1
|
Qiao S, Shi Z, Tong A, Luo Y, Zhang Y, Wang M, Huang Z, Xu W, Chen F. Atomic layer deposition paves the way for next-generation smart and functional textiles. Adv Colloid Interface Sci 2025; 341:103500. [PMID: 40158416 DOI: 10.1016/j.cis.2025.103500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 02/18/2025] [Accepted: 03/24/2025] [Indexed: 04/02/2025]
Abstract
As technology evolves and consumer needs diversify, textiles have become crucial to determining the future of fashion, sustainability, and functionality. Functional textiles, which not only provide comfort and aesthetics as traditional textiles but also endow textiles with special functions such as antibacterial, anti-odor, moisture absorption and perspiration, anti-ultraviolet (UV), flame-retardant, self-cleaning, and anti-static properties through technological innovation and upgrading, have attracted increasing attention because they satisfy the specific needs of people in different environments and occasions. However, functionality often occurs at the expense of comfort in existing functional products. Endowing textiles with excellent multi-functionality with marginal effects on comfort and wearability properties continues to be a challenge. Atomic layer deposition (ALD) paves the way for creating functional fabrics by enabling the formation of highly conforming inorganic/organic coatings over a large area with precise atomic-level film thickness control from a self-limiting reaction mechanism. Therefore, this paper introduces the reaction mechanism of ALD and the unique advantages of depositing inorganic nanofilms on fiber and textile surfaces. The factors influencing ALD and the commonly used ALD-derived technologies are then discussed. Subsequently, the research progress and breakthroughs in inorganic nanofilms prepared by ALD in conferring multifunctional properties on textile surfaces, such as antimicrobial, UV-resistant, heat-insulating, multifunctional wetting, structural coloring, thermoelectric elements, and flexible sensing, are reviewed. Finally, future developments and possible challenges of ALD for the large-scale production of multifunctional fabrics are proposed, which are expected to promote the development of next-generation advanced functional textiles.
Collapse
Affiliation(s)
- Sijie Qiao
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Zhicheng Shi
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Aixin Tong
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Yuxin Luo
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Yu Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Mengqi Wang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Zhiyu Huang
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Weilin Xu
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China
| | - Fengxiang Chen
- State Key Laboratory of New Textile Materials and Advanced Processing, Wuhan Textile University, Hubei, Wuhan 430000, China.
| |
Collapse
|
2
|
Khan R, Haider S, Wahit MU, Rahman SU, Hameed S, Haider A, Aqif M, Bukhari IA, Razak SIA. Preparation of amine-functionalized polyacrylonitrile-TiO 2-chitosan multilayer nanofibers as a potential wound dressing: Characterization and investigation of in vitro cell viability, proliferation and antibacterial study. Int J Biol Macromol 2025; 305:141006. [PMID: 39952506 DOI: 10.1016/j.ijbiomac.2025.141006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/26/2025] [Accepted: 02/11/2025] [Indexed: 02/17/2025]
Abstract
Development of a Multi-layered (ML) nanofibers (NFs) scaffold by combining advanced materials to address the diverse needs of wound healing offers a comprehensive solution. In this study, a ML scaffold composed of amine functionalized polyacrylonitrile (AFP) NFs membrane as base layer, TiO2 NPs (T) as middle layer, and chitosan (CS) NFs membrane as contact layer was fabricated sequentially by electrospinning, surface functionalization and electrospraying to promote the wound healing. The multi-layered NFs scaffold (ML AFPT-CS) demonstrated adequate morphology, porosity, surface roughness and hydrophilicity with a water contact angle of 41.94°. The NFs scaffolds were evaluated for in-vitro cellular activity using NIH3T3-E1cells and antibacterial performance. The in-vitro analysis inferred that ML AFPT-CS scaffold in comparison with other study groups exhibited excellent cell viability proliferation and resulted in a spindle shape morphology with cells extending across the ML AFPT-CS scaffold and spreading over the NFs surface. Similarly, the ML AFPT-CS scaffolds were active against all four types of bacterial pathogens (M. luteus, S. flexeneri, S. aureus and K. pneumonia) with a highest inhibition against M. luteus (1.7 mm). The developed ML AFPT-CS scaffold could be promising candidate for advanced wound dressing in future.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, P.O. Box 94682, Riyadh 11614, Saudi Arabia.
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Centre for Advanced Composite Materials, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
| | - Saeed Ur Rahman
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Shazia Hameed
- Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi 46000, Pakistan
| | - Muhammad Aqif
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Khyber Pakhtunkhwa 23460, Pakistan
| | - Ishfaq A Bukhari
- Department of Biomedical Sciences Kentucky College of Osteopathic Medicine University of Pikeville, Pikeville, KY, USA
| | - Saiful Izwan Abd Razak
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia.
| |
Collapse
|
3
|
Wang L, Lou Y, Li B. Exposure to titanium dioxide nanoparticles disrupts the BTB by interfering with the assembly of stress granules in germ cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 373:123799. [PMID: 39709656 DOI: 10.1016/j.jenvman.2024.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/24/2024]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are among the most prevalent nanomaterials utilized in industrial and medical fields. However, their impact on spermatogenesis and male fertility remains insufficiently characterized. This study addresses the reproductive toxicity of TiO2 NPs and elucidates the underlying molecular mechanisms involved. Our findings demonstrate that exposure to TiO2 NPs leads to a significant reduction in sperm count and motility. Specifically, TiO2 NPs disrupt the integrity of the blood-testis barrier (BTB) and compromise the cytoskeletal structure in both spermatogenic and Sertoli cells. Additionally, treatment with TiO2 NPs is associated with cell death and a decrease in the protein levels of BTB-related components, including N-cadherin, β-catenin, occludin, and ZO-1. Mechanistic investigations reveal that TiO2 NPs inhibit stress granule formation in germ cells subjected to heat stress and promote germ cell apoptosis via activation of the ATM/P53 signaling pathway. Collectively, our study highlights a potential connection between environmental health and reproductive health, revealing multiple detrimental effects of TiO2 NPs and uncovering previously unrecognized mechanisms by which nanomaterials may adversely impact the reproductive system.
