1
|
Yang Y, Shu L, Ling P, Yang J, Shao R, Cheng Y, Luo S, Wei X, Guan Z, Chen Z, Liao J, Qi X, Cui G, Hong W. Genomic analysis of a novel ST11(PR34365) Clostridioides difficile strain isolated from the human fecal of a CDI patient in Guizhou, China. Open Life Sci 2025; 20:20251067. [PMID: 40417001 PMCID: PMC12103185 DOI: 10.1515/biol-2025-1067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 01/15/2025] [Accepted: 01/30/2025] [Indexed: 05/27/2025] Open
Abstract
Clostridioides difficile is a pathogen that causes pseudomembranous colitis with antibiotic-associated diarrhea. The epidemiology and molecular evolution of C. difficile may differ among different geographic regions, and mining its genomic information can help to understand the epidemiology and molecular evolution of C. difficile and focus on its transmission mode. A C. difficile strain denoted WXL8 was isolated from a human fecal sample from a patient in the intensive care unit, and its physiology and genomic sequence were determined. The total genome size of WXL8 was 4,119,929 bp, and the GC content was 27.97%. The multilocus sequence typing results indicated that WXL8 is strain type 11 (ST11), a genotype widely present in livestock. The WXL8 was located in clade 5 of ST11. The ribotype of WXL8 was a novel ribotype (PR34365). It is the first report of the ST11 (PR34365) strain. Comparative genomic analysis between WXL8 and the other four high-virulence strains (CD630, CDBR81, CDS-0253, and CDR20291) showed differences in gene arrangement, indicating the uniqueness of C. difficile WXL8. In the present study, a novel ribotype (PR34365) ST11 strain of C. difficile was isolated from a patient with diarrhea in Guizhou, China. Our findings suggest that zoonotic CDI should receive more clinical attention.
Collapse
Affiliation(s)
- Ying Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Luhong Shu
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Ping Ling
- Pediatric Intensive Care Unit & Guiyang Maternal and Child Health Care Hospital, Guizhou, 550003, China
| | - Junyi Yang
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Ruirui Shao
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Yumei Cheng
- Department of Critical Care Medicine, The Affiliate Hospital of Guizhou Medical University, Guiyang, 550004, China
| | - Shanshan Luo
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xinglang Wei
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Zhizhong Guan
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Zhenghong Chen
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Jian Liao
- School/Hospital of Stomatology, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Xiaolan Qi
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, 550025, China
| | - Guzhen Cui
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
| | - Wei Hong
- Key Laboratory of Endemic and Ethnic Diseases, Ministry of Education & School/Hospital of Stomatology & Key Laboratory of Microbiology and Parasitology of Education Department of Guizhou, Guizhou Medical University, Guiyang, Guizhou, 550025, China
- Collaborative Innovation Center for Prevention and Control of Endemic and Ethnic Regional Diseases Co-constructed by the Province and Ministry, Guiyang, Guizhou, 550025, China
| |
Collapse
|
2
|
Hussain H, Nubgan A, Rodríguez C, Imwattana K, Knight DR, Parthala V, Mullany P, Goh S. Removal of mobile genetic elements from the genome of Clostridioides difficile and the implications for the organism's biology. Front Microbiol 2024; 15:1416665. [PMID: 38966395 PMCID: PMC11222575 DOI: 10.3389/fmicb.2024.1416665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 06/04/2024] [Indexed: 07/06/2024] Open
Abstract
Clostridioides difficile is an emerging pathogen of One Health significance. Its highly variable genome contains mobile genetic elements (MGEs) such as transposons and prophages that influence its biology. Systematic deletion of each genetic element is required to determine their precise role in C. difficile biology and contribution to the wider mobilome. Here, Tn5397 (21 kb) and ϕ027 (56 kb) were deleted from C. difficile 630 and R20291, respectively, using allele replacement facilitated by CRISPR-Cas9. The 630 Tn5397 deletant transferred PaLoc at the same frequency (1 × 10-7) as 630 harboring Tn5397, indicating that Tn5397 alone did not mediate conjugative transfer of PaLoc. The R20291 ϕ027 deletant was sensitive to ϕ027 infection, and contained two unexpected features, a 2.7 kb remnant of the mutagenesis plasmid, and a putative catalase gene adjacent to the deleted prophage was also deleted. Growth kinetics of R20291 ϕ027 deletant was similar to wild type (WT) in rich medium but marginally reduced compared with WT in minimal medium. This work indicates the commonly used pMTL8000 plasmid series works well for CRISPR-Cas9-mediated gene deletion, resulting in the largest deleted locus (56.8 kb) described in C. difficile. Removal of MGEs was achieved by targeting conjugative/integrative regions to promote excision and permanent loss. The deletants created will be useful strains for investigating Tn5397 or ϕ027 prophage contribution to host virulence, fitness, and physiology, and a platform for other mutagenesis studies aimed at functional gene analysis without native transposon or phage interference in C. difficile 630 and R20291.
