1
|
Skutlaberg DH, Wiker HG, Mylvaganam H, The INFECT Study Group, Norrby-Teglund A, Skrede S. Consistent Biofilm Formation by Streptococcus pyogenes emm 1 Isolated From Patients With Necrotizing Soft Tissue Infections. Front Microbiol 2022; 13:822243. [PMID: 35250938 PMCID: PMC8895234 DOI: 10.3389/fmicb.2022.822243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/27/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectivesBiofilm formation has been demonstrated in muscle and soft tissue samples from patients with necrotizing soft tissue infection (NSTI) caused by Streptococcus pyogenes, but the clinical importance of this observation is not clear. Although M-protein has been shown to be important for in vitro biofilm formation in S. pyogenes, the evidence for an association between emm type and biofilm forming capacity is conflicting. Here we characterize the biofilm forming capacity in a collection of S. pyogenes isolates causing NSTI, and relate this to emm type of the isolates and clinical characteristics of the patients.MethodsBacterial isolates and clinical data were obtained from NSTI patients enrolled in a multicenter prospective observational study. Biofilm forming capacity was determined using a microtiter plate assay.ResultsAmong 57 cases, the three most frequently encountered emm types were emm1 (n = 22), emm3 (n = 13), and emm28 (n = 7). The distribution of biofilm forming capacity in emm1 was qualitatively (narrow-ranged normal distribution) and quantitatively (21/22 isolates in the intermediate range) different from other emm types (wide ranged, multimodal distribution with 5/35 isolates in the same range as emm1). There were no significant associations between biofilm forming capacity and clinical characteristics of the patients.ConclusionsThe biofilm forming capacity of emm1 isolates was uniform and differed significantly from other emm types. The impact of biofilm formation in NSTI caused by S. pyogenes on clinical outcomes remains uncertain.
Collapse
Affiliation(s)
- Dag Harald Skutlaberg
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
- *Correspondence: Dag Harald Skutlaberg,
| | - Harald G. Wiker
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | - Haima Mylvaganam
- Department of Microbiology, Haukeland University Hospital, Bergen, Norway
| | | | - Anna Norrby-Teglund
- Center for Infectious Medicine, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden
| | - Steinar Skrede
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
2
|
Deciphering Streptococcal Biofilms. Microorganisms 2020; 8:microorganisms8111835. [PMID: 33233415 PMCID: PMC7700319 DOI: 10.3390/microorganisms8111835] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/10/2020] [Accepted: 11/17/2020] [Indexed: 12/19/2022] Open
Abstract
Streptococci are a diverse group of bacteria, which are mostly commensals but also cause a considerable proportion of life-threatening infections. They colonize many different host niches such as the oral cavity, the respiratory, gastrointestinal, and urogenital tract. While these host compartments impose different environmental conditions, many streptococci form biofilms on mucosal membranes facilitating their prolonged survival. In response to environmental conditions or stimuli, bacteria experience profound physiologic and metabolic changes during biofilm formation. While investigating bacterial cells under planktonic and biofilm conditions, various genes have been identified that are important for the initial step of biofilm formation. Expression patterns of these genes during the transition from planktonic to biofilm growth suggest a highly regulated and complex process. Biofilms as a bacterial survival strategy allow evasion of host immunity and protection against antibiotic therapy. However, the exact mechanisms by which biofilm-associated bacteria cause disease are poorly understood. Therefore, advanced molecular techniques are employed to identify gene(s) or protein(s) as targets for the development of antibiofilm therapeutic approaches. We review our current understanding of biofilm formation in different streptococci and how biofilm production may alter virulence-associated characteristics of these species. In addition, we have summarized the role of surface proteins especially pili proteins in biofilm formation. This review will provide an overview of strategies which may be exploited for developing novel approaches against biofilm-related streptococcal infections.
Collapse
|
3
|
Group A Streptococcus infections in children: from virulence to clinical management. Curr Opin Infect Dis 2019; 31:224-230. [PMID: 29601325 DOI: 10.1097/qco.0000000000000452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW Recent findings have open new perspectives on group A Streptococcus (GAS) virulence understanding with special focus on the carrier stage and new hopes for an efficient vaccine against this important pathogen. RECENT FINDINGS Understanding of carriage state, transmission and role of virulence factors in invasive infections have been recently active research fields questioning the link between carriage and infections and highlighting the potential to prevent invasive diseases. New roles for already well known virulence factors, such as Streptolysin O, M protein or NAD(+)-glycohydrolase have been discovered. Immunological studies have also shown diversity in both clinical and immunological responses toward various GAS antigens raising questions, and hopes, for the development of an efficient global vaccine candidate. SUMMARY A greater understanding of GAS virulence strategies, and their associated clinical manifestations, may be obtained by shifting our research scope toward virulence determinant interactions and cooperation rather than focusing on individual virulence factor or specific strain characterization only.
