactivity at 5 and 15 min, and ~ 8% of radioactivity remained at 24h. High radioactivity was also present in kidneys, plasma, red blood cells and lungs, while less than 0.2% of radioactivity was present in brain, fat, or skeletal muscle. Urinary and fecal excretion accounted for 12.5 and 2.2% of radioactivity at 24h. CONCLUSION WLBU2 distributes widely to mouse tissues and is rapidly cleared with a terminal radioactivity half-life of 22 h, a clearance of 27.4 mL/h/kg, and a distribution volume of 0.94 L/kg. At 2-100 μg-eq/g, the concentrations of 14C-WLBU2 appear high enough in the tissues to account for the inhibition of microbial growth.
Collapse
Affiliation(s)
- Jan H Beumer
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Ave. Pittsburgh, PA15213, United States
| | - Jianxia Guo
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Ave. Pittsburgh, PA15213, United States
| | - Evan C Ray
- Department of Medicine Renal-Electrolyte Division, University of Pittsburgh School of Medicine, 3550 Terrace Street. Pittsburgh, PA15261, United States
| | - Jonas Scemama
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Ave. Pittsburgh, PA15213, United States
| | - Robert A Parise
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Ave. Pittsburgh, PA15213, United States
| | - Berthony Deslouches
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, 3550 Terrace Street. Pittsburgh, PA15261, United States
| | - Jonathan D Steckbeck
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, 3550 Terrace Street. Pittsburgh, PA15261, United States
| | - Ronald C Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, 3550 Terrace Street. Pittsburgh, PA15261, United States
| | - Julie L Eiseman
- Cancer Therapeutics Program, UPMC Hillman Cancer Center, 5117 Centre Ave. Pittsburgh, PA15213, United States
| |
Collapse
|
9
|
Deslouches B, Montelaro RC, Urish KL, Di YP. Engineered Cationic Antimicrobial Peptides (eCAPs) to Combat Multidrug-Resistant Bacteria. Pharmaceutics 2020; 12:pharmaceutics12060501. [PMID: 32486228 PMCID: PMC7357155 DOI: 10.3390/pharmaceutics12060501] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 12/12/2022] Open
Abstract
The increasing rate of antibiotic resistance constitutes a global health crisis. Antimicrobial peptides (AMPs) have the property to selectively kill bacteria regardless of resistance to traditional antibiotics. However, several challenges (e.g., reduced activity in the presence of serum and lack of efficacy in vivo) to clinical development need to be overcome. In the last two decades, we have addressed many of those challenges by engineering cationic AMPs de novo for optimization under test conditions that typically inhibit the activities of natural AMPs, including systemic efficacy. We reviewed some of the most promising data of the last two decades in the context of the advancement of the field of helical AMPs toward clinical development.
Collapse
Affiliation(s)
- Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
- Correspondence: ; Tel.: +1-412-624-0103
| | - Ronald C. Montelaro
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA 15219, USA;
| | - Ken L. Urish
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA;
| | - Yuanpu P. Di
- Department of Environmental and Occupational Health, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA 15261, USA;
| |
Collapse
|
10
|
Baró A, Mora I, Montesinos L, Montesinos E. Differential Susceptibility of Xylella fastidiosa Strains to Synthetic Bactericidal Peptides. PHYTOPATHOLOGY 2020; 110:1018-1026. [PMID: 31985337 DOI: 10.1094/phyto-12-19-0477-r] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The kinetics of cell inactivation and the susceptibility of Xylella fastidiosa subspecies fastidiosa, multiplex, and pauca to synthetic antimicrobial peptides from two libraries (CECMEL11 and CYCLO10) were studied. The bactericidal effect was dependent on the relative concentrations of peptide and bacterial cells, and was influenced by the diluent, either buffer or sap. The most bactericidal and lytic peptide was BP178, an enlarged derivative of the amphipathic cationic linear undecapeptide BP100. The maximum reduction in survivors after BP178 treatment occurred within the first 10 to 20 min of contact and at micromolar concentrations (<10 μM), resulting in pore formation in cell membranes, abundant production of outer membrane vesicles, and lysis. A threshold ratio of 109 molecules of peptide per bacterial cell was estimated to be necessary to initiate cell inactivation. There was a differential susceptibility to BP178 among strains, with DD1 being the most resistant and CFBP 8173 the most susceptible. Moreover, strains showed a proportion of cells under the viable but nonculturable state, which was highly variable among strains. These findings may have implications for managing the diseases caused by X. fastidiosa.