Collapse
Affiliation(s)
- Lingjuan Wang
- Reproductive Medicine Center, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China.
| | - Yantao Lou
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong, China
| | - Bin Li
- Institute of Urology, Zhong Da Hospital, Southeast University School of Medicine, Nanjing, China.
| |
Collapse
|
4
|
Khan R, Haider S, Khan MUA, Haider A, Razak SIA, Hasan A, Khan R, Wahit MU. Fabrication of amine-functionalized and multi-layered PAN-(TiO 2)-gelatin nanofibrous wound dressing: In-vitro evaluation. Int J Biol Macromol 2023; 253:127169. [PMID: 37783243 DOI: 10.1016/j.ijbiomac.2023.127169] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 09/16/2023] [Accepted: 09/28/2023] [Indexed: 10/04/2023]
Abstract
The development of advanced multifunctional wound dressings remains a major challenge. Herein, a novel multilayer (ML) electrospun nanofibers (NFs) wound dressing based on diethylenetriamine (DETA) functionalized polyacrylonitrile (PAN), TiO2 nanoparticles (NPs) coating (Ct), and bioderived gelatin (Gel) was developed for potential applications in wound healing. The ML PAN-DETA-Ct-Gel membrane was developed by combining electrospinning, chemical functionalization, synthesis, and electrospray techniques, using a layer-by-layer method. The ML PAN-DETA-Ct-Gel membrane is comprised of an outer layer of PAN-DETA as a barrier to external microorganisms and structural support, an interlayer TiO2 NPs (Ct) as antibacterial function, and a contact layer (Gel) to improve biocompatibility and cell viability. The NFs membranes were characterized by scanning electron microscopy (SEM), surface profilometry, BET analysis, and water contact angle techniques to investigate their morphology, surface roughness, porosity, and wettability. The ML PAN-DETA-Ct-Gel wound dressing exhibited good surface roughness, porosity, and better wettability. Cell morphology, proliferation, and viability were determined using fibroblasts (3T3), and antibacterial assays were performed against six pathogens. The ML PAN-DETA-Ct-Gel NFs membrane showed good cell morphology, proliferation, viability, and antibacterial activity compared with other membranes. This new class of ML NFs membranes offers a multifunctional architecture with adequate biocompatibility, cell viability, and antibacterial activity.
Collapse
Affiliation(s)
- Rawaiz Khan
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| | - Sajjad Haider
- Department of Chemical Engineering, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia; King Salman Center for Disability Research, Riyadh 11614, Saudi Arabia.
| | - Muhammad Umar Aslam Khan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Adnan Haider
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Saiful Izwan Abd Razak
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia; BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, 81300 Skudai, Johor, Malaysia.
| | - Anwarul Hasan
- Department of Mechanical and Industrial Engineering, Qatar University, Doha 2713, Qatar; Biomedical Research Center, Qatar University, Doha 2713, Qatar
| | - Raees Khan
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Punjab, Pakistan
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia; Center for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310 UTM Skudai, Johor Bahru, Johor, Malaysia
| |
Collapse
|
5
|
Candra A, Tsai HC, Saragi IR, Hu CC, Yu WT, Krishnamoorthi R, Hong ZX, Lai JY. Fabrication and characterization of hybrid eco-friendly high methoxyl pectin/gelatin/TiO 2/curcumin (PGTC) nanocomposite biofilms for salmon fillet packaging. Int J Biol Macromol 2023; 232:123423. [PMID: 36716833 DOI: 10.1016/j.ijbiomac.2023.123423] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/18/2023] [Accepted: 01/21/2023] [Indexed: 01/28/2023]
Abstract
Hybrid eco-friendly nanocomposite films were fabricated by blending high-methoxyl pectin, gelatin, TiO2, and curcumin through the solution casting method. Various concentrations (0-5 wt%) of TiO2 nanoparticles (TNPs) and curcumin as an organic filler were added to the blend solutions. A high TNP concentration affected the surface morphology, roughness, and compactness of the films. Additionally, 3D mapping revealed the nanoparticle distribution in the film layers. Moisture content, water solubility, and light transmittance reduced dramatically with increasing TNP content, in accordance with the water vapor and oxygen permeabilities. X-ray diffraction revealed that the films were semicrystalline nanocomposites, and the thermal properties of the films increased when 5 wt% of TNPs was incorporated into the blend solution. Fourier-transform infrared and Raman analyses revealed interactions among biopolymers, nanoparticles, and organic fillers through hydrogen bonding. The shelf life of fresh salmon fillets was prolonged to six days for all groups, revealed by total viable counts and psychrotrophic bacteria counts, and the pH of the salmon fillets could be extended until the sixth day for all groups. Biodegradation assays demonstrated a significant weight loss in the nanocomposite films. Therefore, a nanocomposite film with 5 wt% TNPs could potentially be cytotoxic to NIH 3T3 cells.
Collapse
Affiliation(s)
- Andy Candra
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Hsieh-Chih Tsai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC.
| | - Indah Revita Saragi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Sumatera Utara, Medan, Indonesia
| | - Chien-Chieh Hu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Wan-Ting Yu
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Rajakumari Krishnamoorthi
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Zhen-Xiang Hong
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; Advanced Membrane Materials Center, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC; R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan 320, Taiwan, ROC; Department of Chemical Engineering and Materials Science, Yuan Ze University, Taoyuan 320, Taiwan, ROC
| |
Collapse
|
6
|
Kong LX, Wang Z, Shou YK, Zhou XD, Zong YW, Tong T, Liao M, Han Q, Li Y, Cheng L, Ren B. The FnBPA from methicillin-resistant Staphylococcus aureus promoted development of oral squamous cell carcinoma. J Oral Microbiol 2022; 14:2098644. [PMID: 35859766 PMCID: PMC9291692 DOI: 10.1080/20002297.2022.2098644] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is the most common tumor in the oral cavity. Methicillin-resistant Staphylococcus aureus (MRSA) were highly detected in OSCC patients; however, the interactions and mechanisms between drug-resistant bacteria (MRSA) and OSCC are not clear. Aim The aim of this study was to investigate the promotion of MRSA on the development of OSCC. Methods MRSA and MSSA (methicillin-susceptible) strains were employed to investigate the effect on the proliferation of OSCC in vitro and vivo. Results All of the MRSA strains significantly increased the proliferation of OSCC cells and MRSA arrested the cell cycles of OSCC cells in the S phase. MRSA activated the expression of TLR-4, NF-κB and c-fos in OSCC cells. MRSA also promoted the development of squamous cell carcinoma in vivo. The virulence factor fnbpA gene was significantly upregulated in all MRSA strains. By neutralizing FnBPA, the promotions of MRSA on OSCC cell proliferation and development of squamous cell carcinoma were significantly decreased. Meanwhile, the activation of c-fos and NF-κB by MRSA was also significantly decreased by FnBPA antibody. Conclusion MRSA promoted development of OSCC, and the FnBPA protein was the critical virulence factor. Targeting virulence factors is a new method to block the interaction between a drug-resistant pathogen and development of tumors.
