1
|
Caddey B, Fisher S, Barkema HW, Nobrega DB. Companions in antimicrobial resistance: examining transmission of common antimicrobial-resistant organisms between people and their dogs, cats, and horses. Clin Microbiol Rev 2025; 38:e0014622. [PMID: 39853095 PMCID: PMC11905369 DOI: 10.1128/cmr.00146-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2025] Open
Abstract
SUMMARYNumerous questions persist regarding the role of companion animals as potential reservoirs of antimicrobial-resistant organisms that can infect humans. While relative antimicrobial usage in companion animals is lower than that in humans, certain antimicrobial-resistant pathogens have comparable colonization rates in companion animals and their human counterparts, which inevitably raises questions regarding potential antimicrobial resistance (AMR) transmission. Furthermore, the close contact between pets and their owners, as well as pets, veterinary professionals, and the veterinary clinic environment, provides ample opportunity for zoonotic transmission of antimicrobial-resistant pathogens. Here we summarize what is known about the transmission of AMR and select antimicrobial-resistant organisms between companion animals (primarily dogs, cats, and horses) and humans. We also describe the global distribution of selected antimicrobial-resistant organisms in companion animals. The impact of interspecies AMR transmission within households and veterinary care settings is critically reviewed and discussed in the context of methicillin-resistant staphylococci, extended-spectrum β-lactamase and carbapenemase-producing bacteria. Key research areas are emphasized within established global action plans on AMR, offering valuable insights for shaping future research and surveillance initiatives.
Collapse
Affiliation(s)
- Benjamin Caddey
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Sibina Fisher
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Herman W. Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Diego B. Nobrega
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Jantorn P, Nualla-Ong A, Sotthibandhu DS. Novel hydroxy naphthol blue-based recombinase polymerase amplification for the rapid detection of Staphylococcus pseudintermedius. Res Vet Sci 2025; 183:105520. [PMID: 39721511 DOI: 10.1016/j.rvsc.2024.105520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 12/13/2024] [Accepted: 12/20/2024] [Indexed: 12/28/2024]
Abstract
Staphylococcus pseudintermedius (S. pseudintermedius) is a significant cause of pyoderma, soft tissue, urinary tract, and ear infections in cats and dogs. Bacterial culture and biochemical phenotypic assays are the gold standards for clinical diagnosis of bacteria but molecular methods have now been developed to identify and differentiate S. pseudintermedius. However, these methods require complex and expensive equipment, restricting usage in many laboratories. This study developed a rapid, specific, and sensitive detection method for S. pseudintermedius based on recombinase polymerase amplification (RPA) combined with hydroxy naphthol blue (HNB) dye. The RPA primer was designed, optimized, and subjected to amplify the spsL gene as the molecular diagnostic target. HNB dye was added to the reaction, successfully enabling the development of a colorimetric detection method for S. pseudintermedius. This RPA-HNB assay completed amplification at 37 °C within 20 min, with results visualized by the naked eye as a color change. All processes were completed within an hour. The assay showed the limit of detection at 1 copy per reaction, with sensitivity and specificity against S. pseudintermedius 0.98 and 1.00, respectively. Results indicated that our assay provided high sensitivity and specificity for detecting S. pseudintermedius with reduced detection time.
Collapse
Affiliation(s)
- Pavarish Jantorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand; Faculty of Medical Technology, Prince of Songkla University, Songkhla, Thailand
| | - Aekkaraj Nualla-Ong
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla, Thailand
| | | |
Collapse
|
3
|
Roberts E, Nuttall TJ, Gkekas G, Mellanby RJ, Fitzgerald JR, Paterson GK. Not just in man's best friend: A review of Staphylococcus pseudintermedius host range and human zoonosis. Res Vet Sci 2024; 174:105305. [PMID: 38805894 DOI: 10.1016/j.rvsc.2024.105305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 05/30/2024]
Abstract
Staphylococcus pseudintermedius is one species in the commensal staphylococcal population in dogs. While it is commonly carried on healthy companion dogs it is also an opportunistic pathogen associated with a range of skin, ear, wound and other infections. While adapted to dogs, it is not restricted to them, and we have reviewed its host range, including increasing reports of human colonisation and infections. Despite its association with pet dogs, S. pseudintermedius is found widely in animals, covering companion, livestock and free-living species of birds and mammals. Human infections, typically in immunocompromised individuals, are increasingly being recognised, in part due to improved diagnosis. Colonisation, infection, and antimicrobial resistance, including frequent multidrug resistance, among S. pseudintermedius isolates represent important One Health challenges.
