1
|
Mitra A. Combatting biofilm-mediated infections in clinical settings by targeting quorum sensing. Cell Surf 2024; 12:100133. [PMID: 39634722 PMCID: PMC11615143 DOI: 10.1016/j.tcsw.2024.100133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Biofilm-associated infections constitute a significant challenge in managing infectious diseases due to their high resistance to antibiotics and host immune responses. Biofilms are responsible for various infections, including urinary tract infections, cystic fibrosis, dental plaque, bone infections, and chronic wounds. Quorum sensing (QS) is a process of cell-to-cell communication that bacteria use to coordinate gene expression in response to cell density, which is crucial for biofilm formation and maintenance.. Its disruption has been proposed as a potential strategy to prevent or treat biofilm-associated infections leading to improved treatment outcomes for infectious diseases. This review article aims to provide a comprehensive overview of the literature on QS-mediated disruption of biofilms for treating infectious diseases. It will discuss the mechanisms of QS disruption and the various approaches that have been developed to disrupt QS in reference to multiple clinical pathogens. In particular, numerous studies have demonstrated the efficacy of QS disruption in reducing biofilm formation in various pathogens, including Pseudomonas aeruginosa and Staphylococcus aureus. Finally, the review will discuss the challenges and future directions for developing QS disruption as a clinical therapy for biofilm-associated infections. This includes the development of effective delivery systems and the identification of suitable targets for QS disruption. Overall, the literature suggests that QS disruption is a promising alternative to traditional antibiotic treatment for biofilm-associated infections and warrants further investigation.
Collapse
Affiliation(s)
- Arindam Mitra
- Department of Biological Sciences, School of Life Science and Biotechnology, Adamas University, Kolkata, West Bengal, India
| |
Collapse
|
2
|
Lin Y, Ma Q, Yan J, Gong T, Huang J, Chen J, Li J, Qiu Y, Wang X, Lei Z, Zeng J, Wang L, Zhou X, Li Y. Inhibition of Streptococcus mutans growth and biofilm formation through protein acetylation. Mol Oral Microbiol 2024; 39:334-343. [PMID: 38224336 DOI: 10.1111/omi.12452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/25/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Numerous cellular processes are regulated in response to the metabolic state of the cell, and one such regulatory mechanism involves lysine acetylation. Lysine acetylation has been proven to play an important role in the virulence of Streptococcus mutans, a major cariogenic bacterial species. S. mutans' glucosyltransferases (Gtfs) are responsible for synthesizing extracellular polysaccharides (EPS) and contributing to biofilm formation. One of the most common nonsteroidal anti-inflammatory drugs is acetylsalicylic acid (ASA), which can acetylate proteins through a nonenzymatic transacetylation reaction. Herein, we investigated the inhibitory effects of ASA on S. mutans. ASA treatment was observed to impede the growth of S. mutans, leading to a reduction in the production of water-insoluble EPS and the formation of biofilm. Moreover, ASA decreased the enzyme activity of Gtfs while increasing the protein acetylation level. The in vivo anticaries efficacy of ASA has further been proved using the rat caries model. In conclusion, ASA as an acetylation agent attenuated the cariogenic virulence of S. mutans, suggesting the potential value of protein acetylation on antimicrobial and anti-biofilm applications to S. mutans.
