1
|
Jia L, Deng Y, Xu Y, Wu X, Liu D, Li M, Huang S, Zhang Y, Du A, Liu H, Tian Y. Development and validation of a nomogram for oral mucosal membrane pressure injuries in ICU patients: A prospective cohort study. J Clin Nurs 2024; 33:4112-4123. [PMID: 38797947 DOI: 10.1111/jocn.17296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/12/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
AIMS Establishing a nomogram to estimate the probability of oral mucosal membrane pressure injury of endotracheal tube-intubated hospitalized patients in intensive care unit. DESIGN Multicentre prospective cohort study. METHODS Using Lasso regression and COX regression, variable selection was performed on demographic, clinical and laboratory data of 1037 ICU endotracheal tube-intubated hospitalized patients from West China Hospital, to construct a nomogram. External validation was conducted on 484 ICU endotracheal tube-intubated patients from People's Hospital of Zhongjiang County. RESULTS Among 38 potential predictors, five variables emerged as independent predictors, integrated into the nomogram: administration of antibiotics, nutritional therapy duration, agitation, hypotension and albumin levels. CONCLUSIONS We established a nomogram based on the hospital characteristics of ICU endotracheal tube-intubated patients, aiding in the prediction of the occurrence of oral mucosal membrane pressure injury. REPORTING METHOD The study followed TRIPOD guidelines. RELEVANCE TO CLINICAL PRACTICE The nomogram we developed can assist clinical worker in better identifying at-risk patients and risk factors. It enables the implementation of evidence-based nursing interventions in care to prevent the development of oral mucosal membrane pressure injury. TRIAL REGISTRATION The study has been registered with the Chinese Clinical Trial Registry (http://www.chictr.org.cn) under registration number ChiCTR2200056615.
Collapse
Affiliation(s)
- Lingli Jia
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yuchun Deng
- Department of Critical Care Medicine, People's Hospital of Zhongjiang County, Zhongjiang, Sichuan Province, China
| | - Yu Xu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Xiaoli Wu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Dan Liu
- Department of Critical Care Medicine, People's Hospital of Zhongjiang County, Zhongjiang, Sichuan Province, China
| | - Muying Li
- Department of Critical Care Medicine, People's Hospital of Zhongjiang County, Zhongjiang, Sichuan Province, China
| | - Shijun Huang
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yaodan Zhang
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Aiping Du
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Huan Liu
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Yongming Tian
- Department of Critical Care Medicine, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
2
|
Hemmati J, Nazari M, Abolhasani FS, Ahmadi A, Asghari B. In vitro investigation of relationship between quorum-sensing system genes, biofilm forming ability, and drug resistance in clinical isolates of Pseudomonas aeruginosa. BMC Microbiol 2024; 24:99. [PMID: 38528442 DOI: 10.1186/s12866-024-03249-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 03/04/2024] [Indexed: 03/27/2024] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is an opportunistic pathogen in the health-care systems and one of the primary causative agents with high mortality in hospitalized patients, particularly immunocompromised. The limitation of effective antibiotic administration in multidrug-resistant and extensively drug-resistant P. aeruginosa isolates leads to the development of nosocomial infections and health problems. Quorum sensing system contributes to biofilm formation, expression of bacterial virulence factors, and development of drug resistance, causing prolonged patient infections. Therefore, due to the significance of the quorum sensing system in increasing the pathogenicity of P. aeruginosa, the primary objective of our study was to investigate the frequency of quorum sensing genes, as well as the biofilm formation and antibiotic resistance pattern among P. aeruginosa strains. METHODS A total of 120 P. aeruginosa isolates were collected from different clinical specimens. The disk diffusion method was applied to detect the antibiotic resistance pattern of P. aeruginosa strains. Also, the microtiter plate method was carried out to evaluate the biofilm-forming ability of isolates. Finally, the frequency of rhlI, rhlR, lasI, and lasR genes was examined by the polymerase chain reaction method. RESULTS In total, 88.3% P. aeruginosa isolates were found to be multidrug-resistant, of which 30.1% had extensively drug-resistant pattern. The highest and lowest resistance rates were found against ceftazidime (75.0%) and ciprofloxacin (46.6%), respectively. Also, 95.8% of isolates were able to produce biofilm, of which 42.5%, 33.3%, and 20.0% had strong, moderate, and weak biofilm patterns, respectively. The frequency of quorum sensing genes among all examined strains was as follows: rhlI (81.6%), rhlR (90.8%), lasI (89.1%), and lasR (78.3%). The most common type of quorum sensing genes among multidrug-resistant isolates were related to rhlR and lasI genes with 94.3%. Furthermore, rhlI, rhlR, and lasI genes were positive for all extensively drug-resistant isolates. However, the lasR gene had the lowest frequency among both multidrug-resistant (83.0%) and extensively drug-resistant (90.6%) isolates. Moreover, rhlR (94.7%) and lasR (81.7%) genes had the highest and lowest prevalence among biofilm-forming isolates, respectively. CONCLUSION Our findings disclosed the significantly high prevalence of drug resistance among P. aeruginosa isolates. Also, the quorum sensing system had a significant correlation with biofilm formation and drug resistance, indicating the essential role of this system in the emergence of nosocomial infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Jaber Hemmati
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Nazari
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Fatemeh Sadat Abolhasani
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amjad Ahmadi
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran.
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Czarnowski M, Słowińska M, Sawieljew M, Wnorowska U, Daniluk T, Król G, Karasiński M, Okła S, Savage PB, Piktel E, Bucki R. Efficacy of Ceragenins in Controlling the Growth of Oral Microorganisms: Implications for Oral Hygiene Management. Pharmaceuticals (Basel) 2024; 17:204. [PMID: 38399419 PMCID: PMC10893225 DOI: 10.3390/ph17020204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/23/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
Ensuring proper dental hygiene is of paramount importance for individuals' general well-being, particularly for patients receiving medical care. There is a prevailing utilization of conventional oral hygiene items, including toothbrushes and mouthwashes, which have gained widespread acceptance; nevertheless, their limitations encourage investigating novel options in this domain. Our study indicates that ceragenins (CSAs) being lipid analogs of host defense peptides, well-recognized for their wide-ranging antimicrobial properties, may be a potentially efficacious means to augment oral hygiene in hospitalized individuals. We demonstrate that ceragenins CSA-13, CSA-44, and CSA-131 as well as undescribed to date CSA-255 display potent antimicrobial activities against isolates of fungi, aerobic, and anaerobic bacteria from Candida, Streptococcus, Enterococcus, and Bacteroides species, which are well-recognized representatives of microbes found in the oral cavity. These effects were further confirmed against mono- and dual-species fungal and bacterial biofilms. While the ceragenins showed similar or slightly diminished efficacy compared to commercially available mouthwashes, they demonstrated a highly favorable toxicity profile toward host cells, that may translate into better maintenance of host mucosal membrane stability. This suggests that incorporating ceragenins into oral hygiene products could be a valuable strategy for reducing the risk of both oral cavity-localized and secondary systemic infections and for improving the overall health outcomes of individuals receiving medical treatment.
Collapse
Affiliation(s)
- Michał Czarnowski
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Monika Słowińska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Mariusz Sawieljew
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Urszula Wnorowska
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Tamara Daniluk
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Grzegorz Król
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
| | - Maciej Karasiński
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| | - Sławomir Okła
- Institute of Medical Science, Collegium Medicum, Jan Kochanowski University of Kielce, 25-317 Kielce, Poland; (G.K.); (S.O.)
