1
|
Targońska-Karasek M, Polkowska I, Krukowski H. Is Pseudomonas aeruginosa a possible aetiological agent of periodontitis in dogs? J Vet Res 2025; 69:35-40. [PMID: 40144062 PMCID: PMC11936081 DOI: 10.2478/jvetres-2025-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 02/07/2025] [Indexed: 03/28/2025] Open
Abstract
Introduction Periodontal diseases are the most frequently diagnosed problem in small animal veterinary medicine. Although their exact cause is not fully understood, bacteria play an important role in their development. Pseudomonas aeruginosa is a Gram-negative, rod-shaped, non-spore-forming bacterium. The living environment of this bacterium may be soil and water; however, it can also be found in humans and animals. Antibiotic treatment of periodontitis may be complicated by the carbapenem resistance of some P. aeruginosa strains, if these bacteria are found to be an aetiological agent. The aim of the study was to identify all bacterial strains isolated from dog with periodontitis. Material and Methods After a clinical examination of a Schnauzer dog in the Department and Clinic of Animal Surgery in the University of Life Sciences in Lublin Faculty of Veterinary Medicine, periodontitis was diagnosed. A swab was taken from the diseased tissue and submitted for microbiological tests. Microorganisms were initially identified by colony morphology, haemolytic pattern and Gram staining, and subsequently by sensitivity tests, VITEK 2 and matrix-assisted laser desorption/ionisation-time-of-flight. Results Pseudomonas aeruginosa was isolated and identified as a probable aetiological factor of periodontitis in dogs. Conclusion In our opinion, attention should be paid to Pseudomonas aeruginosa as a possible aetiological factor of periodontal diseases in dogs.
Collapse
Affiliation(s)
- Małgorzata Targońska-Karasek
- Department of Animal Hygiene and Environmental Hazards, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| | - Izabela Polkowska
- Department and Clinic of Animal Surgery, Faculty of Veterinary Medicine, University of Life Sciences in Lublin, 20-612Lublin, Poland
| | - Henryk Krukowski
- Department of Animal Hygiene and Environmental Hazards, Faculty of Animal Sciences and Bioeconomy, University of Life Sciences in Lublin, 20-950Lublin, Poland
| |
Collapse
|
2
|
Alcedo González J, Estremera-Arévalo F, Cobián Malaver J, Santos Vicente J, Alcalá-González LG, Naves J, Barba Orozco E, Barber Caselles C, Serrano-Falcón B, Accarino Garaventa A, Alonso-Cotoner C, Serra Pueyo J. Common questions and rationale answers about the intestinal bacterial overgrowth syndrome (SIBO). GASTROENTEROLOGIA Y HEPATOLOGIA 2025; 48:502216. [PMID: 38852778 DOI: 10.1016/j.gastrohep.2024.502216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/15/2024] [Accepted: 05/24/2024] [Indexed: 06/11/2024]
Abstract
The recognition and treatment of intestinal bacterial overgrowth syndrome are matters of controversy. The symptoms that have guided the search for the disorder suffer from lack of specificity, especially in the absence of well-defined predisposing factors. The accuracy of diagnostic procedures has been questioned and the proposed therapies achieve generally low effectiveness figures, with large differences between available studies. It is also unknown whether the normalization of tests is really a guarantee of cure. Within this framework of uncertainty, and in order to contribute to the guidance and homogenization of medical practice, a group of experts from the AEG and ASENEM have formulated the key questions on the management of this pathology and have provided answers to them, in accordance with the available scientific evidence. In addition, they have drawn up statements based on the conclusions of the review and have voted on them individually to reflect the degree of consensus for each statement.
Collapse
Affiliation(s)
- Javier Alcedo González
- Servicio de Aparato Digestivo, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria (IIS) Aragón, Zaragoza, España.
| | - Fermín Estremera-Arévalo
- Servicio de Aparato Digestivo, Hospital Universitario de Navarra, Navarrabiomed, Universidad Pública de Navarra - IdiSNA, Navarra, España
| | | | - Javier Santos Vicente
- Laboratorio de Neuro-Inmuno-Gastroenterología, Unidad de Investigación de Aparato Digestivo, Institut de Recerca (VHIR), Servicio de Aparato Digestivo, Hospital Universitario Vall d'Hebron, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid, España
| | | | - Juan Naves
- Servicio de Aparato Digestivo, Hospital del Mar, Barcelona, España
| | - Elizabeth Barba Orozco
- Unidad de Neurogastroenterología y Motilidad, Hospital Clínic de Barcelona, Barcelona, España; Departamento de Gastroenterología, Universidad de Barcelona, Barcelona, España
| | | | - Blanca Serrano-Falcón
- Servicio de Aparato Digestivo, Hospital Universitario Virgen de las Nieves, Granada, España
| | | | - Carmen Alonso-Cotoner
- Laboratorio de Neuro-Inmuno-Gastroenterología, Unidad de Investigación de Aparato Digestivo, Institut de Recerca (VHIR), Servicio de Aparato Digestivo, Hospital Universitario Vall d'Hebron, Barcelona, España; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid, España; Facultad de Medicina, Universidad Autónoma de Barcelona, Barcelona, España
| | - Jordi Serra Pueyo
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (Ciberehd), Instituto de Salud Carlos III, Madrid, España; Área de Aparato Digestivo, Hospital Universitario Vall d'Hebron, Barcelona, España
| |
Collapse
|
3
|
van Veen A, Shahab SN, Rijfkogel A, Voor in ’t holt AF, Klaassen CHW, Vos MC, Saharman YR, Karuniawati A, Zelli S, De Lorenzis D, Menchinelli G, De Angelis G, Sanguinetti M, Kemper M, de Jong AEE, Mohammadi S, Renaud V, Kukavica-Ibrulj I, Potvin M, Nguyen GQ, Gauthier J, Levesque RC, Schmitt H, Severin JA. Sources and Transmission Routes of Carbapenem-Resistant Pseudomonas aeruginosa: Study Design and Methodology of the SAMPAN Study. Antibiotics (Basel) 2025; 14:94. [PMID: 39858379 PMCID: PMC11763197 DOI: 10.3390/antibiotics14010094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/03/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The global spread of carbapenem-resistant Pseudomonas aeruginosa (CRPA) warrants collaborative action. Guidance should come from integrated One Health surveillance; however, a surveillance strategy is currently unavailable due to insufficient knowledge on the sources and transmission routes of CRPA. The aim of the SAMPAN study ("A Smart Surveillance Strategy for Carbapenem-resistant Pseudomonas aeruginosa") is to develop a globally applicable surveillance strategy. Methods: First, an international cross-sectional study will be conducted to investigate CRPA in clinical and environmental settings in Rotterdam (The Netherlands), Rome (Italy), and Jakarta (Indonesia). Screening cultures and risk factor questionnaires will be taken from healthy individuals and patients upon hospital admission. Clinical CRPA isolates will also be included. Additionally, samples will be taken twice from wet hospital environments and monthly from the hospitals' (drinking) water system, hospital and municipal wastewater treatment plants, and receiving rivers. Whole-genome sequencing will be performed to characterize CRPA isolates and determine the genetic relatedness among the isolates from different reservoirs. Findings from the cross-sectional study, combined with expert elicitation using a Delphi method, will serve as the input for the surveillance strategy. Conclusions: The SAMPAN study will provide a broader understanding of the sources and transmission routes of CRPA. Therewith, the development of a globally applicable smart surveillance strategy will be made possible, delivering information that is needed to guide actions against the spread of CRPA.
Collapse
Affiliation(s)
- Anneloes van Veen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
| | - Selvi N. Shahab
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (Y.R.S.); (A.K.)
| | - Amber Rijfkogel
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
| | - Anne F. Voor in ’t holt
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
| | - Corné H. W. Klaassen
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
| | - Margreet C. Vos
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
| | - Yulia Rosa Saharman
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (Y.R.S.); (A.K.)
| | - Anis Karuniawati
- Department of Clinical Microbiology, Faculty of Medicine, Universitas Indonesia, Dr. Cipto Mangunkusumo General Hospital, Jakarta 10430, Indonesia; (Y.R.S.); (A.K.)
| | - Silvia Zelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (S.Z.); (D.D.L.); (G.M.); (G.D.A.); (M.S.)
| | - Desy De Lorenzis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (S.Z.); (D.D.L.); (G.M.); (G.D.A.); (M.S.)
| | - Giulia Menchinelli
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (S.Z.); (D.D.L.); (G.M.); (G.D.A.); (M.S.)
| | - Giulia De Angelis
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (S.Z.); (D.D.L.); (G.M.); (G.D.A.); (M.S.)
| | - Maurizio Sanguinetti
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, 00168 Roma, Italy; (S.Z.); (D.D.L.); (G.M.); (G.D.A.); (M.S.)
| | - Merel Kemper
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (H.S.)
| | | | - Sima Mohammadi
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Valentine Renaud
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Irena Kukavica-Ibrulj
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Marianne Potvin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Guillaume Q. Nguyen
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Jeff Gauthier
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Roger C. Levesque
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Quebec City, QC G1V 0A6, Canada; (S.M.); (V.R.); (I.K.-I.); (M.P.); (G.Q.N.); (J.G.); (R.C.L.)
| | - Heike Schmitt
- Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), 3720 BA Bilthoven, The Netherlands (H.S.)
- Department of Biotechnology, Technical University Delft, 2628 CD Delft, The Netherlands
| | - Juliëtte A. Severin
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC University Medical Center, 3015 GD Rotterdam, The Netherlands; (A.v.V.); (S.N.S.); (A.R.); (A.F.V.i.’t.h.); (C.H.W.K.); (M.C.V.)
| |
Collapse
|
4
|
Zhao Y, Zhu S, Dong Y, Xie T, Chai Z, Gao X, Dai Y, Wang X. The Role of Gut Microbiome in Irritable Bowel Syndrome: Implications for Clinical Therapeutics. Biomolecules 2024; 14:1643. [PMID: 39766350 PMCID: PMC11674646 DOI: 10.3390/biom14121643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/12/2024] [Accepted: 12/19/2024] [Indexed: 01/11/2025] Open
Abstract
Irritable bowel syndrome (IBS) is a functional gastrointestinal disorder (FGID) characterized by chronic or recurrent gastrointestinal symptoms without organic changes, and it is also a common disorder of gut-brain interaction (DGBIs).. The symptoms of IBS not only affect the quality of life for individual patients but also place a significant burden on global healthcare systems. The lack of established and universally applicable biomarkers for IBS, along with the substantial variability in symptoms and progression, presents challenges in developing effective clinical treatments. In recent years, preclinical and clinical studies have linked the pathogenesis of IBS to alterations in the composition and function of the intestinal microbiota. Within the complex microbial community of the gut, intricate metabolic and spatial interactions occur among its members and between microbes and their hosts. Amid the multifaceted pathophysiology of IBS, the role of intestinal microenvironment factors in symptom development has become more apparent. This review aims to delve into the changes in the composition and structure of the gut microbiome in individuals with IBS. It explores how diet-mediated alterations in intestinal microbes and their byproducts play a role in regulating the pathogenesis of IBS by influencing the "brain-gut" axis, intestinal barrier function, immune responses, and more. By doing so, this review seeks to lay a theoretical foundation for advancing the development of clinical therapeutics for IBS.
Collapse
Affiliation(s)
- Yucui Zhao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shixiao Zhu
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yingling Dong
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tian Xie
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhiqiang Chai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiumei Gao
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
| | - Yongna Dai
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
| | - Xiaoying Wang
- Key Laboratory of Pharmacology of Traditional Chinese Medical Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China; (Y.Z.); (S.Z.); (Y.D.); (T.X.); (Z.C.); (X.G.)
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
- State Key Laboratory of Component-Based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
5
|
Bush JR, Alfa MJ. Consumption of resistant potato starch produces changes in gut microbiota that correlate with improvements in abnormal bowel symptoms: a secondary analysis of a clinical trial. BMC Nutr 2024; 10:152. [PMID: 39605008 PMCID: PMC11600726 DOI: 10.1186/s40795-024-00962-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND Studies have linked a lack of dietary fibre, including resistant starch (RS), to disease-associated changes in intestinal bacteria. Healthy people often report abnormal bowel symptoms (ABS), including bloating, constipation, abdominal pain, and diarrhea, however, connections between these symptoms and the gut microbiota are poorly understood. Determining correlations between ABS and taxonomic groups may provide predictive value for using prebiotics to mitigate ABS in combination with stool microbiome testing. METHODS Post hoc analysis of a three-arm randomized, double-blind, placebo-controlled clinical trial evaluating the effects of 3.5 g and 7 g resistant potato starch (RPS) doses or placebo was conducted. The study population (n = 70) were healthy adults aged 18-69 years old living in and around Guelph, ON. Participants evaluated their stools using the Bristol Stool Chart and also recorded any ABS daily. The presence of ABS was compared between treatment arms at baseline and changes in ABS were compared within treatment arms over 1- and 4-week periods. Pearson correlation analysis was used to identify significant relationships between changes in ABS and changes in bacterial taxa. RESULTS Abdominal pain, belching, bloating, constipation, diarrhea, gas, and feeling unwell were reported by participants at low levels at baseline. Neither RPS nor placebo had significant effects on mean ABS scores. However, we identified positive correlations between treatment-dependent changes in symptoms and changes in Granulicatella, Haemophilus, Lachnospira, Olsenella, Papillibacter, Turicibacter, unclassified Enterobacteriaceae, unclassified Fusobacteriaceae, unclassified Pasteurellaceae, and unclassified Gammaproteobacteria. We also identified negative correlations between treatment-dependent changes in symptoms and changes in Anaerotruncus, Dorea, RFN20, Victivallis, unclassified Coriobacteriaceae, and unclassified Oxalobacteraceae. These Pearson correlations were significant after correction for repeated testing. The mean relative abundance of these taxa did not change in response to treatment. Finally, macronutrient intake was unaffected by RPS or placebo treatments. CONCLUSION Changes in ABS can be positively or negatively correlated with changes in specific gut microbiota, creating opportunities for personalized microbiome-targeted interventions to resolve ABS. TRIAL REGISTRATION The trial was registered at ClinicalTrials.gov (NCT05242913) on February 16, 2022.