Collapse
Affiliation(s)
- Yongwang Lin
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qizhao Ma
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiangchuan Yan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Tao Gong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jun Huang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jiamin Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yang Qiu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xiaowan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zixue Lei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Jumei Zeng
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingyun Wang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yuqing Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Sykes EME, White D, McLaughlin S, Kumar A. Salicylic acids and pathogenic bacteria: new perspectives on an old compound. Can J Microbiol 2024; 70:1-14. [PMID: 37699258 DOI: 10.1139/cjm-2023-0123] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Salicylic acids have been used in human and veterinary medicine for their anti-pyretic, anti-inflammatory, and analgesic properties for centuries. A key role of salicylic acid-immune modulation in response to microbial infection-was first recognized during studies of their botanical origin. The effects of salicylic acid on bacterial physiology are diverse. In many cases, they impose selective pressures leading to development of cross-resistance to antimicrobial compounds. Initial characterization of these interactions was in Escherichia coli, where salicylic acid activates the multiple antibiotic resistance (mar) operon, resulting in decreased antibiotic susceptibility. Studies suggest that stimulation of the mar phenotype presents similarly in closely related Enterobacteriaceae. Salicylic acids also affect virulence in many opportunistic pathogens by decreasing their ability to form biofilms and increasing persister cell populations. It is imperative to understand the effects of salicylic acid on bacteria of various origins to illuminate potential links between environmental microbes and their clinically relevant antimicrobial-resistant counterparts. This review provides an update on known effects of salicylic acid and key derivatives on a variety of bacterial pathogens, offers insights to possible potentiation of current treatment options, and highlights cellular regulatory networks that have been established during the study of this important class of medicines.
Collapse
Affiliation(s)
- Ellen M E Sykes
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Dawn White
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Sydney McLaughlin
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
4
|
Gerner E, Giraldo-Osorno PM, Johansson Loo A, Firdaus R, Ben Amara H, Werthén M, Palmquist A, Thomsen P, Omar O, Almqvist S, Trobos M. Targeting Pseudomonas aeruginosa quorum sensing with sodium salicylate modulates immune responses in vitro and in vivo. Front Cell Infect Microbiol 2023; 13:1183959. [PMID: 37614559 PMCID: PMC10442818 DOI: 10.3389/fcimb.2023.1183959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/18/2023] [Indexed: 08/25/2023] Open
Abstract
Introduction Chronic infections are a major clinical challenge in hard-to-heal wounds and implanted devices. Pseudomonas aeruginosa is a common causative pathogen that produces numerous virulence factors. Due to the increasing problem of antibiotic resistance, new alternative treatment strategies are needed. Quorum sensing (QS) is a bacterial communication system that regulates virulence and dampens inflammation, promoting bacterial survival. QS inhibition is a potent strategy to reduce bacterial virulence and alleviate the negative impact on host immune response. Aim This study investigates how secreted factors from P. aeruginosa PAO1, cultured in the presence or absence of the QS inhibitor sodium salicylate (NaSa), influence host immune response. Material and methods In vitro, THP-1 macrophages and neutrophil-like HL-60 cells were used. In vivo, discs of titanium were implanted in a subcutaneous rat model with local administration of P. aeruginosa culture supernatants. The host immune response to virulence factors contained in culture supernatants (+/-NaSa) was characterized through cell viability, migration, phagocytosis, gene expression, cytokine secretion, and histology. Results In vitro, P. aeruginosa supernatants from NaSa-containing cultures significantly increased THP-1 phagocytosis and HL-60 cell migration compared with untreated supernatants (-NaSa). Stimulation with NaSa-treated supernatants in vivo resulted in: (i) significantly increased immune cell infiltration and cell attachment to titanium discs; (ii) increased gene expression of IL-8, IL-10, ARG1, and iNOS, and (iii) increased GRO-α protein secretion and decreased IL-1β, IL-6, and IL-1α secretion, as compared with untreated supernatants. Conclusion In conclusion, treating P. aeruginosa with NaSa reduces the production of virulence factors and modulates major immune events, such as promoting phagocytosis and cell migration, and decreasing the secretion of several pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Erik Gerner