- Holy Cross Cancer Center, 25-734 Kielce, Poland
| | - Paul B. Savage
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602, USA;
| | - Ewelina Piktel
- Independent Laboratory of Nanomedicine, Medical University of Białystok, 15-222 Białystok, Poland;
| | - Robert Bucki
- Department of Medical Microbiology and Nanobiomedical Engineering, Medical University of Białystok, 15-222 Białystok, Poland; (M.C.); (M.S.); (M.S.); (U.W.); (T.D.); (M.K.)
| |
Collapse
|
4
|
Orieux A, Enaud R, Imbert S, Boyer P, Begot E, Camino A, Boyer A, Berger P, Gruson D, Delhaes L, Prevel R. The gut microbiota composition is linked to subsequent occurrence of ventilator-associated pneumonia in critically ill patients. Microbiol Spectr 2023; 11:e0064123. [PMID: 37713505 PMCID: PMC10581192 DOI: 10.1128/spectrum.00641-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/26/2023] [Indexed: 09/17/2023] Open
Abstract
Ventilator-associated pneumonia (VAP) is the most frequent nosocomial infection in critically ill-ventilated patients. Oropharyngeal and lung microbiota have been demonstrated to be associated with VAP occurrence, but the involvement of gut microbiota has not been investigated so far. Therefore, the aim of this study is to compare the composition of the gut microbiota between patients who subsequently develop VAP and those who do not. A rectal swab was performed at admission of every consecutive patient into the intensive care unit (ICU) from October 2019 to March 2020. After DNA extraction, V3-V4 and internal transcribed spacer 2 regions deep-sequencing was performed on MiSeq sequencer (Illumina) and data were analyzed using Divisive Amplicon Denoising Algorithm 2 (DADA2) pipeline. Among 255 patients screened, 42 (16%) patients with invasive mechanical ventilation for more than 48 h were included, 18 (43%) with definite VAP and 24 without (57%). Patients who later developed VAP had similar gut bacteriobiota and mycobiota α-diversities compared to those who did not develop VAP. However, gut mycobiota was dissimilar (β-diversity) between these two groups. The presence of Megasphaera massiliensis was associated with the absence of VAP occurrence, whereas the presence of the fungal genus Alternaria sp. was associated with the occurrence of VAP. The composition of the gut microbiota, but not α-diversity, differs between critically ill patients who subsequently develop VAP and those who do not. This study encourages large multicenter cohort studies investigating the role of gut-lung axis and oropharyngeal colonization in the development of VAP in ICU patients. Trial registration number: NCT04131569, date of registration: 18 October 2019. IMPORTANCE The composition of the gut microbiota, but not α-diversity, differs between critically ill patients who subsequently develop ventilator-associated pneumonia (VAP) and those who do not. Investigating gut microbiota composition could help to tailor probiotics to provide protection against VAP.
Collapse
Affiliation(s)
- Arthur Orieux
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
| | - Raphaël Enaud
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
- CHU Bordeaux, CRCM Pédiatrique, Bordeaux, France
| | - Sébastien Imbert
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
- Mycology-Parasitology Department, CHU Bordeaux, Bordeaux, France
| | - Philippe Boyer
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
| | - Erwan Begot
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
| | - Adrian Camino
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Alexandre Boyer
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Patrick Berger
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Didier Gruson
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| | - Laurence Delhaes
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
- Mycology-Parasitology Department, CHU Bordeaux, Bordeaux, France
| | - Renaud Prevel
- CHU Bordeaux, Medical Intensive Care Unit, Bordeaux, France
- Univ Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, Inserm UMR 1045, Bordeaux, France
| |
Collapse
|
5
|
Causey C, El Karim I, Blackwood B, McAuley DF, Lundy FT. Quantitative oral health assessments in mechanically ventilated patients: A scoping review. Nurs Crit Care 2023; 28:756-772. [PMID: 35771584 DOI: 10.1111/nicc.12789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 11/30/2022]
Abstract
BACKGROUND Oral health is a key contributor to a person's overall health. Previous studies indicate that oral health deteriorates throughout ventilation and may contribute to the development of ventilator-associated pneumonia (VAP). Oral health at the time of initial ventilation may impact on this deterioration. AIMS To determine the quantitative clinical assessment methods used to measure oral health and what is currently known regarding the oral health of patients at the time of initial ventilation. STUDY DESIGN A systematic literature search using electronic bibliographic databases MEDLINE/PubMed, Embase, CINAHL, and the Cochrane Library was undertaken for this scoping review. Studies were included if patients were >18 years old and mechanically ventilated for <48 h at the time of the first oral assessment. RESULTS In total, 12 studies were included. The review demonstrates a limited understanding of clinical oral health at the time of initial ventilation. Significant variation in both assessment methods and reporting of oral health makes comparison of results difficult resulting in a poor overall understanding of oral health at the time of intubation. CONCLUSION Standardized assessment and reporting methods may improve clinical application of findings and help direct future research. We suggest developing a core outcome set to ensure consistent use of assessment tools as well as standardized reporting of results. RELEVANCE TO CLINICAL PRACTICE It is essential that a good understanding of oral health at the time of initial ventilation is gained so that patients receive more targeted oral hygiene intervention in ICU, potentially leading to improved patient outcomes.
Collapse
Affiliation(s)
- Christine Causey
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Ikhlas El Karim
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Bronagh Blackwood
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Daniel F McAuley
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| | - Fionnuala T Lundy
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK
| |
Collapse
|
6
|
Paszynska E, Gawriolek M, Hernik A, Otulakowska-Skrzynska J, Winiarska H, Springer D, Roszak M, Slebioda Z, Krahel A, Cofta S. Prevalence of oral complications in the course of severe SARS-CoV-2 infection under mechanical non-invasive ventilation. Eur J Med Res 2023; 28:293. [PMID: 37608339 PMCID: PMC10463896 DOI: 10.1186/s40001-023-01273-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023] Open
Abstract
BACKGROUND The management of oral health during severe symptoms of Covid-19 is still a challenge, especially in intensive care units under invasive/noninvasive ventilation in hospital. Understanding the cause-and-effect relationships may allow for individual adjustment of oral care recommendations during Covid-19 disease. The study's objective was to assess Covid-19 patients' oral health status under hospital treatment due to pulmonary adverse Covid-19 outcomes. MATERIAL AND METHODS Covid-19 patients (mean age 74.4 ± 15.4; n = 120, male n = 50/female n = 70) were admitted to hospital in the acute phase of Covid-19 between January and March 2022 who required oxygen therapy due to pneumonia, rapid respiratory failure, low saturation. Blood and radiological tests were taken according to National Health Fund guidelines. The condition of teeth (Decayed, Missing, Filled teeth as DMFT index), dental hygiene (Plaque Control Record as PCR index), periodontal status (probing depth PD, clinical attachment CAL, bleeding on probing BOP) and oral mucosa (BRUSHED and Beck scores) were examined. RESULTS Charateristics of the teeth (dental caries 35.2%, DMFT Median 22), plaque retention (83.4%), advanced periodontitis (48.3%), xerostomia (74.2%), oral mucosa inflammation (80.8%), angular cheilitis (53.3%), hemorrhagic (21.7%) showed a high incidence of harmful oral conditions. BRUSHED model and Beck score indicated moderate oral dysfunction and need for oral care every 8 h. Spearman's analysis revealed a significant positive correlation between pneumonia and neutrophile, interleukin-6 IL-6, C-reactive protein CRP (p = 0.01, p < 0.001, p < 0.001), negative to lymphocyte count (p < 0.001). Multiple and logistic regressions selected the following risk predictors for pneumonia as IL-6, CRP, obesity and for severe COVID-19 symptoms D-dimer level and a lack of targeted vaccination (p < 0.001). Among oral predictors, the PCR index and Beck score were significant for both outcomes (respectively p < 0.001, p < 0.012). Patients who received oxygen therapy with face masks had more often angular heilitis and debris (p = 0.025, p = 0.035). CONCLUSIONS COVID-19 hospitalised patients with severe symptoms crossing with poor oral health-related conditions. This may exacerbate a response for COVID infection, and play a role in cytokine storm. For Covid-19 management, to inhibit extraoral/intraoral complications, it is recommended to adjust oral hygiene procedures, including antibacterial, protective, moisturising agents after individual oral health assessment.