Collapse
Affiliation(s)
- E Roberts
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - T J Nuttall
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G Gkekas
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - R J Mellanby
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - J R Fitzgerald
- The Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - G K Paterson
- The Royal (Dick) School of Veterinary Studies and the Roslin Institute, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
4
|
Jantorn P, Tipmanee V, Wanna W, Prapasarakul N, Visutthi M, Sotthibandhu DS. Potential natural antimicrobial and antibiofilm properties of Piper betle L. against Staphylococcus pseudintermedius and methicillin-resistant strains. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116820. [PMID: 37369337 DOI: 10.1016/j.jep.2023.116820] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/08/2023] [Accepted: 06/18/2023] [Indexed: 06/29/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Piper betle L. has potent of antimicrobial activity and is widely used as a traditional remedy to treat skin infections. However, no clear evidence exists concerning antimicrobial and antibiofilm activity against Staphylococcus pseudintermedius and methicillin-resistant S. pseudintermedius (MRSP) opportunistic pathogens that cause wound infections and pyoderma in canines and zoonotic disease. AIM OF THE STUDY The antimicrobial and antibiofilm activities of P. betle extract were assessed against S. pseudintermedius and MRSP strains. MATERIALS AND METHODS Ethanol leaf extract of P. betle was investigated for its antibacterial effect on S. pseudintermedius and MRSP by broth microdilution and time-kill assays. Biofilm inhibition and production assays were performed to evaluate antibiofilm and biofilm eradication effects, respectively. Biofilm-associated gene expression was further studied using real-time polymerase chain reaction (PCR). The possible interaction between IcaA and major compounds in P. betle was analyzed by molecular docking. RESULTS The extract showed minimum inhibitory concentration (MIC) at 250 μg/mL. Growth inhibition of P. betle at 1 MIC against the bacteria was initially observed after treatment for 4 h. All isolates were completely killed after 18 h exposure to the extract. Minimum biofilm inhibitory concentrations (MBICs) of the extract against the tested isolates ranged 1/2 MIC to 1 MIC, while minimum biofilm eradication concentration (MBEC) of P. betle was initialed at 8 MIC. Quantitative inhibition and eradication effects were observed in representative strains. The extract at 1/2 MIC and 1 MIC values inhibited biofilm formation up to 100%, with bacterial biofilm removed at up to 94.21% by 4 MIC of the extract. The extract downregulated the expression of the icaA gene among biofilm-producing isolates. The most abundant compounds, 4-allyl-1,2-diacetoxybenzene and eugenol showed a strong affinity with IcaA protein at -5.65 and -5.31 kcal/mol, respectively. CONCLUSIONS P. betle extract demonstrated the antibacterial, antibiofilm, and biofilm-removal activity against S. pseudintermedius and MRSP. Downregulation of the icaA gene expression and protein interaction were possible modes of action of the extract that impacted biofilm production. This extract showed promise as an alternative treatment for S. pseudintermedius infection, especially drug-resistant and biofilm-associated cases.
Collapse
Affiliation(s)
- Pavarish Jantorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand
| | - Warapond Wanna
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand
| | - Nuvee Prapasarakul
- Center of Excellence in Diagnosis and Monitoring of Animal Pathogens (DMAP), Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok, Thailand
| | - Monton Visutthi
- Biology Program, Faculty of Science and Technology, Nakhon Ratchasima Rajabhat University, Nakhon Ratchasima 30000, Thailand
| | | |
Collapse
|
5
|
Lee GY, Lee SI, Park JH, Kim SD, Kim GB, Yang SJ. Detection and characterization of potential virulence determinants in Staphylococcus pseudintermedius and S. schleiferi strains isolated from canine otitis externa in Korea. J Vet Sci 2023; 24:e85. [PMID: 38031521 PMCID: PMC10694376 DOI: 10.4142/jvs.23087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND A recent increase in the occurrence of canine skin and soft tissue infections, including otitis externa and pyoderma, caused by antimicrobial-resistant Staphylococcus pseudintermedius and S. schleiferi has become a significant public and veterinary health issues. OBJECTIVE We investigated the virulence potentials associated with the occurrence of canine otitis externa in S. pseudintermedius and S. schleiferi. METHODS In this study, the prevalence of genes encoding leukocidins, exfoliative toxins, and staphylococcal enterotoxins (SEs) was investigated using previously characterized S. pseudintermedius (n = 26) and S. schleiferi (n = 19) isolates derived from canine otitis externa. Susceptibility to cathelicidins (K9CATH and PMAP-36) and hydrogen peroxide (H2O2) was also examined in both staphylococcal species. RESULTS A high prevalence of genes encoding leukocidins (lukS/F-I, lukS1/F1-S, and lukS2/F2-S), exfoliative toxins (siet, expB, and sset), and SEs was identified in both S. pseudintermedius and S. schleiferi isolates. Notably, S. pseudintermedius isolates possessed higher number of SE genes, especially newer SE genes, than S. schleiferi isolates harboring egc clusters. Although no significant differences in susceptibility to K9CATH and H2O2 were observed between the two isolate groups, S. pseudintermedius isolates exhibited enhanced resistance to PMAP-36 compared to S. schleiferi isolates. CONCLUSIONS These findings suggest that high a prevalence of various toxin genes together with enhanced resistance to cathelicidins may contribute to the pathogenicity of S. pseudintermedius and S. schleiferi in canine cutaneous infections.