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
- Mölnlycke Health Care AB, Gothenburg, Sweden
| | - Paula Milena Giraldo-Osorno
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Anna Johansson Loo
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Heithem Ben Amara
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maria Werthén
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Margarita Trobos
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research in Gothenburg (CARe), Gothenburg, Sweden
| |
Collapse
|
5
|
Cheraghipour K, Azarhazine M, Zivdari M, Beiranvand M, Shakib P, Rashidipour M, Mardanshah O, Mohaghegh MA, Marzban A. Evaluation of scolicidal potential of salicylate coated zinc nanoparticles against Echinococcus granulosus protoscoleces. Exp Parasitol 2023; 246:108456. [PMID: 36610471 DOI: 10.1016/j.exppara.2022.108456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 12/05/2022] [Accepted: 12/28/2022] [Indexed: 01/06/2023]
Abstract
Echinococcosis is a zoonotic disease caused by larval stages of the Echinococcus genus (metastasis). In this study, salicylate-coated Zinc oxide nanoparticles (SA-ZnO-NPs) were fabricated and characterized by SEM, FTIR and XRD analytical techniques. After that, different doses of SA-ZnO-NPs, SA and ZnO-NPs were taken to assess scolicidal potency. Scanning electron microscopy (SEM) micrographs were also used to evaluate the morphological deformities of treated protoscoleces. Furthermore, Caspase-3&7 inductions were examined in protoscoleces cysts treated with all formulations. Based on SEM and DLS analyses, the size of SA-ZnO-NPs was between 30 and 40 nm, with a spherical shape. The FTIR spectrum verified the presence of SA functional groups on the ZnO coating. At 20 min, SA-ZnO-NPs at 2000 μg/ml exhibited the greatest activity on protoscolices with 100% mortality, followed by ZnO-NPs at 1500 μg/ml at 10 min and SA alone at 2000 μg/ml at 30 min. The activation of Caspase-3&7 apoptotic enzyme was determined for 2000 μg/ml of SA-ZnO-NPs, ZnO-NPs and SA to be 16.4, 31.4, and 35.7%, respectively. The SEM image revealed apoptogenic alterations and the induction of tegument surface wrinkles, as well as abnormalities in rostellum protoscolices. According to the current study, SA-ZnO-NPs have a high mortality rate against hydatid cyst protoscolices. As a result, further studies on the qualitative assessment of these nanoformulations in vivo and preclinical animal trials seem to be required. Furthermore, the adoption of nano-drugs potentially offers alternative therapeutic approaches to combat hydatid cysts.
Collapse
Affiliation(s)
- Kourosh Cheraghipour
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Lorestan Provincial Veterinary Service, Khorramabad, Iran
| | - Mohammad Azarhazine
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Masoomeh Zivdari
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marjan Beiranvand
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Pegah Shakib
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Marzieh Rashidipour
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran; Environmental Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Omid Mardanshah
- Department of Laboratory Sciences, Sirjan School of Medical Sciences, Sirjan, Iran
| | - Mohammad Ali Mohaghegh
- Department of Laboratory Sciences, School of Paramedical Sciences, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran; Health Sciences Research Center, Torbat Heydariyeh University of Medical Sciences, Torbat Heydariyeh, Iran
| | - Abdolrazagh Marzban
- Razi Herbal Medicines Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran.
| |
Collapse
|
6
|
Turner AB, Gerner E, Firdaus R, Echeverz M, Werthén M, Thomsen P, Almqvist S, Trobos M. Role of sodium salicylate in Staphylococcus aureus quorum sensing, virulence, biofilm formation and antimicrobial susceptibility. Front Microbiol 2022; 13:931839. [PMID: 35992652 PMCID: PMC9384861 DOI: 10.3389/fmicb.2022.931839] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 07/06/2022] [Indexed: 01/01/2023] Open
Abstract