Collapse
Affiliation(s)
- Elzbieta Paszynska
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland.
| | - Maria Gawriolek
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Amadeusz Hernik
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Justyna Otulakowska-Skrzynska
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Hanna Winiarska
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences (PUMS), Szamarzewskiego 82/84, 60-569, Poznan, Poland
| | - Daria Springer
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences (PUMS), Szamarzewskiego 82/84, 60-569, Poznan, Poland
| | - Magdalena Roszak
- Department of Computer Science and Statistics, Poznan University of Medical Sciences (PUMS), Rokietnicka st. 7, 60-806 Poznan, Poland
| | - Zuzanna Slebioda
- Department of Gerodontology and Oral Pathology, Poznan University of Medical Sciences, 60-812 Poznan, Bukowska st. 70, Poland
| | - Anna Krahel
- Department of Integrated Dentistry, Poznan University of Medical Sciences (PUMS), Bukowska st. 70, 60-812, Poznan, Poland
| | - Szczepan Cofta
- Department of Pulmonology, Allergology and Respiratory Oncology, Poznan University of Medical Sciences (PUMS), Szamarzewskiego 82/84, 60-569, Poznan, Poland
| |
Collapse
|
7
|
Song Y, Kim MS, Chung J, Na HS. Simultaneous Analysis of Bacterial and Fungal Communities in Oral Samples from Intubated Patients in Intensive Care Unit. Diagnostics (Basel) 2023; 13:diagnostics13101784. [PMID: 37238268 DOI: 10.3390/diagnostics13101784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/28/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Intubated patients in intensive care units (ICUs) too frequently contract ventilator-associated pneumonia or Candida infections. Oropharyngeal microbes are believed to play an important etiologic role. This study was undertaken to determine whether next-generation sequencing (NGS) can be used to simultaneously analyze bacterial and fungal communities. Buccal samples were collected from intubated ICU patients. Primers targeting the V1-V2 region of bacterial 16S rRNA and the internal transcribed spacer 2 (ITS2) region of fungal 18S rRNA were used. V1-V2, ITS2, or mixed V1-V2/ITS2 primers were used to prepare an NGS library. Bacterial and fungal relative abundances were comparable for V1-V2, ITS2, or mixed V1-V2/ITS2 primers, respectively. A standard microbial community was used to adjust the relative abundances to theoretical abundance, and NGS and RT-PCR-adjusted relative abundances showed a high correlation. Using mixed V1-V2/ITS2 primers, bacterial and fungal abundances were simultaneously determined. The constructed microbiome network revealed novel interkingdom and intrakingdom interactions, and the simultaneous detection of bacterial and fungal communities using mixed V1-V2/ITS2 primers enabled analysis across two kingdoms. This study provides a novel approach to simultaneously determining bacterial and fungal communities using mixed V1-V2/ITS2 primers.
Collapse
Affiliation(s)
- Yuri Song
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
| | - Myoung Soo Kim
- Department of Nursing, College of Natural Science, Pukyong National University, Busan 48513, Republic of Korea
| | - Jin Chung
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| | - Hee Sam Na
- Department of Oral Microbiology, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
- Oral Genomics Research Center, Pusan National University, Yangsan 50612, Republic of Korea
- Dental Research Institute, BK21 PLUS Project, School of Dentistry, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
8
|
Murashko ON, Yeh KH, Yu CHA, Kaberdin VR, Lin-Chao S. Sodium Fluoride Exposure Leads to ATP Depletion and Altered RNA Decay in Escherichia coli under Anaerobic Conditions. Microbiol Spectr 2023; 11:e0415822. [PMID: 36939343 PMCID: PMC10100675 DOI: 10.1128/spectrum.04158-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 02/11/2023] [Indexed: 03/21/2023] Open
Abstract
Although fluoride-containing compounds are widely used to inhibit bacterial growth, the reprogramming of gene expression underlying cellular responses to fluoride, especially under anaerobic conditions, is still poorly understood. Here, we compare the genome-wide transcriptomic profiles of E. coli grown in the absence (control) or presence (20 and 70 mM) of sodium fluoride (NaF) under anaerobic conditions and assess the impact of fluoride-dependent ATP depletion on RNA turnover. Tiling array analysis revealed transcripts displaying altered abundance in response to NaF treatments. Quantile-based K-means clustering uncovered a subset of genes that were highly upregulated and then downregulated in response to increased and subsequently decreased fluoride concentrations, many of which (~40%) contained repetitive extragenic palindromic (REP) sequences. Northern blot analysis of some of these highly upregulated REP-containing transcripts (i.e., osmC, proP, efeO and yghA) confirmed their considerably enhanced abundance in response to NaF treatment. An mRNA stability analysis of osmC and yghA transcripts demonstrated that fluoride treatment slows down RNA degradation, thereby enhancing RNA stability and steady-state mRNA levels. Moreover, we demonstrate that turnover of these transcripts depends on RNase E activity and RNA degradosome. Thus, we show that NaF exerts significant effects at the whole-transcriptome level under hypoxic growth (i.e., mimicking the host environment), and fluoride can impact gene expression posttranscriptionally by slowing down ATP-dependent degradation of structured RNAs. IMPORTANCE Gram-negative Escherichia coli is a rod-shaped facultative anaerobic bacterium commonly found in microaerobic/anaerobic environments, including the dental plaques of warm-blooded organisms. These latter can be treated efficiently with fluoride-rich compounds that act as anticaries agents to prevent tooth decay. Although fluoride inhibits microbial growth by affecting metabolic pathways, the molecular mechanisms underlying its activity under anaerobic conditions remain poorly defined. Here, using genome-wide transcriptomics, we explore the impact of fluoride treatments on E. coli gene expression under anaerobic conditions. We reveal key gene clusters associated with cellular responses to fluoride and define its ATP-dependent stabilizing effects on transcripts containing repetitive extragenic palindromic sequences. We demonstrate the mechanisms controlling the RNA stability of these REP-containing mRNAs. Thus, fluoride can affect gene expression posttranscriptionally by stabilizing structured RNAs.
Collapse
Affiliation(s)
| | - Kun-Hai Yeh
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | | | - Vladimir R. Kaberdin
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- Department of Immunology, Microbiology and Parasitology, University of the Basque Country UPV/EHU, Leioa, Spain
- Basque Foundation for Science, IKERBASQUE, Bilbao, Spain
- Research Centre for Experimental Marine Biology and Biotechnology (PIE-UPV/EHU), Plentzia, Spain
| | - Sue Lin-Chao
- Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| |
Collapse
|
9
|
Iwona GM, Anna P, Mateusz F, Michal K, Anna K, Paweł M, Estera JM, Dorota R, Agnieszka C, Barbara Ż, Jadwiga WM. Impact of tooth brushing on oral bacteriota and health care-associated infections among ventilated COVID-19 patients: an intervention study. Antimicrob Resist Infect Control 2023; 12:17. [PMID: 36890608 PMCID: PMC9992909 DOI: 10.1186/s13756-023-01218-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 02/15/2023] [Indexed: 03/10/2023] Open
Abstract
BACKGROUND Up to 48% of ventilated coronavirus disease 2019 (COVID-19) patients develop ventilator-associated pneumonia (VAP) during hospitalization in an ICU. Dysbiotic oral microbiota can colonize the lower respiratory tract and lead to VAP. It is recommended to introduce oral care strategies in the ICU to prevent VAP. In this study, we observed the impact of an oral hygienic protocol with tooth brushing on cultivable oral bacteriota, the incidence of HAI and patient safety among mechanically ventilated COVID-19 patients in an ICU setting. METHODS In this prospective cohort study, we recruited 56 adult COVID-19 patients who qualified for mechanical ventilation. Patients were divided into 2 groups depending on the oral care procedure: standard and extended oral procedures with tooth brushing. Oral bacteriota samples were taken first within 36 h and after 7 days of intubation. Microorganisms were identified by MALDI/TOF mass spectrometry. bacterial health care-associated infection (HAI) cases were retrospectively analyzed by etiology. A PFGE study was performed for Klebsiella pneumoniae to check for clonal spreading of strains from oral bacteriota samples and HAI cases. RESULTS We observed significant dysbiosis and a decrease in cultivable oral bacteriota diversity, with a high frequency of potentially pathogenic species, including Acinetobacter baumannii and K. pneumoniae. The HAI incidence rate was high (55.2/1000 patient-days), most commonly of K. pneumoniae and A. baumannii etiologies, which correlated with the presence of A. baumannii and K. pneumoniae in the oral samples. Strains isolated from VAP cases were the same as oral isolates in 8 cases. The procedure with tooth brushing led to less frequent identification of A. baumannii in oral samples (55.6% vs. 5.3%, p = 0.001); however, it did not decrease the incidence of HAIs. CONCLUSIONS Dysbiotic oral bacteriota is an important source of respiratory pathogens. The introduction of tooth brushing in oral hygiene protocols in an ICU setting was effective in decreasing the extent of oral bacteriota dysbiosis; however, it did not reduce the risk of HAIs or mortality. TRIAL REGISTRATION 1072.6120.333.2020.