Collapse
Affiliation(s)
- Li-Xin Kong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zheng Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yu-Ke Shou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xue-Dong Zhou
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ya-Wen Zong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Ting Tong
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Min Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qi Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
- Department of Operative Dentistry and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Biao Ren
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
7
|
Polyetheretherketone/
Nano‐Ag‐TiO
2
composite with mechanical properties and antibacterial activity. J Appl Polym Sci 2022. [DOI: 10.1002/app.53377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Dey N, Vickram S, Thanigaivel S, Kamatchi C, Subbaiya R, Karmegam N, Govarthanan M. Graphene materials: Armor against nosocomial infections and biofilm formation - A review. ENVIRONMENTAL RESEARCH 2022; 214:113867. [PMID: 35843279 DOI: 10.1016/j.envres.2022.113867] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/24/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
Graphene has revolutionized the field of energy and storage sectors. Out of the total number of nosocomial infections diagnosed all around the world, the majority of the cases (around 70%) are found to be due to the medical device or assistance utilized while treating the patient. Combating these diseases is vital as they cause a nuisance to the patients and medical practitioners. Coatings of graphene and its derivatives hold the key to the formation of special surfaces that can rupture microbial cells using their sharp edges, ultimately leading to nuclear and cellular fragmentation. Their incorporation as a whole or as a part in the hospital apparel and the medical device has aided medical practitioners to combat many nosocomial diseases. Graphene is found to be highly virulent with broad-spectrum antimicrobial activity against nosocomial strains and biofilm formation. Their alternate mode of action like trapping and charge transfer has also been discussed well in the present review. The various combinational forms of graphene with its conjugates as a suitable agent to combat nosocomial infections and a potential coating for newer challenges like COVID-19 infections has also been assessed in the current study. Efficiency of graphene sheets has been found to be around 89% with a reaction time as less as 3 h. Polymers with graphene seem to have a higher potency against biofilm formation. When combined with graphene oxide, silver nanoparticles provide 99% activity against nosocomial pathogens. In conclusion, this review would be a guiding light for scientists working with graphene-based coatings to unfold the potentials of this marvelous commodity to tackle the present and future pandemics to come.
Collapse
Affiliation(s)
- Nibedita Dey
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Sundaram Vickram
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha Nagar, Thandalam, Chennai, Tamil Nadu, 602 105, India
| | - Sundaram Thanigaivel
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, Tamil Nadu, India
| | - Chandrasekaran Kamatchi
- Department of Biotechnology, The Oxford College of Science, Bengaluru, 560102, Karnataka, India
| | - Ramasamy Subbaiya
- Department of Biological Sciences, School of Mathematics and Natural Sciences, The Copperbelt University, Riverside, Jambo Drive, P O Box, 21692, Kitwe, Zambia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem, 636 007, Tamil Nadu, India.
| | - Muthusamy Govarthanan
- Department of Environmental Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea.
| |
Collapse
|
9
|
Teamsinsungvon A, Ruksakulpiwat C, Ruksakulpiwat Y. Effects of Titanium-Silica Oxide on Degradation Behavior and Antimicrobial Activity of Poly (Lactic Acid) Composites. Polymers (Basel) 2022; 14:polym14163310. [PMID: 36015567 PMCID: PMC9416649 DOI: 10.3390/polym14163310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
A mixed oxide of titania-silica oxides (TixSiy oxides) was successfully prepared via the sol-gel technique from our previous work. The use of TixSiy oxides to improve the mechanical properties, photocatalytic efficiency, antibacterial property, permeability tests, and biodegradability of polylactic acid (PLA) was demonstrated in this study. The influence of different types and contents of TixSiy oxides on crystallization behavior, mechanical properties, thermal properties, and morphological properties was presented. In addition, the effect of using TixSiy oxides as a filler in PLA composites on these properties was compared with the use of titanium dioxide (TiO2), silicon dioxide (SiO2), and TiO2SiO2. Among the prepared biocomposite films, the PLA/TixSiy films showed an improvement in the tensile strength and Young's modulus (up to 5% and 31%, respectively) in comparison to neat PLA films. Photocatalytic efficiency to degrade methylene blue (MB), hydrolytic degradation, and in vitro degradation of PLA are significantly improved with the addition of TixSiy oxides. Furthermore, PLA with the addition of TixSiy oxides exhibited an excellent antibacterial effect on Gram-negative bacteria (Escherichia coli or E. coli) and Gram-positive bacteria (Staphylococcus aureus or S. aureus), indicating the improved antimicrobial effectiveness of PLA composites. Importantly, up to 5% TixSiy loading could promote more PLA degradation via the water absorption ability of mixed oxides. According to the research results, the PLA composite films produced with TixSiy oxide were transparent, capable of screening UV radiation, and exhibited superior antibacterial efficacy, making them an excellent food packaging material.