Collapse
Affiliation(s)
- Haitham Hussain
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Amer Nubgan
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales (CIET), Universidad de Costa Rica, San José, Costa Rica
| | - Korakrit Imwattana
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology, Faculty of Medicine Siriraj Hospital, Mahidol University, Salaya, Thailand
| | - Daniel R. Knight
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
- Department of Microbiology, PathWest Laboratory Medicine WA, Queen Elizabeth II Medical Centre, Nedlands, WA, Australia
| | - Valerija Parthala
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| | - Peter Mullany
- Department of Microbial Diseases, Eastman Dental Institute, University College London, London, United Kingdom
| | - Shan Goh
- Department of Clinical, Pharmaceutical and Biological Sciences, University of Hertfordshire, Hatfield, United Kingdom
| |
Collapse
|
3
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. J Bacteriol 2023; 205:e0013823. [PMID: 37655912 PMCID: PMC10521354 DOI: 10.1128/jb.00138-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 07/11/2023] [Indexed: 09/02/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as maintenance of the intestinal barrier, cell signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including its importance in alleviating infections caused by pathogens such as Clostridioides difficile. Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with changes in metabolic and regulatory genes, such as a putative carbon starvation protein, CstA. Collectively, these data suggest that butyrate may induce alternative C. difficile survival pathways, modifying its growth ability and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may modulate gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile. While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
Affiliation(s)
| | - Disha Bhattacharjee
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Julian D. Coles
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Sydney Nelson
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - C. Alexis McCollum
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Anna M. Seekatz
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
4
|
Baldassare MA, Bhattacharjee D, Coles JD, Nelson S, McCollum CA, Seekatz AM. Butyrate enhances Clostridioides difficile sporulation in vitro. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538596. [PMID: 37163089 PMCID: PMC10168334 DOI: 10.1101/2023.04.27.538596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Short chain fatty acids (SCFAs) are products of bacterial fermentation that help maintain important gut functions such as the intestinal barrier, signaling, and immune homeostasis. The main SCFAs acetate, propionate, and butyrate have demonstrated beneficial effects for the host, including importance in combatting infections caused by pathogens such as Clostridioides difficile . Despite the potential role of SCFAs in mitigating C. difficile infection, their direct effect on C. difficile remains unclear. Through a set of in vitro experiments, we investigated how SCFAs influence C. difficile growth, sporulation, and toxin production. Similar to previous studies, we observed that butyrate decreased growth of C. difficile strain 630 in a dose-dependent manner. The presence of butyrate also increased C. difficile sporulation, with minimal increases in toxin production. RNA-Seq analysis validated our experimental results, demonstrating increased expression of sporulation-related genes in conjunction with alternative metabolic and related C. difficile regulatory pathways, such as the carbon catabolite repressor, CcpA. Collectively, these data suggest that butyrate may signal alternative C. difficile metabolic pathways, thus modifying its growth and virulence to persist in the gut environment. IMPORTANCE Several studies suggest that butyrate may be important in alleviating gut infections, such as reducing inflammation caused by the healthcare-associated Clostridioides difficile . While studies in both animal models and human studies correlate high levels of butyrate with reduced C. difficile burden, the direct impact of butyrate on C. difficile remains unclear. Our study demonstrates that butyrate directly influences C. difficile by increasing its sporulation and modifying its metabolism, potentially using butyrate as a biomarker to shift survival strategies in a changing gut environment. These data point to additional therapeutic approaches to combat C. difficile in a butyrate-directed manner.