Collapse
Affiliation(s)
- Gregorczyk-Maga Iwona
- Institute of Dentistry, Faculty of Medicine, Jagiellonian University Medical College, Ul. Montelupich 4, 31-155, Kraków, Poland
| | - Pałka Anna
- Microbiology Unit, University Hospital, Ul. Jakubowskiego 2, 30-688, Kraków, Poland
| | - Fiema Mateusz
- Department of Endocrinology, University Hospital, Ul. Jakubowskiego 2, 30-688, Kraków, Poland
| | - Kania Michal
- Doctoral School of Medicine and Health Sciences, Jagiellonian University Medical College, Ul. św. Anny 12, 31-008, Kraków, Poland. .,Chair of Metabolic Diseases, Faculty of Medicine, Jagiellonian University Medical College, Ul. Jakubowskiego 2, 30-688, Kraków, Poland.
| | - Kujawska Anna
- Microbiology Unit, University Hospital, Ul. Jakubowskiego 2, 30-688, Kraków, Poland
| | - Maga Paweł
- Chair of Angiology, Faculty of Medicine, Jagiellonian University Medical College, Ul. Jakubowskiego 2, 30-688, Kraków, Poland
| | - Jachowicz-Matczak Estera
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Romaniszyn Dorota
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Chmielarczyk Agnieszka
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| | - Żółtowska Barbara
- Center for Innovative Therapy, Clinical Research Coordination Center, University Hospital, Ul. Jakubowskiego 2, 30-688, Kraków, Poland
| | - Wójkowska-Mach Jadwiga
- Chair of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18, 31-121, Kraków, Poland
| |
Collapse
|
10
|
Anand BG, Shejale KP, Rajesh Kumar R, Thangam R, Prajapati KP, Kar K, Mala R. Bioactivation of an orthodontic wire using multifunctional nanomaterials to prevent plaque accumulation. BIOMATERIALS ADVANCES 2023; 148:213346. [PMID: 36963344 DOI: 10.1016/j.bioadv.2023.213346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 01/29/2023] [Accepted: 02/12/2023] [Indexed: 02/18/2023]
Abstract
Controlling the growth of biofilm on orthodontic material has become a difficult challenge in modern dentistry. The antibacterial efficacy of currently used orthodontic material becomes limited due to the higher affinity of oral microbial flora for plaque formation on the material surface. Thus it is crutial to device an efficient strategy to prevent plaque buildup caused by pathogenic microbiota. In this work, we have fabricated a bioactive orthodontic wire using titanium nanoparticles (TiO2NPs) and silver nanoparticles (AgNPs). AgNPs were synthesized from the extracts of Ocimum sanctum, Ocimum tenuiflorum, Solanum surattense, and Syzygium aromaticum, while the TiO2NPs were synthesized by the Sol-Gel method. The nanoparticles were characterized by various biophysical techniques. The surface of the dental wire was molded by functionalizing these AgNPs followed by an additional coating of TiO2NPs. Functionalized dental wires were found to counteract the formation of tenacious intraoral biofilm, and showed an enhanced anti-bacterial effect against Multi-Drug Resistant (MDR) bacteria isolated from patients with various dental ailments. Data revealed that such surface coating counteracts the bacterial pathogens by inducing the leakage of Ag ions which eventually disrupts the cell membrane as confirmed from TEM micrographs. The results offer a significant opportunity for innovations in developing nanoparticle-based formulations to modify or fabricate an effective orthodontic material.
Collapse
Affiliation(s)
- Bibin G Anand
- Biomolecular Self Assembly Lab, Department of Biotechnology, School of Bioengineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603203, India; Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110067, India.
| | - Kiran P Shejale
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - R Rajesh Kumar
- School of Nanoscience and Technology, Indian Institute of Technology Kharagpur, West Bengal 721302, India
| | - Ramar Thangam
- Dynamic Nano-Bioengineering Lab, Department of Materials Science & Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Kailash Prasad Prajapati
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110067, India
| | - Karunakar Kar
- Biophysical and Biomaterials Research Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi- 110067, India
| | - R Mala
- Department of Biotechnology, Mepco Schlenk Engineering College, Sivakasi 626123, India.
| |
Collapse
|
11
|
Mähler B, Janssen K, Lönartz MI, Lagos M, Geisler T, Rust J, Bierbaum G. Time-dependent microbial shifts during crayfish decomposition in freshwater and sediment under different environmental conditions. Sci Rep 2023; 13:1539. [PMID: 36707669 PMCID: PMC9883499 DOI: 10.1038/s41598-023-28713-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 01/23/2023] [Indexed: 01/28/2023] Open
Abstract
Fossilization processes and especially the role of bacterial activity during the preservation of organic material has not yet been well understood. Here, we report the results of controlled taphonomic experiments with crayfish in freshwater and sediment. 16S rRNA amplicon analyzes showed that the development of the bacterial community composition over time was correlated with different stages of decay and preservation. Three dominating genera, Aeromonas, Clostridium and Acetobacteroides were identified as the main drivers in the decomposition of crayfish in freshwater. Using micro-computed tomography (µ-CT), scanning electron microscopy (SEM) and confocal Raman spectroscopy (CRS), calcite clusters were detected after 3-4 days inside crayfish carcasses during their decomposition in freshwater at 24 °C. The precipitation of calcite clusters during the decomposition process was increased in the presence of the bacterial genus Proteocatella. Consequently, Proteocatella might be one of the bacterial genera responsible for fossilization.
Collapse
Affiliation(s)
- Bastian Mähler
- Section Paleontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany.
| | - Kathrin Janssen
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität Bonn, 53127, Bonn, Germany.
| | - Mara Iris Lönartz
- Section Geochemistry, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
- Institute of Energy and Climate Research (IEK-6): Nuclear Waste Management, Forschungszentrum Jülich GmbH, 52428, Jülich, Germany
| | - Markus Lagos
- Section Geochemistry, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Thorsten Geisler
- Section Geochemistry, Institute of Geosciences, Rheinische Friedrich-Wilhelms-Universität Bonn, 53115, Bonn, Germany
| | - Jes Rust
- Section Paleontology, Institute of Geosciences, Rheinische Friedrich-Wilhelms Universität Bonn, 53115, Bonn, Germany
| | - Gabriele Bierbaum
- Institute of Medical Microbiology, Immunology and Parasitology, Medical Faculty, Rheinische Friedrich-Wilhelms Universität Bonn, 53127, Bonn, Germany
| |
Collapse
|
12
|
Shimpi N, Glurich I, Panny A, Hegde H, Scannapieco FA, Acharya A. Identifying oral disease variables associated with pneumonia emergence by application of machine learning to integrated medical and dental big data to inform eHealth approaches. FRONTIERS IN DENTAL MEDICINE 2022; 3:1005140. [PMID: 36643095 PMCID: PMC9835559 DOI: 10.3389/fdmed.2022.1005140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Background The objective of this study was to build models that define variables contributing to pneumonia risk by applying supervised Machine Learning-(ML) to medical and oral disease data to define key risk variables contributing to pneumonia emergence for any pneumonia/pneumonia subtypes. Methods Retrospective medical and dental data were retrieved from Marshfield Clinic Health System's data warehouse and integrated electronic medical-dental health records (iEHR). Retrieved data were pre-processed prior to conducting analyses and included matching of cases to controls by (a) race/ethnicity and (b) 1:1 Case: Control ratio. Variables with >30% missing data were excluded from analysis. Datasets were divided into four subsets: (1) All Pneumonia (all cases and controls); (2) community (CAP)/healthcare associated (HCAP) pneumonias; (3) ventilator-associated (VAP)/hospital-acquired (HAP) pneumonias and (4) aspiration pneumonia (AP). Performance of five algorithms were compared across the four subsets: Naïve Bayes, Logistic Regression, Support Vector Machine (SVM), Multi-Layer Perceptron (MLP) and Random Forests. Feature (input variables) selection and ten-fold cross validation was performed on all the datasets. An evaluation set (10%) was extracted from the subsets for further validation. Model performance was evaluated in terms of total accuracy, sensitivity, specificity, F-measure, Mathews-correlation-coefficient and area under receiver operating characteristic curve (AUC). Results In total, 6,034 records (cases and controls) met eligibility for inclusion in the main dataset. After feature selection, the variables retained in the subsets were: All Pneumonia (n = 29 variables), CAP-HCAP (n = 26 variables); VAP-HAP (n = 40 variables) and AP (n = 37 variables), respectively. Variables retained (n = 22) were common across all four pneumonia subsets. Of these, the number of missing teeth, periodontal status, periodontal pocket depth more than 5 mm and number of restored teeth contributed to all the subsets and were retained in the model. MLP outperformed other predictive models for All Pneumonia, CAP-HCAP and AP subsets, while SVM outperformed other models in VAP-HAP subset. Conclusion This study validates previously described associations between poor oral health and pneumonia. Benefits of an integrated medical-dental record and care delivery environment for modeling pneumonia risk are highlighted. Based on findings, risk score development could inform referrals and follow-up in integrated healthcare delivery environment and coordinated patient management.