Collapse
|
6
|
Gao L, Zhang K, Wang Y, Qin C, Zhang Y, Liu Y, Liu C, Wan Y. Curcumin-mediated photodynamic disinfection strategy with specific spectral range for mucoid Pseudomonas Aeruginosa from hospital water. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 260:113035. [PMID: 39303620 DOI: 10.1016/j.jphotobiol.2024.113035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/22/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND Hospital water systems represent critical environments for the transmission of pathogens, including multidrug-resistant strains like mucoid Pseudomonas aeruginosa (M-PA). Conventional disinfection methods often struggle to eradicate these pathogens effectively, highlighting the need for innovative approaches. OBJECTIVE This study aimed to develop an enhanced photodynamic disinfection strategy targeting M-PA from hospital water systems, using curcumin-mediated photodynamic inactivation (PDI) with specific spectral range. METHODS An M-PA strain isolated from hospital water was subjected to photodynamic treatment using curcumin as the photosensitizer. The efficacy of different wavelengths of light and varying concentrations of curcumin, with and without Tris-EDTA adjuvants, was evaluated through bacterial enumeration, ROS level measurements, transcriptome analysis, and assessment of virulence factors and biofilm formation. In vivo experiments utilizing a DSS-induced colitis mouse model assessed the protective effects of the photodynamic treatment against M-PA infection. RESULTS Our findings demonstrated that the combination of curcumin-mediated PDI with specific spectral range effectively reduced M-PA counts in water, particularly when supplemented with Tris-EDTA. Transcriptome analysis revealed significant downregulation of virulence-related genes under sublethal photodynamic conditions. Furthermore, photodynamic treatment inhibited pyocyanin production and biofilm formation in M-PA, highlighting its potential to disrupt pathogenicity mechanisms. In vivo experiments showed that PDI attenuated M-PA-induced colitis in mice, indicating its protective efficacy. CONCLUSION This study presents a promising photodynamic disinfection strategy for combating M-PA from hospital water. By optimizing curcumin-mediated PDI with specific spectral range and adjuvants, our approach demonstrates substantial efficacy in reducing bacterial counts, inhibiting virulence factors, and preventing M-PA-associated colitis.
Collapse
Affiliation(s)
- Lei Gao
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Kun Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yan Wang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chuan Qin
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Yuejuan Zhang
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Ying Liu
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China
| | - Chengcheng Liu
- Department of Pathogenic Microbiology and Immunology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, 76 West Yanta Road, Xi'an 710061, PR China.
| | - Yi Wan
- Microbiology Institute of Shaanxi, No.76 Xiying Road, Xi'an 710043, PR China.
| |
Collapse
|
7
|
Kraimi N, Ross T, Pujo J, De Palma G. The gut microbiome in disorders of gut-brain interaction. Gut Microbes 2024; 16:2360233. [PMID: 38949979 PMCID: PMC11218806 DOI: 10.1080/19490976.2024.2360233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/21/2024] [Indexed: 07/03/2024] Open
Abstract
Functional gastrointestinal disorders (FGIDs), chronic disorders characterized by either abdominal pain, altered intestinal motility, or their combination, have a worldwide prevalence of more than 40% and impose a high socioeconomic burden with a significant decline in quality of life. Recently, FGIDs have been reclassified as disorders of gut-brain interaction (DGBI), reflecting the key role of the gut-brain bidirectional communication in these disorders and their impact on psychological comorbidities. Although, during the past decades, the field of DGBIs has advanced significantly, the molecular mechanisms underlying DGBIs pathogenesis and pathophysiology, and the role of the gut microbiome in these processes are not fully understood. This review aims to discuss the latest body of literature on the complex microbiota-gut-brain interactions and their implications in the pathogenesis of DGBIs. A better understanding of the existing communication pathways between the gut microbiome and the brain holds promise in developing effective therapeutic interventions for DGBIs.
Collapse
Affiliation(s)
- Narjis Kraimi
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Taylor Ross
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Julien Pujo
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Canada
| |
Collapse
|
8
|
Sisk-Hackworth L, Brown J, Sau L, Levine AA, Tam LYI, Ramesh A, Shah RS, Kelley-Thackray ET, Wang S, Nguyen A, Kelley ST, Thackray VG. Genetic hypogonadal mouse model reveals niche-specific influence of reproductive axis and sex on intestinal microbial communities. Biol Sex Differ 2023; 14:79. [PMID: 37932822 PMCID: PMC10626657 DOI: 10.1186/s13293-023-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 10/23/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND The gut microbiome has been linked to many diseases with sex bias including autoimmune, metabolic, neurological, and reproductive disorders. While numerous studies report sex differences in fecal microbial communities, the role of the reproductive axis in this differentiation is unclear and it is unknown how sex differentiation affects microbial diversity in specific regions of the small and large intestine. METHODS We used a genetic hypogonadal mouse model that does not produce sex steroids or go through puberty to investigate how sex and the reproductive axis impact bacterial diversity within the intestine. Using 16S rRNA gene sequencing, we analyzed alpha and beta diversity and taxonomic composition of fecal and intestinal communities from the lumen and mucosa of the duodenum, ileum, and cecum from adult female (n = 20) and male (n = 20) wild-type mice and female (n = 17) and male (n = 20) hypogonadal mice. RESULTS Both sex and reproductive axis inactivation altered bacterial composition in an intestinal section and niche-specific manner. Hypogonadism was significantly associated with bacteria from the Bacteroidaceae, Eggerthellaceae, Muribaculaceae, and Rikenellaceae families, which have genes for bile acid metabolism and mucin degradation. Microbial balances between males and females and between hypogonadal and wild-type mice were also intestinal section-specific. In addition, we identified 3 bacterial genera (Escherichia Shigella, Lachnoclostridium, and Eggerthellaceae genus) with higher abundance in wild-type female mice throughout the intestinal tract compared to both wild-type male and hypogonadal female mice, indicating that activation of the reproductive axis leads to female-specific differentiation of the gut microbiome. Our results also implicated factors independent of the reproductive axis (i.e., sex chromosomes) in shaping sex differences in intestinal communities. Additionally, our detailed profile of intestinal communities showed that fecal samples do not reflect bacterial diversity in the small intestine. CONCLUSIONS Our results indicate that sex differences in the gut microbiome are intestinal niche-specific and that sampling feces or the large intestine may miss significant sex effects in the small intestine. These results strongly support the need to consider both sex and reproductive status when studying the gut microbiome and while developing microbial-based therapies.
Collapse
Affiliation(s)
- Laura Sisk-Hackworth
- University of California San Diego, La Jolla, CA, USA
- San Diego State University, San Diego, CA, USA
| | - Jada Brown
- University of California San Diego, La Jolla, CA, USA
| | - Lillian Sau
- University of California San Diego, La Jolla, CA, USA
| | | | | | | | - Reeya S Shah
- University of California San Diego, La Jolla, CA, USA
| | | | - Sophia Wang
- University of California San Diego, La Jolla, CA, USA
| | - Anita Nguyen
- University of California San Diego, La Jolla, CA, USA
| | | | | |
Collapse
|
9
|
Widjaja F, Rietjens IMCM. From-Toilet-to-Freezer: A Review on Requirements for an Automatic Protocol to Collect and Store Human Fecal Samples for Research Purposes. Biomedicines 2023; 11:2658. [PMID: 37893032 PMCID: PMC10603957 DOI: 10.3390/biomedicines11102658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/22/2023] [Accepted: 09/24/2023] [Indexed: 10/29/2023] Open
Abstract
The composition, viability and metabolic functionality of intestinal microbiota play an important role in human health and disease. Studies on intestinal microbiota are often based on fecal samples, because these can be sampled in a non-invasive way, although procedures for sampling, processing and storage vary. This review presents factors to consider when developing an automated protocol for sampling, processing and storing fecal samples: donor inclusion criteria, urine-feces separation in smart toilets, homogenization, aliquoting, usage or type of buffer to dissolve and store fecal material, temperature and time for processing and storage and quality control. The lack of standardization and low-throughput of state-of-the-art fecal collection procedures promote a more automated protocol. Based on this review, an automated protocol is proposed. Fecal samples should be collected and immediately processed under anaerobic conditions at either room temperature (RT) for a maximum of 4 h or at 4 °C for no more than 24 h. Upon homogenization, preferably in the absence of added solvent to allow addition of a buffer of choice at a later stage, aliquots obtained should be stored at either -20 °C for up to a few months or -80 °C for a longer period-up to 2 years. Protocols for quality control should characterize microbial composition and viability as well as metabolic functionality.
Collapse
Affiliation(s)
- Frances Widjaja
- Division of Toxicology, Wageningen University & Research, 6708 WE Wageningen, The Netherlands;
| | | |
Collapse
|
10
|
Hou Y, Dong L, Lu X, Shi H, Xu B, Zhong W, Ma L, Wang S, Yang C, He X, Zhao Y, Wang S. Distinctions Between Fecal and Intestinal Mucosal Microbiota in Subgroups of Irritable Bowel Syndrome. Dig Dis Sci 2022; 67:5580-5592. [PMID: 35879512 DOI: 10.1007/s10620-022-07588-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 04/14/2022] [Indexed: 01/05/2023]
Abstract
BACKGROUND AND AIMS Recent studies have shown that changes in the intestinal microbiota contribute to the pathogenesis of irritable bowel syndrome (IBS). This study aimed to investigate the characteristics of the fecal and intestinal mucosal microbiota in IBS patients, and the correlation between microbiota and clinical manifestations. METHODS Fecal and intestinal mucosal samples were collected from 14 constipation-predominant IBS (IBS-C) patients, 20 diarrhea-predominant IBS (IBS-D) patients, and 20 healthy controls (HCs). 16S rRNA gene sequencing and fluorescence in situ hybridization were used for the analysis of samples. RESULTS Community richness and diversity of the fecal microbiota in IBS patients were significantly reduced compared with the HCs. The mucosal samples in IBS patients showed decreased Bifidobacterium and increased Bacteroides caccae compared with HCs; Eubacterium and Roseburia were decreased in IBS-C patients and increased in IBS-D patients. A comparison of the fecal and mucosal microbiota in IBS patients showed significantly increased Bifidobacterium in fecal samples and a decrease in mucosal samples in IBS-C patients; Bacteroides caccae and Roseburia were significantly reduced in fecal samples and increased in mucosal samples of IBS patients. A correlation between microbiota and clinical manifestations in IBS patients showed that Bacteroides caccae and Roseburia in fecal samples and Bifidobacterium and Eubacterium in mucosal samples were associated with abdominal pain and distention. CONCLUSIONS Distinct differences exist between the fecal and intestinal mucosal microbiota in IBS patients, with the changes in the latter appearing more consistent with the pathophysiology of IBS. Changes in intestinal microbiota were associated with the clinical manifestations in IBS.
Collapse
Affiliation(s)
- Yangfan Hou
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China.,Pulmonary and Critical Care Medicine, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Lei Dong
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Xiaolan Lu
- Department of Gastroenterology, Shanghai Pudong Hospital, Shanghai, 201399, China
| | - Haitao Shi
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Bing Xu
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Wenting Zhong
- International Medical Ward, Xi'an Jiaotong University Medical College First Affiliated Hospital, Xi'an, 710061, China
| | - Lin Ma
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Shuhui Wang
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Caifeng Yang
- Departments of Gastroenterology, Xi'an City First Hospital, Xi'an, 710002, China
| | - Xinyi He
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Yidi Zhao
- Emergency Department, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China
| | - Shenhao Wang
- Department of Gastroenterology, Xi'an Jiaotong University Second Affiliated Hospital, Xi'an, 710004, China.
| |
Collapse
|
11
|
Iribarren C, Nordlander S, Sundin J, Isaksson S, Savolainen O, Törnblom H, Magnusson MK, Simrén M, Öhman L. Fecal luminal factors from patients with irritable bowel syndrome induce distinct gene expression of colonoids. Neurogastroenterol Motil 2022; 34:e14390. [PMID: 35485994 PMCID: PMC9786662 DOI: 10.1111/nmo.14390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/24/2022] [Accepted: 04/11/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Alteration of the host-microbiota cross talk at the intestinal barrier may participate in the pathophysiology of irritable bowel syndrome (IBS). Therefore, we aimed to determine effects of fecal luminal factors from IBS patients on the colonic epithelium using colonoids. METHODS Colon-derived organoid monolayers, colonoids, generated from a healthy subject, underwent stimulation with fecal supernatants from healthy subjects and IBS patients with predominant diarrhea, phosphate-buffered saline (PBS), or lipopolysaccharide (LPS). Cytokines in cell cultures and fecal LPS were measured by ELISA and mRNA gene expression of monolayers was analyzed using Qiagen RT2 Profiler PCR Arrays. The fecal microbiota profile was determined by the GA-map™ dysbiosis test and the fecal metabolite profile was analyzed by untargeted liquid chromatography/mass spectrometry. KEY RESULTS Colonoid monolayers stimulated with fecal supernatants from healthy subjects (n = 7), PBS (n = 4) or LPS (n = 3) presented distinct gene expression profiles, with some overlap (R2 Y = 0.70, Q2 = 0.43). Addition of fecal supernatants from healthy subjects and IBS patients (n = 9) gave rise to different gene expression profiles of the colonoid monolayers (R2 Y = 0.79, Q2 = 0.64). Genes (n = 22) related to immune response (CD1D, TLR5) and barrier integrity (CLDN15, DSC2) contributed to the separation. Levels of proinflammatory cytokines in colonoid monolayer cultures were comparable when stimulated with fecal supernatants from either donor types. Fecal microbiota and metabolite profiles, but not LPS content, differed between the study groups. CONCLUSIONS Fecal luminal factors from IBS patients induce a distinct colonic epithelial gene expression, potentially reflecting the disease pathophysiology. The culture of colonoids from healthy subjects with fecal supernatants from IBS patients may facilitate the exploration of IBS related intestinal micro-environmental and barrier interactions.