Collapse
Affiliation(s)
- Gi Yong Lee
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Soo In Lee
- School of Bioresources and Bioscience, Chung-Ang University, Anseong 17546, Korea
| | - Ji Heon Park
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea
| | - Sun Do Kim
- School of Bioresources and Bioscience, Chung-Ang University, Anseong 17546, Korea
| | - Geun-Bae Kim
- School of Bioresources and Bioscience, Chung-Ang University, Anseong 17546, Korea
| | - Soo-Jin Yang
- Department of Veterinary Microbiology, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
6
|
Putriningsih PAS, Phuektes P, Jittimanee S, Kampa J. Methicillin-resistant Staphylococci in canine pyoderma in Thailand. Vet World 2023; 16:2340-2348. [PMID: 38152262 PMCID: PMC10750743 DOI: 10.14202/vetworld.2023.2340-2348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/17/2023] [Indexed: 12/29/2023] Open
Abstract
Background and Aims Methicillin-resistant Staphylococci (MRS) seriously threatens animal and human health. Repeated antibiotic use allows the bacteria to develop resistance to several antibiotic classes and become multidrug-resistant (MDR). Canine pyoderma, a common skin condition in dogs, is mainly caused by Staphylococci, including MRS. Detecting this infection in all canine populations is crucial to develop a proper preventive plan. This study estimated the prevalence, antibiogram, and risk factors of MRS in canine patients at a referral animal hospital in Khon Kaen, Thailand. Materials and Methods Skin swabs and relevant information were collected from 56 client-owned dogs that visited the hospital from September 2019 to September 2020. Staphylococci colonies were subjected to molecular identification and antibiotic susceptibility tests using an automated system (VITEK® 2). These colonies were also genetically identified using multiplex-polymerase chain reaction (PCR) and sequencing. The mecA gene, encoding methicillin resistance, was detected using simplex-PCR. The risk factors of MRS infection and their association with MRS infection were analyzed using logistic regression and the Chi-square test, respectively. Results The prevalence of MRS was found to be 35.7% (20/56 dogs). By species, methicillin-resistant Staphylococcus pseudintermedius was found in 24 of 104 isolates (23.1%), and all samples were MDR. Receiving systemic antibiotics in the past 6 months was a major risk factor associated with MRS infection (p < 0.05; odds ratio (OR) > 1). In addition to the MRS isolates, the mecA gene was also detected in methicillin-susceptible Staphylococci isolates. This might be because of the high expression of blaI, and mutations in c-di-AMP cyclase DacA, RelA, and Fem proteins. Conclusion A high prevalence of MRS and MDR was observed in the studied population, which might be potentially due to improper antibiotic use by the owners and horizontal transfer of drug-resistance genes.
Collapse
Affiliation(s)
- Putu Ayu Sisyawati Putriningsih
- Graduate School, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
- Laboratory of Veterinary Internal Medicine, Faculty of Veterinary Medicine, Udayana University, Bali, 80361, Indonesia
| | - Patchara Phuektes
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Suphattra Jittimanee
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jaruwan Kampa
- Division of Pathobiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
7
|
Gharajalar SN, Tanhaee S, Omidzadeh M, Onsori M. Detection of Antimicrobial Resistance and Biofilm Production Among Staphylococcus pseudintermedius from Canine Skin Lesions. Microb Drug Resist 2023. [PMID: 37855899 DOI: 10.1089/mdr.2022.0257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
Aims: Staphylococcus pseudintermedius is an opportunistic pathogen also indicated as one of the major causes of skin infections in dogs. This study aimed to identify S. pseudintermedius isolated from canine skin lesions, evaluate their antibiotic resistance profile and biofilm production ability. Methodology: Lesions from 50 rural dogs with different skin lesions were sampled after pyoderma diagnosis by private practices. Bacterial species determination was investigated and susceptibility to nine antimicrobials were determined by means of Kirby-Bauer assay. Then seven antibiotic resistance genes, including mecA, blaZ, tetK, tetM, blaSHV, blaOXA-1, and blaTEM were screened by PCR. Moreover, biofilm formation ability of the strains was determined using the microtiter plate assay along with the presence of icaADBC genes. Results: A total of 37 (74%) isolates were identified as S. pseudintermedius. All S. pseudintermedius isolates were resistant to multiple drugs. Resistance to penicillin, amoxicillin-clavulanic acid, and cefazolin were higher than other antimicrobials. All the beta-lactam-resistant isolates carried blaZ, whereas mecA was found in 6 (16.21%) of them. Among tetracycline-resistant strains, the frequency of tetK and tetM determinants were 19 (90.47%) and 21 (100%), respectively. Finally, most cefazolin-resistant strains 31 (91.89%) were positive for blaTEM gene. The rate of biofilm production ability among S. pseudintermedius isolates was 35 (94.59%). Furthermore, the presence of icaA/D genes was detected in 35 (100%) and 29 (82.85%) of S. pseudintermedius strains, respectively. Conclusion: The high rates of antimicrobial resistance and biofilm production ability among S. pseudintermedius isolates, emphasize the urgent need to use more effective infection control policies and guidelines for antimicrobial use.