Collapse
Affiliation(s)
- Aina Baró
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Isabel Mora
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Laura Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| | - Emilio Montesinos
- Institute of Food and Agricultural Technology-XaRTA-CIDSAV, University of Girona, C/ Maria Aurèlia Capmany 61, 17003 Girona, Spain
| |
Collapse
|
11
|
Cote CK, Blanco II, Hunter M, Shoe JL, Klimko CP, Panchal RG, Welkos SL. Combinations of early generation antibiotics and antimicrobial peptides are effective against a broad spectrum of bacterial biothreat agents. Microb Pathog 2020; 142:104050. [PMID: 32050093 DOI: 10.1016/j.micpath.2020.104050] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 10/25/2022]
Abstract
The misuse of infectious disease pathogens as agents of deliberate attack on civilians and military personnel is a serious national security concern, which is exacerbated by the emergence of natural or genetically engineered multidrug resistant strains. In this study, the therapeutic potential of combinations of an antibiotic and a broad-spectrum antimicrobial peptide (AMP) was evaluated against five bacterial biothreats, the etiologic agents of glanders (Burkholderia mallei), melioidosis (Burkholderia pseudomallei), plague (Yersinia pestis), tularemia (Francisella tularensis), and anthrax (Bacillus anthracis). The therapeutics included licensed early generation antibiotics which are now rarely used. Three antibiotics and one 24- amino acid AMP were selected based on MIC assay data. Combinations of the AMP and tigecycline, minocycline, or novobiocin were screened for synergistic activity by checkerboard MIC assay. The combinations each enhanced the susceptibility of several strains. The tetracycline-peptide combinations increased the sensitivities of Y. pestis, F. tularensis, B. anthracis and B. pseudomallei, and the novobiocin-AMP combination augmented the sensitivity of all five. In time-kill assays, down-selected combinations of the peptide and minocycline or tigecycline enhanced killing of B. anthracis, Y. pestis, F. tularensis, and Burkholderia mallei but not B. pseudomallei. The novobiocin-AMP pair significantly reduced viability of all strains except B. mallei, which was very sensitive to the antibiotic alone. The results suggested that antibiotic-AMP combinations are useful tools for combating diverse pathogens. Future studies employing cell culture and animal models will utilize virulent strains of the agents to investigate the in vivo availability, host cytotoxicity, and protective efficacy of these therapeutics.
Collapse
Affiliation(s)
- Christopher K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| | - Irma I Blanco
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Jennifer L Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - Christopher P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | | | - Susan L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
12
|
Epinecidin-1 Protects against Methicillin Resistant Staphylococcus aureus Infection and Sepsis in Pyemia Pigs. Mar Drugs 2019; 17:md17120693. [PMID: 31835381 PMCID: PMC6950563 DOI: 10.3390/md17120693] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 12/03/2019] [Accepted: 12/05/2019] [Indexed: 12/16/2022] Open
Abstract
Methicillin resistant Staphylococcus aureus (MRSA) may be found on the skin, nose, and throats of long-term hospitalized patients. While MRSA infections are usually minor, serious infections and death may occur in immunocompromised or diabetic patients, or after exposure of MRSA to blood. This report demonstrates that the antimicrobial peptide (AMP) epinecidin-1 (Epi-1) efficiently protects against MRSA infection in a pyemia pig model. We first found that Epi-1 exhibits bactericidal activity against MRSA. Next, pharmacokinetic analysis revealed that Epi-1 was stable in serum for 4 h after injection, followed by a gradual decrease. This pharmacokinetic profile suggested Epi-1 may bind serum albumin, which was confirmed in vitro. Harmful effects were not observed for doses up to 100 mg/kg body weight in pigs. When Epi-1 was supplied as a curative agent 30 min post-infection, MRSA-induced abnormalities in blood uric acid (UA), blood urea nitrogen (BUN), creatine (CRE), GOT, and GPT levels were restored to normal levels. We further showed that the bactericidal activity of Epi-1 was higher than that of the antibiotic drug vancomycin. Epi-1 significantly decreased MRSA counts in the blood, liver, kidney, heart, and lungs of infected pigs. Elevated levels of serum C reactive protein (CRP), proinflammatory cytokine IL6, IL1β, and TNFα were also attenuated by Epi-1 treatment. Moreover, the MRSA genes, enterotoxin (et)-A, et-B, intrinsic methicillin resistance A (mecA), and methicillin resistance factor A (femA), were significantly reduced or abolished in MRSA-infected pigs after treatment with Epi-1. Hematoxylin and eosin staining of heart, liver, lung, and kidney sections indicated that Epi-1 attenuated MRSA toxicity in infected pigs. A survival study showed that the pyemia pigs infected with MRSA alone died within a week, whereas the pigs post-treated with 2.5 mg/kg Epi-1 were completely protected against death. The present investigation, thus, demonstrates that Epi-1 effectively protects pyemia pigs against pathogenic MRSA without major toxic side effects.