The widespread threat of antibiotic resistance requires new treatment options. Disrupting bacterial communication, quorum sensing (QS), has the potential to reduce pathogenesis by decreasing bacterial virulence. The aim of this study was to investigate the influence of sodium salicylate (NaSa) on Staphylococcus aureus QS, virulence production and biofilm formation. In S. aureus ATCC 25923 (agr III), with or without serum, NaSa (10 mM) downregulated the agr QS system and decreased the secretion levels of alpha-hemolysin, staphopain A and delta-hemolysin. Inhibition of agr expression caused a downregulation of delta-hemolysin, decreasing biofilm dispersal and increasing biofilm formation on polystyrene and titanium under static conditions. In contrast, NaSa did not increase biofilm biomass under flow but caused one log10 reduction in biofilm viability on polystyrene pegs, resulting in biofilms being twice as susceptible to rifampicin. A concentration-dependent effect of NaSa was further observed, where high concentrations (10 mM) decreased agr expression, while low concentrations (≤0.1 mM) increased agr expression. In S. aureus 8325-4 (agr I), a high concentration of NaSa (10 mM) decreased hla expression, and a low concentration of NaSa (≤1 mM) increased rnaIII and hla expression. The activity of NaSa on biofilm formation was dependent on agr type and material surface. Eight clinical strains isolated from prosthetic joint infection (PJI) or wound infection belonging to each of the four agr types were evaluated. The four PJI S. aureus strains did not change their biofilm phenotype with NaSa on the clinically relevant titanium surface. Half of the wound strains (agr III and IV) did not change the biofilm phenotype in the 3D collagen wound model. In addition, compared to the control, ATCC 25923 biofilms formed with 10 mM NaSa in the collagen model were more susceptible to silver. It is concluded that NaSa can inhibit QS in S. aureus, decreasing the levels of toxin production with certain modulation of biofilm formation. The effect on biofilm formation was dependent on the strain and material surface. It is suggested that the observed NaSa inhibition of bacterial communication is a potential alternative or adjuvant to traditional antibiotics.
Collapse
Affiliation(s)
- Adam Benedict Turner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Erik Gerner
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- Mölnlycke Health Care AB, Gothenburg, Sweden
| | - Rininta Firdaus
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Maite Echeverz
- Microbial Pathogenesis Research Unit, Public University of Navarre, Pamplona, Spain
| | - Maria Werthén
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
| | | | - Margarita Trobos
- Department of Biomaterials, University of Gothenburg, The Sahlgrenska Academy, Gothenburg, Sweden
- Center for Antibiotic Resistance Research (CARe), University of Gothenburg, Gothenburg, Sweden
- *Correspondence: Margarita Trobos,
| |
Collapse
|
7
|
Wang Q, Li M, Zheng Z, Niu Y, Xue X, Ao C, Zhang W, Lu C. Polyethylenimine-Functionalized Nanofiber Nonwovens Electrospun from Cotton Cellulose for Wound Dressing with High Drug Loading and Sustained Release Properties. Polymers (Basel) 2022; 14:polym14091748. [PMID: 35566917 PMCID: PMC9105497 DOI: 10.3390/polym14091748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/15/2022] [Accepted: 04/21/2022] [Indexed: 11/28/2022] Open
Abstract
Electrospun cellulose nanofiber nonwovens have shown promise in wound dressing owing to the highly interconnected pore structure, high hydrophilicity coupled with other coveted characteristics of biodegradability, biocompatibility and renewability. However, electrospun cellulose wound dressings with loaded drugs for better wound healing have been rarely reported. In this study, a novel wound dressing with a high drug loading capacity and sustained drug release properties was successfully fabricated via electropinning of cellulose followed by polyethylenimine (PEI)-functionalization. Remarkably, the grafted PEI chains on the surface of electrospun cellulose nanofibers provided numerous active amino groups, while the highly porous structure of nonwovens could be well retained after modification, which resulted in enhanced adsorption performance against the anionic drug of sodium salicylate (NaSA). More specifically, when immersed in 100 mg/L NaSA solution for 24 h, the as-prepared cellulose-PEI nonwoven displayed a multilayer adsorption behavior. And at the optimal pH of 3, a high drug loading capacity of 78 mg/g could be achieved, which was 20 times higher than that of pristine electrospun cellulose nonwoven. Furthermore, it was discovered that the NaSA-loaded cellulose-PEI could continuously release the drug for 12 h in simulated body fluid (SBF), indicating the versatility of cellulose-PEI as an advanced wound dressing with drug carrier functionalities.