Collapse
Affiliation(s)
- Sahar Nouri Gharajalar
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Sadegh Tanhaee
- Master Student of Veterinary Bacteriology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Mahdieh Omidzadeh
- Master Student of Veterinary Bacteriology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | | |
Collapse
|
8
|
Breyer GM, Saggin BF, de Carli S, da Silva MERJ, da Costa MM, Brenig B, Azevedo VADC, Cardoso MRDI, Siqueira FM. Virulent potential of methicillin-resistant and methicillin-susceptible Staphylococcus pseudintermedius in dogs. Acta Trop 2023; 242:106911. [PMID: 36965612 DOI: 10.1016/j.actatropica.2023.106911] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 03/27/2023]
Abstract
Staphylococcus pseudintermedius is a zoonotic pathogen responsible for several infectious diseases in pet animals, yet its pathogenic potential is not fully understood. Thus, this study aims to unravel the virulence profile of S. pseudintermedius from canine origin. Methicillin-resistant (MRSP) and methicillin-susceptible (MSSP) strains were isolated from different infection sites and their genotypic and phenotypic features were compared to determine the clinical implications of MRSP and MSSP strains. Bacterial identification was performed using MALDI-TOF and 16S-rDNA sequencing. In addition, we used multilocus sequence typing (MLST) for strains' sequence type (ST) determination and phylogenetic relationship. The strains were screened for toxin genes, including cytotoxins (lukS, lukF), exfoliative toxin (siet), enterotoxins (sea, seb, sec, secCanine, sel, sem, and seq) and toxic shock syndrome toxin (tst-1). In vitro phenotypic analyses assessing antimicrobial susceptibility profile, biofilm formation ability, and expression of extracellular matrix components were performed. The investigated S. pseudintermedius strains belong to 17 unique ST, most of which were classified as ST71. MSSP and MRSP strains shared siet, lukS, and lukF virulence markers. Our findings showed that some MSSP strains also harbored sel, seq, and sem enterotoxin genes, suggesting a more diverse virulence profile. All MRSP strains and 77% of MSSP strains were classified as multidrug resistant (MDR). Moreover, all investigated S. pseudintermedius strains showed strong biofilm formation ability. In summary, our findings highlight the wide spread of highly virulent and drug-resistant zoonotic S. pseudintermedius strains, being a potential concern for One Health issues.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Bianca Fagundes Saggin
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Silvia de Carli
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Maria Eduarda Rocha Jacques da Silva
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Mateus Matiuzzi da Costa
- Departamento de Zootecnia, Universidade Federal do Vale do São Francisco (UNIVASF), Petrolina, Brazil
| | - Bertram Brenig
- Institute of Veterinary Medicine, Department of Molecular Biology of Livestock, Georg August University Göttingen, 37077 Göttingen, Germany
| | - Vasco Ariston de Carvalho Azevedo
- Laboratório de Genética Molecular e Celular (LGCM), Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Marisa Ribeiro de Itapema Cardoso
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil; Laboratório de Medicina Veterinária Preventiva, Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária (LaBacVet), Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Patologia Veterinária, Porto Alegre, Brazil; Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.
| |
Collapse
|
9
|
Moses IB, Santos FF, Gales AC. Human Colonization and Infection by Staphylococcus pseudintermedius: An Emerging and Underestimated Zoonotic Pathogen. Microorganisms 2023; 11:microorganisms11030581. [PMID: 36985155 PMCID: PMC10057476 DOI: 10.3390/microorganisms11030581] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/03/2023] Open
Abstract
S. pseudintermedius is a known resident of the skin and mucous membranes and a constituent of the normal microbiota of dogs. It has also been recognized as an opportunistic and zoonotic pathogen that is able to colonize humans and cause severe diseases, especially in immunocompromised hosts. Most importantly, methicillin-resistant S. pseudintermedius (MRSP), which is intrinsically multidrug-resistant, has emerged with serious public health consequences. The epidemiological situation is further exacerbated with reports of its zoonotic transmission and human infections which have been mostly attributed to the increasing frequency of dog ownership and close contact between dogs and humans. Evidence on the zoonotic transmission of MRSP from pet dogs to humans (such as dog owners, small-animal veterinarians, and other people in close proximity to dogs) is limited, especially due to the misidentification of S. pseudintermedius as S. aureus. Despite this fact, reports on the increasing emergence and spread of MRSP in humans have been increasing steadily over the years since its first documented report in 2006 in Belgium. The emergence of MRSP strains has further compromised treatment outcomes in both veterinary and human medicine as these strains are resistant to beta-lactam antimicrobials usually prescribed as first line treatment. Frustratingly, the limited awareness and surveillance of the zoonotic transmission of S. pseudintermedius have underestimated their extent of transmission, prevalence, epidemiology, and public health significance. In order to fill this gap of information, this review focused on detailed reports on zoonotic transmission, human colonization, and infections by S. pseudintermedius, their pathogenic features, antimicrobial resistance profiles, epidemiology, risk factors, and treatment. In writing this review, we searched Web of Science, PubMed, and SCOPUS databases using the keyword “Staphylococcus pseudintermedius AND humans”. A phylogenetic tree to determine the genetic relatedness/diversity of publicly available genomes of S. pseudintermedius was also constructed.
Collapse
Affiliation(s)
- Ikechukwu Benjamin Moses
- Department of Internal Medicine, Division of Infectious Diseases, Escola Paulista de Medicina/Universidade Federal de São Paulo, Universidade Federal de São Paulo–UNIFESP, São Paulo 04039-032, Brazil
- Department of Applied Microbiology, Faculty of Sciences, Ebonyi State University, Abakaliki PMB 053, Nigeria
| | - Fernanda Fernandes Santos
- Department of Internal Medicine, Division of Infectious Diseases, Escola Paulista de Medicina/Universidade Federal de São Paulo, Universidade Federal de São Paulo–UNIFESP, São Paulo 04039-032, Brazil
| | - Ana Cristina Gales
- Department of Internal Medicine, Division of Infectious Diseases, Escola Paulista de Medicina/Universidade Federal de São Paulo, Universidade Federal de São Paulo–UNIFESP, São Paulo 04039-032, Brazil
- Correspondence:
| |
Collapse
|
10
|
Boonchuay K, Sontigun N, Wongtawan T, Fungwithaya P. Association of multilocus sequencing types and antimicrobial resistance profiles of methicillin-resistant Mammaliicoccus sciuri in animals in Southern Thailand. Vet World 2023; 16:291-295. [PMID: 37041994 PMCID: PMC10082716 DOI: 10.14202/vetworld.2023.291-295] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/13/2023] [Indexed: 02/17/2023] Open
Abstract
Background and Aim: Mammaliicoccus sciuri, formerly known as Staphylococcus sciuri, is an opportunistic pathogen in the environment, human and animal mucosa, and skin. Although this pathogen is becoming more resistant to drugs and harmful to animals and humans, basic knowledge of this pathogen remains limited. This study aimed to investigate a new multilocus sequencing type (MLST) related to the antibiotic resistance pattern of M. sciuri from animals in southern Thailand.
