1
|
Mvubu NE, Govender D, Pillay M. Comparative Transcriptomics Reveal Differential Expression of Coding and Non-Coding RNAs in Clinical Strains of Mycobacterium tuberculosis. Int J Mol Sci 2024; 26:217. [PMID: 39796078 PMCID: PMC11720245 DOI: 10.3390/ijms26010217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
Coding and non-coding RNAs (ncRNAs) are potential novel markers that can be exploited for TB diagnostics in the fight against Mycobacterium tuberculosis. The current study investigated the mechanisms of transcript regulation and ncRNA signatures through Total RNA Seq and small (smRNA) RNA Seq followed by Bioinformatics analysis in Beijing and F15/LAM4/KZN (KZN) clinical strains compared to the laboratory strain. Total RNA Seq revealed differential regulation of RNA transcripts in Beijing (n = 1095) and KZN (n = 856) strains compared to the laboratory H37Rv strain. The KZN vs. H37Rv coding transcripts uniquely enriched fatty acids, steroid degradation, fructose, and mannose metabolism as well as a bacterial secretion system. In contrast, Tuberculosis and biosynthesis of siderophores KEGG pathways were enriched by the Beijing vs. H37Rv-specific transcripts. Novel sense and antisense ncRNAs, as well as the expression of these transcripts, were observed, and these targeted RNA transcripts are involved in cell wall synthesis and bacterial metabolism in a strain-specific manner. RNA transcripts identified in the current study offer insights into gene regulation of transcripts involved in the growth and metabolism of the clinically relevant KZN and Beijing strains compared to the laboratory H37Rv strain and thus can be exploited in the fight against Tuberculosis.
Collapse
Affiliation(s)
- Nontobeko Eunice Mvubu
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Divenita Govender
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban 4000, South Africa;
| | - Manormoney Pillay
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa;
| |
Collapse
|
2
|
Ma W, Jin W, He X, Sun Y, Yin H, Wang Z, Shi S. Mycobacterium tuberculosis Induced Osteoblast Dysregulation Involved in Bone Destruction in Spinal Tuberculosis. Front Cell Infect Microbiol 2022; 12:780272. [PMID: 35463641 PMCID: PMC9019588 DOI: 10.3389/fcimb.2022.780272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 02/21/2022] [Indexed: 11/24/2022] Open
Abstract
Disturbance of bone homeostasis caused by Mycobacterium tuberculosis (Mtb) is a key clinical manifestation in spinal tuberculosis (TB). However, the complete mechanism of this process has not been established, and an effective treatment target does not exist. Increasing evidence shows that abnormal osteoclastogenesis triggered by an imbalance of the receptor activator of NF-κB ligand (RANKL)/osteoprotegerin (OPG) axis may play a key role in the disturbance of bone homeostasis. Previous studies reported that RANKL is strongly activated in patients with spinal TB; however, the OPG levels in these patients were not investigated in previous studies. In this study, we investigated the OPG levels in patients with spinal TB and the dysregulation of osteoblasts caused by Mtb infection. Inhibition of the Mce4a gene of Mtb by an antisense locked nucleic acid (LNA) gapmer (Mce4a-ASO) was also investigated. Analysis of the serum OPG levels in clinical samples showed that the OPG levels were significantly decreased in patients with spinal TB compared to those in the group of non-TB patients. The internalization of Mtb in osteoblasts, the known major source of OPG, was investigated using the green fluorescent protein (GFP)-labeled Mycobacterium strain H37Ra (H37RaGFP). The cell-associated fluorescence measurements showed that Mtb can efficiently enter osteoblast cells. In addition, Mtb infection caused a dose-dependent increase of the CD40 mRNA expression and cytokine (interleukin 6, IL-6) secretion in osteoblast cells. Ligation of CD40 by soluble CD154 reversed the increased secretion of IL-6. This means that the induced CD40 is functional. Considering that the interaction between CD154-expressing T lymphocytes and bone-forming osteoblast cells plays a pivotal role in bone homeostasis, the CD40 molecule might be a strong candidate for mediating the target for treatment of bone destruction in spinal TB. Additionally, we also found that Mce4a-ASO could dose-dependently inhibit the Mce4a gene of Mtb and reverse the decreased secretion of IL-6 and the impaired secretion of OPG caused by Mtb infection of osteoblast cells. Taken together, the current finding provides breakthrough ideas for the development of therapeutic agents for spinal TB.
Collapse
Affiliation(s)
- Wenxin Ma
- Department of Spine Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Weidong Jin
- Department of Spine Surgery, General Hospital of Ningxia Medical University, Ningxia, China
| | - Xijing He
- Department of Spine Surgery, Xi’an International Medical Center Hospital Affiliated to Northwest University, Shaanxi, China
| | - Yuhang Sun
- Department of Orthopedics, Liaocheng Hospital of Traditional Chinese Medicine, Liaocheng, China
| | - Huquan Yin
- Department of Biochemistry, Inteliex Biotechnology Corp, Tampa, FL, United States
| | - Zili Wang
- Department of Spine Surgery, General Hospital of Ningxia Medical University, Ningxia, China
- Department of Spine Surgery, Xi’an International Medical Center Hospital Affiliated to Northwest University, Shaanxi, China
- *Correspondence: Zili Wang, ; Shiyuan Shi,
| | - Shiyuan Shi
- Department of Orthopedics, Hangzhou Chest Hospital affiliated to Zhejiang University Medical College, Zhejiang, China
- *Correspondence: Zili Wang, ; Shiyuan Shi,
| |
Collapse
|
3
|
Martin DR, Sibuyi NR, Dube P, Fadaka AO, Cloete R, Onani M, Madiehe AM, Meyer M. Aptamer-Based Diagnostic Systems for the Rapid Screening of TB at the Point-of-Care. Diagnostics (Basel) 2021; 11:1352. [PMID: 34441287 PMCID: PMC8391981 DOI: 10.3390/diagnostics11081352] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/07/2021] [Accepted: 07/12/2021] [Indexed: 12/17/2022] Open
Abstract
The transmission of Tuberculosis (TB) is very rapid and the burden it places on health care systems is felt globally. The effective management and prevention of this disease requires that it is detected early. Current TB diagnostic approaches, such as the culture, sputum smear, skin tuberculin, and molecular tests are time-consuming, and some are unaffordable for low-income countries. Rapid tests for disease biomarker detection are mostly based on immunological assays that use antibodies which are costly to produce, have low sensitivity and stability. Aptamers can replace antibodies in these diagnostic tests for the development of new rapid tests that are more cost effective; more stable at high temperatures and therefore have a better shelf life; do not have batch-to-batch variations, and thus more consistently bind to a specific target with similar or higher specificity and selectivity and are therefore more reliable. Advancements in TB research, in particular the application of proteomics to identify TB specific biomarkers, led to the identification of a number of biomarker proteins, that can be used to develop aptamer-based diagnostic assays able to screen individuals at the point-of-care (POC) more efficiently in resource-limited settings.