Collapse
Affiliation(s)
- Cristina Iribarren
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Sofia Nordlander
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johanna Sundin
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Stefan Isaksson
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Otto Savolainen
- Chalmers Mass Spectrometry InfrastructureDepartment of Biology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Hans Törnblom
- Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Maria K. Magnusson
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Magnus Simrén
- Department of Molecular and Clinical MedicineInstitute of MedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden,Center for Functional GI and Motility DisordersUniversity of North CarolinaChapel HillNorth CarolinaUSA
| | - Lena Öhman
- Department of Microbiology and ImmunologyInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| |
Collapse
|
12
|
Martak D, Gbaguidi-Haore H, Meunier A, Valot B, Conzelmann N, Eib M, Autenrieth IB, Slekovec C, Tacconelli E, Bertrand X, Peter S, Hocquet D, Guther J. High prevalence of Pseudomonas aeruginosa carriage in residents of French and German long-term care facilities. Clin Microbiol Infect 2022; 28:1353-1358. [PMID: 35597505 DOI: 10.1016/j.cmi.2022.05.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/22/2022] [Accepted: 05/03/2022] [Indexed: 11/03/2022]
Abstract
OBJECTIVES To determine prevalence, incidence, and factors associated with Pseudomonas aeruginosa (PA) intestinal carriage in residents of long-term care facilities (LTCFs) and to understand the population structure of this pathogen in LTCFs from two European countries. METHODS We assessed the prevalence of PA intestinal carriage and the incidence of acquisition by collecting fecal samples from 403 residents of 20 LTCFs. We collected 289 environmental samples from sinks and drinking water. Factors associated with carriage and acquisition of intestinal PA were identified. All PA isolates had their antibiotic phenotypic resistance profile determined and their genome sequenced, from which we assessed the population structure of the collection and identified resistance determinants. RESULTS We found a high proportion of residents with PA intestinal carriage (51.6%) over the entire study period. Over the follow-up period, 28.6% of the residents acquired intestinal PA. Older age (Odds ratio [OR] = 1.29, 95% confidence interval [CI]: 1.09-1.52; p = 0.002), urinary incontinence (OR = 2.56, 95% CI: 1.37-4.88; p = 0.003), and male gender (OR = 2.55), 95% CI: 1.05-6.18; p = 0.039) were associated with higher probability of carriage. Wheelchair usage (OR = 4.56, 95% CI: 1.38-15.05; p = 0.013) and a body mass index >25 (OR = 3.71, 95% CI: 1.17-11.82; p = 0.026) were associated with higher risk of PA acquisition. Population structure of our isolates was mainly non-clonal with 112 different STs among the 241 isolates. Most represented STs were high risk clones ST253 (n=26), ST17 (n=11), ST244 (n=11), ST309 (n=10), and ST395 (n=10). Most PA isolates (86.3%) were susceptible to antibiotics, with no acquired genes conferring resistance to antipseudomonal agents. CONCLUSIONS We found an unexpected high prevalence of PA intestinal carriage in LTCF residents mainly associated with individual-level factors. Our study revealed a polyclonal PA population structure suggesting that individual acquisition is more frequent than resident-to-resident transmission.
Collapse
Affiliation(s)
- Daniel Martak
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France.
| | - Houssein Gbaguidi-Haore
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Alexandre Meunier
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Benoit Valot
- UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Nadine Conzelmann
- Infectious Diseases, Dept. of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Michael Eib
- Institute of Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Ingo B Autenrieth
- University Hospital Heidelberg, Im Neuenheimer Feld 672, 69120 Heidelberg, Germany
| | - Céline Slekovec
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Evelina Tacconelli
- Infectious Diseases, Department of Diagnostics and Public Health, University of Verona, Italy
| | - Xavier Bertrand
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France
| | - Silke Peter
- Institute of Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| | - Didier Hocquet
- Service d'Hygiène Hospitalière, Centre Hospitalier Universitaire, Besançon, France; UMR 6249 Chrono-environnement, CNRS, Université de Bourgogne Franche-Comté, Besançon, France; Centre de Ressources Biologiques - Filière Microbiologique de Besançon, Centre Hospitalier Universitaire, Besançon, France
| | - Julia Guther
- Institute of Medical Microbiology and Hygiene, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
13
|
Effect of Exclusion Diets on Symptom Severity and the Gut Microbiota in Patients With Irritable Bowel Syndrome. Clin Gastroenterol Hepatol 2022; 20:e465-e483. [PMID: 34022450 PMCID: PMC9054035 DOI: 10.1016/j.cgh.2021.05.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 05/12/2021] [Accepted: 05/17/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Altered fecal microbiota have been reported in irritable bowel syndrome (IBS), although studies vary, which could be owing to dietary effects. Many IBS patients may eliminate certain foods because of their symptoms, which in turn may alter fecal microbiota diversity and composition. This study aimed to determine if dietary patterns were associated with IBS, symptoms, and fecal microbiota differences reported in IBS. METHODS A total of 346 IBS participants and 170 healthy controls (HCs) completed a Diet Checklist reflecting the diet(s) consumed most frequently. An exclusion diet was defined as a diet that eliminated food components by choice. Within this group, a gluten-free, dairy-free, or low fermentable oligosaccharides, disaccharides, monosaccharides, and polyols diet was further defined as restrictive because they often are implicated in reducing symptoms. Stool samples were obtained from 171 IBS patients and 98 HCs for 16S ribosomal RNA gene sequencing and microbial composition analysis. RESULTS Having IBS symptoms was associated with consuming a restrictive diet (27.17% of IBS patients vs 7.65% of HCs; odds ratio, 3.25; 95% CI, 1.66-6.75; P value = .006). IBS participants on an exclusion or restrictive diet reported more severe IBS symptoms (P = .042 and .029, respectively). The composition of the microbiota in IBS patients varied depending on the diet consumed. IBS participants on an exclusion diet had a greater abundance of Lachnospira and a lower abundance of Eubacterium (q value, <.05), and those on a restrictive diet had a lower abundance of Lactobacillus (q value, <.05). CONCLUSIONS Restrictive diets likely are consumed more by IBS patients than HCs to reduce GI symptom severity. Dietary patterns influence the composition of the fecal microbiota and may explain some of the differences between IBS and HCs.
Collapse
|
14
|
El-Hakim Y, Bake S, Mani KK, Sohrabji F. Impact of intestinal disorders on central and peripheral nervous system diseases. Neurobiol Dis 2022; 165:105627. [PMID: 35032636 DOI: 10.1016/j.nbd.2022.105627] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/03/2022] [Accepted: 01/09/2022] [Indexed: 12/16/2022] Open
Abstract
Brain injuries and neurological diseases have a significant impact on the gut microbiome and the gut barrier. Reciprocally, gut disorders, such as Inflammatory Bowel Syndromes (IBS), can affect the development and pathology of neurodegenerative and neuropsychiatric diseases, although this aspect is less well studied and is the focus of this review. Inflammatory Bowel Syndrome (IBS) is a chronic and debilitating functional gastrointestinal disorder afflicting an estimated 9-23% of the world's population. A hallmark of this disease is leaky gut, a pathology in which the integrity of the gut blood barrier is compromised, causing gut contents such as immune cells and microbiota to enter the bloodstream leading to low-grade systemic inflammation. The increased levels of inflammation associated cytokines in circulation has the potential to affect all organs, including the brain. Although the brain is protected by the blood brain barrier, inflammation associated cytokines can damage the junctions in this barrier and allow brain infiltration of peripheral immune cells. Central inflammation in the brain is associated with various neurodegenerative disease such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, and neuropsychiatric disorders, namely, depression, and anxiety. Neurodegenerative diseases are of particular concern due to the anticipated rise in the population of the elderly and consequently, the prevalence of these diseases. Additionally, depression and anxiety are the most common mental illnesses affecting roughly 18% of the American population. In this review, we will explore the mechanisms by which IBS can influence the risk and severity of neurological disease.
Collapse
Affiliation(s)
- Yumna El-Hakim
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Shameena Bake
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Kathiresh Kumar Mani
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA
| | - Farida Sohrabji
- Women's Health in Neuroscience Program, Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University-Health Science Center, Bryan, TX, USA.
| |
Collapse
|
15
|
Zhang ZX, Xiang H, Sun GG, Yang YH, Chen C, Li T. Effect of dietary selenium intake on gut microbiota in older population in Enshi region. Genes Environ 2021; 43:56. [PMID: 34903302 PMCID: PMC8667455 DOI: 10.1186/s41021-021-00220-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022] Open
Abstract
Background The microbial ecosystem in the human gut varies between individuals with differences in diet. Selenium is one of most common trace elements in everyday diet, and selenium intake affects the human gut microbiota. We studied the effect of selenium intake on the gut microbiota in regions of Enshi with different distributions of selenium. Methods One hundred elderly subjects (>65 years) were recruited from high-selenium and low-selenium areas in Enshi and blood, nail, and fecal specimens were obtained. The selenium contents in these samples were determined in triplicate by hydride generation atomic fluorescence spectrometry. DNA was extracted from fecal specimens and the microbial diversity was analyzed by 16 S RNA. Results The selenium contents in the blood and nails were significantly different between the high- and low-selenium areas, and the composition of the intestinal microbiota, including abundance and extent of intestinal flora, was altered. The function and metabolic pathways of the gut microbiota showed clear differences. Conclusions As a trace element in human diet, selenium intake is an important factor that affects the intestinal microbiota and is likely involved in many human diseases. This study provides new clues and ideas for studying the correlation between selenium and human health.
Collapse
Affiliation(s)
- Zi-Xiong Zhang
- Institute of Selenium and Human Health of Hubei, Hubei Province, Enshi City, China.,Central Hospital of Enshi Autonomous Prefecture, Enshi Autonomous Prefecture, Hubei Province, Enshi City, China
| | - Hua Xiang
- Central Hospital of Enshi Autonomous Prefecture, Enshi Autonomous Prefecture, Hubei Province, Enshi City, China
| | - Guo-Gen Sun
- Institute of Selenium and Human Health of Hubei, Hubei Province, Enshi City, China.,Central Hospital of Enshi Autonomous Prefecture, Enshi Autonomous Prefecture, Hubei Province, Enshi City, China
| | - Yan-Hua Yang
- Institute of Selenium and Human Health of Hubei, Hubei Province, Enshi City, China.,Central Hospital of Enshi Autonomous Prefecture, Enshi Autonomous Prefecture, Hubei Province, Enshi City, China
| | - Chen Chen
- Research Institute of Otolaryngology Head and Neck Surgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Tuo Li
- Institute of Selenium and Human Health of Hubei, Hubei Province, Enshi City, China. .,Central Hospital of Enshi Autonomous Prefecture, Enshi Autonomous Prefecture, Hubei Province, Enshi City, China.
| |
Collapse
|
16
|
Wu T, Gagnon A, McGourty K, DosSantos R, Chanetsa L, Zhang B, Bello D, Kelleher SL. Zinc Exposure Promotes Commensal-to-Pathogen Transition in Pseudomonas aeruginosa Leading to Mucosal Inflammation and Illness in Mice. Int J Mol Sci 2021; 22:13321. [PMID: 34948118 PMCID: PMC8705841 DOI: 10.3390/ijms222413321] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/02/2021] [Accepted: 12/09/2021] [Indexed: 12/31/2022] Open
Abstract
The opportunistic pathogen Pseudomonas aeruginosa (P. aeruginosa) is associated gastrointestinal (GI) inflammation and illness; however, factors motivating commensal-to-pathogen transition are unclear. Excessive zinc intake from supplements is common in humans. Due to the fact that zinc exposure enhances P. aeruginosa colonization in vitro, we hypothesized zinc exposure broadly activates virulence mechanisms, leading to inflammation and illness. P. aeruginosa was treated with excess zinc and growth, expression and secretion of key virulence factors, and biofilm production were determined. Effects on invasion, barrier function, and cytotoxicity were evaluated in Caco-2 cells co-cultured with P. aeruginosa pre-treated with zinc. Effects on colonization, mucosal pathology, inflammation, and illness were evaluated in mice infected with P. aeruginosa pre-treated with zinc. We found the expression and secretion of key virulence factors involved in quorum sensing (QS), motility (type IV pili, flagella), biosurfactants (rhamnolipids), toxins (exotoxin A), zinc homeostasis (CzcR), and biofilm production, were all significantly increased. Zinc exposure significantly increased P. aeruginosa invasion, permeability and cytotoxicity in Caco-2 cells, and enhanced colonization, inflammation, mucosal damage, and illness in mice. Excess zinc exposure has broad effects on key virulence mechanisms promoting commensal-to-pathogen transition of P. aeruginosa and illness in mice, suggesting excess zinc intake may have adverse effects on GI health in humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shannon L. Kelleher
- Department of Biomedical and Nutritional Sciences, Zuckerberg College of Health Sciences, University of Massachusetts Lowell, 883 Broadway Street, Dugan Hall 110R, Lowell, MA 01852, USA; (T.W.); (A.G.); (K.M.); (R.D.); (L.C.); (B.Z.); (D.B.)