Materials and Methods: We used 11 methicillin-resistant M. sciuri (MRMS) isolates in this study which were obtained from six horses, four cows, and one chicken of the previous study. Antimicrobial resistance (AMR) was re-evaluated based on the minimum inhibitory concentration using the VITEK® 2 automated system. Three AMR genes were examined, namely mecA, mecC, and blaZ. Staphylococcal chromosomal cassette mec (SCCmec) gene detection was performed through the multiplex polymerase chain reaction (PCR). Internal segments of the seven housekeeping genes, ack, aroE, ftsZ, glpK, gmk, pta1, and tpiA, were used for multilocus sequence typing. The population of resistant bacteria and the types of multidrug-resistant, extensively drug-resistant, and pandemic drug-resistant bacteria were classified through descriptive analysis.
Results: mecA and blaZ genes were detected in all isolates; however, the mecC gene was not observed in any isolate based on the PCR results. All MRMS isolates revealed a non-typable SCCmec. Seven MLSTs (71, 81, 120, 121, 122, 199, and 200) were identified in this study.
Conclusion: The characteristics of MRMS in Southern Thailand were variable, particularly in cattle and horses. The antibiogram and SCCmec types of this pathogen remain concerns with regard to antibiotic-resistant gene transmission among Staphylococcus and Mammaliicoccus species. All MLSTs in Thailand revealed the distribution among clones in Asia, including the virulence of a zoonotic clone in Southern Thailand.
Collapse
Affiliation(s)
- Kanpapat Boonchuay
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Punpichaya Fungwithaya
- Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre of Excellence Research for Melioidosis and Other Microorganisms, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
11
|
Swarthout JM, Chan EMG, Garcia D, Nadimpalli ML, Pickering AJ. Human Colonization with Antibiotic-Resistant Bacteria from Nonoccupational Exposure to Domesticated Animals in Low- and Middle-Income Countries: A Critical Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14875-14890. [PMID: 35947446 DOI: 10.1021/acs.est.2c01494] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Data on community-acquired antibiotic-resistant bacterial infections are particularly sparse in low- and middle-income countries (LMICs). Limited surveillance and oversight of antibiotic use in food-producing animals, inadequate access to safe drinking water, and insufficient sanitation and hygiene infrastructure in LMICs could exacerbate the risk of zoonotic antibiotic resistance transmission. This critical review compiles evidence of zoonotic exchange of antibiotic-resistant bacteria (ARB) or antibiotic resistance genes (ARGs) within households and backyard farms in LMICs, as well as assesses transmission mechanisms, risk factors, and environmental transmission pathways. Overall, substantial evidence exists for exchange of antibiotic resistance between domesticated animals and in-contact humans. Whole bacteria transmission and horizontal gene transfer between humans and animals were demonstrated within and between households and backyard farms. Further, we identified water, soil, and animal food products as environmental transmission pathways for exchange of ARB and ARGs between animals and humans, although directionality of transmission is poorly understood. Herein we propose study designs, methods, and topical considerations for priority incorporation into future One Health research to inform effective interventions and policies to disrupt zoonotic antibiotic resistance exchange in low-income communities.
Collapse
Affiliation(s)
- Jenna M Swarthout
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Elana M G Chan
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Denise Garcia
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
| | - Maya L Nadimpalli
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts 02111, United States
| | - Amy J Pickering
- Department of Civil and Environmental Engineering, Tufts University, Medford, Massachusetts 02155, United States
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California 94720, United States
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance, Tufts University, Boston, Massachusetts 02111, United States
| |
Collapse
|
12
|
Glajzner P, Szewczyk EM, Szemraj M. Pathogenic potential and antimicrobial resistance of Staphylococcus pseudintermedius isolated from human and animals. Folia Microbiol (Praha) 2022; 68:231-243. [PMID: 36221001 PMCID: PMC10104922 DOI: 10.1007/s12223-022-01007-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Accepted: 09/23/2022] [Indexed: 11/04/2022]
Abstract
Crossing of interspecies barriers by microorganisms is observed. In recent years, Staphylococcus pseudintermedius-a species formerly thought to be animal-has also been isolated from human clinical materials. Many virulence factors are responsible for the colonization, which is the first step an infection, of the new host organism. We analyzed the factors influencing this colonization as well as susceptibility to antibiotics in fourteen S. pseudintermedius strains isolated from clinical cases from humans and animals. The occurrence of genes responsible for binding elastin, fibronectin, and fibrinogen and some phenotypic features, although different between strains, is comparable in both groups. However, the animal isolates had more genes coding for virulence factors. All isolates tested had the exfoliating toxin gene and the leukotoxin determining genes, but only the human strains had enterotoxin genes. The assessment of antibiotic resistance of strains of both groups indicates their broad resistance to antibiotics commonly used in veterinary medicine. Antibiotic resistance was more common among animal isolates. The multilocus sequence typing analysis of the studied strains was performed. The results indicated a large diversity of the S. pseudintermedius population in both studied groups of strains. Equipped with important virulence factors, they showed the ability to infect animals and humans. The clonal differentiation of the methicillin-susceptible strains and the multidrug resistance of the strains of both studied groups should be emphasized. The considerable genetic diversity of strains from a limited geographical area indicates the processes of change taking place within this species. Thus, careful observation of the ongoing process of variation is necessary, as they may lead to the selection of S. pseudintermedius, which will pose a significant threat to humans.