Collapse
|
5
|
2 Hydroxybutyric Acid-Producing Bacteria in Gut Microbiome and Fusobacterium nucleatum Regulates 2 Hydroxybutyric Acid Level In Vivo. Metabolites 2023; 13:metabo13030451. [PMID: 36984891 PMCID: PMC10059959 DOI: 10.3390/metabo13030451] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 03/03/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023] Open
Abstract
2-hydroxybutyric acid (2HB) serves as an important regulatory factor in a variety of diseases. The circulating level of 2HB in serum is significantly higher in multiple diseases, such as cancer and type 2 diabetes (T2D). However, there is currently no systematic study on 2HB-producing bacteria that demonstrates whether gut bacteria contribute to the circulating 2HB pool. To address this question, we used BLASTP to reveal the taxonomic profiling of 2HB-producing bacteria in the human microbiome, which are mainly distributed in the phylum Proteobacteria and Firmicutes. In vitro experiments showed that most gut bacteria (21/32) have at least one path to produce 2HB, which includes Aspartic acid, methionine, threonine, and 2-aminobutyric acid. Particularly, Fusobacterium nucleatum has the strongest ability to synthesize 2HB, which is sufficient to alter colon 2HB concentration in mice. Nevertheless, neither antibiotic (ABX) nor Fusobacterium nucleatum gavage significantly affected mouse serum 2HB levels during the time course of this study. Taken together, our study presents the profiles of 2HB-producing bacteria and demonstrates that gut microbiota was a major contributor to 2HB concentration in the intestinal lumen but a relatively minor contributor to serum 2HB concentration.
Collapse
|
6
|
Chandra H, Kovall RA, Yadav JS, Sun X. Host Immune Responses to Surface S-Layer Proteins (SLPs) of Clostridioides difficile. Microorganisms 2023; 11:380. [PMID: 36838345 PMCID: PMC9963625 DOI: 10.3390/microorganisms11020380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023] Open
Abstract
Clostridioides difficile, a nosocomial pathogen, is an emerging gut pathobiont causing antibiotic-associated diarrhea. C. difficile infection involves gut colonization and disruption of the gut epithelial barrier, leading to the induction of inflammatory/immune responses. The expression of two major exotoxins, TcdA and TcdB is the major cause of C. difficile pathogenicity. Attachment of bacterial abundant cell wall proteins or surface S-layer proteins (SLPs) such as SlpA with host epithelial cells is critical for virulence. In addition to being toxins, these surface components have been shown to be highly immunogenic. Recent studies indicate that C. difficile SLPs play important roles in the adhesion of the bacteria to the intestinal epithelial cells, disruption of tight junctions, and modulation of the immune response of the host cells. These proteins might serve as new targets for vaccines and new therapeutic agents. This review summarizes our current understanding of the immunological role of SLPs in inducing host immunity and their use in the development of vaccines and novel therapeutics to combat C. difficile infection.