| |
Collapse
|
17
|
Abstract
Gut microbiota plays a vital role in human health. The number of microorganisms inhabiting the gastrointestinal (GI) tract has been estimated to exceed 1013. The dominant genera in the human intestine are Firmicutes (more than 180 species of Lactobacillus), Actinobacteria (among others the Bifidobacteriae), Bacteroidetes (the most important is B. fragilis) and Proteobacteria (E. coli, Salmonella, Yersinia, Shigella, Vibrio, Haemophilus, etc.), but the composition of the flora varies individually, as well as in relation to factors such as host genetics, stress, diet, antibiotics and early childhood experiences. Irritable bowel syndrome (IBS) is one of the most common functional gastrointestinal disorders (FGIDs), which has now been renamed disorders of gut-brain interaction, which affect a large number of people worldwide. It is characterized by abdominal pain and altered bowel habits in the absence of obvious anatomic or physiologic abnormalities. It poses a negative economic impact to the global health care system in addition to reducing the quality of life in patients. The pathophysiology of IBS is not fully understood. In IBS subjects gut microbiota relative to healthy controls was observed with an increase in Enterobacteriaceae, Ruminococcus, Clostridium, Dorea species and a decrease of Lactobacillus, Bifidobacterium, and Faecalibacterium species. IBS with diarrhea predominance (IBS-D) IBS with mixed bowel habits (IBS-M) share similarities in the microbial profile. Recent studies suggest that perturbations within "brain-gut-microbiota" axis may lead to IBS development. The aim of this review was to highlight the potential role of gut microbiota on pathophysiological mechanisms underlying IBS.
Collapse
Affiliation(s)
- Cristina M Sabo
- Second Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania -
| | - Dan L Dumitrascu
- Second Department of Internal Medicine, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
18
|
Abstract
Advances in bioinformatics have facilitated investigation of the role of gut microbiota in patients with irritable bowel syndrome (IBS). This article describes the evidence from epidemiologic and clinical observational studies highlighting the link between IBS and gut microbiome by investigating postinfection IBS, small intestinal bacterial overgrowth, and microbial dysbiosis. It highlights the effects of gut microbiota on mechanisms implicated in the pathophysiology of IBS, including gut-brain axis, visceral hypersensitivity, motility, epithelial barrier, and immune activation. In addition, it summarizes the current evidence on microbiome-guided therapies in IBS, including probiotics, antibiotics, diet, and fecal microbiota transplant.
Collapse
Affiliation(s)
- Prashant Singh
- Division of Gastroenterology and Hepatology, University of Michigan, MSBR1, Room 6520 B, 1150 West Medical Center Drive, Ann Arbor, MI 48109, USA.
| | - Anthony Lembo
- Division of Gastroenterology and Hepatology, Beth Israel Deaconess Medical Center, Rabb/Rose 1, 330 Brookline Avenue, Boston, MA 02215, USA
| |
Collapse
|
19
|
The Intestinal Biofilm of Pseudomonas aeruginosa and Staphylococcus aureus Is Inhibited by Antimicrobial Peptides HBD-2 and HBD-3. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11146595] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Background: The intestinal microbiota is a very active microbial community interacting with the host in maintaining homeostasis; it acts in cooperation with intestinal epithelial cells, which protect the host from the external environment by producing a diverse arsenal of antimicrobial peptides (AMPs), including β-defensins-2 and 3 (HBD-2 and HBD-3), considered among the most studied in this category. However, there are some circumstances in which an alteration of this eubiotic state occurs, with the triggering of dysbiosis. In this condition, the microbiota loses its protective power, leading to the onset of opportunistic infections. In this scenario, the emergence of multi-drug resistant biofilms from Pseudomonas aeruginosa and Staphylococcus aureus is very frequent. Methods: We created a Caco-2 intestinal epithelial cell line stably transfected with the genes, encoding HBD-2 and HBD-3, in order to evaluate their ability to inhibit the intestinal biofilm formation of P. aeruginosa and S. aureus. Results: Both HBD-2 and HBD-3 showed anti-biofilm activity against P. aeruginosa and S. aureus. Conclusions: The exploitation of endogenous antimicrobial peptides as a new anti-biofilm therapy, in isolation or in combination with conventional antibiotics, can be an interesting prospect in the treatment of chronic and multi-drug resistant infections.
Collapse
|
20
|
Abade Dos Santos FA, Portela SJ, Nogueira T, Carvalho CL, de Sousa R, Duarte MD. Harmless or Threatening? Interpreting the Results of Molecular Diagnosis in the Context of Virus-Host Relationships. Front Microbiol 2021; 12:647730. [PMID: 34093464 PMCID: PMC8175621 DOI: 10.3389/fmicb.2021.647730] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/27/2021] [Indexed: 01/15/2023] Open
Abstract
Molecular methods, established in the 1980s, expanded and delivered tools for the detection of vestigial quantities of nucleic acids in biological samples. Nucleotide sequencing of these molecules reveals the identity of the organism it belongs to. However, the implications of such detection are often misinterpreted as pathogenic, even in the absence of corroborating clinical evidence. This is particularly significant in the field of virology where the concepts of commensalism, and other benign or neutral relationships, are still very new. In this manuscript, we review some fundamental microbiological concepts including commensalism, mutualism, pathogenicity, and infection, giving special emphasis to their application in virology, in order to clarify the difference between detection and infection. We also propose a system for the correct attribution of terminology in this context.
Collapse
Affiliation(s)
- Fábio A Abade Dos Santos
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal.,Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| | - Sara J Portela
- Harrogate District Hospital NHS Foundation Trust, Harrogate, United Kingdom
| | - Teresa Nogueira
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal.,Centre for Ecology, Evolution and Environmental Changes (cE3c), Faculdade de Ciências da Universidade de Lisboa, Lisbon, Portugal
| | - Carina L Carvalho
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal
| | - Rita de Sousa
- National Institute of Health Doutor Ricardo Jorge (INSA), Lisbon, Portugal
| | - Margarida D Duarte
- National Institute for Agrarian and Veterinary Research, Oeiras, Portugal.,Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, Lisbon, Portugal
| |
Collapse
|
21
|
Motta JP, Wallace JL, Buret AG, Deraison C, Vergnolle N. Gastrointestinal biofilms in health and disease. Nat Rev Gastroenterol Hepatol 2021; 18:314-334. [PMID: 33510461 DOI: 10.1038/s41575-020-00397-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2020] [Indexed: 01/30/2023]
Abstract
Microorganisms colonize various ecological niches in the human habitat, as they do in nature. Predominant forms of multicellular communities called biofilms colonize human tissue surfaces. The gastrointestinal tract is home to a profusion of microorganisms with intertwined, but not identical, lifestyles: as isolated planktonic cells, as biofilms and in biofilm-dispersed form. It is therefore of major importance in understanding homeostatic and altered host-microorganism interactions to consider not only the planktonic lifestyle, but also biofilms and biofilm-dispersed forms. In this Review, we discuss the natural organization of microorganisms at gastrointestinal surfaces, stratification of microbiota taxonomy, biogeographical localization and trans-kingdom interactions occurring within the biofilm habitat. We also discuss existing models used to study biofilms. We assess the contribution of the host-mucosa biofilm relationship to gut homeostasis and to diseases. In addition, we describe how host factors can shape the organization, structure and composition of mucosal biofilms, and how biofilms themselves are implicated in a variety of homeostatic and pathological processes in the gut. Future studies characterizing biofilm nature, physical properties, composition and intrinsic communication could shed new light on gut physiology and lead to potential novel therapeutic options for gastrointestinal diseases.
Collapse
Affiliation(s)
- Jean-Paul Motta
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France.
| | - John L Wallace
- Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Antibe Therapeutics Inc., Toronto, ON, Canada
| | - André G Buret
- Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Céline Deraison
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France
| | - Nathalie Vergnolle
- Institute of Digestive Health Research, IRSD, INSERM U1220, Toulouse, France. .,Department of Physiology & Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
22
|
Lee C, Klockgether J, Fischer S, Trcek J, Tümmler B, Römling U. Why? - Successful Pseudomonas aeruginosa clones with a focus on clone C. FEMS Microbiol Rev 2021; 44:740-762. [PMID: 32990729 PMCID: PMC7685784 DOI: 10.1093/femsre/fuaa029] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 07/12/2020] [Indexed: 12/20/2022] Open
Abstract
The environmental species Pseudomonas aeruginosa thrives in a variety of habitats. Within the epidemic population structure of P. aeruginosa, occassionally highly successful clones that are equally capable to succeed in the environment and the human host arise. Framed by a highly conserved core genome, individual members of successful clones are characterized by a high variability in their accessory genome. The abundance of successful clones might be funded in specific features of the core genome or, although not mutually exclusive, in the variability of the accessory genome. In clone C, one of the most predominant clones, the plasmid pKLC102 and the PACGI-1 genomic island are two ubiquitous accessory genetic elements. The conserved transmissible locus of protein quality control (TLPQC) at the border of PACGI-1 is a unique horizontally transferred compository element, which codes predominantly for stress-related cargo gene products such as involved in protein homeostasis. As a hallmark, most TLPQC xenologues possess a core genome equivalent. With elevated temperature tolerance as a characteristic of clone C strains, the unique P. aeruginosa and clone C specific disaggregase ClpG is a major contributor to tolerance. As other successful clones, such as PA14, do not encode the TLPQC locus, ubiquitous denominators of success, if existing, need to be identified.
Collapse
Affiliation(s)
- Changhan Lee
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Jens Klockgether
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Sebastian Fischer
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Janja Trcek
- Faculty of Natural Sciences and Mathematics, Department of Biology, University of Maribor, Maribor, 2000, Slovenia
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Clinical Research Group 'Pseudomonas Genomics', Hannover Medical School, D-30625 Hannover, Germany
| | - Ute Römling
- Department of Microbiology, Tumor and Cell Biology, Biomedicum C8, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
23
|
Lingpeng P, Jingzhu S, Wei L, Enqi W, Yaqin L. Effect of water extracts from Cynanchum thesioides (Freyn) K. Schum. on visceral hypersensitivity and gut microbiota profile in maternally separated rats. JOURNAL OF ETHNOPHARMACOLOGY 2021; 264:113352. [PMID: 32891821 DOI: 10.1016/j.jep.2020.113352] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/28/2020] [Accepted: 08/29/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Irritable bowel syndrome (IBS) is a chronic, stress-related, functional gastrointestinal disorder characterized by abdominal discomfort and altered bowel habits; the manipulation of the microbiota is emerging as a promising therapeutic option for IBS. Cynanchum thesioides (CT) is an herb of traditional Mongolian medicine that has been employed in treating abdominal pain and diarrhea for hundreds of years. Phytochemical studies of this plant showed the presence of various flavonoids with antibacterial and anti-inflammatory activities. We hypothesized that Cynanchum thesioides manipulates the gut mycobiome and reverses visceral hypersensitivity in IBS rat model. PURPOSE OF THE STUDY The aims of this study were to prove the in vivo efficacy of Cynanchum thesioides on improving visceral hypersensitivity in IBS rat model and to examine its effect on gut bacterial communities, focusing on the potential interrelationships among microbiota and visceral hypersensitivity. MATERIALS AND METHODS We induced visceral hypersensitivity rat models by maternal separation (MS) of Sprague-Dawley rats, and administered CT water extracts to MS rats for 10 consecutive days. The abdominal withdrawal reflex score and threshold of colorectal distention were employed to assess visceral sensitivity. We then used the Illumina HiSeq platform to analyze bacterial 16S rRNA gene. RESULTS Treatment with CT improved visceral hypersensitivity in MS rats, and this was accompanied by alterations in the structure and composition of the gut microbiota. The extent of the stability of the gut microbiota was improved after treatment with CT. The genera Pseudomonas, Lachnospiracea_incertae_sedis, and Clostridium XlVa (which were more prevalent in MS rats) were significantly decreased, whereas the abundance of some genera were less prevalent in MS rats-for example, Clostridium IV, Elusimicrobium, Clostridium_sensu_stricto, and Acetatifactor were significantly enriched after treatment with CT. CONCLUSION Water-extracted CT was beneficial against visceral hypersensitivity in IBS and favorably affected the structure, composition, and functionality of gut microbiota. CT is therefore a promising agent in therapy of IBS.