Collapse
Affiliation(s)
- Paulina Glajzner
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszyńskiego 1, 90-001, Lodz, Poland
| | - Eligia M Szewczyk
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszyńskiego 1, 90-001, Lodz, Poland
| | - Magdalena Szemraj
- Department of Pharmaceutical Microbiology and Microbiological Diagnostics, Medical University of Lodz, ul. Muszyńskiego 1, 90-001, Lodz, Poland.
| |
Collapse
|
13
|
Adiguzel MC, Schaefer K, Rodriguez T, Ortiz J, Sahin O. Prevalence, Mechanism, Genetic Diversity, and Cross-Resistance Patterns of Methicillin-Resistant Staphylococcus Isolated from Companion Animal Clinical Samples Submitted to a Veterinary Diagnostic Laboratory in the Midwestern United States. Antibiotics (Basel) 2022; 11:antibiotics11050609. [PMID: 35625253 PMCID: PMC9138002 DOI: 10.3390/antibiotics11050609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Methicillin-resistant Staphylococcus (MRS) is a leading cause of skin and soft tissue infections in companion animals, with limited treatment options available due to the frequent cross-resistance of MRS to other antibiotics. In this study, we report the prevalence, species distribution, genetic diversity, resistance mechanism and cross-resistance patterns of MRS isolated from companion animal (mostly dog and cat) clinical cases submitted to Iowa State University Veterinary Diagnostic Laboratory (ISU VDL) between 2012 and 2019. The majority of isolates were identified as Staphylococcus pseudintermedius (68.3%; 2379/3482) and coagulase-negative Staphylococcus (CoNS) (24.6%; 857/3482), of which 23.9% and 40.5% were phenotypically resistant to methicillin, respectively. Cross resistance to other β-lactams (and to a lesser extent to non-β-lactams) was common in both methicillin-resistant S. pseudintermedius (MRSP) and CoNS (MRCoNS), especially when oxacillin MIC was ≥4 μg/mL (vs. ≥0.5−<4 μg/mL). The PBP2a protein was detected by agglutination in 94.6% (521/551) MRSP and 64.3% (146/227) MRCoNS. A further analysis of 31 PBP2a-negative MRS isolates (all but one MRCoNS) indicated that 11 were mecA gene-positive while 20 were negative for mecA and other mec genes by PCR. The resistance to last-resort anti-staphylococcal human drugs (e.g., tigecycline, linezolid, vancomycin) among the MRS tested was none to very low. Even though genotyping indicated an overall high level of genetic diversity (87 unique PFGE patterns and 20 MLST types) among a subset of MRSP isolates tested (n = 106), certain genotypes were detected from epidemiologically connected cases at the same or different time points, suggesting persistence and/or nosocomial transmission. These results indicate a relatively high prevalence of MRS from companion animals in the Midwestern US; therefore, it is important to perform routine susceptibility testing of Staphylococcus in veterinary clinical settings for the selection of appropriate antimicrobial therapy.
Collapse
Affiliation(s)
- Mehmet Cemal Adiguzel
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.A.); (K.S.); (T.R.); (J.O.)
- Department of Microbiology, Faculty of Veterinary Medicine, Ataturk University, Erzurum 25240, Turkey
| | - Kayla Schaefer
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.A.); (K.S.); (T.R.); (J.O.)
| | - Trevor Rodriguez
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.A.); (K.S.); (T.R.); (J.O.)
| | - Jessica Ortiz
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.A.); (K.S.); (T.R.); (J.O.)
| | - Orhan Sahin
- Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011, USA; (M.C.A.); (K.S.); (T.R.); (J.O.)
- Correspondence: ; Tel.: +1-515-294-3861
| |
Collapse
|
14
|
Fungwithaya P, Sontigun N, Boonhoh W, Boonchuay K, Wongtawan T. Antimicrobial resistance in Staphylococcus pseudintermedius on the environmental surfaces of a recently constructed veterinary hospital in Southern Thailand. Vet World 2022; 15:1087-1096. [PMID: 35698521 PMCID: PMC9178593 DOI: 10.14202/vetworld.2022.1087-1096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 03/17/2022] [Indexed: 11/26/2022] Open
Abstract
Background and Aim: Staphylococcus pseudintermedius is a zoonotic bacterium commonly found in animals, especially dogs. These bacteria can survive on environmental surfaces for several months. The infection of S. pseudintermedius from the environment is possible, but properly cleaning surface objects can prevent it. This study aimed to investigate the prevalence of methicillin-resistant S. pseudintermedius (MRSP) in the environment of a recently constructed veterinary hospital in Southern Thailand, where we hypothesized that the prevalence of MRSP might be very low. Materials and Methods: At three different time points, 150 samples were collected from different environmental surfaces and wastewater across the veterinary hospital. The collection was done after the hospital’s cleaning. Bacteria were purified in the culture before being identified as species by biochemical tests and polymerase chain reaction (PCR). Next, the antimicrobial-resistant profile was performed using an automated system (Vitek 2). Finally, the antimicrobial resistance genes were identified using PCR. Results: Fifteen colonies of S. pseudintermedius were isolated from the surfaces of eight floors, four tables, two chairs, and one rebreathing tube. Fourteen colonies (93.3%) were multidrug-resistant (MDR) and carried the blaZ gene (93.3%). The majority of colonies were resistant to benzylpenicillin (93.3%), cefovecin (93.3%), ceftiofur (93.3%), kanamycin (93.3%), and neomycin (93.3%). Notably, only four colonies (26.7%) were methicillin-susceptible S. pseudintermedius, whereas 11 colonies (73.3%) were MRSP and carried both the mecA and blaZ genes. Five MRSP (45.5%) were resistant to at least 14 antimicrobial drugs, represented as extensively drug-resistant (XDR) bacteria. Ten of eleven MRSP (90.9%) were Staphylococcal chromosomal mec type V, while another displayed untypeable. Despite the routine and extensive cleaning with detergent and disinfectant, MRSP isolates were still detectable. Conclusion: Many isolates of MRSP were found in this veterinary hospital. Almost all of them were MDR, and nearly half were XDR, posing a threat to animals and humans. In addition, the current hospital cleaning procedure proved ineffective. Future research should be conducted to determine the bacterial biofilm properties and bacterial sensitivity to certain detergents and disinfectants.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Narin Sontigun