Collapse
Affiliation(s)
- Harish Chandra
- Department of Environmental Microbiology, School of Earth and Environmental Sciences, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, UP, India
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Rhett A. Kovall
- Department of Molecular and Cellular Biosciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Jagjit S. Yadav
- Department of Environmental and Public Health Sciences, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xingmin Sun
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
7
|
Mitchell M, Nguyen SV, Macori G, Bolton D, McMullan G, Drudy D, Fanning S. Clostridioides difficile as a Potential Pathogen of Importance to One Health: A Review. Foodborne Pathog Dis 2022; 19:806-816. [PMID: 36516404 DOI: 10.1089/fpd.2022.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clostridioides difficile (basonym Clostridium) is a bacterial enteropathogen associated with cases of C. difficile infection that can result in pseudomembranous colitis, rapid fluid loss, and death. For decades following its isolation, C. difficile was thought to be a solely nosocomial pathogen, being isolated from individuals undergoing antimicrobial therapy and largely affecting elderly populations. More recently, C. difficile spores have been identified in the broader environment, including in food-producing animals, soil, and food matrices, in both ready-to-eat foods and meat products. Furthermore, evidence has emerged of hypervirulent ribotypes (RTs), such as RT078, similar to those cultured in asymptomatic carriers, also being identified in these environments. This finding may reflect on adaptations arising in these bacteria following selection pressures encountered in these niches, and which occurs due to an increase in antimicrobial usage in both clinical and veterinary settings. As C. difficile continues to adapt to new ecological niches, the taxonomy of this genus has also been evolving. To help understand the transmission and virulence potential of these bacteria of importance to veterinary public health, strategies applying multi-omics-based technologies may prove useful. These approaches may extend our current understanding of this recognized nosocomial pathogen, perhaps redefining it as a zoonotic bacterium. In this review, a brief background on the epidemiological presentation of C. difficile will be highlighted, followed by a review of C. difficile in food-producing animals and food products. The current state of C. difficile taxonomy will provide evidence of Clade 5 (ST11/RT078) delineation, as well as background on the genomic elements linked to C. difficile virulence and ongoing speciation. Recent studies applying second- and third-generation sequencing technologies will be highlighted, and which will further strengthen the argument made by many throughout the world regarding this pathogen and its consideration within a One Health dimension.
Collapse
Affiliation(s)
- Molly Mitchell
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | - Scott V Nguyen
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,District of Columbia Department of Forensic Sciences, Public Health Laboratory, Washington, District of Columbia, USA
| | - Guerrino Macori
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland
| | | | - Geoff McMullan
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, University College Dublin, Dublin, Ireland.,Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
8
|
Characterization of MroQ-Dependent Maturation and Export of the Staphylococcus aureus Accessory Gene Regulatory System Autoinducing Peptide. Infect Immun 2022; 90:e0026322. [PMID: 36073934 PMCID: PMC9584314 DOI: 10.1128/iai.00263-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Gram-positive bacteria produce small autoinducing peptides (AIPs), which act to regulate expression of genes that promote adaptive traits, including virulence. The Gram-positive pathogen Staphylococcus aureus generates a cyclic AIP that controls expression of virulence factors via the accessory gene regulatory (Agr) system. S. aureus strains belong to one of four Agr groups (Agr-I, -II, -III, and -IV); each group harbors allelic variants of AgrD, the precursor of AIP. In a prior screen for S. aureus virulence factors, we identified MroQ, a putative peptidase. A ΔmroQ mutant closely resembled a Δagr mutant and had significant defects in AIP production in an Agr-I strain. Here, we show that expression of AgrD-I in a ΔmroQ mutant leads to accumulation of an AIP processing intermediate at the membrane that coincides with a loss of secreted mature AIP, indicating that MroQ promotes maturation of AgrD-I. MroQ is conserved in all Agr sequence variants, suggesting either identical function among all Agr types or activity specific to Agr-I strains. Our data indicate that MroQ is required for AIP maturation and activity in Agr-I, -II, and -IV strains irrespective of background. However, MroQ is not required for Agr-III activity despite an identifiable role in peptide maturation. Isogenic Δagr and Δagr ΔmroQ strains complemented with Agr-I to -IV validated the critical role of MroQ in the generation of active AIP-I, -II, and -IV but not AIP-III. These findings were reinforced by skin infection studies with mice. Our data substantiate the prevailing model that MroQ is a mediator of cyclic peptide maturation.