Collapse
Affiliation(s)
- Pei Lingpeng
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Song Jingzhu
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Liu Wei
- College of Laboratory Medicine, Jilin Medical University, Jilin, 132013, China.
| | - Wu Enqi
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| | - Ling Yaqin
- Key Laboratory of Ethnomedicine (Minzu University of China), Ministry of Education, Beijing, 100081, China.
| |
Collapse
|
24
|
Shah A, Talley NJ, Koloski N, Macdonald GA, Kendall BJ, Shanahan ER, Walker MM, Keely S, Jones MP, Morrison M, Holtmann GJ. Duodenal bacterial load as determined by quantitative polymerase chain reaction in asymptomatic controls, functional gastrointestinal disorders and inflammatory bowel disease. Aliment Pharmacol Ther 2020; 52:155-167. [PMID: 32412673 DOI: 10.1111/apt.15786] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/12/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Small intestinal bacterial overgrowth may play a role in gastrointestinal and non-gastrointestinal diseases. AIMS To use quantitative polymerase chain reaction (qPCR) to determine and compare bacterial loads of duodenal biopsies in asymptomatic controls, and patients with functional gastrointestinal disorders (FGIDs) and inflammatory bowel disease (IBD) including ulcerative colitis (UC) and Crohn's disease (CD). To define effects of gastric acid inhibition on bacterial load, explore links of bacterial load and gastrointestinal symptoms in response to a standardised nutrient challenge and compare bacterial load with glucose breath test results. METHODS In 237 patients (63 controls, 84 FGID and 90 IBD), we collected mucosal samples under aseptic conditions during endoscopy extracted and total DNA. Bacterial load metric was calculated utilising qPCR measurements of the bacterial 16S rRNA gene, normalised to human beta-actin expression. Standard glucose breath test and nutrient challenge test were performed. RESULTS The duodenal microbial load was higher in patients with FGID (0.22 ± 0.03) than controls (0.07 ± 0.05; P = 0.007) and patients with UC (0.01 ± 0.05) or CD (0.02 ± 0.09), (P = 0.0001). While patients treated with proton pump inhibitors (PPI) had significantly higher bacterial loads than non-users (P < 0.05), this did not explain differences between patient groups and controls. Bacterial load was significantly (r = 0.21, P < 0.016) associated with the symptom response to standardised nutrient challenge test. Methane, but not hydrogen values on glucose breath test were associated with bacterial load measured utilising qPCR. CONCLUSIONS Utilising qPCR, a diagnosis of FGID and treatment with PPI were independently associated with increased bacterial loads. Increased bacterial loads are associated with an augmented symptom response to a standardised nutrient challenge.
Collapse
Affiliation(s)
- Ayesha Shah
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Nicholas J Talley
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Natasha Koloski
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Graeme A Macdonald
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Bradley J Kendall
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Erin R Shanahan
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| | - Marjorie M Walker
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Simon Keely
- Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, Australia
| | - Michael P Jones
- Psychology Department, Macquarie University, Ryde, NSW, Australia
| | - Mark Morrison
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Diamantina Institute, University of Queensland, Brisbane, Qld, Australia
| | - Gerald J Holtmann
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, Qld, Australia.,Faculty of Medicine and Faulty of Health and Behavioural Sciences, University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|
25
|
Yuan Z, Shu L, Peng XX, Tan ZJ. Influence of Tongxie formula on intestinal microorganisms. Shijie Huaren Xiaohua Zazhi 2020; 28:357-361. [DOI: 10.11569/wcjd.v28.i10.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Tongxie is a disease name in traditional Chinese medicine (TCM), with the symptoms of abdominal pain, diarrhea, and pain reduction after diarrhea caused by emotion changes. Tongxie formula is a classical TCM decoction to treat Tongxie. Studying the influence of Tongxie formula on intestinal microecology is of great practical significance for the expansion of basic theory and clinical treatment of Tongxie. This article reviews the relevant literature in recent years and explores the relationship between Tongxie and intestinal microecology and the influence of Tongxie recipe on intestinal microecology, with an aim to provide reference for elucidating the therapeutic mechanism of this classical formula.
Collapse
Affiliation(s)
- Zhen Yuan
- the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Lan Shu
- the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Xin-Xin Peng
- the First Affiliated Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, China
| | - Zhou-Jin Tan
- Hunan University of Chinese Medicine, Changsha 410208, Hunan Province, China
| |
Collapse
|
26
|
Li L, Zhu HM, Yan Q, Li SY, Li F. The antibacterial activity of Berberis heteropoda Schrenk and its effect on irritable bowel syndrome in rats. Chin J Nat Med 2020; 18:356-368. [PMID: 32451093 DOI: 10.1016/s1875-5364(20)30042-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Indexed: 02/07/2023]
Abstract
The dried roots of Berberis heteropoda Schrenk have traditionally been used to treat acute gastroenteritis and dysentery. The aim of this study was to confirm the antibacterial activity of an extract of Berberis heteropoda Schrenk rootin vitro and its therapeutic effects on rats with diarrhea-predominant irritable bowel syndrome (D-IBS) in vivo, as well as to identify the related signaling pathways. A water extract of Berberis heteropoda Schrenk root (BHS) inhibited the growth of S. aureus, E. coli, P. aeruginosa and S. faecalis. BHS potentially damaged the structure of the bacterial cell membrane and decreased the activity of some membranous enzymes, eventually killing the S. aureus, E. coli, P. aeruginosa and S. faecalis bacteria. Oral administration of BHS (low, middle and high dose group, L, M and H) significantly alleviated the abdominal pain, diarrhea, and depression-like symptoms of D-IBS rats, and the efficacy index ranged from 30% to 60%, indicating that the BHS treatment was effective. BHS (L, M and H) alleviated the abnormal pathological changes in the brain, as evidenced by HE staining. The expression of CHAT, 5-HT, C-FOS and CGRP was reduced by the BHS treatment (L, M and H). Our findings provide novel insights into the use of the natural product BHS to inhibit pathogenic bacteria by destroying the bacterial structure, indicating that BHS possesses certain biological activities. Furthermore, BHS has the potential to alleviate diarrhea, abdominal pain and depression-like behaviors in D-IBS rats by regulating the brain-gut peptide levels.
Collapse
Affiliation(s)
- Li Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China.
| | - Hui-Min Zhu
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Qi Yan
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Song-Ya Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China
| | - Fei Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830011, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
27
|
Huo W, Feng Z, Hu S, Cui L, Qiao T, Dai L, Qi P, Zhang L, Liu Y, Li J. Effects of polysaccharides from wild morels on immune response and gut microbiota composition in non-treated and cyclophosphamide-treated mice. Food Funct 2020; 11:4291-4303. [PMID: 32356856 DOI: 10.1039/d0fo00597e] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Polysaccharides isolated from mushrooms have been identified as potential prebiotics that could impact gut microbiota. In this study, a water-soluble polysaccharide (MP) extracted from wild morels was evaluated for its effects on the gut microbiota of non-treated and cyclophosphamide (CP)-treated mice. The results showed that MP restored the spleen weight and increased the counts of white blood cells and lymphocytes in the peripheral blood and spleen of the CP-treated mice. Mice treated with MP exhibited increased levels of short-chain fatty acid (SCFA)-producing bacteria, especially Lachnospiraceae, compared to normal mice, and increased levels of Bacteroidetes and SCFA-producing bacteria, especially Ruminococcaceae, compared to the CP-treated mice. Moreover, MP treatment increased the production of valeric acid and decreased the production of acetic acid in the non-treated mice and increased the production of acetic acid, propionic acid, butyric acid, and valeric acid in the CP-treated mice. These results show that MP is potentially good for health.
Collapse
Affiliation(s)
- Wenyan Huo
- Fungal Research Center, Shaanxi Provincial Institute of Microbiology, Xi'an 710043, Shaanxi, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Irritable bowel syndrome (IBS) is an extremely common and often very debilitating chronic functional gastrointestinal disorder. Despite its prevalence, significant associated healthcare costs, and quality-of-life issues for affected individuals, our understanding of its etiology remained limited. However, it is now evident that microbial factors play key roles in IBS pathophysiology. Acute gastroenteritis following exposure to pathogens can precipitate the development of IBS, and studies have demonstrated changes in the gut microbiome in IBS patients. These changes may explain some of the symptoms of IBS, including visceral hypersensitivity, as gut microbes exert effects on the host immune system and gut barrier function, as well as the brain-gut axis. Microbial differences also appear to underlie the two main functional categories of IBS: diarrhea-predominant IBS (IBS-D) is associated with small intestinal bacterial overgrowth, which can be diagnosed by a positive hydrogen breath test, and constipation-predominant IBS (IBS-C) is associated with increased levels of methanogenic archaea, which can be diagnosed by a positive methane breath test. Mechanistically, the pathogens that cause gastroenteritis and trigger subsequent IBS development produce a common toxin, cytolethal distending toxin B (CdtB), and antibodies raised against CdtB cross-react with the cytoskeletal protein vinculin and impair gut motility, facilitating bacterial overgrowth. In contrast, methane gas slows intestinal contractility, which may facilitate the development of constipation. While antibiotics and dietary manipulations have been used to relieve IBS symptoms, with varying success, elucidating the specific mechanisms by which gut microbes exert their effects on the host may allow the development of targeted treatments that may successfully treat the underlying causes of IBS.
Collapse
Affiliation(s)
- Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | - Anthony Lembo
- Division of Gastroenterology, Beth Israel Deaconess Hospital, Boston, MA, USA
| |
Collapse
|
29
|
Abstract
Small intestinal bacterial overgrowth is defined as the presence of excessive numbers of bacteria in the small bowel, causing gastrointestinal symptoms. This guideline statement evaluates criteria for diagnosis, defines the optimal methods for diagnostic testing, and summarizes treatment options for small intestinal bacterial overgrowth. This guideline provides an evidence-based evaluation of the literature through the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) process. In instances where the available evidence was not appropriate for a formal GRADE recommendation, key concepts were developed using expert consensus.
Collapse
|
30
|
Balmus IM, Ilie-Dumitru O, Ciobica A, Cojocariu RO, Stanciu C, Trifan A, Cimpeanu M, Cimpeanu C, Gorgan L. Irritable Bowel Syndrome between Molecular Approach and Clinical Expertise-Searching for Gap Fillers in the Oxidative Stress Way of Thinking. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:38. [PMID: 31963795 PMCID: PMC7023055 DOI: 10.3390/medicina56010038] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/15/2020] [Accepted: 01/15/2020] [Indexed: 02/05/2023]
Abstract
Irritable bowel syndrome (IBS) remains to date an intriguing functional gastrointestinal disorder. Recent studies described a multitude of exogenous factors that work together in IBS, gradually impairing intestinal lining cellular metabolism, including oxidative status balance, with or without a genetic background. Although the current biomarkers support the differentiation between IBS subtypes and other functional gastrointestinal disorder, they are mostly non-specific, referring to clinical, biochemical, and inflammatory imbalances. Since IBS could be also the result of deficient signaling pathways involving both gastrointestinal secretion and neuro-vegetative stimulation, IBS makes no exception from the oxidative hypothesis in the pathological mechanisms. Regarding the oxidative stress implication in IBS, the previous research efforts showed controversial results, with some animal models and patient studies reporting clear oxidative imbalance both on systemic and local levels, but still with no concrete evidence to point to a direct correlation between oxidative stress and IBS. Additionally, it seems that a major role could be also attributed to gut microbiota and their ability to shape our bodies and behaviors. Moreover, the genetic features study in IBS patients showed that several genetic similarities point to a possible correlation of IBS with affective spectrum disorders. Thus, we focus here the discussion on the assumption that IBS could in fact be more likely a stress-related disorder rather than a gastrointestinal one.
Collapse
Affiliation(s)
- Ioana-Miruna Balmus
- Department of Interdisciplinary Research in Science, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, No. 11, 700506 Iasi, Romania;
| | - Ovidiu Ilie-Dumitru
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Alin Ciobica
- Department of Research, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania
| | - Roxana-Oana Cojocariu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Carol Stanciu
- Center of Biomedical Research, Romanian Academy, 8th Carol I Avenue, 700506 Iasi, Romania;
| | - Anca Trifan
- Department of Gastroenterology, Faculty of Medicine, “Gr. T. Popa” University of Medicine and Pharmacy, 16th University Street, 700115 Iasi, Romania
| | - Mirela Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Cristian Cimpeanu
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| | - Lucian Gorgan
- Department of Biology, Faculty of Biology, Alexandru Ioan Cuza University of Iasi, Carol I Avenue, 20A, 700506 Iasi, Romania (C.C.)
| |
Collapse
|
31
|
Leite GGS, Weitsman S, Parodi G, Celly S, Sedighi R, Sanchez M, Morales W, Villanueva-Millan MJ, Barlow GM, Mathur R, Lo SK, Jamil LH, Paski S, Rezaie A, Pimentel M. Mapping the Segmental Microbiomes in the Human Small Bowel in Comparison with Stool: A REIMAGINE Study. Dig Dis Sci 2020; 65:2595-2604. [PMID: 32140945 PMCID: PMC7419378 DOI: 10.1007/s10620-020-06173-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/24/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Most gut microbiome studies have been performed using stool samples. However, the small intestine is of central importance to digestion, nutrient absorption, and immune function, and characterizing its microbial populations is essential for elucidating their roles in human health and disease. AIMS To characterize the microbial populations of different small intestinal segments and contrast these to the stool microbiome. METHODS Male and female subjects undergoing esophagogastroduodenoscopy without colon preparation were prospectively recruited. Luminal aspirates were obtained from the duodenum, jejunum, and farthest distance reached. A subset also provided stool samples. 16S rRNA sequencing was performed and analyses were carried out using CLC Genomics Workbench. RESULTS 16S rRNA sequencing identified differences in more than 2000 operational taxonomic units between the small intestinal and stool microbiomes. Firmicutes and Proteobacteria were the most abundant phyla in the small intestine, and Bacteroidetes were less abundant. In the small intestine, phylum Firmicutes was primarily represented by lactic acid bacteria, including families Streptococcaceae, Lactobacillaceae, and Carnobacteriaceae, and Proteobacteria was represented by families Neisseriaceae, Pasteurellaceae, and Enterobacteriaceae. The duodenal and FD microbial signatures were markedly different from each other, but there were overlaps between duodenal and jejunal and between jejunal and FD microbial signatures. In stool, Firmicutes were represented by families Ruminococcaceae, Lachnospiraceae, Christensenellaceae, and Proteobacteria by class Deltaproteobacteria. CONCLUSIONS The small bowel microbiome is markedly different from that in stool and also varies between segments. These findings may be important in determining how compositional changes in small intestinal microbiota contribute to human disease states.