Collapse
Affiliation(s)
- Darius Riziki Martin
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Nicole Remaliah Sibuyi
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Phumuzile Dube
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Adewale Oluwaseun Fadaka
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Ruben Cloete
- South African Medical Research Council Bioinformatics Unit, South African National Bioinformatics Institute, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Martin Onani
- Department of Chemistry, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa;
| | - Abram Madimabe Madiehe
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| | - Mervin Meyer
- DSI/Mintek Nanotechnology Innovation Centre-Biolabels Node, Department of Biotechnology, University of the Western Cape, Private Bag X17, Bellville 7535, South Africa; (D.R.M.); (N.R.S.); (P.D.); (A.O.F.); (A.M.M.)
| |
Collapse
|
4
|
Abstract
Mycobacteria have unique cell envelopes, surface properties, and growth dynamics, which all play a part in the ability of these important pathogens to infect, evade host immunity, disseminate, and resist antibiotic challenges. Recent atomic force microscopy (AFM) studies have brought new insights into the nanometer-scale ultrastructural, adhesive, and mechanical properties of mycobacteria. The molecular forces with which mycobacterial adhesins bind to host factors, like heparin and fibronectin, and the hydrophobic properties of the mycomembrane have been unraveled by AFM force spectroscopy studies. Real-time correlative AFM and fluorescence imaging have delineated a complex interplay between surface ultrastructure, tensile stresses within the cell envelope, and cellular processes leading to division. The unique capabilities of AFM, which include subdiffraction-limit topographic imaging and piconewton force sensitivity, have great potential to resolve important questions that remain unanswered on the molecular interactions, surface properties, and growth dynamics of this important class of pathogens.
Collapse
|
5
|
Affinity of Mycobacterium tuberculosis strains for M059K microglial cells after migration through A549 alveolar epithelium. Eur J Clin Microbiol Infect Dis 2021; 40:1881-1889. [PMID: 33834319 DOI: 10.1007/s10096-021-04226-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 03/14/2021] [Indexed: 10/21/2022]
Abstract
Tuberculosis (TB) remains a major threat worldwide while central nervous system TB (CNS-TB) is one of the most severe forms of extrapulmonary TB. CNS-TB develops as a secondary infection during the hematogenous spread of Mycobacterium tuberculosis (M. tuberculosis) from the lungs to the CNS. Factors influencing the dissemination of the bacilli to the CNS have not been studied extensively. This study evaluated the transmigration ability through the alveolar epithelium and adhesion and invasion capacity of glial cells of M. tuberculosis strains of varying drug susceptibility and genotype profiles using an in vitro co-culture model. A549 alveolar epithelial cells and M059K glial cells were co-cultured in a Transwell plate with A549 cells cultured in the upper chamber and M059K glial cells in the lower chamber. A549 epithelial cells were infected with F15/LAM4/KZN (susceptible, MDR, XDR), Beijing (susceptible, XDR), F11 (susceptible), F28 (MDR), and H37Rv strains of M. tuberculosis. The transmigration of an A549 monolayer and subsequent adhesion and invasion rates of M059K cells were established. The susceptible and XDR variants of the F15/LAM4/KZN strain transmigrate the alveolar epithelial cell monolayer more efficiently than the MDR variant. The Beijing-XDR variant showed a high transmigration rate, while the susceptible variant showed no transmigration ability. Similar to the MDR F15/LAM4/KZN, the F28 and F11 strains showed a low dissemination ability. The bacteria were still capable to adhere to M059K glial cells after passage through the A549 cells. We conclude that M. tuberculosis isolates that passed through a monolayer of A549 alveolar epithelium by transcellular migration can still adhere to M059K glial cells. There is no genetic link between resistance and transmigration.
Collapse
|
6
|
Allué-Guardia A, García JI, Torrelles JB. Evolution of Drug-Resistant Mycobacterium tuberculosis Strains and Their Adaptation to the Human Lung Environment. Front Microbiol 2021; 12:612675. [PMID: 33613483 PMCID: PMC7889510 DOI: 10.3389/fmicb.2021.612675] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In the last two decades, multi (MDR), extensively (XDR), extremely (XXDR) and total (TDR) drug-resistant Mycobacterium tuberculosis (M.tb) strains have emerged as a threat to public health worldwide, stressing the need to develop new tuberculosis (TB) prevention and treatment strategies. It is estimated that in the next 35 years, drug-resistant TB will kill around 75 million people and cost the global economy $16.7 trillion. Indeed, the COVID-19 pandemic alone may contribute with the development of 6.3 million new TB cases due to lack of resources and enforced confinement in TB endemic areas. Evolution of drug-resistant M.tb depends on numerous factors, such as bacterial fitness, strain's genetic background and its capacity to adapt to the surrounding environment, as well as host-specific and environmental factors. Whole-genome transcriptomics and genome-wide association studies in recent years have shed some insights into the complexity of M.tb drug resistance and have provided a better understanding of its underlying molecular mechanisms. In this review, we will discuss M.tb phenotypic and genotypic changes driving resistance, including changes in cell envelope components, as well as recently described intrinsic and extrinsic factors promoting resistance emergence and transmission. We will further explore how drug-resistant M.tb adapts differently than drug-susceptible strains to the lung environment at the cellular level, modulating M.tb-host interactions and disease outcome, and novel next generation sequencing (NGS) strategies to study drug-resistant TB.