Collapse
Affiliation(s)
- Qunhao Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Mei Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Yan Niu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Xiaolin Xue
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
| | - Chenghong Ao
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
- Faculty of Environmental Science & Engineering, Kunming University of Science & Technology, Kunming 650500, China
| | - Wei Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
- Correspondence: (W.Z.); (C.L.); Tel.: +86-28-85460607 (W.Z.); Fax: +86-28-85402465 (W.Z.)
| | - Canhui Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, China; (Q.W.); (M.L.); (Z.Z.); (Y.N.); (X.X.); (C.A.)
- Advanced Polymer Materials Research Center, Sichuan University, Shishi 362700, China
- Correspondence: (W.Z.); (C.L.); Tel.: +86-28-85460607 (W.Z.); Fax: +86-28-85402465 (W.Z.)
| |
Collapse
|
8
|
Paes Leme RC, da Silva RB. Antimicrobial Activity of Non-steroidal Anti-inflammatory Drugs on Biofilm: Current Evidence and Potential for Drug Repurposing. Front Microbiol 2021; 12:707629. [PMID: 34385992 PMCID: PMC8353384 DOI: 10.3389/fmicb.2021.707629] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 07/05/2021] [Indexed: 12/20/2022] Open
Abstract
It has been demonstrated that some non-steroidal anti-inflammatory drugs (NSAIDs), like acetylsalicylic acid, diclofenac, and ibuprofen, have anti-biofilm activity in concentrations found in human pharmacokinetic studies, which could fuel an interest in repurposing these well tolerated drugs as adjunctive therapies for biofilm-related infections. Here we sought to review the currently available data on the anti-biofilm activity of NSAIDs and its relevance in a clinical context. We performed a systematic literature review to identify the most commonly tested NSAIDs drugs in the last 5 years, the bacterial species that have demonstrated to be responsive to their actions, and the emergence of resistance to these molecules. We found that most studies investigating NSAIDs' activity against biofilms were in vitro, and frequently tested non-clinical bacterial isolates, which may not adequately represent the bacterial populations that cause clinically-relevant biofilm-related infections. Furthermore, studies concerning NSAIDs and antibiotic resistance are scarce, with divergent outcomes. Although the potential to use NSAIDs to control biofilm-related infections seems to be an exciting avenue, there is a paucity of studies that tested these drugs using appropriate in vivo models of biofilm infections or in controlled human clinical trials to support their repurposing as anti-biofilm agents.
Collapse
Affiliation(s)
- Rodrigo Cuiabano Paes Leme
- Laboratório Especial de Microbiologia Clínica (LEMC), Universidade Federal de São Paulo, Escola Paulista de Medicina, São Paulo, Brazil.,Department of Infectious Diseases, Centro Universitário de Volta Redonda, Volta Redonda, Brazil
| | | |
Collapse
|
9
|
Brennan CA, Nakatsu G, Gallini Comeau CA, Drew DA, Glickman JN, Schoen RE, Chan AT, Garrett WS. Aspirin Modulation of the Colorectal Cancer-Associated Microbe Fusobacterium nucleatum. mBio 2021; 12:e00547-21. [PMID: 33824205 PMCID: PMC8092249 DOI: 10.1128/mbio.00547-21] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022] Open
Abstract
Aspirin is a chemopreventive agent for colorectal adenoma and cancer (CRC) that, like many drugs inclusive of chemotherapeutics, has been investigated for its effects on bacterial growth and virulence gene expression. Given the evolving recognition of the roles for bacteria in CRC, in this work, we investigate the effects of aspirin with a focus on one oncomicrobe-Fusobacterium nucleatum We show that aspirin and its primary metabolite salicylic acid alter F. nucleatum strain Fn7-1 growth in culture and that aspirin can effectively kill both actively growing and stationary Fn7-1. We also demonstrate that, at levels that do not inhibit growth, aspirin influences Fn7-1 gene expression. To assess whether aspirin modulation of F. nucleatum may be relevant in vivo, we use the ApcMin/+ mouse intestinal tumor model in which Fn7-1 is orally inoculated daily to reveal that aspirin-supplemented chow is sufficient to inhibit F. nucleatum-potentiated colonic tumorigenesis. We expand our characterization of aspirin sensitivity across other F. nucleatum strains, including those isolated from human CRC tissues, as well as other CRC-associated microbes, enterotoxigenic