- Centre of Excellence Research for Melioidosis and other Microorganism; Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Worakan Boonhoh
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Kanpapat Boonchuay
- Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| | - Tuempong Wongtawan
- Centre of Excellence Research for Melioidosis and other Microorganism, Walailak University, Nakhon Si Thammarat 80160, Thailand; Centre for One Health, Akkhraratchakumari Veterinary College, Walailak University, Nakhon Si Thammarat 80160, Thailand
| |
Collapse
|
15
|
Fungwithaya P, Boonchuay K, Narinthorn R, Sontigun N, Sansamur C, Petcharat Y, Thomrongsuwannakij T, Wongtawan T. First study on diversity and antimicrobial-resistant profile of staphylococci in sports animals of Southern Thailand. Vet World 2022; 15:765-774. [PMID: 35497942 PMCID: PMC9047138 DOI: 10.14202/vetworld.2022.765-774] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 02/15/2022] [Indexed: 11/19/2022] Open
Abstract
Background and Aim: Staphylococci are commensal bacteria and opportunistic pathogens found on the skin and mucosa. Sports animals are more prone to injury and illness, and we believe that antimicrobial agents might be extensively used for the treatment and cause the existence of antimicrobial-resistant (AMR) bacteria. This study aimed to investigate the diversity and AMR profile of staphylococci in sports animals (riding horses, fighting bulls, and fighting cocks) in South Thailand. Materials and Methods: Nasal (57 fighting bulls and 33 riding horses) and skin swabs (32 fighting cocks) were taken from 122 animals. Staphylococci were cultured in Mannitol Salt Agar and then identified species by biochemical tests using the VITEK® 2 card for Gram-positive organisms in conjunction with the VITEK® 2 COMPACT machine and genotypic identification by polymerase chain reaction (PCR). Antimicrobial susceptibility tests were performed with VITEK® 2 AST-GN80 test kit cards and VITEK® 2 COMPACT machine. Detection of AMR genes (mecA, mecC, and blaZ) and staphylococcal chromosomal mec (SCCmec) type was evaluated by PCR. Results: Forty-one colonies of staphylococci were isolated, and six species were identified, including Staphylococcus sciuri (61%), Staphylococcus pasteuri (15%), Staphylococcus cohnii (10%), Staphylococcus aureus (7%), Staphylococcus warneri (5%), and Staphylococcus haemolyticus (2%). Staphylococci were highly resistant to two drug classes, penicillin (93%) and cephalosporin (51%). About 56% of the isolates were methicillin-resistant staphylococci (MRS), and the majority was S. sciuri (82%), which is primarily found in horses. Most MRS (82%) were multidrug-resistant. Almost all (96%) of the mecA-positive MRS harbored the blaZ gene. Almost all MRS isolates possessed an unknown type of SCCmec. Interestingly, the AMR rate was notably lower in fighting bulls and cocks than in riding horses, which may be related to the owner’s preference for herbal therapy over antimicrobial drugs. Conclusion: This study presented many types of staphylococci displayed on bulls, cocks, and horses. However, we found a high prevalence of MRS in horses that could be transmitted to owners through close contact activities and might be a source of AMR genotype transmission to other staphylococci.
Collapse
Affiliation(s)
- Punpichaya Fungwithaya
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Kanpapat Boonchuay
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Ruethai Narinthorn
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Narin Sontigun
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Chalutwan Sansamur
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Yotsapat Petcharat
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Thotsapol Thomrongsuwannakij
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| | - Tuempong Wongtawan
- Akkraratchkumari Veterinary College, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Centre for One Health, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160; Excellence Centre for Melioidosis and Other Microorganisms, Walailak University, Thai Buri, Tha Sala, Nakhon Si Thammarat, Thailand 80160
| |
Collapse
|
16
|
OUP accepted manuscript. FEMS Microbiol Lett 2022; 369:6534253. [DOI: 10.1093/femsle/fnac019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/25/2022] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
|
17
|
Jantorn P, Heemmamad H, Soimala T, Indoung S, Saising J, Chokpaisarn J, Wanna W, Tipmanee V, Saeloh D. Antibiotic Resistance Profile and Biofilm Production of Staphylococcus pseudintermedius Isolated from Dogs in Thailand. Pharmaceuticals (Basel) 2021; 14:ph14060592. [PMID: 34203050 PMCID: PMC8234208 DOI: 10.3390/ph14060592] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/05/2023] Open
Abstract
Staphylococcus pseudintermedius is a zoonotic pathogen that can cause life-threatening infections in animals and humans. The study of methicillin-resistant S. pseudintermedius (MRSP) and its ability to produce biofilms is important to select the most suitable treatment. The prevalence and characteristics of S. pseudintermedius isolated from dogs admitted at the Veterinary Teaching Hospital, Prince of Songkla University, Thailand were assessed. Results showed that 28.30% (15/53) of the isolates were MRSP. Amplification of the mecA gene was observed in 93.33% (14/15) MRSP. Methicillin-resistant strains revealed co-resistant patterns against other antibiotics, including chloramphenicol, clindamycin, tetracycline, clarithromycin, ciprofloxacin, and trimethoprim. In this study, all bacterial isolates produced biofilms, while 90.55% of S. pseudintermedius isolates were strong or moderate biofilm producers. Most (45–60%) of the resistant strains were strong biofilm producers, while the correlation between biofilm production and antibiotic resistance was not statistically significant. This is the first study in southern Thailand to investigate the drug-resistant profile of S. pseudintermedius and its ability to form biofilm. The results will contribute to a better understanding of the emergence and prevalence of antimicrobial resistance in S. pseudintermedius.