Collapse
Affiliation(s)
- Gabriela G S Leite
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Stacy Weitsman
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Gonzalo Parodi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Shreya Celly
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Rashin Sedighi
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Maritza Sanchez
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Walter Morales
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Maria Jesus Villanueva-Millan
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Gillian M Barlow
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
| | - Ruchi Mathur
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
- Division of Endocrinology, Diabetes, and Metabolism, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Simon K Lo
- Pancreatic and Biliary Diseases Program, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Laith H Jamil
- Interventional Endoscopy Service, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Shirley Paski
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Ali Rezaie
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark Pimentel
- Medically Associated Science and Technology (MAST) Program, Cedars-Sinai Medical Center, 8730 Alden Drive, Suite 240E, Los Angeles, CA, 90048, USA.
- Division of Digestive and Liver Diseases, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
32
|
Robinson CM. Enteric viruses exploit the microbiota to promote infection. Curr Opin Virol 2019; 37:58-62. [PMID: 31284078 DOI: 10.1016/j.coviro.2019.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Revised: 06/03/2019] [Accepted: 06/04/2019] [Indexed: 12/12/2022]
Abstract
Enteric viruses infect the mammalian gastrointestinal tract which is home to a diverse community of intestinal bacteria. Accumulating evidence suggests that certain enteric viruses utilize these bacteria to promote infection. While this is not surprising considering their proximity, multiple viruses from different viral families have been shown to bind directly to bacteria or bacterial components to aid in viral replication, pathogenesis, and transmission. These data suggest that the concept of a single virus infecting a single cell, independent of the environment, needs to be reevaluated. In this review, I will discuss the current knowledge of enteric virus-bacterial interactions and discuss the implications for viral pathogenesis and transmission.
Collapse
Affiliation(s)
- Christopher M Robinson
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
33
|
Pittayanon R, Lau JT, Yuan Y, Leontiadis GI, Tse F, Surette M, Moayyedi P. Gut Microbiota in Patients With Irritable Bowel Syndrome-A Systematic Review. Gastroenterology 2019; 157:97-108. [PMID: 30940523 DOI: 10.1053/j.gastro.2019.03.049] [Citation(s) in RCA: 427] [Impact Index Per Article: 71.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/23/2019] [Accepted: 03/15/2019] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS Irritable bowel syndrome (IBS) is common but difficult to treat. Altering the gut microbiota has been proposed as a strategy for treatment of IBS, but the association between the gut microbiome and IBS symptoms has not been well established. We performed a systematic review to explore evidence for this association. METHODS We searched databases, including MEDLINE, EMBASE, Cochrane CDSR, and CENTRAL, through April 2, 2018 for case-control studies comparing the fecal or colon microbiomes of adult or pediatric patients with IBS with microbiomes of healthy individuals (controls). The primary outcome was differences in specific gut microbes between patients with IBS and controls. RESULTS The search identified 2631 citations; 24 studies from 22 articles were included. Most studies evaluated adults presenting with various IBS subtypes. Family Enterobacteriaceae (phylum Proteobacteria), family Lactobacillaceae, and genus Bacteroides were increased in patients with IBS compared with controls, whereas uncultured Clostridiales I, genus Faecalibacterium (including Faecalibacterium prausnitzii), and genus Bifidobacterium were decreased in patients with IBS. The diversity of the microbiota was either decreased or not different in IBS patients compared with controls. More than 40% of included studies did not state whether cases and controls were comparable (did not describe sex and/or age characteristics). CONCLUSIONS In a systematic review, we identified specific bacteria associated with microbiomes of patients with IBS vs controls. Studies are needed to determine whether these microbes are a product or cause of IBS.
Collapse
Affiliation(s)
- Rapat Pittayanon
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada; Division of Gastroenterology, Department of Medicine, Faculty of Medicine, Chulalongkorn University and King Chulalongkorn Memorial Hospital, The Thai Red Cross, Bangkok, Thailand
| | - Jennifer T Lau
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Yuhong Yuan
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Grigorios I Leontiadis
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Frances Tse
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Michael Surette
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada
| | - Paul Moayyedi
- Department of Medicine, Division of Gastroenterology and Farncombe Family Digestive Health Research Institute, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
34
|
Chong PP, Chin VK, Looi CY, Wong WF, Madhavan P, Yong VC. The Microbiome and Irritable Bowel Syndrome - A Review on the Pathophysiology, Current Research and Future Therapy. Front Microbiol 2019; 10:1136. [PMID: 31244784 PMCID: PMC6579922 DOI: 10.3389/fmicb.2019.01136] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Irritable bowel syndrome (IBS) is a functional disorder which affects a large proportion of the population globally. The precise etiology of IBS is still unknown, although consensus understanding proposes IBS to be of multifactorial origin with yet undefined subtypes. Genetic and epigenetic factors, stress-related nervous and endocrine systems, immune dysregulation and the brain-gut axis seem to be contributing factors that predispose individuals to IBS. In addition to food hypersensitivity, toxins and adverse life events, chronic infections and dysbiotic gut microbiota have been suggested to trigger IBS symptoms in tandem with the predisposing factors. This review will summarize the pathophysiology of IBS and the role of gut microbiota in relation to IBS. Current methodologies for microbiome studies in IBS such as genome sequencing, metagenomics, culturomics and animal models will be discussed. The myriad of therapy options such as immunoglobulins (immune-based therapy), probiotics and prebiotics, dietary modifications including FODMAP restriction diet and gluten-free diet, as well as fecal transplantation will be reviewed. Finally this review will highlight future directions in IBS therapy research, including identification of new molecular targets, application of 3-D gut model, gut-on-a-chip and personalized therapy.
Collapse
Affiliation(s)
- Pei Pei Chong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Voon Kin Chin
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Chung Yeng Looi
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Voon Chen Yong
- School of Biosciences, Taylor's University, Subang Jaya, Malaysia
| |
Collapse
|
35
|
Heimesaat MM, Escher U, Grunau A, Kühl AA, Bereswill S. Multidrug-Resistant Pseudomonas aeruginosa Accelerate Intestinal, Extra-Intestinal, and Systemic Inflammatory Responses in Human Microbiota-Associated Mice With Subacute Ileitis. Front Immunol 2019; 10:49. [PMID: 30761129 PMCID: PMC6361842 DOI: 10.3389/fimmu.2019.00049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 01/09/2019] [Indexed: 12/18/2022] Open
Abstract
The globally rising incidences of multidrug-resistant (MDR) Pseudomonas aeruginosa (Psae) in humans and live-stock animals has prompted the World Health Organization to rate MDR Psae as serious threat for human health. Only little is known, however, regarding factors facilitating gastrointestinal Psae-acquisition by the vertebrate host and subsequently induced inflammatory sequelae. In the present study, we addressed whether subacute ileitis predisposed mice harboring a human gut microbiota for intestinal MDR Psae carriage and whether inflammatory responses might be induced following peroral challenge with the opportunistic pathogen. To accomplish this, secondary abiotic mice were associated with a human gut microbiota by fecal microbiota transplantation. Ten days later (i.e., on day 0), subacute ileitis was induced in human microbiota associated (hma) mice by peroral low-dose Toxoplasma gondii infection. On day 5 post-infection, mice were perorally challenged with 109 colony forming units of a clinical MDR Psae isolate by gavage and the fecal bacterial loads surveyed thereafter. Four days post-peroral challenge, only approximately one third of mice with a human gut microbiota and subacute ileitis harbored the opportunistic pathogen in the intestinal tract. Notably, the gut microbiota composition was virtually unaffected by the Psae-carriage status during subacute ileitis of hma mice. The Psae challenge resulted, however, in more pronounced intestinal epithelial apoptotic cell and T lymphocyte responses upon ileitis induction that were not restricted to the ileum, but also affected the large intestines. Higher Psae-induced abundances of T cells could additionally be observed in extra-intestinal compartments including liver, kidney, lung, and heart of hma mice with subacute ileitis. Furthermore, higher apoptotic cell numbers, but lower anti-inflammatory IL-10 concentrations were assessed in the liver of Psae as compared to mock treated mice with ileitis. Remarkably, Psae-challenge was accompanied by even more pronounced systemic secretion of pro-inflammatory cytokines such as TNF and IL-6 at day 9 post ileitis induction. In conclusion, whereas in one third of hma mice with subacute ileitis Psae could be isolated from the intestines upon peroral challenge, the opportunistic pathogen was responsible for inflammatory sequelae in intestinal, extra-intestinal, and even systemic compartments and thus worsened subacute ileitis outcome irrespective of the Psae-carrier status.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Berlin Institute of Health, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Ulrike Escher
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Berlin Institute of Health, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anne Grunau
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Berlin Institute of Health, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology, Research Center ImmunoSciences (RCIS), Berlin Institute of Health, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Bereswill
- Gastrointestinal Microbiology Research Group, Institute of Microbiology, Infectious Diseases and Immunology, Berlin Institute of Health, Charité - University Medicine Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
36
|
Jacobs JP, Dong TS, Agopian V, Lagishetty V, Sundaram V, Noureddin M, Ayoub WS, Durazo F, Benhammou J, Enayati P, Elashoff D, Goodman MT, Pisegna J, Hussain S. Microbiome and bile acid profiles in duodenal aspirates from patients with liver cirrhosis: The Microbiome, Microbial Markers and Liver Disease Study. Hepatol Res 2018; 48:1108-1117. [PMID: 29923681 PMCID: PMC6334634 DOI: 10.1111/hepr.13207] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/18/2018] [Accepted: 06/09/2018] [Indexed: 12/19/2022]
Abstract
AIM Cirrhosis is a leading cause of death worldwide, yet there are no well-established risk stratifying tools for lethal complications, including hepatocellular carcinoma (HCC). Patients with liver cirrhosis undergo routine endoscopic surveillance, providing ready access to duodenal aspirate samples that could be a source for identifying novel biomarkers. The aim of this study was to characterize the microbiome and bile acid profiles in duodenal aspirates from patients with liver cirrhosis to assess the feasibility of developing biomarkers for HCC risk stratification. METHODS Thirty patients with liver cirrhosis were enrolled in the Microbiome, Microbial Markers, and Liver Disease study between May 2015 and March 2017. Detailed clinical and epidemiological data were collected at baseline and at 6-monthly follow-up visits. Duodenal aspirate fluid was collected at baseline for microbial characterization using 16S ribosomal RNA sequencing and bile acid quantification using mass spectroscopy. RESULTS Alcohol-related cirrhosis was associated with reductions in the Bacteroidetes phylum, particularly Prevotella (13-fold reduction), and expansion of Staphylococcus (13-fold increase), compared to hepatitis C virus-related cirrhosis. Participants with hepatic encephalopathy (HE) had less microbial diversity compared to patients without HE (P < 0.05), and were characterized by expansion of Mycobacterium (45-fold increase) and Gram-positive cocci including Granulicatella (3.1-fold increase), unclassified Planococcaceae (3.3-fold increase), and unclassified Streptococcaceae (4.5-fold increase). Non-Hispanic White patients had reduced microbial richness (P < 0.01) and diversity (P < 0.05), and increased levels of conjugated ursodeoxycholic acid (glycoursodeoxycholic acid and tauroursodeoxycholic acid, P < 0.05) compared to Hispanic patients. CONCLUSION Microbial profiles of duodenal aspirates differed by cirrhosis etiology, HE, and Hispanic ethnicity.