Collapse
|
13
|
Tapia D, Sanchez-Villamil JI, Torres AG. Emerging role of biologics for the treatment of melioidosis and glanders. Expert Opin Biol Ther 2019; 19:1319-1332. [PMID: 31590578 PMCID: PMC6981286 DOI: 10.1080/14712598.2019.1677602] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/03/2019] [Indexed: 12/15/2022]
Abstract
Introduction: Two important pathogenic species within the genus Burkholderia, namely Burkholderia pseudomallei (Bpm) and Burkholderia mallei (Bm), are the causative agents of the life-threatening diseases melioidosis and glanders, respectively. Due to their high mortality rate and potential for aerosolization, they have gained interest as potential biothreat agents and are classified as Tier 1 Select Agents.Areas covered: The manuscript provides an overview of the literature covering the efforts taken in the last 10 years to develop new therapeutics measures against both Bpm and Bm, with attention on novel therapeutic agents.Expert Opinion: As a result of the complicated antibiotic regimens necessary to treat these infections, development of novel therapeutics is needed to treat both diseases. In recent years, the understanding of the pathogenesis of Burkholderia has improved significantly and so have the efforts to develop novel therapeutic agents with high efficacy, either alone, or in combination with conventional antibiotics.
Collapse
Affiliation(s)
- Daniel Tapia
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Javier I. Sanchez-Villamil
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Alfredo G. Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| |
Collapse
|
14
|
Mohammed I, Said DG, Nubile M, Mastropasqua L, Dua HS. Cathelicidin-Derived Synthetic Peptide Improves Therapeutic Potential of Vancomycin Against Pseudomonas aeruginosa. Front Microbiol 2019; 10:2190. [PMID: 31608030 PMCID: PMC6761703 DOI: 10.3389/fmicb.2019.02190] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022] Open
Abstract
Pseudomonas aeruginosa (PA) is the leading cause of corneal blindness worldwide. A constant increase in multi-drug resistant PA strains have heightened the challenge of effectively managing corneal infections with conventional antibiotics. Antimicrobial peptides are promising antibiotic analogs with a unique mode of action. Cathelicidin-derived shorter peptides (FK13 and FK16) have previously been shown to kill a range of pathogens in both in vitro and in vivo systems. Here, our aim was to exploit the potential of FK13 or FK16 to enhance the anti-Pseudomonas activity of vancomycin, which normally has low clinical efficacy against PA. Our results have demonstrated that FK16 is more potent than FK13 against different PA strains including a clinical isolate from a patient's ocular surface. FK16 was shown to enhance the membrane permeability of PAO1 at sub-inhibitory concentrations. Moreover, FK16 at lower concentrations was shown to increase the antibacterial susceptibility of vancomycin against PA strains up to eightfold. The bactericidal synergism between FK16 and vancomycin was shown to be stable in the presence of physiological tear salt concentration and did not cause toxic effects on the human corneal epithelial cells and human red blood cells. Our results have revealed that sub-inhibitory concentration of FK16 could augment the antimicrobial effects of vancomycin against PA. It is anticipated that the future exploitation of the peptide design approach may enhance the effectiveness of FK16 and its application as an adjuvant to antibiotic therapy for the treatment of multi-drug resistant infections.