Collapse
Affiliation(s)
- Neel Shimpi
- Center for Clinical Epidemiology and Population Health, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Ingrid Glurich
- Cancer Care and Research Center, Marshfield Clinic Research Institute, Marshfield, WI, United States
| | - Aloksagar Panny
- Security Health Plan, Marshfield Clinic Health System, Marshfield, WI, United States
| | - Harshad Hegde
- Berkeley Bioinformatics Open-source Projects, Lawrence Berkeley National Laboratory, Berkeley, CA, United States
| | - Frank A. Scannapieco
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, Buffalo, NY, United States
| | - Amit Acharya
- Advocate Aurora Research Institute, Advocate Aurora Health, Chicago, IL, United States
| |
Collapse
|
13
|
Incidence of Postoperative Pneumonia and Oral Microbiome for Patients with Cancer Operation. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12062920] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Postoperative pneumonia is a serious problem for patients and medical staff. In Japan, many hospitals introduced perioperative oral care management for the efficient use of medical resources. However, a high percentage of postoperative pneumonia still developed. Therefore, there is a need to identify the specific respiratory pathogens to predict the incidence of pneumonia The purpose of this study was to find out the candidate of bacterial species for the postoperative pneumonia. This study applied case-control study design for the patients who had a cancer operation with or without postoperative pneumonia. A total of 10 patients undergoing a cancer operation under general anesthesia participated in this study. The day before a cancer operation, preoperative oral care management was applied. Using the next generation sequence, oral microbiome of these patients was analyzed at the time of their first visit, the day before and after a cancer operation. Porphyromonas gingivalis and Fusobacterium nucleatum group can be a high risk at first visit. Atopobium parvulum and Enterococcus faecalis before a cancer operation can be a high risk. Poor oral hygiene increased the risk of incidence of postoperative pneumonia. Increased periodontal pathogens can be a high risk of the incidence of postoperative pneumonia. In addition, increased intestinal bacteria after oral care management can also be a high risk for the incidence of postoperative pneumonia.
Collapse
|
14
|
Occurrence of plasmid-mediated quinolone resistance genes in Pseudomonas aeruginosa strains isolated from clinical specimens in southwest Iran: a multicentral study. Sci Rep 2022; 12:2296. [PMID: 35145139 PMCID: PMC8831490 DOI: 10.1038/s41598-022-06128-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 01/24/2022] [Indexed: 11/24/2022] Open
Abstract
This study aimed to assess the presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6′)-Ib-cr determinants as well as quinolone resistance pattern of clinical isolates of P. aeruginosa in Ahvaz, southwest Iran. A total of 185 clinical isolates of P. aeruginosa were collected from 5 university-affiliated hospitals in Ahvaz, southwest Iran. The disk diffusion method was applied to assess the quinolone resistance pattern. The presence of qnrA, qnrB, qnrC, qnrD, qnrS, qepA, and aac(6′)-Ib-cr genes was investigated by the polymerase chain reaction (PCR) method. Overall, 120 (64.9%) isolates were non-susceptible to quinolones. The most and the less quinolone resistance rates were observed against ciprofloxacin (59.4%) and ofloxacin (45.9%), respectively. The prevalence rates of qnr genes were as follows: qnrA (25.8%), qnrB (29.2%), and qnrS (20.8%). The qnrB gene was the most common type of qnr genes. The qnr genes were occurred in 37.5% (n = 45/120) of quinolne-resistant isolates, simultaneously. The qnrC, qnrD, qepA, and aac(6′)-Ib-cr genes were not recognized in any isolates. In conclusion, the ofloxacin was the most effective quinolone. This study was the first to shed light on the prevalence of PMQR genes among P. aeruginosa isolates in southwest Iran.
Collapse
|
15
|
Winning L, Lundy FT, Blackwood B, McAuley DF, El Karim I. Oral health care for the critically ill: a narrative review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2021; 25:353. [PMID: 34598718 PMCID: PMC8485109 DOI: 10.1186/s13054-021-03765-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 09/11/2021] [Indexed: 12/13/2022]
Abstract
Background The link between oral bacteria and respiratory infections is well documented. Dental plaque has the potential to be colonized by respiratory pathogens and this, together with microaspiration of oral bacteria, can lead to pneumonia particularly in the elderly and critically ill. The provision of adequate oral care is therefore essential for the maintenance of good oral health and the prevention of respiratory complications. Main body Numerous oral
care practices are utilised for intubated patients, with a clear lack of consensus on the best approach for oral care. This narrative review aims to explore the oral-lung connection and discuss in detail current oral care practices to identify shortcomings and offer suggestions for future research. The importance of adequate oral care has been recognised in guideline interventions for the prevention of pneumonia, but practices differ and controversy exists particularly regarding the use of chlorhexidine. The oral health assessment is also an important but often overlooked element of oral care that needs to be considered. Oral care plans should ideally be implemented on the basis of an individual oral health assessment. An oral health assessment prior to provision of oral care should identify patient needs and facilitate targeted oral care interventions. Conclusion Oral health is an important consideration in the management of the critically ill. Studies have suggested benefit in the reduction of respiratory complication such as Ventilator Associated Pneumonia associated with effective oral health care practices. However, at present there is no consensus as to the best way of providing optimal oral health care in the critically ill. Further research is needed to standardise oral health assessment and care practices to enable development of evidenced based personalised oral care for the critically ill.
Collapse
Affiliation(s)
- Lewis Winning
- Dublin Dental University Hospital, Trinity College Dublin, Dublin, Ireland
| | - Fionnuala T Lundy
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, The Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Bronagh Blackwood
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, The Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Daniel F McAuley
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, The Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK
| | - Ikhlas El Karim
- Centre for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, The Wellcome-Wolfson Building, 97 Lisburn Road, Belfast, BT9 7AE, Northern Ireland, UK.
| |
Collapse
|
16
|
Silva PUJ, Paranhos LR, Meneses-Santos D, Blumenberg C, Macedo DR, Cardoso SV. Combination of toothbrushing and chlorhexidine compared with exclusive use of chlorhexidine to reduce the risk of ventilator-associated pneumonia: A systematic review with meta-analysis. Clinics (Sao Paulo) 2021; 76:e2659. [PMID: 34133659 PMCID: PMC8158674 DOI: 10.6061/clinics/2021/e2659] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/15/2021] [Indexed: 01/08/2023] Open
Abstract
This study aimed to compare the effectiveness of 0.12% chlorhexidine alone and 0.12% chlorhexidine in combination with toothbrushing to prevent ventilator-associated pneumonia (VAP) in mechanically ventilated patients. The Embase, Latin American and Caribbean Health Science Literature, PubMed, Scientific Electronic Library Online, Scopus, LIVIVO, Web of Science, Cochrane Library, OpenThesis, and Open Access Thesis and Dissertations databases were used. Only randomized controlled trials without restrictions on the year or language of publication were included. Two reviewers assessed the risk of bias using the Joanna Briggs Institute Critical Appraisal Tool. A meta-analysis using a random-effects model estimated the combined relative risk (RR). The Grading of Recommendations, Assessment, Development and Evaluations approach was used to assess the certainty of the evidence. Initially, 2,337 studies were identified, of which 4 were considered in the systematic review and 3 in the meta-analysis (total sample: 796 patients). The studies were published between 2009 and 2017. All eligible studies had a low risk of bias. The meta-analysis revealed that the risk of VAP was 24% lower in patients receiving chlorhexidine combined with toothbrushing than in those receiving chlorhexidine alone (RR: 0.76; 95% confidence interval: 0.55-1.06), with moderate certainty of evidence and without statistical significance. In conclusion, considering the limitations of this study, a standard protocol for the prevention of VAP is not yet recommended. More studies with larger sample sizes are needed to draw strong conclusions. However, considering that toothbrushing is a simple intervention, it should be a common practice in mechanically ventilated patients, especially among patients with coronavirus disease.