Collapse
|
4
|
Wozniak A, Scioscia N, García PC, Dale JB, Paillavil BA, Legarraga P, Salazar-Echegarai FJ, Bueno SM, Kalergis AM. Protective immunity induced by an intranasal multivalent vaccine comprising 10 Lactococcus lactis strains expressing highly prevalent M-protein antigens derived from Group A Streptococcus. Microbiol Immunol 2018; 62:395-404. [PMID: 29704396 PMCID: PMC6013395 DOI: 10.1111/1348-0421.12595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 04/13/2018] [Accepted: 04/19/2018] [Indexed: 11/28/2022]
Abstract
Streptococcus pyogenes (group A Streptococcus) causes diseases ranging from mild pharyngitis to severe invasive infections. The N-terminal fragment of streptococcal M protein elicits protective antibodies and is an attractive vaccine target. However, this N- terminal fragment is hypervariable: there are more than 200 different M types. In this study, an intranasal live bacterial vaccine comprising 10 strains of Lactococcus lactis, each expressing one N-terminal fragment of M protein, has been developed. Live bacterial-vectored vaccines cost less to manufacture because the processes involved are less complex than those required for production of protein subunit vaccines. Moreover, intranasal administration does not require syringes or specialized personnel. Evaluation of individual vaccine types (M1, M2, M3, M4, M6, M9, M12, M22, M28 and M77) showed that most of them protected mice against challenge with virulent S. pyogenes. All 10 strains combined in a 10-valent vaccine (M×10) induced serum and bronchoalveolar lavage IgG titers that ranged from three- to 10-fold those of unimmunized mice. After intranasal challenge with M28 streptococci, survival of M×10-immunized mice was significantly higher than that of unimmunized mice. In contrast, when mice were challenged with M75 streptococci, survival of M×10-immunized mice did not differ significantly from that of unimmunized mice. Mx-10 immunized mice had significantly less S. pyogenes in oropharyngeal washes and developed less severe disease symptoms after challenge than did unimmunized mice. Our L. lactis-based vaccine may provide an alternative solution to development of broadly protective group A streptococcal vaccines.
Collapse
MESH Headings
- Administration, Intranasal/methods
- Animals
- Antibodies, Bacterial/blood
- Antigens, Bacterial/classification
- Antigens, Bacterial/immunology
- Antigens, Bacterial/metabolism
- Bacterial Outer Membrane Proteins/classification
- Bacterial Outer Membrane Proteins/immunology
- Bacterial Outer Membrane Proteins/metabolism
- Body Weight
- Carrier Proteins/classification
- Carrier Proteins/immunology
- Carrier Proteins/metabolism
- Disease Models, Animal
- Female
- Immunity
- Immunization
- Immunoglobulin G/blood
- Lactococcus lactis/immunology
- Lactococcus lactis/pathogenicity
- Mice
- Mice, Inbred BALB C
- Streptococcal Infections/immunology
- Streptococcal Infections/microbiology
- Streptococcal Infections/prevention & control
- Streptococcal Vaccines/administration & dosage
- Streptococcal Vaccines/immunology
- Streptococcus pyogenes/immunology
- Treatment Outcome
- Vaccination/methods
- Vaccines, Attenuated/administration & dosage
- Vaccines, Attenuated/immunology
- Vaccines, Synthetic/administration & dosage
- Vaccines, Synthetic/immunology
Collapse
Affiliation(s)
- Aniela Wozniak
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Natalia Scioscia
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Patricia C. García
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - James B. Dale
- Department of Medicine, University of Tennessee Health Science Center and the Department of Veterans Affairs Medical Center, Memphis, Tennessee, TN 38163, USA
| | - Braulio A. Paillavil
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Paulette Legarraga
- Laboratorio de Microbiología, Departamento de Laboratorios Clínicos, Escuela de Medicina, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile
| | - Francisco J. Salazar-Echegarai
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Susan M. Bueno
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexis M. Kalergis
- Millennium Institute on Immunology and Immunotherapy, Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Endocrinología, Facultad de Medicina, Pontificia Universidad Católica de Chile, Santiago 8331010, Chile
| |
Collapse
|