Collapse
Affiliation(s)
- Pavarish Jantorn
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (P.J.); (W.W.)
| | - Hawaree Heemmamad
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Tanawan Soimala
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand; (T.S.); (S.I.)
| | - Saowakon Indoung
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla 90110, Thailand; (T.S.); (S.I.)
| | - Jongkon Saising
- School of Health Science, Mae Fah Luang University, Chiang Rai 57100, Thailand;
| | - Julalak Chokpaisarn
- Faculty of Traditional Thai Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Warapond Wanna
- Division of Biological Science, Faculty of Science, Prince of Songkla University, Songkhla 90110, Thailand; (P.J.); (W.W.)
| | - Varomyalin Tipmanee
- Department of Biomedical Sciences and Biomedical Engineering, Faculty of Medicine, Prince of Songkla University, Songkhla 90110, Thailand;
| | - Dennapa Saeloh
- Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand;
- Correspondence:
| |
Collapse
|
18
|
Virulence and Antimicrobial Resistance in Canine Staphylococcus spp. Isolates. Microorganisms 2021; 9:microorganisms9030515. [PMID: 33801518 PMCID: PMC7998746 DOI: 10.3390/microorganisms9030515] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/12/2021] [Accepted: 02/26/2021] [Indexed: 11/24/2022] Open
Abstract
Dogs are reservoirs of different Staphylococcus species, but at the same time, they could develop several clinical forms caused by these bacteria. The aim of the present investigation was to characterize 50 clinical Staphylococcus isolates cultured from sick dogs. Bacterial species determination, hemolysins, protease, lipase, gelatinase, slime, and biofilm production, presence of virulence genes (lukS/F-PV, eta, etb, tsst, icaA, and icaD), methicillin resistance, and antimicrobial resistance were investigated. Most isolates (52%) were Staphylococcus pseudointermedius, but 20% and 8% belonged to Staphylococcusxylosus and Staphylococcus chromogenes, respectively. Gelatinase, biofilm, and slime production were very common characters among the investigated strains with 80%, 86%, and 76% positive isolates, respectively. Virulence genes were detected in a very small number of the tested strains. A percentage of 14% of isolates were mecA-positive and phenotypically-resistant to methicillin. Multi-drug resistance was detected in 76% of tested staphylococci; in particular, high levels of resistance were detected for ampicillin, amoxicillin, clindamycin, and erythromycin. In conclusion, although staphylococci are considered to be opportunistic bacteria, the obtained data showed that dogs may be infected by Staphylococcus strains with important virulence characteristics and a high antimicrobial resistance.
Collapse
|
19
|
Bhooshan S, Negi V, Khatri PK. Staphylococcus pseudintermedius: an undocumented, emerging pathogen in humans. GMS HYGIENE AND INFECTION CONTROL 2020; 15:Doc32. [PMID: 33391967 PMCID: PMC7745645 DOI: 10.3205/dgkh000367] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The first infections of methicillin-resistant Staphylococcus pseudintermedius in humans were recorded in 2006, and is now becoming a concern because of its close similarities to human pathogens in the Staphylococcusintermedius group (SIG). These bacteria have all the properties which a multidrug-resistant Staphylococcus aureus possesses. The literature was searched using the term “Staphylococcus pseudintermedius” in PubMed and other reference databases. The virulence factor and the pathogenicity are under investigation, but reports have suggested that this commensal of animals is transmitted easily via close contact to animals by owners, veterinarians and staff. Resistance to beta-lactams (including methicillin) is a primary concern. Drug resistance to methicillin is a considerable problem in developing countries, as antibiotic use is not regulated. Studies from Europe have reported multidrug resistant isolates from clinical specimens. Although data on drug resistance and pathogenesis of S. pseudintermedius are not sufficient, it is extremely important to identify the pathogen correctly. Only then can its pathogenesis be studied during the course of disease and appropriate measures developed to prevent it becoming a global problem.
Collapse
Affiliation(s)
- Suneel Bhooshan
- Department of Microbiology Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| | - Vikrant Negi
- Department of Microbiology, Government Medical College, Haldwani Nainital, Uttarakhand, India
| | - Prabhat K Khatri
- Department of Microbiology Dr. S. N. Medical College, Jodhpur, Rajasthan, India
| |
Collapse
|