Collapse
Affiliation(s)
- Pedro Urquiza Jayme Silva
- Programa de Pos-Graduacao em Odontologia, Faculdade de Odontologia, Universidade Federal de Uberlandia, Uberlandia, MG, BR
| | - Luiz Renato Paranhos
- Area de Odontologia Preventiva e Social, Faculdade de Odontologia, Universidade Federal de Uberlandia, Uberlandia, MG, BR
- Corresponding author. E-mail:
| | - Daniela Meneses-Santos
- Programa de Residencia em Cirurgia e Traumatologia Buco-Maxilo-Facial, Faculdade de Medicina, Universidade Federal de Uberlandia, Uberlandia, MG, BR
| | - Cauane Blumenberg
- Programa de Pos-Graduacao em Epidemiologia, Faculdade de Medicina, Universidade Federal de Pelotas, Pelotas, RS, BR
| | | | - Sérgio Vitorino Cardoso
- Area de Patologia, Faculdade de Odontologia, Universidade Federal de Uberlandia, Uberlandia, MG, BR
| |
Collapse
|
17
|
Zhao T, Wu X, Zhang Q, Li C, Worthington HV, Hua F. Oral hygiene care for critically ill patients to prevent ventilator-associated pneumonia. Cochrane Database Syst Rev 2020; 12:CD008367. [PMID: 33368159 PMCID: PMC8111488 DOI: 10.1002/14651858.cd008367.pub4] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Ventilator-associated pneumonia (VAP) is defined as pneumonia developing in people who have received mechanical ventilation for at least 48 hours. VAP is a potentially serious complication in these patients who are already critically ill. Oral hygiene care (OHC), using either a mouthrinse, gel, swab, toothbrush, or combination, together with suction of secretions, may reduce the risk of VAP in these patients. OBJECTIVES To assess the effects of oral hygiene care (OHC) on incidence of ventilator-associated pneumonia in critically ill patients receiving mechanical ventilation in hospital intensive care units (ICUs). SEARCH METHODS Cochrane Oral Health's Information Specialist searched the following databases: Cochrane Oral Health's Trials Register (to 25 February 2020), the Cochrane Central Register of Controlled Trials (CENTRAL) (the Cochrane Library, 2020, Issue 1), MEDLINE Ovid (1946 to 25 February 2020), Embase Ovid (1980 to 25 February 2020), LILACS BIREME Virtual Health Library (1982 to 25 February 2020) and CINAHL EBSCO (1937 to 25 February 2020). We also searched the VIP Database (January 2012 to 8 March 2020). The US National Institutes of Health Trials Registry (ClinicalTrials.gov) and the World Health Organization International Clinical Trials Registry Platform were searched for ongoing trials. No restrictions were placed on the language or date of publication when searching the electronic databases. SELECTION CRITERIA We included randomised controlled trials (RCTs) evaluating the effects of OHC (mouthrinse, gel, swab, toothbrush or combination) in critically ill patients receiving mechanical ventilation for at least 48 hours. DATA COLLECTION AND ANALYSIS At least two review authors independently assessed search results, extracted data and assessed risk of bias in included studies. We contacted study authors for additional information. We reported risk ratio (RR) for dichotomous outcomes and mean difference (MD) for continuous outcomes, using the random-effects model of meta-analysis when data from four or more trials were combined. MAIN RESULTS We included 40 RCTs (5675 participants), which were conducted in various countries including China, USA, Brazil and Iran. We categorised these RCTs into five main comparisons: chlorhexidine (CHX) mouthrinse or gel versus placebo/usual care; CHX mouthrinse versus other oral care agents; toothbrushing (± antiseptics) versus no toothbrushing (± antiseptics); powered versus manual toothbrushing; and comparisons of other oral care agents used in OHC (other oral care agents versus placebo/usual care, or head-to-head comparisons between other oral care agents). We assessed the overall risk of bias as high in 31 trials and low in two, with the rest being unclear. Moderate-certainty evidence from 13 RCTs (1206 participants, 92% adults) shows that CHX mouthrinse or gel, as part of OHC, probably reduces the incidence of VAP compared to placebo or usual care from 26% to about 18% (RR 0.67, 95% confidence intervals (CI) 0.47 to 0.97; P = 0.03; I2 = 66%). This is equivalent to a number needed to treat for an additional beneficial outcome (NNTB) of 12 (95% CI 7 to 128), i.e. providing OHC including CHX for 12 ventilated patients in intensive care would prevent one patient developing VAP. There was no evidence of a difference between interventions for the outcomes of mortality (RR 1.03, 95% CI 0.80 to 1.33; P = 0.86, I2 = 0%; 9 RCTs, 944 participants; moderate-certainty evidence), duration of mechanical ventilation (MD -1.10 days, 95% CI -3.20 to 1.00 days; P = 0.30, I2 = 74%; 4 RCTs, 594 participants; very low-certainty evidence) or duration of intensive care unit (ICU) stay (MD -0.89 days, 95% CI -3.59 to 1.82 days; P = 0.52, I2 = 69%; 5 RCTs, 627 participants; low-certainty evidence). Most studies did not mention adverse effects. One study reported adverse effects, which were mild, with similar frequency in CHX and control groups and one study reported there were no adverse effects. Toothbrushing (± antiseptics) may reduce the incidence of VAP (RR 0.61, 95% CI 0.41 to 0.91; P = 0.01, I2 = 40%; 5 RCTs, 910 participants; low-certainty evidence) compared to OHC without toothbrushing (± antiseptics). There is also some evidence that toothbrushing may reduce the duration of ICU stay (MD -1.89 days, 95% CI -3.52 to -0.27 days; P = 0.02, I2 = 0%; 3 RCTs, 749 participants), but this is very low certainty. Low-certainty evidence did not show a reduction in mortality (RR 0.84, 95% CI 0.67 to 1.05; P = 0.12, I2 = 0%; 5 RCTs, 910 participants) or duration of mechanical ventilation (MD -0.43, 95% CI -1.17 to 0.30; P = 0.25, I2 = 46%; 4 RCTs, 810 participants). AUTHORS' CONCLUSIONS Chlorhexidine mouthwash or gel, as part of OHC, probably reduces the incidence of developing ventilator-associated pneumonia (VAP) in critically ill patients from 26% to about 18%, when compared to placebo or usual care. We did not find a difference in mortality, duration of mechanical ventilation or duration of stay in the intensive care unit, although the evidence was low certainty. OHC including both antiseptics and toothbrushing may be more effective than OHC with antiseptics alone to reduce the incidence of VAP and the length of ICU stay, but, again, the evidence is low certainty. There is insufficient evidence to determine whether any of the interventions evaluated in the studies are associated with adverse effects.
Collapse
Affiliation(s)
- Tingting Zhao
- Hubei-MOST KLOS & KLOBM, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xinyu Wu
- Hubei-MOST KLOS & KLOBM, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Qi Zhang
- Department of Oral Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Chunjie Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Head and Neck Oncology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Helen V Worthington
- Cochrane Oral Health, Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Fang Hua
- Hubei-MOST KLOS & KLOBM, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Division of Dentistry, School of Medical Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- Centre for Evidence-Based Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
18
|
Gershonovitch R, Yarom N, Findler M. Preventing Ventilator-Associated Pneumonia in Intensive Care Unit by improved Oral Care: a Review of Randomized Control Trials. SN COMPREHENSIVE CLINICAL MEDICINE 2020; 2:727-733. [PMID: 32838136 PMCID: PMC7260467 DOI: 10.1007/s42399-020-00319-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 05/12/2020] [Indexed: 11/05/2022]
Abstract
To assess the effects of various oral care methods on the incidence of VAP in patients receiving mechanical ventilation in intensive care units, an exhaustive literature search was undertaken using MEDLINE as well as a manual review of the relevant literature and citations. Eight publications were selected for this review. The primary endpoint was the incidence of VAP. Different oral care methods for preventing VAP were the subject of this review. Two studies that were reviewed in this article showed significant statistical difference between the intervention group and the control group regarding different oral care for lowering the incidence of VAP. The rest of the studies showed no significant statistical difference between the intervention group and the control group, but showed the importance of meticulous oral hygiene in those patients. Mechanically ventilated patients who suffer from poor oral hygiene are exposed to the harmful accumulation of oral plaque and the initiation of VAP. Proper oral care by qualified care givers can reduce the incidence of VAP. Proper oral care needs to be considered part of the medical treatment plan when a patient is admitted to the ICU to lower the incidence rates of VAP. Oral care treatment of ventilated patients in the intensive care units, for prevention of ventilator-associated pneumonia, is with high clinical relevance, decreasing morbidity and mortality in the ICU. We recommend that ICU medical teams will plan a protocol of oral care treatment, based on our article results, and implement it as part of the daily routine.