Collapse
Affiliation(s)
- Anna Allué-Guardia
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| | | | - Jordi B. Torrelles
- Population Health Program, Tuberculosis Group, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
7
|
Infection of pulmonary epithelial cells by clinical strains of M. tuberculosis induces alternate splicing events. Gene 2020; 750:144755. [PMID: 32380040 DOI: 10.1016/j.gene.2020.144755] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/29/2020] [Accepted: 05/01/2020] [Indexed: 11/21/2022]
|
8
|
Moopanar K, Mvubu NE. Lineage-specific differences in lipid metabolism and its impact on clinical strains of Mycobacterium tuberculosis. Microb Pathog 2020; 146:104250. [PMID: 32407863 DOI: 10.1016/j.micpath.2020.104250] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 04/01/2020] [Accepted: 05/06/2020] [Indexed: 01/02/2023]
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of TB and its incidences has been on the rise since 1993. Lipid metabolism is an imperative metabolic process, which grants M. tb the ability to utilize host-derived lipids as a secondary source of nutrition during infection. In addition to degrading host lipids, M. tb is proficient at using lipids, such as cholesterol, to facilitate its entry into macrophages. Mycolic acids, constituents of the mycobacterial cell wall, offer protection and aid in persistence of the bacterium. These are effectively synthesized using a complex fatty acid synthase system. Many pathogenesis studies have reported differences in lipid-metabolism of clinical strains of M. tb that belongs to diverse lineages of the Mycobacterium tuberculosis complex (MTBC). East-Asian and Euro-American lineages possess "unique" cell wall-associated lipids compared to the less transmissible Ethiopian lineage, which may offer these lineages a competitive advantage. Therefore, it is crucial to comprehend the complexities among the MTBC lineages with lipid metabolism and their impact on virulence, transmissibility and pathogenesis. Thus, this review provides an insight into lipid metabolism in various lineages of the MTBC and their impact on virulence and persistence during infection, as this may provide critical insight into developing novel therapeutics to combat TB.
Collapse
Affiliation(s)
- K Moopanar
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| | - N E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, South Africa.
| |
Collapse
|
9
|
Ryndak MB, Laal S. Mycobacterium tuberculosis Primary Infection and Dissemination: A Critical Role for Alveolar Epithelial Cells. Front Cell Infect Microbiol 2019; 9:299. [PMID: 31497538 PMCID: PMC6712944 DOI: 10.3389/fcimb.2019.00299] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 08/02/2019] [Indexed: 12/28/2022] Open
Abstract
Globally, tuberculosis (TB) has reemerged as a major cause of morbidity and mortality, despite the use of the Mycobacterium bovis BCG vaccine and intensive attempts to improve upon BCG or develop new vaccines. Two lacunae in our understanding of the Mycobacterium tuberculosis (M. tb)-host pathogenesis have mitigated the vaccine efforts; the bacterial-host interaction that enables successful establishment of primary infection and the correlates of protection against TB. The vast majority of vaccine efforts are based on the premise that cell-mediated immunity (CMI) is the predominating mode of protection against TB. However, studies in animal models and in humans demonstrate that post-infection, a period of several weeks precedes the initiation of CMI during which the few inhaled bacteria replicate dramatically and disseminate systemically. The “Trojan Horse” mechanism, wherein M. tb is phagocytosed and transported across the alveolar barrier by infected alveolar macrophages has been long postulated as the sole, primary M. tb:host interaction. In the current review, we present evidence from our studies of transcriptional profiles of M. tb in sputum as it emerges from infectious patients where the bacteria are in a quiescent state, to its adaptations in alveolar epithelial cells where the bacteria transform to a highly replicative and invasive phenotype, to its maintenance of the invasive phenotype in whole blood to the downregulation of invasiveness upon infection of epithelial cells at an extrapulmonary site. Evidence for this alternative mode of infection and dissemination during primary infection is supported by in vivo, in vitro cell-based, and transcriptional studies from multiple investigators in recent years. The proposed alternative mechanism of primary infection and dissemination across the alveolar barrier parallels our understanding of infection and dissemination of other Gram-positive pathogens across their relevant mucosal barriers in that barrier-specific adhesins, toxins, and enzymes synergize to facilitate systemic establishment of infection prior to the emergence of CMI. Further exploration of this M. tb:non-phagocytic cell interaction can provide alternative approaches to vaccine design to prevent infection with M. tb and not only decrease clinical disease but also decrease the overwhelming reservoir of latent TB infection.
Collapse
Affiliation(s)
- Michelle B Ryndak
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| | - Suman Laal
- Department of Pathology, New York University School of Medicine, New York, NY, United States
| |
Collapse
|
10
|
Mahomed S, Padayatchi N, Singh J, Naidoo K. Precision medicine in resistant Tuberculosis: Treat the correct patient, at the correct time, with the correct drug. J Infect 2019; 78:261-268. [PMID: 30849440 DOI: 10.1016/j.jinf.2019.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/01/2019] [Accepted: 03/03/2019] [Indexed: 01/30/2023]
Abstract
Human genomic mapping has advanced molecular medicine health care and created a transformative paradigm shift towards Precision Medicine. In 2015, President Obama launched the PM initiative, encapsulated as "unique individualized data-driven treatments". Since then, this field is rapidly advancing both curative treatment and disease prevention by accounting for both individual and environmental variability. While a substantial evidence for accelerating adoption of Precision Medicine in other spheres of medicine exists, application of Precision Medicine in infectious diseases is far more complex. One of the most warranted applications of precision healthcare is in the management and treatment of Drug-resistant Tuberculosis. Application of Precision Medicine to Drug-resistant Tuberculosis could potentially change the landscape of treatment and prevention of a disease affecting vulnerable patients in impoverished communities. Poorly diagnosed and treated Drug-resistant Tuberculosis not only leads to increased mortality and morbidity but also increased transmission of DR-TB strains, fuelling ongoing high incidence rates and further infection. A Precision medicine model using individual clinical case histories used in conjunction with Mycobacterium Tuberculosis infection genomic data will better guide health care practitioners in more appropriate drug selection, and an individualized management approach. This viewpoint deliberates the intricacies of adopting a PM approach in the management of DR-TB. If applied correctly, we postulate that the research, application, and deployment of PM in DR-TB management may address the fundamental rule of PM in infectious disease: to treat the correct patient, at the correct time, with the correct drug.