Collapse
Affiliation(s)
- Imran Mohammed
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Dalia G Said
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Mario Nubile
- Ophthalmology Clinic, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy
| | | | - Harminder S Dua
- Academic Ophthalmology, Division of Clinical Neuroscience, School of Medicine, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
15
|
Swedan S, Shubair Z, Almaaytah A. Synergism of cationic antimicrobial peptide WLBU2 with antibacterial agents against biofilms of multi-drug resistant Acinetobacter baumannii and Klebsiella pneumoniae. Infect Drug Resist 2019; 12:2019-2030. [PMID: 31372010 PMCID: PMC6636432 DOI: 10.2147/idr.s215084] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/23/2019] [Indexed: 11/23/2022] Open
Abstract
Purpose The activity of the cationic antimicrobial peptide WLBU2 was evaluated against planktonic cells and biofilms of multi-drug resistant (MDR) Acinetobacter baumannii and Klebsiella pneumoniae, alone and in combination with classical antimicrobial agents. Methods Control American Type Culture Collection (ATCC) strains and MDR clinical isolates of A. baumannii and K. pneumoniae were utilized. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of WLBU2 alone and in combination with antimicrobials were determined by classical methods. The Calgary biofilm device was used to determine the minimum biofilm eradication concentration (MBEC). The MTT assay was used to determine the cytotoxicity of agents on eukaryotic cells. The electrophoretic mobility shift assay was used to evaluate the ability of WLBU2 to bind bacterial DNA. Results The WLBU2 MIC and MBC values were identical indicating bactericidal activity. The MIC/MBC values ranged from 1.5625 to 12.5 µM. At these concentrations, Vero cells and human skin fibroblasts were viable. The MBEC of WLBU2 ranged from 25 to 200 µM. A significant loss of eukaryotic cell viability was observed at the MBEC range. The combination of sub-inhibitory concentrations of WLBU2 with amoxicillin-clavulanate or ciprofloxacin for K. pneumoniae, and with tobramycin or imipenem for A. baumannii, demonstrated synergism, leading to a significant decrease in MIC and MBEC values for some isolates and ATCC strains. However, all combinations were associated with considerable loss in eukaryotic cells’ viability. WLBU2 did not demonstrate the ability to bind bacterial plasmid DNA. Conclusion WLBU2 in combination with antimicrobials holds promise in eradication of MDR pathogens.
Collapse
Affiliation(s)
- Samer Swedan
- Jordan University of Science and Technology, Department of Medical Laboratory Sciences, Irbid, Jordan
| | - Zaina Shubair
- Jordan University of Science and Technology, Department of Medical Laboratory Sciences, Irbid, Jordan
| | - Ammar Almaaytah
- Jordan University of Science and Technology, Department of Pharmaceutical Technology, Irbid, Jordan
| |
Collapse
|
16
|
Yu Z, Deslouches B, Walton WG, Redinbo MR, Di YP. Enhanced biofilm prevention activity of a SPLUNC1-derived antimicrobial peptide against Staphylococcus aureus. PLoS One 2018; 13:e0203621. [PMID: 30216370 PMCID: PMC6138395 DOI: 10.1371/journal.pone.0203621] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/23/2018] [Indexed: 11/18/2022] Open
Abstract
SPLUNC1 is a multifunctional protein of the airway with antimicrobial properties. We previously reported that it displayed antibiofilm activities against P. aeruginosa. The goal of this study was to determine whether (1) the antibiofilm property is broad (including S. aureus, another prevalent organism in cystic fibrosis); (2) the α4 region is responsible for such activity; and (3), if so, this motif could be structurally optimized as an antimicrobial peptide with enhanced activities. We used S. aureus biofilm-prevention assays to determine bacterial biomass in the presence of SPLUNC1 and SPLUNC1Δα4 recombinant proteins, or SPLUNC1-derived peptides (α4 and α4M1), using the well-established crystal-violet biofilm detection assay. The SPLUNC1Δα4 showed markedly reduced biofilm prevention compared to the parent protein. Surprisingly, the 30-residue long α4 motif alone demonstrated minimal biofilm prevention activities. However, structural optimization of the α4 motif resulted in a modified peptide (α4M1) with significantly enhanced antibiofilm properties against methicillin–sensitive (MSSA) and–resistant (MRSA) S. aureus, including six different clinical strains of MRSA and the well-known USA300. Hemolytic activity was undetectable at up to 100μM for the peptides. The data warrant further investigation of α4-derived AMPs to explore the potential application of antimicrobial peptides to combat bacterial biofilm-related infections.