Collapse
Affiliation(s)
- Arpaporn Teamsinsungvon
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Chaiwat Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
| | - Yupaporn Ruksakulpiwat
- School of Polymer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
- Center of Excellence on Petrochemical and Materials Technology, Chulalongkorn University, Bangkok 10330, Thailand
- Research Center for Biocomposite Materials for Medical Industry and Agricultural and Food Industry, Nakhon Ratchasima 30000, Thailand
- Correspondence: ; Tel.: +66-44-22-3033
| |
Collapse
|
10
|
Kodithuwakku P, Jayasundara D, Munaweera I, Jayasinghe R, Thoradeniya T, Weerasekera M, Ajayan PM, Kottegoda N. A Review on Recent Developments in Structural Modification of TiO2 For Food Packaging Applications. PROG SOLID STATE CH 2022. [DOI: 10.1016/j.progsolidstchem.2022.100369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
11
|
Exploiting the antibacterial mechanism of phenazine substances from Lysobacter antibioticus 13-6 against Xanthomonas oryzae pv. oryzicola. J Microbiol 2022; 60:496-510. [PMID: 35362894 DOI: 10.1007/s12275-022-1542-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/24/2022] [Accepted: 01/28/2022] [Indexed: 10/18/2022]
Abstract
Bacterial leaf streak caused by Xanthomonas oryzae pv. oryzicola (Xoc) is one of the most destructive diseases affecting rice production worldwide. In this study, we extracted and purified phenazine substances from the secondary metabolites of Lysobacter antibioticus 13-6. The bacteriostatic mechanism of phenazine substances against Xoc was investigated through physiological response and transcriptomic analysis. Results showed that phenazine substances affects the cell membrane permeability of Xoc, which causes cell swelling and deformation, blockage of flagellum synthesis, and imbalance of intracellular environment. The changes in intracellular environment affect the physiological and metabolic functions of Xoc, which reduces the formation of pathogenic factors and pathogenicity. Through transcriptomic analysis, we found that among differentially expressed genes, the expression of 595 genes was induced significantly (275 up-regulated and 320 down-regulated). In addition, we observed that phenazine substances affects three main functions of Xoc, i.e., transmembrane transporter activity, DNA-mediated transposition, and structural molecular activity. Phenazine substances also inhibits the potassium ion transport system that reduces Xoc resistance and induces the phosphate ion transport system to maintain the stability of the internal environment. Finally, we conclude that phenazine substances could retard cell growth and reduce the pathogenicity of Xoc by affecting cell structure and physiological metabolism. Altogether, our study highlights latest insights into the antibacterial mechanism of phenazine substances against Xoc and provides basic guidance to manage the incidence of bacterial leaf streak of rice.
Collapse
|
12
|
Amirabad LM, Tahriri M, Zarrintaj P, Ghaffari R, Tayebi L. Preparation and characterization of TiO
2
‐coated polymerization of methyl methacrylate (PMMA) for biomedical applications: In vitro study. ASIA-PAC J CHEM ENG 2022; 17. [PMID: 36176584 PMCID: PMC9514038 DOI: 10.1002/apj.2761] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low surface energy and hydrophobicity of polymethyl methactylate (PMMA) are the main disadvantages of this biomaterial. The aim of this study was to investigate the effects of a new coating process on the surface characteristics and properties of PMMA. A combination of temperature and pressure was used for deposition of titanium dioxide (TiO2) on the surface of PMMA. The PMMA coated with TiO2 thin films and prepared by sputtering and non-coated PMMA were considered as control groups. The surface wettability, functional group, and roughness were determined by contact angle measurement, Fourier transform Infrared spectroscopy (FTIR), and 3D laser scanning digital microscopy, respectively. The flexural strength of coated and non-coated samples was measured using three-point bending test. The cell proliferation, attachment, and viability were determined using 3-(4,5-dimethyldiazol-2-yl)-2,5-diphenyl tetrazolium bromide, live and dead assay, scanning electron microscope (SEM), and DAPI (4',6-diamidino-2-phenylindole) staining. The antifungal activity of TiO2 was also determined by examining the biofilm attachment of Candida albicans. The obtained results showed that TiO2 was successfully coated on PMMA. The contact angle measurement shows a significant increase of hydrophilicity in TiO2-coated PMMA. FTIR and roughness analysis revealed no loss of TiO2 from coated specimens following sonication. The cell viability after 7 days culturing on TiO2-coated specimens was more than the cell viability on the control groups. SEM images and DAPI staining showed that the total number of the cells increased after 7 days of seeding on TiO2-coated group, whereas it decreased gradually in both control groups. C. albicans attachment also decreased by 63% to 77% on the coated PMMA surface. Overall, this research suggested a new way for developing surface energy of PMMAs for biomedical applications.
Collapse
Affiliation(s)
| | | | - Payam Zarrintaj
- Department of Chemical Engineering Oklahoma State University Stillwater Oklahoma USA
| | - Reza Ghaffari
- Stein Eye Institute, David Geffen School of Medicine University of California Los Angeles California USA
| | - Lobat Tayebi
- Marquette University School of Dentistry Milwaukee Wisconsin USA
| |
Collapse
|
13
|
Zhang W, Rhim JW. Titanium dioxide (TiO2) for the manufacture of multifunctional active food packaging films. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2021.100806] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
14
|
Overview of antimicrobial polyurethane-based nanocomposite materials and associated signalling pathways. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
15
|
Manivasagam VK, Perumal G, Arora HS, Popat KC. Enhanced antibacterial properties on superhydrophobic micro-nano structured titanium surface. J Biomed Mater Res A 2022; 110:1314-1328. [PMID: 35188338 DOI: 10.1002/jbm.a.37375] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 12/13/2022]
Abstract
Micro/nano scale surface modifications of titanium based orthopedic and cardiovascular implants has shown to augment biocompatibility. However, bacterial infection remains a serious concern for implant failure, aggravated by increasing antibiotic resistance and over usage of antibiotics. Bacteria cell adhesion on implant surface leads to colonization and biofilm formation resulting in morbidity and mortality. Hence, there is a need to develop new implant surfaces with high antibacterial properties. Recent developments have shown that superhydrophobic surfaces prevent protein and bacteria cell adhesion. In this study, a thermochemical treatment was used modify the surface properties for high efficacy antibacterial activity on titanium surface. The modification led to a micro-nano surface topography and upon modification with polyethylene glycol (PEG) and silane the surfaces were superhydrophilic and superhydrophobic, respectively. The modified surfaces were characterized for morphology, wettability, chemistry, corrosion resistance and surface charge. The antibacterial capability was characterized with Staphylococcus aureus and Escherichia coli by evaluating the bacteria cell inhibition, adhesion kinetics, and biofilm formation. The results indicated that the superhydrophobic micro-nano structured titanium surface reduced bacteria cell adhesion significantly (>90%) and prevented biofilm formation compared to the unmodified titanium surface after 24 h of incubation.