Collapse
|
9
|
Oberkampf M, Hamiot A, Altamirano-Silva P, Bellés-Sancho P, Tremblay YDN, DiBenedetto N, Seifert R, Soutourina O, Bry L, Dupuy B, Peltier J. c-di-AMP signaling is required for bile salt resistance, osmotolerance, and long-term host colonization by Clostridioides difficile. Sci Signal 2022; 15:eabn8171. [PMID: 36067333 PMCID: PMC9831359 DOI: 10.1126/scisignal.abn8171] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
To colonize the host and cause disease, the human enteropathogen Clostridioides difficile must sense, respond, and adapt to the harsh environment of the gastrointestinal tract. We showed that the production and degradation of cyclic diadenosine monophosphate (c-di-AMP) were necessary during different phases of C. difficile growth, environmental adaptation, and infection. The production of this nucleotide second messenger was essential for growth because it controlled the uptake of potassium and also contributed to biofilm formation and cell wall homeostasis, whereas its degradation was required for osmotolerance and resistance to detergents and bile salts. The c-di-AMP binding transcription factor BusR repressed the expression of genes encoding the compatible solute transporter BusAA-AB. Compared with the parental strain, a mutant lacking BusR was more resistant to hyperosmotic and bile salt stresses, whereas a mutant lacking BusAA was more susceptible. A short exposure of C. difficile cells to bile salts decreased intracellular c-di-AMP concentrations, suggesting that changes in membrane properties induce alterations in the intracellular c-di-AMP concentration. A C. difficile strain that could not degrade c-di-AMP failed to persist in a mouse gut colonization model as long as the wild-type strain did. Thus, the production and degradation of c-di-AMP in C. difficile have pleiotropic effects, including the control of osmolyte uptake to confer osmotolerance and bile salt resistance, and its degradation is important for host colonization.
Collapse
Affiliation(s)
- Marine Oberkampf
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Audrey Hamiot
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Pamela Altamirano-Silva
- Centro de Investigación en Enfermedades Tropicales, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Paula Bellés-Sancho
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Yannick D. N. Tremblay
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Roland Seifert
- Institute of Pharmacology and Research Core Unit Metabolomics, Hannover Medical School, Hannover, Germany
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, USA
- Clinical Microbiology Laboratory, Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Bruno Dupuy
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
| | - Johann Peltier
- Institut Pasteur, Université Paris Cité, UMR-CNRS 6047, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015 Paris, France
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198 Gif-sur-Yvette, France
| |
Collapse
|
10
|
Mesa V, Monot M, Ferraris L, Popoff M, Mazuet C, Barbut F, Delannoy J, Dupuy B, Butel MJ, Aires J. Core-, pan- and accessory genome analyses of Clostridium neonatale: insights into genetic diversity. Microb Genom 2022; 8. [PMID: 35550024 PMCID: PMC9465065 DOI: 10.1099/mgen.0.000813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clostridium neonatale is a potential opportunistic pathogen recovered from faecal samples in cases of necrotizing enterocolitis (NEC), a gastrointestinal disease affecting preterm neonates. Although the C. neonatale species description and name validation were published in 2018, comparative genomics are lacking. In the present study, we provide the closed genome assembly of the C. neonatale ATCC BAA-265T (=250.09) reference strain with a manually curated functional annotation of the coding sequences. Pan-, core- and accessory genome analyses were performed using the complete 250.09 genome (4.7 Mb), three new assemblies (4.6–5.6 Mb), and five publicly available draft genome assemblies (4.6–4.7 Mb). The C. neonatale pan-genome contains 6840 genes, while the core-genome has 3387 genes. Pan-genome analysis revealed an ‘open’ state and genomic diversity. The strain-specific gene families ranged from five to 742 genes. Multiple mobile genetic elements were predicted, including a total of 201 genomic islands, 13 insertion sequence families, one CRISPR-Cas type I-B system and 15 predicted intact prophage signatures. Primary virulence classes including offensive, defensive, regulation of virulence-associated genes and non-specific virulence factors were identified. The presence of a tet(W/N/W) gene encoding a tetracycline resistance ribosomal protection protein and a 23S rRNA methyltransferase ermQ gene were identified in two different strains. Together, our results revealed a genetic diversity and plasticity of C. neonatale genomes and provide a comprehensive view of this species genomic features, paving the way for the characterization of its biological capabilities.