Collapse
Affiliation(s)
- Sharana Mahomed
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa.
| | - Nesri Padayatchi
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa.
| | - Jerome Singh
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa.
| | - Kogieleum Naidoo
- CAPRISA, Centre for the AIDS Programme of Research in South Africa, Doris Duke Medical Research Institute, Nelson R Mandela School of Medicine, University of KwaZulu-Natal, Private Bag X7, Congella, 4013, Durban, South Africa.
| |
Collapse
|
11
|
Bertuzzi M, Hayes GE, Bignell EM. Microbial uptake by the respiratory epithelium: outcomes for host and pathogen. FEMS Microbiol Rev 2019; 43:145-161. [PMID: 30657899 PMCID: PMC6435450 DOI: 10.1093/femsre/fuy045] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 01/17/2019] [Indexed: 12/21/2022] Open
Abstract
Intracellular occupancy of the respiratory epithelium is a useful pathogenic strategy facilitating microbial replication and evasion of professional phagocytes or circulating antimicrobial drugs. A less appreciated but growing body of evidence indicates that the airway epithelium also plays a crucial role in host defence against inhaled pathogens, by promoting ingestion and quelling of microorganisms, processes that become subverted to favour pathogen activities and promote respiratory disease. To achieve a deeper understanding of beneficial and deleterious activities of respiratory epithelia during antimicrobial defence, we have comprehensively surveyed all current knowledge on airway epithelial uptake of bacterial and fungal pathogens. We find that microbial uptake by airway epithelial cells (AECs) is a common feature of respiratory host-microbe interactions whose stepwise execution, and impacts upon the host, vary by pathogen. Amidst the diversity of underlying mechanisms and disease outcomes, we identify four key infection scenarios and use best-characterised host-pathogen interactions as prototypical examples of each. The emergent view is one in which effi-ciency of AEC-mediated pathogen clearance correlates directly with severity of disease outcome, therefore highlighting an important unmet need to broaden our understanding of the antimicrobial properties of respiratory epithelia and associated drivers of pathogen entry and intracellular fate.
Collapse
Affiliation(s)
- Margherita Bertuzzi
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| | - Gemma E Hayes
- Northern Devon Healthcare NHS Trust, North Devon District Hospital, Raleigh Park, Barnstaple EX31 4JB, UK
| | - Elaine M Bignell
- Manchester Fungal Infection Group, Faculty of Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre, Core Technology Facility, Grafton Street, Manchester M13 9NT, UK
- Lydia Becker Institute of Immunology and Inflammation, Biology, Medicine and Health. The University of Manchester, Manchester Academic Health Science Centre
| |
Collapse
|
12
|
Mvubu NE, Pillay B, McKinnon LR, Pillay M. Mycobacterium tuberculosis strains induce strain-specific cytokine and chemokine response in pulmonary epithelial cells. Cytokine 2017; 104:53-64. [PMID: 29032986 DOI: 10.1016/j.cyto.2017.09.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 09/23/2017] [Accepted: 09/23/2017] [Indexed: 02/07/2023]
Abstract
M. tuberculosis F15/LAM4/KZN has been associated with high transmission rates of drug resistant tuberculosis in the KwaZulu-Natal province of South Africa. The current study elucidated the cytokine/chemokine responses induced by representatives of the F15/LAM4/KZN and other dominant strain families in pulmonary epithelial cells. Multiplex cytokine analyses were performed at 24, 48 and 72h post infection of the A549 pulmonary epithelial cell line with the F15/LAM4/KZN, F28, F11, Beijing, Unique and H37Rv strains at an MOI of ∼10:1. Twenty-three anti- and pro-inflammatory cytokines/chemokines were detected at all-time intervals. Significantly high concentrations of IL-6, IFN-γ, TNF-α and G-CSF at 48h, and IL-8, IFN-γ, TNF-α, G-CSF and GM-CSF at 72h, were induced by the F28 and F15/LAM4/KZN strains, respectively. Lower levels of cytokines/chemokines were induced by either the Beijing or Unique strains at all three time intervals. All strains induced up-regulation of pathogen recognition receptors (PRRs) (TLR3 and TLR5) while only the F15/LAM4/KZN, F11 and F28 strains induced significant differential expression of TLR2 compared to the Beijing, Unique and H37Rv strains. The low induction of cytokines in epithelial cells by the Beijing strain correlates with its previously reported hypervirulent properties. High concentrations of cytokines and chemokines required for early protection against M. tuberculosis infections induced by the F15/LAM4/KZN and F28 strains suggests a lower virulence of these genotypes compared to the Beijing strain. These findings demonstrate the high diversity in host cytokine/chemokine response to early infection of pulmonary epithelial cells by different strains of M. tuberculosis.
Collapse
Affiliation(s)
- Nontobeko E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Balakrishna Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Lyle R McKinnon
- Centre for the AIDS Program of Research in South Africa (CAPRISA), University of KwaZulu-Natal, Durban, South Africa; Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba, Canada.
| | - Manormoney Pillay
- Medical Microbiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, South Africa.
| |
Collapse
|
13
|
Mycobacterium tuberculosis Multidrug-Resistant Strain M Induces Low IL-8 and Inhibits TNF- α Secretion by Bronchial Epithelial Cells Altering Neutrophil Effector Functions. Mediators Inflamm 2017; 2017:2810606. [PMID: 28852268 PMCID: PMC5568625 DOI: 10.1155/2017/2810606] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 06/22/2017] [Accepted: 07/02/2017] [Indexed: 12/17/2022] Open
Abstract
M strain, the most prevalent multidrug-resistant strain of Mycobacterium tuberculosis (Mtb) in Argentina, has mounted mechanisms to evade innate immune response. The role of human bronchial epithelium in Mtb infection remains unknown as well as its crosstalk with neutrophils (PMN). In this work, we evaluate whether M and H37Rv strains invade and replicate within bronchial epithelial cell line Calu-6 and how conditioned media (CM) derived from infected cells alter PMN responses. We demonstrated that M infects and survives within Calu-6 without promoting death. CM from M-infected Calu-6 (M-CM) did not attract PMN in correlation with its low IL-8 content compared to H37Rv-CM. Also, PMN activation and ROS production in response to irradiated H37Rv were impaired after treatment with M-CM due to the lack of TNF-α. Interestingly, M-CM increased H37Rv replication in PMN which would allow the spreading of mycobacteria upon PMN death and sustain IL-8 release. Thus, our results indicate that even at low invasion/replication rate within Calu-6, M induces the secretion of factors altering the crosstalk between these nonphagocytic cells and PMN, representing an evasion mechanism developed by M strain to persist in the host. These data provide new insights on the role of bronchial epithelium upon M infection.