Collapse
Affiliation(s)
- Vignesh K Manivasagam
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Gopinath Perumal
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, India
| | - Harpreet Singh Arora
- Department of Mechanical Engineering, School of Engineering, Shiv Nadar University, Greater Noida, India
| | - Ketul C Popat
- Department of Mechanical Engineering, Colorado State University, Fort Collins, Colorado, USA.,School of Biomedical Engineering, Colorado State University, Fort Collins, Colorado, USA.,School of Advanced Materials Discovery, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
16
|
Alizadeh Sani M, Maleki M, Eghbaljoo-Gharehgheshlaghi H, Khezerlou A, Mohammadian E, Liu Q, Jafari SM. Titanium dioxide nanoparticles as multifunctional surface-active materials for smart/active nanocomposite packaging films. Adv Colloid Interface Sci 2022; 300:102593. [PMID: 34971916 DOI: 10.1016/j.cis.2021.102593] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 12/16/2021] [Accepted: 12/17/2021] [Indexed: 12/12/2022]
Abstract
Environmental issues such as plastic packaging and high demand for fresh and safe food has increased the interest for developing smart/active food packaging films with colloidal nanoparticles (NPs). Titanium dioxide nanoparticles (TNPs) are cost effective and stable metal oxide NPs which could be used as a functional nano-filler for biodegradable food packaging due to their excellent biocompatibility, photo catalyzing, and antimicrobial properties. This article has comprehensively reviewed the functional properties and advantages of TNPs-containing smart/active films. The advantage of adding TNPs for ameliorating food packaging materials such as their physical, mechanical, moisture/light barrier, optical, thermal resistance, microstructure and chemical properties as well as, antibacterial, and photocatalytic properties are discussed. Also, the practical and migration properties of administrating TNPs in food packaging material are investigated. The ethylene decomposition activity of TNPs containing active films, could be used for increasing the shelf life of fruits/vegetables after harvesting. TNPs are safe with negligible migration rates which could be used for fabrication of multifunctional smart/active packaging films due to their antimicrobial properties and ethylene gas scavenging activities.
Collapse
|
17
|
Novel Catalytic Ceramic Conversion Treatment of Ti6Al4V for Improved Tribological and Antibacterial Properties for Biomedical Applications. MATERIALS 2021; 14:ma14216554. [PMID: 34772075 PMCID: PMC8585320 DOI: 10.3390/ma14216554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Titanium oxide layers were produced via a novel catalytic ceramic conversion treatment (CCCT, C3T) on Ti-6Al-4V. This CCCT process is carried out by applying thin catalytic films of silver and palladium onto the substrate before an already established traditional ceramic conversion treatment (CCT, C2T) is carried out. The layers were characterised using scanning electron microscopy, X-ray diffraction, transmission electron microscopy; surface micro-hardness and reciprocating tribological performance was assessed; antibacterial performance was also assessed with S. aureus. This CCCT has been shown to increase the oxide thickness from ~5 to ~100 µm, with the production of an aluminium rich layer and agglomerates of silver and palladium oxide surrounded by vanadium oxide at the surface. The wear factor was significantly reduced from ~393 to ~5 m3/N·m, and a significant reduction in the number of colony-forming units per ml of Staphylococcus aureus on the CCCT surfaces was observed. The potential of the novel C3T treatment has been demonstrated by comparing the performance of C3T treated and untreated Ti6Al4V fixation pins through inserting into simulated bone materials.
Collapse
|
18
|
Pipattanachat S, Qin J, Rokaya D, Thanyasrisung P, Srimaneepong V. Biofilm inhibition and bactericidal activity of NiTi alloy coated with graphene oxide/silver nanoparticles via electrophoretic deposition. Sci Rep 2021; 11:14008. [PMID: 34234158 PMCID: PMC8263766 DOI: 10.1038/s41598-021-92340-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Accepted: 06/09/2021] [Indexed: 11/15/2022] Open
Abstract
Biofilm formation on medical devices can induce complications. Graphene oxide/silver nanoparticles (GO/AgNPs) coated nickel-titanium (NiTi) alloy has been successfully produced. Therefore, the aim of this study was to determine the anti-bacterial and anti-biofilm effects of a GO/AgNPs coated NiTi alloy prepared by Electrophoretic deposition (EPD). GO/AgNPs were coated on NiTi alloy using various coating times. The surface characteristics of the coated NiTi alloy substrates were investigated and its anti-biofilm and anti-bacterial effect on Streptococcus mutans biofilm were determined by measuring the biofilm mass and the number of viable cells using a crystal violet assay and colony counting assay, respectively. The results showed that although the surface roughness increased in a coating time-dependent manner, there was no positive correlation between the surface roughness and the total biofilm mass. However, increased GO/AgNPs deposition produced by the increased coating time significantly reduced the number of viable bacteria in the biofilm (p < 0.05). Therefore, the GO/AgNPs on NiTi alloy have an antibacterial effect on the S. mutans biofilm. However, the increased surface roughness does not influence total biofilm mass formation (p = 0.993). Modifying the NiTi alloy surface using GO/AgNPs can be a promising coating to reduce the consequences of biofilm formation.