Collapse
Affiliation(s)
- Jonathan P. Jacobs
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine and Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- UCLA Microbiome CenterDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Tien S. Dong
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Vatche Agopian
- Departments of SurgeryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Venu Lagishetty
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Vinay Sundaram
- Division of Digestive and Liver Diseases, Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Mazen Noureddin
- Division of Digestive and Liver Diseases, Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Walid S. Ayoub
- Division of Digestive and Liver Diseases, Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Francisco Durazo
- The Vatche and Tamar Manoukian Division of Digestive Diseases, Department of MedicineDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
- Departments of SurgeryUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| | - Jihane Benhammou
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine and Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Pedram Enayati
- Division of Digestive and Liver Diseases, Department of MedicineCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - David Elashoff
- Department of Biostatistics, Fielding School of Public HealthUniversity of California , Los AngelesLos AngelesCaliforniaUSA
| | - Marc T. Goodman
- Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
| | - Joseph Pisegna
- Division of Gastroenterology, Hepatology and Parenteral Nutrition, VA Greater Los Angeles Healthcare System and Department of Medicine and Human GeneticsDavid Geffen School of Medicine at UCLALos AngelesCaliforniaUSA
| | - Shehnaz Hussain
- Samuel Oschin Comprehensive Cancer InstituteCedars‐Sinai Medical CenterLos AngelesCaliforniaUSA
- Department of Epidemiology, Fielding School of Public HealthUniversity of California, Los AngelesLos AngelesCaliforniaUSA
| |
Collapse
|
37
|
Shariati A, Fallah F, Pormohammad A, Taghipour A, Safari H, Chirani AS, Sabour S, Alizadeh-Sani M, Azimi T. The possible role of bacteria, viruses, and parasites in initiation and exacerbation of irritable bowel syndrome. J Cell Physiol 2018; 234:8550-8569. [PMID: 30480810 DOI: 10.1002/jcp.27828] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 11/06/2018] [Indexed: 12/11/2022]
Abstract
Irritable bowel syndrome (IBS) is a prolonged and disabling functional gastrointestinal disorder with the incidence rate of 18% in the world. IBS could seriously affect lifetime of patients and cause high economic burden on the community. The pathophysiology of the IBS is hardly understood, whereas several possible mechanisms, such as visceral hypersensitivity, irregular gut motility, abnormal brain-gut relations, and the role of infectious agents, are implicated in initiation and development of this syndrome. Different studies demonstrated an alteration in B-lymphocytes, mast cells (MC), T-lymphocytes, and cytokine concentrations in intestinal mucosa or systemic circulation that are likely to contribute to the formation of the IBS. Therefore, IBS could be developed in those with genetic predisposition. Infections' role in initiation and exacerbation of IBS has been investigated by quite several clinical studies; moreover, the possible role of some pathogens in development and exacerbation of this disease has been described. It appears that the main obligatory pathogens correspond with the IBS disease, Clostridium difficile, Escherichia coli, Mycobacterium avium subspecies paratuberculosis, Campylobacter concisus, Campylobacter jejuni, Chlamydia trachomatis, Helicobacter pylori, Pseudomonas aeruginosa, Salmonella spp, Shigella spp, and viruses, particularly noroviruses. A number of pathogenic parasites (Blastocystis, Dientamoeba fragilis, and Giardia lamblia) may also be involved in the progression and exacerbation of the disease. Based on the current knowledge, the current study concludes that the most common bacterial, viral, and parasitic pathogens may be involved in the development and progression of IBS.
Collapse
Affiliation(s)
- Aref Shariati
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fateme Fallah
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Pormohammad
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Taghipour
- Department of Medical Parasitology and Mycology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Safari
- Health Promotion Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Salami Chirani
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sahar Sabour
- Department of Microbiology, School of Medicine, Ardebil University of Medical Science, Ardebil, Iran
| | - Mahmood Alizadeh-Sani
- Student Research Committee, Department of Food Sciences and Technology, Faculty of Nutrition and Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Taher Azimi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
38
|
Di Stefano M, Quigley EMM. The diagnosis of small intestinal bacterial overgrowth: Two steps forward, one step backwards? Neurogastroenterol Motil 2018; 30:e13494. [PMID: 30328232 DOI: 10.1111/nmo.13494] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 09/23/2018] [Indexed: 12/23/2022]
Abstract
Small intestinal bacterial overgrowth (SIBO) was originally described decades ago as a cause of malabsorption among individuals with abnormal intestinal anatomy and/or impaired gastric acid secretion and intestinal motor functions. More recently, the concept of SIBO has been expanded to explain symptoms among a much broader patient population-a move that brings the definition of SIBO into much sharper focus. For largely logistical reasons, breath tests and, especially, those based on the excretion of hydrogen consequent on the fermentation of unabsorbed carbohydrate substrates, have almost entirely replaced jejunal aspirates in the diagnosis of SIBO. Ever bedeviled by concerns regarding their reliability, hydrogen breath tests have now come under even more critical scrutiny with the study from Sundin and colleagues in this issue suggesting that their sole function is to detect carbohydrate malabsorption and that they are incapable of defining SIBO.
Collapse
Affiliation(s)
- Michele Di Stefano
- First Department of Internal Medicine, IRCCS S. Matteo Hospital Foundation, University of Pavia, Pavia, Italy
| | - Eamonn M M Quigley
- Lynda K and David M Underwood Center for Digestive Disorders, Division of Gastroenterology and Hepatology, Houston Methodist Hospital and Weill Cornell Medical College, Houston, Texas
| |
Collapse
|
39
|
Ihekweazu FD, Versalovic J. Development of the Pediatric Gut Microbiome: Impact on Health and Disease. Am J Med Sci 2018; 356:413-423. [PMID: 30384950 PMCID: PMC6268214 DOI: 10.1016/j.amjms.2018.08.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
Abstract
The intestinal microbiota are important in human growth and development. Microbial composition may yield insights into the temporal development of microbial communities and vulnerabilities to disorders of microbial ecology such as recurrent Clostridium difficile infection. Discoveries of key microbiome features of carbohydrate and amino acid metabolism are lending new insights into possible therapies or preventative strategies for inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS). In this review, we summarize the current understanding of the development of the pediatric gastrointestinal microbiome, the influence of the microbiome on the developing brain through the gut-brain axis, and the impact of dysbiosis on disease development. Dysbiosis is explored in the context of pediatric allergy and asthma, recurrent C. difficile infection, IBD, IBS, and metabolic disorders. The central premise is that the human intestinal microbiome plays a vital role in health and disease, beginning in the prenatal period and extending throughout childhood.
Collapse
Affiliation(s)
- Faith D. Ihekweazu
- Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children’s Hospital, 1102 Bates St., Houston, TX, 77030, USA.
| | - James Versalovic
- Pediatric Pathology and Immunology, Baylor College of Medicine, Texas Children’s Hospital 1102 Bates St., Houston, TX, 77030, USA.
| |
Collapse
|
40
|
Pickard JM, Zeng MY, Caruso R, Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev 2018; 279:70-89. [PMID: 28856738 DOI: 10.1111/imr.12567] [Citation(s) in RCA: 1041] [Impact Index Per Article: 148.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The intestinal tract of mammals is colonized by a large number of microorganisms including trillions of bacteria that are referred to collectively as the gut microbiota. These indigenous microorganisms have co-evolved with the host in a symbiotic relationship. In addition to metabolic benefits, symbiotic bacteria provide the host with several functions that promote immune homeostasis, immune responses, and protection against pathogen colonization. The ability of symbiotic bacteria to inhibit pathogen colonization is mediated via several mechanisms including direct killing, competition for limited nutrients, and enhancement of immune responses. Pathogens have evolved strategies to promote their replication in the presence of the gut microbiota. Perturbation of the gut microbiota structure by environmental and genetic factors increases the risk of pathogen infection, promotes the overgrowth of harmful pathobionts, and the development of inflammatory disease. Understanding the interaction of the microbiota with pathogens and the immune system will provide critical insight into the pathogenesis of disease and the development of strategies to prevent and treat inflammatory disease.
Collapse
Affiliation(s)
- Joseph M Pickard
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Melody Y Zeng
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Roberta Caruso
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| | - Gabriel Núñez
- Department of Pathology and Comprehensive Cancer Center, The University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
41
|
Fukui H, Xu X, Miwa H. Role of Gut Microbiota-Gut Hormone Axis in the Pathophysiology of Functional Gastrointestinal Disorders. J Neurogastroenterol Motil 2018; 24:367-386. [PMID: 29969855 PMCID: PMC6034676 DOI: 10.5056/jnm18071] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 05/21/2018] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota exert a pivotal influence on various functions including gastrointestinal (GI) motility, metabolism, nutrition, immunity, and the neuroendocrine system in the host. These effects are mediated by not only short-chain fatty acids produced by microbiota but also gut hormones and inflammatory signaling by enteroendocrine and immune cells under the influence of the microbiota. GI motility is orchestrated by the enteric nervous system and hormonal networks, and disturbance of GI motility plays an important role in the pathophysiology of functional gastrointestinal disorders (FGIDs). In this context, microbiota-associated mediators are considered to act on specific receptors, thus affecting the enteric nervous system and, subsequently, GI motility. Thus, the pathophysiology of FGIDs is based on alterations of the gut microbiota/gut hormone axis, which have crucial effects on GI motility.
Collapse
Affiliation(s)
- Hirokazu Fukui
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa, Nishinomiya,
Japan
| | - Xin Xu
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa, Nishinomiya,
Japan
- Department of Digestive Diseases, Tianjin Medical University General Hospital, Tianjin,
China
| | - Hiroto Miwa
- Division of Gastroenterology, Department of Internal Medicine, Hyogo College of Medicine, Mukogawa, Nishinomiya,
Japan
| |
Collapse
|
42
|
Flancman R, Singh A, Weese JS. Evaluation of the impact of dental prophylaxis on the oral microbiota of dogs. PLoS One 2018; 13:e0199676. [PMID: 29940032 PMCID: PMC6016910 DOI: 10.1371/journal.pone.0199676] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 06/12/2018] [Indexed: 01/07/2023] Open
Abstract
Periodontal disease is one of the most commonly diagnosed oral diseases in dogs and can result from undisturbed dental plaque. Dental prophylaxis is a routinely practiced veterinary procedure, but its effects on both the plaque and oral microbiota is not fully understood. The objectives of this study were to evaluate the impact of dental prophylaxis on the composition of the supragingival plaque and composite oral microbiota in clinically healthy dogs and to determine if composite sampling could be used in lieu of sampling the plaque microbiota directly. Thirty dogs received a dental prophylaxis. Supragingival plaque and composite oral samples were collected just prior to, and one week after dental prophylaxis. A subsample of 10 dogs was followed, and additional samples were collected two and five weeks post-prophylaxis. The V4 region of the 16S rRNA gene was used for Illumina MiSeq next-generation sequencing. Results demonstrate that decreases in Treponema as well as increases in Moraxella and Neisseria distinguished the plaque pre- and one week post-prophylaxis timepoints (all P<0.05). Within the oral microbiota, the initially dominant Psychrobacter (20% relative abundance) disappeared one week later (P<0.0001), and Pseudomonas became the dominant taxon one week after treatment (80% relative abundance, P<0.0001). A rapid transition back towards the pre-dental prophylaxis microbiota by five weeks post-treatment was seen for both niches, suggesting the canine oral microbiota is resilient. Direct comparison of the two environments yielded striking differences, with complete separation of groups. Firmicutes (40%) and Spirochaetes (22%) predominated in the plaque while Proteobacteria (58%) was predominant in the oral microbiota. Greater richness was also seen in the plaque microbiota. This study reveals that prophylaxis had a profound impact on both the plaque and oral microbiota, and the longitudinal results help elucidate the pathophysiology of periodontal disease. The results suggest that oral swabs are a poor proxy for plaque samples and highlight the need to study specific oral niches.
Collapse
Affiliation(s)
- Rebecca Flancman
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Ameet Singh
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - J. Scott Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
43
|
de Freitas MB, Moreira EAM, Tomio C, Moreno YMF, Daltoe FP, Barbosa E, Ludwig Neto N, Buccigrossi V, Guarino A. Altered intestinal microbiota composition, antibiotic therapy and intestinal inflammation in children and adolescents with cystic fibrosis. PLoS One 2018; 13:e0198457. [PMID: 29933382 PMCID: PMC6014676 DOI: 10.1371/journal.pone.0198457] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
The aim of the present study was to evaluate the effect of cystic fibrosis and antibiotic therapy on intestinal microbiota composition and intestinal inflammation in children and adolescents. A cross-sectional controlled study was conducted with 36 children and adolescents: 19 in the cystic fibrosis group (CFG) and 17 in the control group (CG) matched for age and sex. The CFG was subdivided based on the use of antibiotic therapy (CFAB group) and non-use of antibiotic therapy (CFnAB group). The following data were evaluated: colonization, antibiotic therapy, mutation, breastfeeding, use of infant formula, type of delivery, introduction of solid foods, body mass index, fecal calprotectin and intestinal microbiota composition (fluorescence in situ hybridization). Intestinal inflammation evaluated by fecal calprotectin was significantly higher in the CFG (median: 40.80 µg/g, IQR: 19.80-87.10, p = 0.040) and CFAB group (median: 62.95 µg/g, IQR: 21.80-136.62, p = 0.045) compared to the CG (median: 20.15 µg/g, IQR: 16.20-31.00), and the Bacteroides, Firmicutes, Eubacterium rectale and Faecalibacterium prausnitzii were significantly decreased (p < 0.05) in the CFG compared to the CG, whereas the bacteria Clostridium difficile, Escherichia coli and Pseudomonas aeruginosa were significantly increased in the CFG (p < 0.05). The main differences were found between the CG and CFAB group for Eubacterium rectale (p = 0.006), Bifidobacterium (p = 0.017), Escherichia coli (p = 0.030), Firmicutes (p = 0.002), Pseudomonas aeruginosa (p < 0.001) and Clostridium difficile (p = 0.006). The results of this study confirm intestinal inflammation in patients with CF, which may be related to changes in the composition of the intestinal microbiota.