Collapse
|
14
|
Treerat P, Prince O, Cruz-Lagunas A, Muñoz-Torrico M, Salazar-Lezama MÁ, Selman M, Fallert-Junecko B, Reinhardt T, Alcorn JF, Kaushal D, Zuñiga J, Rangel-Moreno J, Kolls JK, Khader SA. Novel role for IL-22 in protection during chronic Mycobacterium tuberculosis HN878 infection. Mucosal Immunol 2017; 10:1069-1081. [PMID: 28247861 PMCID: PMC5477058 DOI: 10.1038/mi.2017.15] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 01/23/2017] [Indexed: 02/04/2023]
Abstract
Approximately 2 billion people are infected with Mycobacterium tuberculosis (Mtb), resulting in 1.4 million deaths every year. Among Mtb-infected individuals, clinical isolates belonging to the W-Beijing lineage are increasingly prevalent, associated with drug resistance, and cause severe disease immunopathology in animal models. Therefore, it is exceedingly important to identify the immune mechanisms that mediate protection against rapidly emerging Mtb strains, such as W-Beijing lineage. IL-22 is a member of the IL-10 family of cytokines with both protective and pathological functions at mucosal surfaces. Thus far, collective data show that IL-22 deficient mice are not more susceptible to aerosolized infection with less virulent Mtb strains. Thus, in this study we addressed the functional role for the IL-22 pathway in immunity to emerging Mtb isolates, using W-Beijing lineage member, Mtb HN878 as a prototype. We show that Mtb HN878 stimulates IL-22 production in TLR2 dependent manner and IL-22 mediates protective immunity during chronic stages of Mtb HN878 infection in mice. Interestingly, IL-22-dependent pathways in both epithelial cells and macrophages mediate protective mechanisms for Mtb HN878 control. Thus, our results project a new protective role for IL-22 in emerging Mtb infections.
Collapse
Affiliation(s)
- Puthayalai Treerat
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Oliver Prince
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| | - Alfredo Cruz-Lagunas
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Marcela Muñoz-Torrico
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | | | - Moises Selman
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Beth Fallert-Junecko
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Todd Reinhardt
- Department of Infectious Diseases and Microbiology, University of Pittsburgh, Pittsburgh, PA, USA
| | - John F. Alcorn
- Division of Pulmonology, Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Deepak Kaushal
- Divisions of Bacteriology and Parasitology, Tulane National Primate Research Centre, Covington, LA, USA
| | - Joaquin Zuñiga
- Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City, Mexico
| | - Javier Rangel-Moreno
- Division of Allergy, Immunology and Rheumatology, Department of Medicine, University of Rochester Medical Centre, Rochester, NY, USA
| | - Jay K. Kolls
- Richard King Mellon Institute for Pediatric Research, Department of Pediatrics and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
15
|
Mikheecheva NE, Zaychikova MV, Melerzanov AV, Danilenko VN. A Nonsynonymous SNP Catalog of Mycobacterium tuberculosis Virulence Genes and Its Use for Detecting New Potentially Virulent Sublineages. Genome Biol Evol 2017; 9:887-899. [PMID: 28338924 PMCID: PMC5381574 DOI: 10.1093/gbe/evx053] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2017] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis is divided into several distinct lineages, and various genetic markers such as IS-elements, VNTR, and SNPs are used for lineage identification. We propose an M. tuberculosis classification approach based on functional polymorphisms in virulence genes. An M. tuberculosis virulence genes catalog has been established, including 319 genes from various protein groups, such as proteases, cell wall proteins, fatty acid and lipid metabolism proteins, sigma factors, toxin–antitoxin systems. Another catalog of 1,573 M. tuberculosis isolates of different lineages has been developed. The developed SNP-calling program has identified 3,563 nonsynonymous SNPs. The constructed SNP-based phylogeny reflected the evolutionary relationship between lineages and detected new sublineages. SNP analysis of sublineage F15/LAM4/KZN revealed four lineage-specific mutations in cyp125, mce3B, vapC25, and vapB34. The Ural lineage has been divided into two geographical clusters based on different SNPs in virulence genes. A new sublineage, B0/N-90, was detected inside the Beijing-B0/W-148 by SNPs in irtB, mce3F and vapC46. We have found 27 members of B0/N-90 among the 227 available genomes of the Beijing-B0/W-148 sublineage. Whole-genome sequencing of strain B9741, isolated from an HIV-positive patient, was demonstrated to belong to the new B0/N-90 group. A primer set for PCR detection of B0/N-90 lineage-specific mutations has been developed. The prospective use of mce3 mutant genes as genetically engineered vaccine is discussed.
Collapse
Affiliation(s)
- Natalya E Mikheecheva
- Vavilov Institute of General Genetics, Moscow, Russia.,Moscow Institute of Physics and Technology, Dolgoprudny, Russia
| | | | | | - Valery N Danilenko
- Vavilov Institute of General Genetics, Moscow, Russia.,Scientific Research Center of Biotechnology of Antibiotics BIOAN, Moscow, Russia
| |
Collapse
|
16
|
Pal R, Hameed S, Sharma S, Fatima Z. Influence of iron deprivation on virulence traits of mycobacteria. Braz J Infect Dis 2016; 20:585-591. [PMID: 27755980 PMCID: PMC9427566 DOI: 10.1016/j.bjid.2016.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 08/11/2016] [Accepted: 08/30/2016] [Indexed: 01/17/2023] Open
Abstract
Novel strategies to combat the ever increasing burden of drug resistance in Mycobacterium tuberculosis (MTB) causing tuberculosis (TB) remains a global concern. The ability of MTB to sense and adapt to restricted iron conditions in the hostile environment is essential for their survival and confers the basis of their success as dreadful pathogen. The striking and clinically relevant virulence trait of MTB is its ability to form biofilms and adhere to the host cells. The present study elucidated the effect of iron deprivation on biofilm formation and cell adherence of Mycobacterium smegmatis, a non-pathogenic surrogate of MTB. Firstly, we showed that iron deprivation leads to enhanced cell sedimentation rate and altered colony morphology depicting alterations in cell surface envelope properties. We explored that biofilm formation and cell adherence to polystyrene surface as well as human oral epithelial cells were considerably reduced under iron deprivation both in presence of 2,2 BP (iron chelator) and siderophore mutant Δ011-14 strain. We further investigated that the potency of three first line anti-TB drugs (Isoniazid, Ethambutol, Rifampicin) to inhibit both biofilm formation and cell adhesion were enhanced under iron deprivation in contrast to the drugs when tested alone. Taken together, by virtue of the indispensability of iron for functional virulence traits in mycobacteria, iron deprivation strategies could be further exploited against this notorious human pathogen to explore novel drug targets.