Collapse
Affiliation(s)
- Sirapat Pipattanachat
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Jiaqian Qin
- Metallurgy and Materials Science Research Institute (MMRI), Chulalongkorn University, Bangkok, Thailand
| | - Dinesh Rokaya
- International College of Dentistry, Walailak University, Bangkok, Thailand
| | - Panida Thanyasrisung
- Department of Microbiology and Research Unit on Oral Microbiology and Immunology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| | - Viritpon Srimaneepong
- Department of Prosthodontics, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
19
|
Inactivation of Staphylococcus aureus using ultrasound in combination with thyme essential oil nanoemulsions and its synergistic mechanism. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111574] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
20
|
Abbas WA, Shaheen BS, Ghanem LG, Badawy IM, Abodouh MM, Abdou SM, Zada S, Allam NK. Cost-Effective Face Mask Filter Based on Hybrid Composite Nanofibrous Layers with High Filtration Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:7492-7502. [PMID: 34101479 DOI: 10.1021/acs.langmuir.1c00926] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the main protective measures against COVID-19's spread is the use of face masks. It is therefore of the utmost importance for face masks to be high functioning in terms of their filtration ability and comfort. Notwithstanding the prevalence of the commercial polypropylene face masks, its effectiveness is under contention, leaving vast room for improvement. During the pandemic, the use of at least one mask per day for each individual results in a massive number of masks that need to be safely disposed of. Fabricating biodegradable filters of high efficiency not only can protect individuals and save the environment but also can be sewed on reusable/washable cloth masks to reduce expenses. Wearing surgical masks for long periods of time, especially in hot regions, causes discomfort by irritating sensitive facial skin and warmed inhaled air. Herein, we demonstrate the fabrication of novel electrospun composites layers as face mask filters for protection against pathogens and tiny particulates. The combinatorial filter layers are made by integrating TiO2 nanotubes as fillers into chitosan/poly(vinyl alcohol) polymeric electrospun nanofibers as the outer layer. The other two filler-free layers, chitosan/poly(vinyl alcohol) and silk/poly(vinyl alcohol) as the middle and inner composite layers, respectively, were used for controlled protection, contamination prevention, and comfort for prolonged usage. The ASTM standards evaluation tests were adopted to evaluate the efficacy of the assembled filter, revealing high filtration efficiency compared to that of commercial surgical masks. The TiO2/Cs/PVA outer layer significantly reduced Staphylococcus aureus bacteria by 44.8% compared to the control, revealing the dual effect of TiO2 and chitosan toward the infectious bacterial colonies. Additionally, molecular dynamics calculations were used to assess the mechanical properties of the filter layers.
Collapse
Affiliation(s)
- Walaa A Abbas
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Basamat S Shaheen
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Loujain G Ghanem
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Ibrahim M Badawy
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Mohamed M Abodouh
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Shrouk M Abdou
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Suher Zada
- Biology Department, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| | - Nageh K Allam
- Energy Materials Laboratory, School of Sciences and Engineering, The American University in Cairo, New Cairo 11835, Egypt
| |
Collapse
|
21
|
A New Sterilization Strategy Using TiO2 Nanotubes for Production of Free Radicals that Eliminate Viruses and Application of a Treatment Strategy to Combat Infections Caused by Emerging SARS-CoV-2 during the COVID-19 Pandemic. COATINGS 2021. [DOI: 10.3390/coatings11060680] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Synthesized titanium oxide nanoparticles (TiO2-NPs) nanotubes were used for the disinfection of new emerging corona virus-19 (SARS-CoV-2) in this study. The newly synthesized TiO2-NPs (nanotubes) were characterized by chemical spectroscopic analysis Fourier-transform infrared spectroscopy and ultraviolet FT-IR and UV. The chemical purity and Zeta potential distribution of the TiO2-NPs (nanotubes) were evaluated to confirm their nano-range, and their surface morphology was determined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), high-resolution transmission electron microscopy (HR-TEM), and energy dispersive X-ray analysis (EDX). The antiviral activity of the TiO2-NPs (nanotubes) against SARS-CoV-2 was evaluated using 10% (Dimethyl sulfoxide) DMSO and dist.H2O using a cytotoxicity assay and inhibitory concentration assay (to determine the cytotoxic half concentration CC50 and half maximal inhibitory concentration IC50). The current results confirmed that TiO2-NPs exhibit strong anti-SARS-CoV-2 activity at very low cytotoxic concentrations in vitro with a non-significant selectivity index (CC50/IC50 ≤ 1). The obtained results indicate that TiO2-NPs and nanotubes have potent antiviral activity at a very low concentrations (IC50 = 568.6 ng/mL), with a weak cytotoxic effect on the cellular host (CC50 = 399.1 ng/mL). Thus, we highly recommend the use of TiO2-NPs (nanotubes) in vitro and in wall coatings as a potent disinfectant to combat SARS-CoV-2 with little irritation of the cellular hosts. Furthermore, we also recommend more and excessive prospective studies on the complexation of natural active or natural compounds with TiO2-NPs (nanotubes) to minimize their cytotoxicity, enhance their antiviral activity, and increase their inhibition of SARS-CoV-2.
Collapse
|
22
|
Yamaguchi M, Abe H, Ma T, Tadaki D, Hirano-Iwata A, Kanetaka H, Watanabe Y, Niwano M. Bactericidal Activity of TiO 2 Nanotube Thin Films on Si by Photocatalytic Generation of Active Oxygen Species. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12668-12677. [PMID: 33105996 DOI: 10.1021/acs.langmuir.0c02225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The photocatalytic bactericidal activity of titanium dioxide (TiO2) thin films has been extensively studied. In this study, we investigated the bactericidal activities of TiO2 nanotube (NT) thin films using Escherichia coli and Staphylococcus aureus cells as the model bacteria. Metallic titanium (Ti) thin films were anodized on a silicon (Si) wafer substrate to form TiO2 NT thin films. To evaluate the bactericidal activity of the TiO2 NT thin films, bacteria on the TiO2 NT thin films were irradiated with near-ultraviolet light (UV-A) at a wavelength of 365 nm. The bactericidal activity was estimated by the survival rate derived from the number of live cells, which form colonies on the cell culture medium. We demonstrated that the survival rate of the two types of bacteria investigated in this study was significantly reduced by UV light irradiation and that there was a difference in the temporal change in the survival rate between the two types of bacteria. Furthermore, we investigated the generation of reactive oxygen species (ROSs) by UV light irradiation of TiO2 NT thin films using electron spin resonance spectroscopy and fluorescence analysis. We found that the main ROS generated on the surface of the TiO2 NT film was the hydroxyl radical, OH•. In addition, the generation of ROSs increased with an increase in the UV irradiation time. We proposed a kinetic model that reproduces the dependence of bacterial viability on the UV light irradiation time by considering the temporal change in the amount of ROSs generated by UV light irradiation. A comparison of the calculated and experimental results revealed that the bactericidal effect consisted of the direct photolysis of bacteria and the photocatalysis via the generation of hydroxyl radicals, with the latter exhibiting a stronger bactericidal effect than the former.