Collapse
Affiliation(s)
| | - Noam Yarom
- Oral Medicine Unit, Sheba Medical Center, Tel Hashomer, Israel.,School of Dental Medicine, Tel Aviv University, Tel Aviv, Israel
| | | |
Collapse
|
19
|
Fine LS. Non-ventilator health care-associated pneumonia (NV-HAP): Pathogenesis and microbiology of NV-HAP. Am J Infect Control 2020; 48:A7-A9. [PMID: 32331565 DOI: 10.1016/j.ajic.2020.03.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/27/2022]
Abstract
Studies demonstrate that those at risk for developing nonventilator associated pneumonia (NV-HAP) include the very young and the very old, as well as persons with compromised immune systems cardiovascular and/or pulmonary disease. This section includes a review of the pathogenesis and microbiology of NV-HAP, including bacterial as well as viral and fungal pathogens. Etiology, modes of transmission, and specific prevention strategies associated with various causative microorganisms are highlighted.
Collapse
|
20
|
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019; 73:335-358. [PMID: 31180804 PMCID: PMC7153577 DOI: 10.1146/annurev-micro-090817-062503] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.
Collapse
Affiliation(s)
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge MA 02142 and Harvard School of Dental Medicine, Boston MA 02115
| | | |
Collapse
|
21
|
Szlauer W, Obłąk E, Paluch E, Baldy-Chudzik K. Biofilm and methods of its eradication. POSTEP HIG MED DOSW 2019. [DOI: 10.5604/01.3001.0013.1605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microorganisms occur in the natural environment in the form of planktonic or create biofilms, i.e. communities of cells surrounded by the extracellular matrix. This is possible due to the phenomenon of quorum sensing, i.e. the ability of microorganisms to estimate their own density and change the expression of genes in response to them. Within such a structure, microorganisms are protected against harmful environmental conditions, their metabolic profile and the level of expression of individual genes are also changed, which leads to an increase in the pathogenicity of organisms associated in the form of biofilms. They pose a huge threat to hospital patients because they are capable of residing abiotic surfaces, such as catheters and endoprostheses, and can cause infection.
The current methods of combating microbes with antibiotics and fungicides lose their effectiveness, both due to the increasing drug resistance of clinically relevant strains, but also to the very properties of biofilms. This determines the need to search for new and effective methods (physical, chemical and biological) to eradicate biofilms
Collapse
Affiliation(s)
- Wojciech Szlauer
- Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
| | - Ewa Obłąk
- Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
| | - Emil Paluch
- Instytut Genetyki i Mikrobiologii, Uniwersytet Wrocławski, Wrocław
| | - Katarzyna Baldy-Chudzik
- Katedra Mikrobiologii i Genetyki, Wydział Nauk Biologicznych, Uniwersytet Zielonogórski, Zielona Góra
| |
Collapse
|
22
|
Cherkasov SV, Popova LY, Vivtanenko TV, Demina RR, Khlopko YA, Balkin AS, Plotnikov AO. Oral microbiomes in children with asthma and dental caries. Oral Dis 2019; 25:898-910. [PMID: 30561093 DOI: 10.1111/odi.13020] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 11/07/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
Abstract
OBJECTIVE Recently, a significant association between dental caries and the severity of bronchial asthma in children has been revealed. This finding indicates a possible relationship between the oral microbiome and the pathogenesis of asthma. The purpose of our study was to estimate differences in the dental plaque microbiota of asthmatic children with and without dental caries by 16S rDNA sequencing. MATERIAL AND METHODS Dental plaque samples were obtained with a spoon excavator from the occlusal surface of one deciduous tooth (the second mandibular left molar in caries-free children and the most affected tooth in caries-affected children). Total DNA was extracted from dental plaque. DNA libraries were analysed by 16S rRNA gene sequencing on the MiSeq (Illumina) platform. RESULTS There were no significant differences in the composition of bacterial communities from both caries-affected and caries-free children with asthma. The "caries-enriched" genus was Veillonella (Veillonellaceae, Selenomonadales, Negativicutes). Relative abundance of Neisseria was significantly higher in caries-free children with asthma (p < 0.05). CONCLUSIONS The most significant difference in compared bacterial communities was a higher relative abundance of Veillonella in caries-affected plaques that suggests its involvement in pathogenesis of caries. Potential respiratory pathogens are present in oral cavity of both caries-affected and caries-free asthmatic children.
Collapse
Affiliation(s)
- Sergey V Cherkasov
- Laboratory for the Research of the Mechanisms of Human Microbiocenoses Formation, Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, Orenburg, Russia
| | - Larisa Yu Popova
- Department of Childhood Diseases, Orenburg State Medical University, Orenburg, Russia
| | - Tatyana V Vivtanenko
- Department of Childhood Diseases, Orenburg State Medical University, Orenburg, Russia
| | - Rimma R Demina
- Department of Therapeutic Dentistry, Orenburg State Medical University, Orenburg, Russia
| | - Yuri A Khlopko
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, Orenburg, Russia
| | - Alexander S Balkin
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, Orenburg, Russia
| | - Andrey O Plotnikov
- Center of Shared Scientific Equipment, Institute for Cellular and Intracellular Symbiosis, Ural Branch of Russian Academy of Sciences, Orenburg, Russia.,Department of Hygiene and Epidemiology, Orenburg State Medical University, Orenburg, Russia
| |
Collapse
|
23
|
Hakansson AP, Orihuela CJ, Bogaert D. Bacterial-Host Interactions: Physiology and Pathophysiology of Respiratory Infection. Physiol Rev 2018; 98:781-811. [PMID: 29488821 PMCID: PMC5966719 DOI: 10.1152/physrev.00040.2016] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 09/08/2017] [Accepted: 09/11/2017] [Indexed: 02/06/2023] Open
Abstract
It has long been thought that respiratory infections are the direct result of acquisition of pathogenic viruses or bacteria, followed by their overgrowth, dissemination, and in some instances tissue invasion. In the last decades, it has become apparent that in contrast to this classical view, the majority of microorganisms associated with respiratory infections and inflammation are actually common members of the respiratory ecosystem and only in rare circumstances do they cause disease. This suggests that a complex interplay between host, environment, and properties of colonizing microorganisms together determines disease development and its severity. To understand the pathophysiological processes that underlie respiratory infectious diseases, it is therefore necessary to understand the host-bacterial interactions occurring at mucosal surfaces, along with the microbes inhabiting them, during symbiosis. Current knowledge regarding host-bacterial interactions during asymptomatic colonization will be discussed, including a plausible role for the human microbiome in maintaining a healthy state. With this as a starting point, we will discuss possible disruptive factors contributing to dysbiosis, which is likely to be a key trigger for pathobionts in the development and pathophysiology of respiratory diseases. Finally, from this renewed perspective, we will reflect on current and potential new approaches for treatment in the future.
Collapse
Affiliation(s)
- A P Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - C J Orihuela
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| | - D Bogaert
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University , Lund , Sweden ; Department of Microbiology, University of Alabama at Birmingham , Birmingham, Alabama ; and Center for Inflammation Research, Queens Medical Research Institute, University of Edinburgh , Edinburgh , United Kingdom
| |
Collapse
|
24
|
Angelino K, Shah P, Edlund DA, Mohit M, Yauney G. Clinical validation and assessment of a modular fluorescent imaging system and algorithm for rapid detection and quantification of dental plaque. BMC Oral Health 2017; 17:162. [PMID: 29284461 PMCID: PMC5745686 DOI: 10.1186/s12903-017-0472-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 12/20/2017] [Indexed: 01/02/2023] Open
Abstract
Background Significant numbers of adults and children have untreated plaque due to poor oral hygiene and consequently suffer from associate dental and systemic diseases. Methods A handheld device equipped with 405 nm light-emitting diodes was constructed to examine the prevalence of red fluorescence signatures associated with dental plaque. This device was used for in vivo imaging of all four incisors and all four canines of twenty-eight consenting human subjects. The same areas were further imaged under white light illumination with a commercial image-processing based plaque-imaging device, and evaluated by a hygienist and dentist. A custom computer vision algorithm using pixel information was developed to calculate plaque coverage ratios ranging from 0 (no plaque) to 1 (complete plaque coverage) for images captured by both devices. Results The algorithm calculated red fluorescence-based plaque coverage ratios ranging from 0.011 to 0.211 for the subjects imaged. Clinical assessment and statistical analyses of associated plaque ratios of the 405 nm device images indicated high sensitivity and specificity in detecting dental plaque by the experimental device compared to the commercial reference device. Conclusions The low-cost and open source 405 nm device and the associated computer vision algorithm successfully captured red fluorescence signatures associated with dental plaque and demonstrated comparable performance to a commercially available device. Therefore, a proof of concept validation was provided for the construction and application of a sensitive cost-effective plaque-detecting device. A miniaturized mobile adaptable version of the device was also provided, together with and a step-by-step guide for device assembly and webhost the associated software, to facilitate open-source access to a cost-effective at-home, in-clinic oral care technology. Trial registration ClinicalTrials.gov NCT03379337, December 19 2017. Retrospectively registered. Electronic supplementary material The online version of this article (doi: 10.1186/s12903-017-0472-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Keith Angelino
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, 75 Amherst Street, E14, Cambridge, MA, 02139, USA
| | - Pratik Shah
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, 75 Amherst Street, E14, Cambridge, MA, 02139, USA.