Collapse
Affiliation(s)
- Rahul Pal
- Amity University Haryana, Amity Institute of Biotechnology, Gurgaon, India
| | - Saif Hameed
- Amity University Haryana, Amity Institute of Biotechnology, Gurgaon, India
| | - Sharda Sharma
- Amity University Haryana, Amity Institute of Biotechnology, Gurgaon, India
| | - Zeeshan Fatima
- Amity University Haryana, Amity Institute of Biotechnology, Gurgaon, India.
| |
Collapse
|
17
|
Ryndak MB, Chandra D, Laal S. Understanding dissemination of Mycobacterium tuberculosis from the lungs during primary infection. J Med Microbiol 2016; 65:362-369. [DOI: 10.1099/jmm.0.000238] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- Michelle B. Ryndak
- Department of Pathology, New York University School of Medicine,New York, NY 10016,USA
| | - Dinesh Chandra
- Department of Pathology, New York University School of Medicine,New York, NY 10016,USA
| | - Suman Laal
- Department of Pathology, New York University School of Medicine,New York, NY 10016,USA
- Veterans Affairs New York Harbor Healthcare System,New York, NY 10010,USA
| |
Collapse
|
18
|
Strains of Mycobacterium tuberculosis differ in affinity for human osteoblasts and alveolar cells in vitro. SPRINGERPLUS 2016; 5:163. [PMID: 27026860 PMCID: PMC4766163 DOI: 10.1186/s40064-016-1819-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/15/2016] [Indexed: 12/29/2022]
Abstract
Although the lung is the primary site of infection of tuberculosis, Mycobacterium tuberculosis is capable of causing infection at other sites. In 5–10 % such extra-pulmonary tuberculosis is located in bone tissue of the spine. It is unknown whether host or microbial factors are responsible for the site where extra-pulmonary tuberculosis manifests itself. One MDR isolate belonging to strain F28, one susceptible F11 and one isolate each of susceptible, MDR and XDR F15/LAM4/KZN were cultured in Middlebrook 7H9 media. Human osteoblasts (SaOS-2) and human alveolar epithelial cells (A549) were exposed to these different isolates of M. tuberculosis and invasion capacity and intra-cellular multiplication rates were established. Mouse macrophage (MHS) cells exposed to M. tuberculosis H37Rv served as control. The invasion capacity of F15/LAM4/KZN representatives increased with the level of resistance. The F28 MDR strain showed similar invasion capacity as the XDR F15/LAM4/KZN for pulmonary epthelial cells, whilst the fully susceptible F11 strain displayed a propensity for osteoblasts. The differences observed may in part explain why certain strains are able to cause infection at specific extra-pulmonary sites. We postulated that the development of extra-pulmonary tuberculosis depends on the ability of the microbe to pass effectively through the alveolar epithelial lining and its affinity for cells other than those in pulmonary tissue.
Collapse
|
19
|
Evaluation of the role of Mycobacterium tuberculosis pili (MTP) as an adhesin, invasin, and cytokine inducer of epithelial cells. Braz J Infect Dis 2016; 20:160-5. [PMID: 26748229 PMCID: PMC9427661 DOI: 10.1016/j.bjid.2015.11.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 11/24/2022] Open
|
20
|
Mvubu NE, Pillay B, Gamieldien J, Bishai W, Pillay M. Canonical pathways, networks and transcriptional factor regulation by clinical strains of Mycobacterium tuberculosis in pulmonary alveolar epithelial cells. Tuberculosis (Edinb) 2015; 97:73-85. [PMID: 26980499 DOI: 10.1016/j.tube.2015.12.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/30/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
Limited knowledge exists on pathways, networks and transcriptional factors regulated within epithelial cells by diverse Mycobacterium tuberculosis genotypes. This study aimed to elucidate these mechanisms induced in A549 epithelial cells by dominant clinical strains in KwaZulu-Natal, South Africa. RNA for sequencing was extracted from epithelial cells at 48 h post-infection with 5 strains at a multiplicity of infection of approximately 10:1. Bioinformatics analysis performed with the RNA-Seq Tuxedo pipeline identified differentially expressed genes. Changes in pathways, networks and transcriptional factors were identified using Ingenuity Pathway Analysis (IPA). The interferon signalling and hepatic fibrosis/hepatic stellate cell activation pathways were among the top 5 canonical pathways in all strains. Hierarchical clustering for enrichment of cholesterol biosynthesis and immune associated pathways revealed similar patterns for Beijing and Unique; F15/LAM4/KZN and F11; and, F28 and H37Rv strains, respectively. However, the induction of top scoring networks varied among the strains. Among the transcriptional factors, only EHL, IRF7, PML, STAT1, STAT2 and VDR were induced by all clinical strains. Activation of the different pathways, networks and transcriptional factors revealed in the current study may be an underlying mechanism that results in the differential host response by clinical strains of M. tuberculosis.
Collapse
Affiliation(s)
- Nontobeko E Mvubu
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Balakrishna Pillay
- School of Life Sciences, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Westville 3630, South Africa.
| | - Junaid Gamieldien
- South African National Bioinformatics Institute/MRC Unit for Bioinformatics Capacity Development, University of the Western Cape, Bellville 7530, South Africa.
| | - William Bishai
- Department of Medicine, Division of Infectious Diseases, Johns Hopkins School of Medicine, 1550 Orleans St., Baltimore, MD, United State of America.
| | - Manormoney Pillay
- Medical Microbiology and Infection Control, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, 719 Umbilo Road, Private Bag 7, Congella 4013, Durban, South Africa.