Collapse
Affiliation(s)
- Masato Yamaguchi
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Hiroyuki Abe
- Industrial Technology Institute, Miyagi Prefectural Government, Sendai 981-3206, Japan
| | - Teng Ma
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
| | - Daisuke Tadaki
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Ayumi Hirano-Iwata
- Advanced Institute for Materials Research (AIMR), Tohoku University, Sendai 980-8577, Japan
- Research Institute of Electrical Communication, Tohoku University, Sendai 980-8577, Japan
| | - Hiroyasu Kanetaka
- Graduate School of Dentistry, Tohoku University, Sendai 980-8575, Japan
| | - Yoshihiko Watanabe
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| | - Michio Niwano
- Kansei Fukushi Research Institute, Tohoku Fukushi University, Sendai 989-3201, Japan
| |
Collapse
|
23
|
Mohamed EF, Awad G. Photodegradation of gaseous toluene and disinfection of airborne microorganisms from polluted air using immobilized TiO 2 nanoparticle photocatalyst-based filter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:24507-24517. [PMID: 32307677 DOI: 10.1007/s11356-020-08779-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 04/06/2020] [Indexed: 06/11/2023]
Abstract
Photocatalytic oxidation (PCO) has been described as an advanced technology to remove toxic volatile organic compounds (VOCs) and airborne microorganisms from indoor air environments. This technique is economic, stable, safe, and capable to remove a wide variety of organic contaminants under UV irradiation. This study presents a case study on the effect of a fabricated filter in the removal of toluene at 26 mg/L and disinfection of ambient air under a given operating condition. The principal goals of this study were to synthesize Ag nanoparticles/TiO2 filter for the first time via the deposition of Ag nanoparticles on a commercial immobilized TiO2 tissue sheet by impregnation technique and to investigate the performance of this prepared Ag/TiO2 tissue based filter system for toluene removal as well as to remove airborne microorganisms from indoor air. The results illustrated that under the experimental conditions, Ag/TiO2-based filter was able to disinfect well the microorganisms. The performance of Ag/TiO2 filter shows two different stages; the first one is a slight adsorption phase in dark with approximately 15% of toluene removal within 60 min. The second stage is a photooxidation phase under UV irradiation in which the toluene removal efficiency was significantly enhanced with extension of the operational time and reached 97% during this stage. Additionally, the Ag/TiO2 filter has a higher disinfection capacity of airborne microorganisms that completely removed to reach 100% after 300 min of application. This filter could be practically introduced as an effective system in industrial, hospital, and home applications for air purification. Graphical abstract.
Collapse
Affiliation(s)
- Elham F Mohamed
- Air Pollution Department, Environmental Research Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza, 12622, Egypt
| | - Gamal Awad
- Chemistry of Natural and Microbial Products Department, Pharmaceutical and Drug Industries Research Division, National Research Centre, 33 EL Bohouth St., Dokki, Giza, 12622, Egypt.
| |
Collapse
|
24
|
Liao C, Li Y, Tjong SC. Visible-Light Active Titanium Dioxide Nanomaterials with Bactericidal Properties. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E124. [PMID: 31936581 PMCID: PMC7022691 DOI: 10.3390/nano10010124] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 12/16/2022]
Abstract
This article provides an overview of current research into the development, synthesis, photocatalytic bacterial activity, biocompatibility and cytotoxic properties of various visible-light active titanium dioxide (TiO2) nanoparticles (NPs) and their nanocomposites. To achieve antibacterial inactivation under visible light, TiO2 NPs are doped with metal and non-metal elements, modified with carbonaceous nanomaterials, and coupled with other metal oxide semiconductors. Transition metals introduce a localized d-electron state just below the conduction band of TiO2 NPs, thereby narrowing the bandgap and causing a red shift of the optical absorption edge into the visible region. Silver nanoparticles of doped TiO2 NPs experience surface plasmon resonance under visible light excitation, leading to the injection of hot electrons into the conduction band of TiO2 NPs to generate reactive oxygen species (ROS) for bacterial killing. The modification of TiO2 NPs with carbon nanotubes and graphene sheets also achieve the efficient creation of ROS under visible light irradiation. Furthermore, titanium-based alloy implants in orthopedics with enhanced antibacterial activity and biocompatibility can be achieved by forming a surface layer of Ag-doped titania nanotubes. By incorporating TiO2 NPs and Cu-doped TiO2 NPs into chitosan or the textile matrix, the resulting polymer nanocomposites exhibit excellent antimicrobial properties that can have applications as fruit/food wrapping films, self-cleaning fabrics, medical scaffolds and wound dressings. Considering the possible use of visible-light active TiO2 nanomaterials for various applications, their toxicity impact on the environment and public health is also addressed.
Collapse
Affiliation(s)
- Chengzhu Liao
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuchao Li
- Department of Materials Science and Engineering, Liaocheng University, Liaocheng 252000, China;
| | - Sie Chin Tjong
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
25
|
Impact of Perfluoro and Alkylphosphonic Self-Assembled Monolayers on Tribological and Antimicrobial Properties of Ti-DLC Coatings. MATERIALS 2019; 12:ma12152365. [PMID: 31349579 PMCID: PMC6696178 DOI: 10.3390/ma12152365] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 07/10/2019] [Accepted: 07/23/2019] [Indexed: 01/11/2023]
Abstract
The diamond-like carbon (DLC) coatings containing 1.6%, 5.3% and 9.4 at.% of Ti deposited by the radio frequency plasma enhanced chemical vapor deposition (RF PECVD) method on the silicon substrate were modified by n-decylphosphonic acid (DP) and 1H, 1H, 2H and 2H-perfluorodecylphosphonic acid (PFDP). The presence of perfluoro and alkylphosphonic self-assembled monolayers prepared by the liquid phase deposition (LPD) technique was confirmed by Fourier transform infrared spectroscopy (FTIR). It was shown that DP and PFDP monolayers on the surface of titanium incorporated diamond-like carbon (Ti-DLC) coatings had a huge influence on their wettability, friction properties, stability under phosphate- and tris-buffered saline solutions and on antimicrobial activity. It was also found that the dispersive component of surface free energy (SFE) had a significant influence on the value of the friction coefficient and the percentage value of the growth inhibition of bacteria. The dispersive component of SFE caused a reduction in the growth of bacteria and the friction coefficient in mili- and nano-newton load range. Additionally, both self-assembled monolayers prepared on Ti-DLC coatings strongly reduced bacterial activity by up to 95% compared to the control sample.