Bacteroides fragilis, and colibactin-producing Escherichia coli Finally, we determine that individuals who use aspirin daily have lower fusobacterial abundance in colon adenoma tissues, as determined by quantitative PCR performed on adenoma DNA. Together, our data support that aspirin has direct antibiotic activity against F. nucleatum strains and suggest that consideration of the potential effects of aspirin on the microbiome holds promise in optimizing risk-benefit assessments for use of aspirin in CRC prevention and management.IMPORTANCE There is an increasing understanding of the clinical correlations and potential mechanistic roles of specific members of the gut and tumoral microbiota in colorectal cancer (CRC) initiation, progression, and survival. However, we have yet to parlay this knowledge into better CRC outcomes through microbially informed diagnostic, preventive, or therapeutic approaches. Here, we demonstrate that aspirin, an established CRC chemopreventive, exhibits specific effects on the CRC-associated Fusobacterium nucleatum in culture, an animal model of intestinal tumorigenesis, and in human colonic adenoma tissues. Our work proposes a potential role for aspirin in influencing CRC-associated bacteria to prevent colorectal adenomas and cancer, beyond aspirin's canonical anti-inflammatory role targeting host tissues. Future research, such as studies investigating the effects of aspirin on fusobacterial load in patients, will help further elucidate the prospect of using aspirin to modulate F. nucleatumin vivo for improving CRC outcomes.
Collapse
Affiliation(s)
- Caitlin A Brennan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Geicho Nakatsu
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
| | - Carey Ann Gallini Comeau
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| | - David A Drew
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Jonathan N Glickman
- Department of Pathology, Harvard Medical School, Boston, Massachusetts, USA
- Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Robert E Schoen
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Andrew T Chan
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Clinical and Translational Epidemiology Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Division of Gastroenterology, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
| | - Wendy S Garrett
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
- Harvard T. H. Chan Microbiome in Public Health Center, Boston, Massachusetts, USA
- Broad Institute of Harvard and MIT, Cambridge, Massachusetts, USA
- Department and Division of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Department of Molecular Metabolism, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA
| |
Collapse
|
10
|
Sodium Salicylate Influences the Pseudomonas aeruginosa Biofilm Structure and Susceptibility Towards Silver. Int J Mol Sci 2021; 22:ijms22031060. [PMID: 33494399 PMCID: PMC7865925 DOI: 10.3390/ijms22031060] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 01/30/2023] Open
Abstract
Hard-to-heal wounds are typically infected with biofilm-producing microorganisms, such as Pseudomonas aeruginosa, which strongly contribute to delayed healing. Due to the global challenge of antimicrobial resistance, alternative treatment strategies are needed. Here, we investigated whether inhibition of quorum sensing (QS) by sodium salicylate in different P. aeruginosa strains (QS-competent, QS-mutant, and chronic wound strains) influences biofilm formation and tolerance to silver. Biofilm formation was evaluated in simulated serum-containing wound fluid in the presence or absence of sodium salicylate (NaSa). Biofilms were established using a 3D collagen-based biofilm model, collagen coated glass, and the Calgary biofilm device. Furthermore, the susceptibility of 48-h-old biofilms formed by laboratory and clinical strains in the presence or absence of NaSa towards silver was evaluated by assessing cell viability. Biofilms formed in the presence of NaSa were more susceptible to silver and contained reduced levels of virulence factors associated with biofilm development than those formed in the absence of NaSa. Biofilm aggregates formed by the wild-type but not the QS mutant strain, were smaller and less heterogenous in size when grown in cultures with NaSa compared to control. These data suggest that NaSa, via a reduction of cell aggregation in biofilms, allows the antiseptic to become more readily available to cells.
Collapse
|