| |
Collapse
|
21
|
Sturm A, Ashiru O. Cytotoxicity Induction in A549 Alveolar Epithelial Cells by Mycobacterium tuberculosis Isolates Cultured in the Presence and Absence of Oxygen. ACTA ACUST UNITED AC 2015. [DOI: 10.6000/1927-5129.2015.11.16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
22
|
Gandhi NR, Brust JCM, Moodley P, Weissman D, Heo M, Ning Y, Moll AP, Friedland GH, Sturm AW, Shah NS. Minimal diversity of drug-resistant Mycobacterium tuberculosis strains, South Africa. Emerg Infect Dis 2015; 20:426-33. [PMID: 24565645 PMCID: PMC3944869 DOI: 10.3201/eid2003.131083] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Multidrug- (MDR) and extensively drug-resistant tuberculosis (XDR TB) are commonly associated with Beijing strains. However, in KwaZulu-Natal, South Africa, which has among the highest incidence and mortality for MDR and XDR TB, data suggest that non-Beijing strains are driving the epidemic. We conducted a retrospective study to characterize the strain prevalence among drug-susceptible, MDR, and XDR TB cases and determine associations between strain type and survival. Among 297 isolates from 2005–2006, 49 spoligotype patterns were found. Predominant strains were Beijing (ST1) among drug-susceptible isolates (27%), S/Quebec (ST34) in MDR TB (34%) and LAM4/KZN (ST60) in XDR TB (89%). More than 90% of patients were HIV co-infected. MDR TB and XDR TB were independently associated with mortality, but TB strain type was not. We conclude that, although Beijing strain was common among drug-susceptible TB, other strains predominated among MDR TB and XDR TB cases. Drug-resistance was a stronger predictor of survival than strain type.
Collapse
|
23
|
Govender VS, Ramsugit S, Pillay M. Mycobacterium tuberculosis adhesins: potential biomarkers as anti-tuberculosis therapeutic and diagnostic targets. Microbiology (Reading) 2014; 160:1821-1831. [DOI: 10.1099/mic.0.082206-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Adhesion to host cells is a precursor to host colonization and evasion of the host immune response. Conversely, it triggers the induction of the immune response, a process vital to the host’s defence against infection. Adhesins are microbial cell surface molecules or structures that mediate the attachment of the microbe to host cells and thus the host–pathogen interaction. They also play a crucial role in bacterial aggregation and biofilm formation. In this review, we discuss the role of adhesins in the pathogenesis of the aetiological agent of tuberculosis, Mycobacterium tuberculosis. We also provide insight into the structure and characteristics of some of the characterized and putative M. tuberculosis adhesins. Finally, we examine the potential of adhesins as targets for the development of tuberculosis control strategies.
Collapse
Affiliation(s)
- Viveshree S. Govender
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| | - Saiyur Ramsugit
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| | - Manormoney Pillay
- Medical Microbiology and Infection Control, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Reduced virulence of an extensively drug-resistant outbreak strain of Mycobacterium tuberculosis in a murine model. PLoS One 2014; 9:e94953. [PMID: 24733050 PMCID: PMC3986381 DOI: 10.1371/journal.pone.0094953] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Accepted: 03/20/2014] [Indexed: 12/15/2022] Open
Abstract
Bacterial drug resistance is often associated with a fitness cost. Large outbreaks of multidrug-resistant (MDR) and extensively drug-resistant (XDR) TB have been described that predominately affect persons with HIV infection. We obtained four closely-related Mycobacterium tuberculosis strains (genotype F15/LAM4/KZN) from an outbreak in KwaZulu-Natal (KZN), South Africa, including drug-sensitive, MDR, and XDR clinical isolates. We compared the virulence of these strains in a murine model of aerosol M. tuberculosis infection for four phenotypes: (1) competitive in vivo growth in lung and spleen, (2) non-competitive in vivo growth in lung and spleen, (3) murine survival time, and (4) lung pathology. When mixtures of sensitive, MDR, and XDR KZN strains were aerosolized (competitive model), lung CFUs were similar at 60 days after infection, and spleen CFUs were ordered as follows: sensitive > MDR > XDR. When individual strains were aerosolized (non-competitive model), modest differences in lung and spleen CFUs were observed with the same ordering. C57BL/6, C3H/FeJ, and SCID mice all survived longer after infection with MDR as compared to sensitive strains. SCID mice infected with an XDR strain survived longer than those infected with MDR or sensitive strains. Lung pathology was reduced after XDR TB infection compared to sensitive or MDR TB infection. In summary, increasing degrees of drug resistance were associated with decreasing murine virulence in this collection of KZN strains as measured by all four virulence phenotypes. The predominance of HIV-infected patients in MDR and XDR TB outbreaks may be explained by decreased virulence of these strains in humans.
Collapse
|
25
|
Interaction of Mycobacterium leprae with human airway epithelial cells: adherence, entry, survival, and identification of potential adhesins by surface proteome analysis. Infect Immun 2013; 81:2645-59. [PMID: 23670556 DOI: 10.1128/iai.00147-13] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study examined the in vitro interaction between Mycobacterium leprae, the causative agent of leprosy, and human alveolar and nasal epithelial cells, demonstrating that M. leprae can enter both cell types and that both are capable of sustaining bacterial survival. Moreover, delivery of M. leprae to the nasal septum of mice resulted in macrophage and epithelial cell infection in the lung tissue, sustaining the idea that the airways constitute an important M. leprae entry route into the human body. Since critical aspects in understanding the mechanisms of infection are the identification and characterization of the adhesins involved in pathogen-host cell interaction, the nude mouse-derived M. leprae cell surface-exposed proteome was studied to uncover potentially relevant adhesin candidates. A total of 279 cell surface-exposed proteins were identified based on selective biotinylation, streptavidin-affinity purification, and shotgun mass spectrometry; 11 of those proteins have been previously described as potential adhesins. In vitro assays with the recombinant forms of the histone-like protein (Hlp) and the heparin-binding hemagglutinin (HBHA), considered to be major mycobacterial adhesins, confirmed their capacity to promote bacterial attachment to epithelial cells. Taking our data together, they suggest that the airway epithelium may act as a reservoir and/or portal of entry for M. leprae in humans. Moreover, our report sheds light on the potentially critical adhesins involved in M. leprae-epithelial cell interaction that may be useful in designing more effective tools for leprosy control.