Collapse
Affiliation(s)
- Zhongjie Yu
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Center for Molecular Genetics, Institute for Translational Medicine, Qingdao University, Qingdao, China
| | - Berthony Deslouches
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- Department of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, PA, United States of America
| | - William G. Walton
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Matthew R. Redinbo
- Departments of Chemistry, Biochemistry, and Microbiology, University of North Carolina, Chapel Hill, NC, United States of America
| | - Y. Peter Di
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, PA, United States of America
- * E-mail:
| |
Collapse
|
17
|
Enhanced capture of bacteria and endotoxin by antimicrobial WLBU2 peptide tethered on polyethylene oxide spacers. Biointerphases 2017; 12:05G603. [DOI: 10.1116/1.4997049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
18
|
Freudenthal O, Quilès F, Francius G. Discrepancies between Cyclic and Linear Antimicrobial Peptide Actions on the Spectrochemical and Nanomechanical Fingerprints of a Young Biofilm. ACS OMEGA 2017; 2:5861-5872. [PMID: 30023754 PMCID: PMC6044769 DOI: 10.1021/acsomega.7b00644] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 08/30/2017] [Indexed: 06/08/2023]
Abstract
Antimicrobial peptides (AMPs) are currently known for their potential as an alternative to conventional antibiotics and new weapons against drug-resistant bacteria and biofilms. In the present work, the mechanism of action of a cyclic (colistin) and a linear (catestatin) AMP on a young E. coli biofilm was deciphered from the molecular to the cellular scale. To this end, infrared spectroscopy (attenuated total reflection-Fourier transform infrared) assisted by chemometric analysis was combined with fluorescence and atomic force microscopies to address the very different behaviors of both AMPs. Indeed, the colistin dramatically damaged the bacterial cell wall and the metabolism even though its action was not homogeneous over the whole bacterial population and repopulation can be observed after peptide removal. Conversely, catestatin did not lead to major damages in the bacterial morphology but its action was homogeneous over the whole bacterial population and the cells were unable to regrow after the peptide treatment. Our results strongly suggested that contrary to the cyclic molecule, the linear one is able to cause irreversible damages in the bacterial membrane concomitantly to a strong impact on the bacterial metabolism.
Collapse
Affiliation(s)
- Oona Freudenthal
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Fabienne Quilès
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| | - Grégory Francius
- Université
de Lorraine, Laboratoire de Chimie Physique et Microbiologie pour
l’Environnement, LCPME,
UMR 7564, Villers-lès-Nancy, F-54600, France
- CNRS,
Laboratoire de Chimie Physique et Microbiologie pour l’Environnement,
LCPME, UMR 7564, Villers-lès-Nancy, F-54600, France
| |
Collapse
|
19
|
Melvin JA, Montelaro RC, Bomberger JM. Clinical potential of engineered cationic antimicrobial peptides against drug resistant biofilms. Expert Rev Anti Infect Ther 2016; 14:989-991. [PMID: 27626708 DOI: 10.1080/14787210.2016.1236687] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jeffrey A Melvin
- a Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , PA , USA
| | - Ronald C Montelaro
- a Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , PA , USA
| | - Jennifer M Bomberger
- a Department of Microbiology and Molecular Genetics , University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
20
|
Findlay F, Proudfoot L, Stevens C, Barlow PG. Cationic host defense peptides; novel antimicrobial therapeutics against Category A pathogens and emerging infections. Pathog Glob Health 2016; 110:137-47. [PMID: 27315342 DOI: 10.1080/20477724.2016.1195036] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Cationic Host Defense Peptides (HDP, also known as antimicrobial peptides) are crucial components of the innate immune system and possess broad-spectrum antibacterial, antiviral, and immunomodulatory activities. They can contribute to the rapid clearance of biological agents through direct killing of the organisms, inhibition of pro-inflammatory mediators such as lipopolysaccharide, and by modulating the inflammatory response to infection. Category A biological agents and materials, as classified by the United States National Institutes for Health, the US Centers for Disease Control and Prevention, and the US Department of Homeland Security, carry the most severe threat in terms of human health, transmissibility, and preparedness. As such, there is a pressing need for novel frontline approaches for prevention and treatment of diseases caused by these organisms, and exploiting the broad antimicrobial activity exhibited by cationic host defense peptides represents an exciting priority area for clinical research. This review will summarize what is known about the antimicrobial and antiviral effects of the two main families of cationic host defense peptides, cathelicidins, and defensins in the context of Category A biological agents which include, but are not limited to; anthrax (Bacillus anthracis), plague (Yersinia pestis), smallpox (Variola major), tularemia (Francisella tularensis). In addition, we highlight priority areas, particularly emerging viral infections, where more extensive research is urgently required.
Collapse
Affiliation(s)
- Fern Findlay
- a School of Life, Sport and Social Sciences , Edinburgh Napier University , Sighthill Campus, Edinburgh EH11 4BN , UK
| | - Lorna Proudfoot
- a School of Life, Sport and Social Sciences , Edinburgh Napier University , Sighthill Campus, Edinburgh EH11 4BN , UK
| | - Craig Stevens
- a School of Life, Sport and Social Sciences , Edinburgh Napier University , Sighthill Campus, Edinburgh EH11 4BN , UK
| | - Peter G Barlow
- a School of Life, Sport and Social Sciences , Edinburgh Napier University , Sighthill Campus, Edinburgh EH11 4BN , UK
| |
Collapse
|