| | - David A Edlund
- Hampden Dental Care, 7425 West Hampden Avenue, Lakewood, CO, 80227, USA
| | - Mrinal Mohit
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, 75 Amherst Street, E14, Cambridge, MA, 02139, USA
| | - Gregory Yauney
- Department of Media Arts and Sciences, Massachusetts Institute of Technology, 75 Amherst Street, E14, Cambridge, MA, 02139, USA
| |
Collapse
|
25
|
Zhou Y, Jiang S, Li KY, Lo ECM, Gao X. Association between oral health and upper respiratory tract infection among children. Int Dent J 2017; 68:122-128. [PMID: 28905361 DOI: 10.1111/idj.12335] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The oral cavity is a potential reservoir for respiratory pathogens. This longitudinal study investigated the association between upper respiratory tract infection (URI) and oral health among children. METHODS A total of 288 children aged 4 years were recruited. Their dental caries and oral hygiene status were clinically determined, using the dmft (decayed, missing and filled teeth) index and the Silness-Löe plaque index. Questionnaires were completed by parents to collect information on the child's socio-demographic background and URI episodes and symptoms in the following 12 months. Standard or zero-inflated negative binomial regressions were used to analyse the association between URI and both oral health indicators (dmft and plaque score). RESULTS Some 138 (47.9%) children had URI in 12 months, including 63 (21.9%) and 75 (26.0%) children with 1-2 episodes and ≥3 episodes, respectively. The reported URI episodes fell into two peaks, coinciding with the two influenza peaks in Hong Kong. Significantly a higher dmft was found among children without URI compared with children who had ≥3 URI episodes (1.32 vs. 0.49; P = 0.043). The number of URI episodes was inversely associated with dmft (IRR = 0.851; 95% CI: 0.766-0.945; P = 0.003). There was no significant association between the plaque score and URI (P > 0.05). CONCLUSIONS The children's caries experience was associated with reduced episodes of URI. Whether this inverse association is attributed to the immune response induced by dental caries is yet to be investigated.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Preventive Medicine, Health Sciences Center, Shenzhen University, Shenzhen, China
| | - Shan Jiang
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Kar Yan Li
- Centralized Research Laboratories, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Edward Chin Man Lo
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| | - Xiaoli Gao
- Dental Public Health, Faculty of Dentistry, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
26
|
Marino PJ, Wise MP, Smith A, Marchesi JR, Riggio MP, Lewis MAO, Williams DW. Community analysis of dental plaque and endotracheal tube biofilms from mechanically ventilated patients. J Crit Care 2017; 39:149-155. [PMID: 28259058 DOI: 10.1016/j.jcrc.2017.02.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Revised: 01/30/2017] [Accepted: 02/07/2017] [Indexed: 12/16/2022]
Abstract
PURPOSE Mechanically ventilated patients are at risk for developing ventilator-associated pneumonia, and it has been reported that dental plaque provides a reservoir of respiratory pathogens that may aspirate to the lungs and endotracheal tube (ETT) biofilms. For the first time, metataxonomics was used to simultaneously characterize the microbiome of dental plaque, ETTs, and non-directed bronchial lavages (NBLs) in mechanically ventilated patients to determine similarities in respective microbial communities and therefore likely associations. MATERIAL AND METHODS Bacterial 16S rRNA gene sequences from 34 samples of dental plaque, NBLs, and ETTs from 12 adult mechanically ventilated patients were analyzed. RESULTS No significant differences in the microbial communities of these samples were evident. Detected bacteria were primarily oral species (e.g., Fusobacterium nucleatum, Streptococcus salivarius, Prevotella melaninogenica) with respiratory pathogens (Staphylococcus aureus, Pseudomonas aeruginosa, Streptococcuspneumoniae, and Haemophilus influenzae) also in high abundance. CONCLUSION The high similarity between the microbiomes of dental plaque, NBLs, and ETTs suggests that the oral cavity is indeed an important site involved in microbial aspiration to the lower airway and ETT. As such, maintenance of good oral hygiene is likely to be highly important in limiting aspiration of bacteria in this vulnerable patient group.
Collapse
Affiliation(s)
- Poala J Marino
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - Matt P Wise
- University Hospital of Wales, Heath Park, Cardiff, United Kingdom.
| | - Ann Smith
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Park Place, Cardiff, United Kingdom.
| | - Julian R Marchesi
- School of Biosciences, College of Biomedical and Life Sciences, Cardiff University, Park Place, Cardiff, United Kingdom; Centre for Digestive and Gut Health, Imperial College London, Exhibition Road, London, United Kingdom.
| | - Marcello P Riggio
- Dental School, University of Glasgow, 378 Sauchiehall St, Glasgow, United Kingdom.
| | - Michael A O Lewis
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, United Kingdom.
| | - David W Williams
- School of Dentistry, College of Biomedical and Life Sciences, Cardiff University, Heath Park, Cardiff, United Kingdom.
| |
Collapse
|
27
|
Sands KM, Wilson MJ, Lewis MAO, Wise MP, Palmer N, Hayes AJ, Barnes RA, Williams DW. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J Crit Care 2016; 37:30-37. [PMID: 27621110 DOI: 10.1016/j.jcrc.2016.07.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 07/10/2016] [Accepted: 07/24/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE In mechanically ventilated patients, the endotracheal tube is an essential interface between the patient and ventilator, but inadvertently, it also facilitates the development of ventilator-associated pneumonia (VAP) by subverting pulmonary host defenses. A number of investigations suggest that bacteria colonizing the oral cavity may be important in the etiology of VAP. The present study evaluated microbial changes that occurred in dental plaque and lower airways of 107 critically ill mechanically ventilated patients. MATERIALS AND METHODS Dental plaque and lower airways fluid was collected during the course of mechanical ventilation, with additional samples of dental plaque obtained during the entirety of patients' hospital stay. RESULTS A "microbial shift" occurred in dental plaque, with colonization by potential VAP pathogens, namely, Staphylococcus aureus and Pseudomonas aeruginosa in 35 patients. Post-extubation analyses revealed that 70% and 55% of patients whose dental plaque included S aureus and P aeruginosa, respectively, reverted back to having a predominantly normal oral microbiota. Respiratory pathogens were also isolated from the lower airways and within the endotracheal tube biofilms. CONCLUSIONS To the best of our knowledge, this is the largest study to date exploring oral microbial changes during both mechanical ventilation and after recovery from critical illness. Based on these findings, it was apparent that during mechanical ventilation, dental plaque represents a source of potential VAP pathogens.
Collapse
Affiliation(s)
- Kirsty M Sands
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK.
| | - Melanie J Wilson
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - Michael A O Lewis
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| | - Matt P Wise
- Adult Critical Care, University Hospital of Wales, Heath Park, Cardiff, Wales, UK
| | - Nicki Palmer
- Adult Critical Care, University Hospital of Wales, Heath Park, Cardiff, Wales, UK
| | - Anthony J Hayes
- Bioimaging Hub, School of Biosciences, Cardiff University, Cardiff, Wales, UK
| | - Rosemary A Barnes
- Cardiff Institute of Infection & Immunity, School of Medicine, Heath Park, Cardiff, Wales, UK
| | - David W Williams
- Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, Wales, UK
| |
Collapse
|