Collapse
|
26
|
Ashiru OT, Pillay M, Sturm AW. Mycobacterium tuberculosis isolates grown under oxygen deprivation invade pulmonary epithelial cells. Anaerobe 2012; 18:471-4. [PMID: 22579984 DOI: 10.1016/j.anaerobe.2012.04.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 03/30/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Mycobacterium tuberculosis has the ability to adapt to and survive under different environmental conditions, including oxygen deprivation. To better understand the pathogenesis of M. tuberculosis, we studied the invasion of human alveolar (A549) and human bronchial (BBM) epithelial cell lines by M. tuberculosis isolates cultured under oxygen deprivation. We used isolates belonging to the Beijing and F15/LAM4/KZN families, isolates with unique DNA fingerprints and the laboratory strains H37Rv and H37Ra. We determined that: (1) M. tuberculosis bacilli grown under oxygen deprivation invade epithelial cells, (2) the invasion capacity of all 17 isolates differed, and (3) oxygen deprivation influenced the invasion capacity of these isolates. All isolates invaded the A549 more effectively than the BBM cells. Three of the F15/LAM4/KZN isolates, two of which had extensively drug resistance (XDR) profiles, were at least twice as invasive (≥33%) as the most invasive Beijing isolate (15%) (P < 0.05). We conclude that for a more comprehensive understanding of the pathogenesis of M. tuberculosis, studies should include isolates that have been cultured under oxygen deprivation.
Collapse
Affiliation(s)
- Olubisi T Ashiru
- Department of Infection, Prevention and Control, Nelson R. Mandela School of Medicine, University of KwaZulu-Natal, Durban, South Africa.
| | | | | |
Collapse
|
27
|
Be NA, Bishai WR, Jain SK. Role of Mycobacterium tuberculosis pknD in the pathogenesis of central nervous system tuberculosis. BMC Microbiol 2012; 12:7. [PMID: 22243650 PMCID: PMC3322341 DOI: 10.1186/1471-2180-12-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 01/13/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Central nervous system disease is the most serious form of tuberculosis, and is associated with high mortality and severe neurological sequelae. Though recent clinical reports suggest an association of distinct Mycobacterium tuberculosis strains with central nervous system disease, the microbial virulence factors required have not been described previously. RESULTS We screened 398 unique M. tuberculosis mutants in guinea pigs to identify genes required for central nervous system tuberculosis. We found M. tuberculosis pknD (Rv0931c) to be required for central nervous system disease. These findings were central nervous system tissue-specific and were not observed in lung tissues. We demonstrated that pknD is required for invasion of brain endothelia (primary components of the blood-brain barrier protecting the central nervous system), but not macrophages, lung epithelia, or other endothelia. M. tuberculosis pknD encodes a "eukaryotic-like" serine-threonine protein kinase, with a predicted intracellular kinase and an extracellular (sensor) domain. Using confocal microscopy and flow cytometry we demonstrated that the M. tuberculosis PknD sensor is sufficient to trigger invasion of brain endothelia, a process which was neutralized by specific antiserum. CONCLUSIONS Our findings demonstrate a novel in vivo role for M. tuberculosis pknD and represent an important mechanism for bacterial invasion and virulence in central nervous system tuberculosis, a devastating and understudied disease primarily affecting young children.
Collapse
Affiliation(s)
- Nicholas A Be
- Center for Tuberculosis Research, Johns Hopkins University School of Medicine, 1550 Orleans Street, Baltimore, Maryland 21287, USA
| | | | | |
Collapse
|
28
|
Chen B, Weisbrod TR, Hsu T, Sambandamurthy V, Vieira-Cruz D, Chibbaro A, Ghidoni D, Kile T, Barkley WE, Vilchèze C, Colon-Berezin C, Thaler DS, Larsen MH, Sturm AW, Jacobs WR. Einstein Contained Aerosol Pulmonizer (ECAP): Improved Biosafety for Multi-Drug Resistant (MDR) and Extensively Drug Resistant (XDR) Mycobacterium tuberculosis Aerosol Infection Studies. APPLIED BIOSAFETY 2011; 16:134-138. [PMID: 23413363 DOI: 10.1177/153567601101600302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new apparatus enhances the biosafety of containment (biosafety level 3 [BSL-3]) and provides experimental reproducibility for aerosol infection experiments with MDR and XDR Mycobacterium tuberculosis. The methods are generally applicable to the study of airborne pathogens.
Collapse
Affiliation(s)
- Bing Chen
- Howard Hughes Medical Institute, Bronx, New York
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Valcheva V, Mokrousov I, Panaiotov S, Bachiiska E, Zozio T, Sola C, Markova N, Rastogi N. Bulgarian specificity and controversial phylogeography of Mycobacterium tuberculosis spoligotype ST 125__BGR. ACTA ACUST UNITED AC 2010; 59:90-9. [PMID: 20402768 DOI: 10.1111/j.1574-695x.2010.00667.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The local specificity of bacterial clones may be explained by long-term presence or recent importation/fast dissemination in an area. Mycobacterium tuberculosis spoligotype ST125, noticeably prevalent among Bulgaria-specific spoligotypes, has a characteristically 'abridged' profile and an uncertain clade position [Latin-American-Mediterranean (LAM)/S]. A comparison with the SITVIT2 database (Institut Pasteur de Guadeloupe) demonstrated its high gradient in Bulgaria (14.3%) compared with the negligible presence in the rest of the world. Further typing of all available Bulgarian ST125 strains revealed that they: (i) monophyletically clustered in 21-mycobacterial interspersed repetitive units (MIRU)-loci tree of all Bulgarian strains; (ii) grouped closely with the ST34 spoligotype, a prototype of the S family; and (iii) did not harbor a LAM-specific IS6110 insertion. Comparison of the 21-MIRU-based network with geographic data revealed a complex dissemination pattern of ST125 in Bulgaria. Interestingly, this variable number of tandem repeats (VNTR) network remarkably corroborated with a recent hypothesis of single repeat loss as the primary mode of evolution of VNTR loci in M. tuberculosis. In conclusion, M. tuberculosis spoligotype ST125 is phylogeographically specific for Bulgaria. This spoligotype was not associated with drug resistance or increased transmissibility; its prevalence in Bulgaria can rather be attributed to the historical circulation in the country, having led, speculatively, to adaptation to the local human population.
Collapse
Affiliation(s)
- Violeta Valcheva
- Unité de la Tuberculose et des Mycobactéries, Institut Pasteur de Guadeloupe, Guadeloupe, France
| | | | | | | | | | | | | | | |
Collapse
|