Collapse
|
26
|
Xu W, Qi M, Li X, Liu X, Wang L, Yu W, Liu M, A L, Zhou Y, Song Y. TiO2 nanotubes modified with Au nanoparticles for visible-light enhanced antibacterial and anti-inflammatory capabilities. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Effect of TiO2 on highly elastic, stretchable UV protective nanocomposite films formed by using a combination of k-Carrageenan, xanthan gum and gellan gum. Int J Biol Macromol 2019; 123:1020-1027. [DOI: 10.1016/j.ijbiomac.2018.11.151] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/06/2018] [Accepted: 11/15/2018] [Indexed: 12/22/2022]
|
28
|
Recent advance in antibacterial activity of nanoparticles contained polyurethane. J Appl Polym Sci 2018. [DOI: 10.1002/app.46997] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
29
|
López de Dicastillo C, Patiño C, Galotto MJ, Palma JL, Alburquenque D, Escrig J. Novel Antimicrobial Titanium Dioxide Nanotubes Obtained through a Combination of Atomic Layer Deposition and Electrospinning Technologies. NANOMATERIALS (BASEL, SWITZERLAND) 2018; 8:E128. [PMID: 29495318 PMCID: PMC5853759 DOI: 10.3390/nano8020128] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Revised: 02/10/2018] [Accepted: 02/13/2018] [Indexed: 01/23/2023]
Abstract
The search for new antimicrobial substances has increased in recent years. Antimicrobial nanostructures are one of the most promising alternatives. In this work, titanium dioxide nanotubes were obtained by an atomic layer deposition (ALD) process over electrospun polyvinyl alcohol nanofibers (PVN) at different temperatures with the purpose of obtaining antimicrobial nanostructures with a high specific area. Electrospinning and ALD parameters were studied in order to obtain PVN with smallest diameter and highest deposition rate, respectively. Chamber temperature was a key factor during ALD process and an appropriate titanium dioxide deposition performance was achieved at 200 °C. Subsequently, thermal and morphological analysis by SEM and TEM microscopies revealed hollow nanotubes were obtained after calcination process at 600 °C. This temperature allowed complete polymer removal and influenced the resulting anatase crystallographic structure of titanium dioxide that positively affected their antimicrobial activities. X-ray analysis confirmed the change of titanium dioxide crystallographic structure from amorphous phase of deposited PVN to anatase crystalline structure of nanotubes. These new nanostructures with very large surface areas resulted in interesting antimicrobial properties against Gram-positive and Gram-negative bacteria. Titanium dioxide nanotubes presented the highest activity against Escherichia coli with 5 log cycles reduction at 200 μg/mL concentration.
Collapse
Affiliation(s)
- Carol López de Dicastillo
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
| | - Cristian Patiño
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
| | - María Jose Galotto
- Food Packaging Laboratory (Laben-Chile), Department of Science and Food Technology, Faculty of Technology, Universidad de Santiago de Chile (USACH), Obispo Umaña 050, 9170201 Santiago, Chile.
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
| | - Juan Luis Palma
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
- Department of Basic Sciences, Engineering Faculty, CIDES, Universidad Central de Chile, Santa Isabel 1186, 8330601 Santiago, Chile.
| | - Daniela Alburquenque
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
- Department of Physics, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile.
| | - Juan Escrig
- Center for the Development of Nanoscience and Nanotechnology (CEDENNA), 9170124 Santiago, Chile.
- Department of Physics, Universidad de Santiago de Chile (USACH), Av. Ecuador 3493, 9170124 Santiago, Chile.
| |
Collapse
|
30
|
Abdulrazzaq Naji S, Jafarzadeh Kashi TS, Pourhajibagher M, Behroozibakhsh M, Masaeli R, Bahador A. Evaluation of Antimicrobial Properties of Conventional Poly(Methyl Methacrylate) Denture Base Resin Materials Containing Hydrothermally Synthesised Anatase TiO 2 Nanotubes against Cariogenic Bacteria and Candida albicans. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2018; 17:161-172. [PMID: 31011350 PMCID: PMC6447881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to investigate the antimicrobial properties of a conventional poly methyl methacrylate (PMMA) modified with hydrothermally synthesised titanium dioxide nanotubes (TNTs). Minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and minimum fungicidal concentrations (MFC) for planktonic cells of the TiO2 nanotubes solution against Lactobacillus acidophilus, Streptococcus mutans and Candida albicans were determined. The powder of conventional acrylic resin was modified using 2.5% and 5% by weight synthesised titanium dioxide (TiO2) nanotubes, and rectangular-shaped specimens (10 mm × 10 mm × 3 mm) were fabricated. The antimicrobial properties of ultraviolet (UV) and non-UV irradiated modified, and non-modified acrylic resins were evaluated using the estimation of planktonic cell count and biofilm formation of the three microorganisms mentioned above. The data were analysed by one-way analysis of variance (ANOVA), followed by a post-hoc Tukey's test at a significance level of 5%. MIC, for Streptococcus. mutans, Lactobacillus. acidophilus, and Candida. albicans, MBC for S. mutans and L. acidophilus and MFC for Candida. albicans were obtained more than 2100 µg/mL. The results of this study indicated a significant reduction in both planktonic cell count and biofilm formation of modified UV-activated acrylic specimens compared with the control group (p = 0.00). According to the results of the current study, it can be concluded that PMMA/TiO2 nanotube composite can be considered as a promising new material for antimicrobial approaches.
Collapse
Affiliation(s)
- Sahar Abdulrazzaq Naji
- Foundation of Technical Education, College of Health and Medical Technology, Baghdad, Iraq.,Department of Dental Biomaterials, School of Dentistry, International Campus, Tehran University of Medical Sciences (IC-TUMS), Tehran, Iran.
| | - Tahereh Sadat Jafarzadeh Kashi
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. ,Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Dental Implant Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Marjan Behroozibakhsh
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. ,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Corresponding author: E-mail:
| | - Reza Masaeli
- Department of Dental Biomaterials, School of Dentistry, Tehran University of Medical Sciences, Tehran, Iran. ,Research Center for Science and Technology in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Abbas Bahador
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|