Collapse
Affiliation(s)
| | | | - Camila Tomio
- Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Yara Maria Franco Moreno
- Department of Nutrition, Graduate Program in Nutrition, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Felipe Perozzo Daltoe
- Department of Pathology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Eliana Barbosa
- Joana de Gusmão Children´s Hospital, Santa Catarina, Florianópolis, Brazil
| | | | - Vittoria Buccigrossi
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| | - Alfredo Guarino
- Department of Translational Medical Science, Section of Pediatrics, University of Naples Federico II, Naples, Italy
| |
Collapse
|
44
|
Pseudomonas aeruginosa Isolates from Spanish Children: Occurrence in Faecal Samples, Antimicrobial Resistance, Virulence, and Molecular Typing. BIOMED RESEARCH INTERNATIONAL 2018; 2018:8060178. [PMID: 29992165 PMCID: PMC6016177 DOI: 10.1155/2018/8060178] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/02/2018] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa is a major opportunistic human pathogen, responsible for nosocomial infections and infections in patients with impaired immune systems. Little data exist about the faecal colonisation by P. aeruginosa isolates in healthy humans. The occurrence, antimicrobial resistance phenotype, virulence genotype, and genetic lineages of P. aeruginosa from faecal samples of children from two different Spanish regions were characterised. Seventy-two P. aeruginosa were isolated from 1,443 faecal samples. Low antimicrobial resistance levels were detected: ceftazidime (8%), cefepime (7%), aztreonam (7%), gentamicin (3%), ciprofloxacin (1%), and imipenem (1%); susceptibility to meropenem, amikacin, tobramycin, levofloxacin, and colistin. Four multidrug-resistant strains were found. Important differences were detected between both geographical regions. Forty-one sequence types were detected among the 48 tested strains. Virulence and quorum sensing genes were analysed and 13 virulotypes were detected, being 26 exoU-positive strains. Alteration in protein OprD showed eight different patterns. The unique imipenem-resistant strain showed a premature stop codon in OprD. Intestinal colonisation by P. aeruginosa, mainly by international clones (as ST244, ST253, and ST274), is an important factor for the systemic infections development and the environmental dissemination. Periodic active surveillance is useful to identify these community human reservoirs and to control the evolution of antibiotic resistance and virulence activity.
Collapse
|
45
|
von Klitzing E, Ekmekciu I, Kühl AA, Bereswill S, Heimesaat MM. Multidrug-resistant Pseudomonas aeruginosa aggravates inflammatory responses in murine chronic colitis. Sci Rep 2018; 8:6685. [PMID: 29704005 PMCID: PMC5923287 DOI: 10.1038/s41598-018-25034-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 04/12/2018] [Indexed: 12/20/2022] Open
Abstract
The World Health Organization has rated multidrug-resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa (Psae) as serious threat to human health. We here addressed whether chronic murine gut inflammation facilitates intestinal MDR Psae colonization and whether bacterial infection subsequently worsens colonic immunopathology. Converse to wildtype counterparts, Psae colonized the intestines of IL-10−/− mice with chronic colitis following peroral challenge, but did not lead to changes in intestinal microbiota composition. Psae infection accelerated both macroscopic (i.e. clinical) and microscopic disease (i.e. colonic epithelial apoptosis), that were accompanied by increased intestinal pro-inflammatory immune responses as indicated by elevated colonic numbers of innate and adaptive immune cell subsets and enhanced secretion of pro-inflammatory cytokines such as TNF and IFN-γ in mesenteric lymph nodes of Psae-infected as compared to unchallenged IL-10−/− mice. Remarkably, Psae-induced pro-inflammatory immune responses were not restricted to the gut, but could also be observed systemically as indicated by increased TNF and IFN-γ concentrations in sera upon Psae-infection. Furthermore, viable commensals originating from the intestinal microbiota translocated to extra-intestinal compartments such as liver, kidney and spleen of Psae-infected IL-10−/− mice with chronic colitis only. Hence, peroral MDR Psae-infection results in exacerbated colonic as well as systemic pro-inflammatory immune responses during chronic murine colitis.
Collapse
Affiliation(s)
- Eliane von Klitzing
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ira Ekmekciu
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences (RCIS), Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Infection Immunology, Gastrointestinal Microbiology Research Group, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
46
|
Martin CR, Osadchiy V, Kalani A, Mayer EA. The Brain-Gut-Microbiome Axis. Cell Mol Gastroenterol Hepatol 2018; 6:133-148. [PMID: 30023410 PMCID: PMC6047317 DOI: 10.1016/j.jcmgh.2018.04.003] [Citation(s) in RCA: 769] [Impact Index Per Article: 109.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 04/04/2018] [Indexed: 12/12/2022]
Abstract
Preclinical and clinical studies have shown bidirectional interactions within the brain-gut-microbiome axis. Gut microbes communicate to the central nervous system through at least 3 parallel and interacting channels involving nervous, endocrine, and immune signaling mechanisms. The brain can affect the community structure and function of the gut microbiota through the autonomic nervous system, by modulating regional gut motility, intestinal transit and secretion, and gut permeability, and potentially through the luminal secretion of hormones that directly modulate microbial gene expression. A systems biological model is proposed that posits circular communication loops amid the brain, gut, and gut microbiome, and in which perturbation at any level can propagate dysregulation throughout the circuit. A series of largely preclinical observations implicates alterations in brain-gut-microbiome communication in the pathogenesis and pathophysiology of irritable bowel syndrome, obesity, and several psychiatric and neurologic disorders. Continued research holds the promise of identifying novel therapeutic targets and developing treatment strategies to address some of the most debilitating, costly, and poorly understood diseases.
Collapse
Key Words
- 2BA, secondary bile acid
- 5-HT, serotonin
- ANS, autonomic nervous system
- ASD, autism spectrum disorder
- BBB, blood-brain barrier
- BGM, brain-gut-microbiome
- CNS, central nervous system
- ECC, enterochromaffin cell
- EEC, enteroendocrine cell
- FFAR, free fatty acid receptor
- FGF, fibroblast growth factor
- FXR, farnesoid X receptor
- GF, germ-free
- GI, gastrointestinal
- GLP-1, glucagon-like peptide-1
- GPR, G-protein–coupled receptor
- IBS, irritable bowel syndrome
- Intestinal Permeability
- Irritable Bowel Syndrome
- LPS, lipopolysaccharide
- SCFA, short-chain fatty acid
- SPF, specific-pathogen-free
- Serotonin
- Stress
- TGR5, G protein-coupled bile acid receptor
- Trp, tryptophan
Collapse
Affiliation(s)
| | | | | | - Emeran A. Mayer
- Correspondence Address correspondence to: Emeran A. Mayer, MD, G. Oppenheimer Center for Neurobiology of Stress and Resilience, University of California at Los Angeles, MC737818-10833 Le Conte Avenue, Los Angeles, California 90095-7378. fax: (310) 825-1919.
| |
Collapse
|
47
|
Daliri EBM, Wei S, Oh DH, Lee BH. The human microbiome and metabolomics: Current concepts and applications. Crit Rev Food Sci Nutr 2018; 57:3565-3576. [PMID: 27767329 DOI: 10.1080/10408398.2016.1220913] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The mammalian gastrointestinal tract has co-developed with a large number of microbes in a symbiotic relationship over millions of years. Recent studies indicate that indigenous bacteria are intimate with the intestine and play essential roles in health and disease. In the quest to maintain a stable niche, these prokaryotes influence multiple host metabolic pathways, resulting from an interactive host-microbiota metabolic signaling and impacting strongly on the metabolic phenotypes of the host. Since dysbiosis of the gut bacteria result in alteration in the levels of certain microbial and host co-metabolites, identifying these markers could enhance early detection of diseases. Also, identification of these metabolic fingerprints could give us clues as to how to manipulate the microbiome to promote health or treat diseases. This review provides an overview of our current knowledge of the microbiome and metablomics, applications and the future perspectives.
Collapse
Affiliation(s)
- Eric Banan-Mwine Daliri
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Shuai Wei
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Deog H Oh
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea
| | - Byong H Lee
- a Department of Food Science and Biotechnology , Kangwon National University , Chuncheon , South Korea.,b Department of Food Science/Agricultural Chemistry , McGill University , Ste.-Anne-de-Bellevue , Quebec , Canada
| |
Collapse
|
48
|
An Overview of the Roles of the Gut Microbiome in Obesity and Diabetes. NUTRITIONAL AND THERAPEUTIC INTERVENTIONS FOR DIABETES AND METABOLIC SYNDROME 2018. [DOI: 10.1016/b978-0-12-812019-4.00006-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
49
|
von Klitzing E, Ekmekciu I, Bereswill S, Heimesaat MM. Intestinal and Systemic Immune Responses upon Multi-drug Resistant Pseudomonas aeruginosa Colonization of Mice Harboring a Human Gut Microbiota. Front Microbiol 2017; 8:2590. [PMID: 29312263 PMCID: PMC5744425 DOI: 10.3389/fmicb.2017.02590] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022] Open
Abstract
The World Health Organization has rated multi-drug resistant (MDR) Pseudomonas aeruginosa as serious threat for human health. It is, however, unclear, whether intestinal MDR P. aeruginosa carriage is associated with inflammatory responses in intestinal or even systemic compartments. In the present study, we generated with respect to their microbiota "humanized" mice by human fecal microbiota transplantation of secondary abiotic mice. Following peroral challenge with a clinical P. aeruginosa isolate on two consecutive days, mice harboring a human or murine microbiota were only partially protected from stable intestinal P. aeruginosa colonization given that up to 78% of mice were P. aeruginosa-positive at day 28 post-infection (p.i.). Irrespective of the host-specificity of the microbiota, P. aeruginosa colonized mice were clinically uncompromised. However, P. aeruginosa colonization resulted in increased intestinal epithelial apoptosis that was accompanied by pronounced proliferative/regenerative cell responses. Furthermore, at day 7 p.i. increased innate immune cell populations such as macrophages and monocytes could be observed in the colon of mice harboring either a human or murine microbiota, whereas this held true at day 28 p.i. for adaptive immune cells such as B lymphocytes in both the small and large intestines of mice with murine microbiota. At day 7 p.i., pro-inflammatory cytokine secretion was enhanced in the colon and mesenteric lymph nodes, whereas the anti-inflammatory cytokine IL-10 was down-regulated in the former at day 28 p.i. Strikingly, cytokine responses upon intestinal P. aeruginosa colonization were not restricted to the intestinal tract, but could also be observed systemically, given that TNF and IFN-γ concentrations were elevated in spleens as early as 7 days p.i., whereas splenic IL-10 levels were dampened at day 28 p.i. of mice with human microbiota. In conclusion, mere intestinal carriage of MDR P. aeruginosa by clinically unaffected mice results in pro-inflammatory sequelae not only in intestinal, but also systemic compartments.
Collapse
Affiliation(s)
| | | | | | - Markus M. Heimesaat
- Institute of Microbiology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Microbiology and Hygiene, Berlin, Germany
| |
Collapse
|
50
|
Grunau A, Escher U, Kühl AA, Bereswill S, Heimesaat MM. Toll-like receptor-4 differentially mediates intestinal and extra-intestinal immune responses upon multi-drug resistant Pseudomonas aeruginosa association of IL10 -/- mice with chronic colitis. Gut Pathog 2017; 9:61. [PMID: 29151895 PMCID: PMC5678768 DOI: 10.1186/s13099-017-0211-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 10/31/2017] [Indexed: 01/27/2023] Open
Abstract
Background Infections with multi-drug resistant (MDR) Gram-negative bacteria including Pseudomonas aeruginosa (PA) have become a serious threat particularly in hospitalized patients with immunopathological co-morbidities. The well-balanced interplay between immune cells, pattern recognition receptors such as Toll-like receptor (TLR)-4 sensing lipopolysaccharide from Gram-negative bacteria including PA, and evolving pathways is crucial to prevent the host from invading (opportunistic) pathogens. Information regarding the molecular mechanisms underlying the interactions between intestinal carriage of MDR PA and host immunity during chronic large intestinal inflammation is scarce, however. Methods and results We therefore perorally challenged conventionally colonized TLR4-deficient IL10−/− mice and IL10−/− counterparts displaying comparably severe chronic colitis with a clinical MDR PA strain. PA could more sufficiently establish in the intestinal tract of TLR4-deficient IL10−/− mice until day 14 postinfection (p.i.), whereas within 48 h the majority of IL10−/− mice had already expelled the opportunistic pathogen from their guts. Intestinal colonization properties of PA in TLR4-deficient IL10−/− mice were associated with distinct genotype-dependent differences in gut microbiota compositions before challenge given that TLR4-deficient IL10−/− mice harbored more fecal enterobacteria and enterococci, but lower Clostridium/Eubacterium burdens. At day 14 p.i., PA-induced increases in colonic immune cells such as macrophages, monocytes and T-lymphocytes could be observed in TLR4-deficient IL10−/− mice, but not IL10−/− counterparts, that were accompanied by a more distinct secretion of IFN-γ in the colon and TNF in the mesenteric lymph nodes (MLN) of the former as compared to the latter. Conversely, splenic TNF levels were lower in TLR4-deficient IL10−/− mice as compared to IL10−/− controls at day 14 p.i. Interestingly, more pronounced apoptotic responses could be assessed in colonic epithelia of PA-challenged IL10−/− mice only. This was paralleled by enhanced pro-inflammatory cytokine secretion not only in the intestines, but also in extra-intestinal compartments of IL10−/− mice as indicated by increased concentrations of nitric oxide in the colon, IFN-γ in the MLN and IL-12p70 in the spleen at day 14 p.i. Conclusions Under chronic intestinal inflammatory conditions including IL10−/− colitis MDR PA-association results in well-orchestrated TLR4-dependent immune responses both in intestinal and extra-intestinal compartments. Further studies should unravel the underlying molecular mechanisms in more detail. Electronic supplementary material The online version of this article (10.1186/s13099-017-0211-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Anne Grunau
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Ulrike Escher
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Diseases and Rheumatology/Research Center ImmunoSciences (RCIS), Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany
| | - Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,CC5, Department of Microbiology and Hygiene, Charité-Universitätsmedizin Berlin, Campus Benjamin Franklin, FEM, Garystr. 5, 14195 Berlin, Germany
| |
Collapse
|