Collapse
Affiliation(s)
- Victoria Mesa
- Université de Paris, UMR-S1139, F-75006, Paris, France
| | - Marc Monot
- Plate-forme Technologique Biomics - Centre de Ressources et Recherches Technologiques, Institut Pasteur, F-75015, Paris, France.,Institut Pasteur, Université de Paris, UMR-CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | | | - Michel Popoff
- Institut Pasteur, Université de Paris, Centre National de Référence des Bactéries anaérobies et Botulisme, F-75015, Paris, France
| | - Christelle Mazuet
- Institut Pasteur, Université de Paris, Centre National de Référence des Bactéries anaérobies et Botulisme, F-75015, Paris, France
| | - Frederic Barbut
- Université de Paris, UMR-S1139, F-75006, Paris, France.,Assistance Publique-Hôpitaux de Paris, Hôpital saint Antoine, Infection Control Unit, F-75012, Paris, France
| | | | - Bruno Dupuy
- Institut Pasteur, Université de Paris, UMR-CNRS 2001, Laboratoire Pathogenèse des Bactéries Anaérobies, F-75015, Paris, France
| | | | - Julio Aires
- Université de Paris, UMR-S1139, F-75006, Paris, France
| |
Collapse
|
11
|
Anwar F, Vedantam G. Surface-displayed glycopolymers of Clostridioides difficile. Curr Opin Microbiol 2022; 66:86-91. [DOI: 10.1016/j.mib.2022.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 11/03/2022]
|
12
|
Metabolic adaption to extracellular pyruvate triggers biofilm formation in Clostridioides difficile. THE ISME JOURNAL 2021; 15:3623-3635. [PMID: 34155333 PMCID: PMC8630010 DOI: 10.1038/s41396-021-01042-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 06/09/2021] [Accepted: 06/11/2021] [Indexed: 02/06/2023]
Abstract
Clostridioides difficile infections are associated with gut microbiome dysbiosis and are the leading cause of hospital-acquired diarrhoea. The infectious process is strongly influenced by the microbiota and successful infection relies on the absence of specific microbiota-produced metabolites. Deoxycholate and short-chain fatty acids are microbiota-produced metabolites that limit the growth of C. difficile and protect the host against this infection. In a previous study, we showed that deoxycholate causes C. difficile to form strongly adherent biofilms after 48 h. Here, our objectives were to identify and characterize key molecules and events required for biofilm formation in the presence of deoxycholate. We applied time-course transcriptomics and genetics to identify sigma factors, metabolic processes and type IV pili that drive biofilm formation. These analyses revealed that extracellular pyruvate induces biofilm formation in the presence of deoxycholate. In the absence of deoxycholate, pyruvate supplementation was sufficient to induce biofilm formation in a process that was dependent on pyruvate uptake by the membrane protein CstA. In the context of the human gut, microbiota-generated pyruvate is a metabolite that limits pathogen colonization. Taken together our results suggest that pyruvate-induced biofilm formation might act as a key process driving C. difficile persistence in the gut.
Collapse
|
13
|
Comparative genomic analysis of hyper-ammonia producing Acetoanaerobium sticklandii DSM 519 with purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genomics 2021; 113:4196-4205. [PMID: 34780936 DOI: 10.1016/j.ygeno.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/18/2021] [Accepted: 11/10/2021] [Indexed: 10/19/2022]
Abstract
Acetoanaerobium sticklandii DSM519 (CST) is a hype-ammonia producing non-pathogenic anaerobe that can use amino acids as important carbon and energy sources through the Stickland reactions. Biochemical aspects of this organism have been extensively studied, but systematic studies addressing its metabolic discrepancy remain scant. In this perspective, we have intensively analyzed its genomic and metabolic characteristics to comprehend the evolutionary conservation of amino acid catabolism by a comparative genomic approach. The whole-genome data indicated that CST has shown a phylogenomic similarity with hyper-ammonia producing, purinolytic, and proteolytic pathogenic Clostridia. CST has shown to common genomic context sharing across the purinolytic Gottschalkia acidurici 9a and pathogenic Peptoclostridium difficile 630. Genome syntenic analysis described that syntenic orthologs might be originated from the recent ancestor at a slow evolution rate and syntenic-out paralogs evolved from either CDF or CAC via α-event and β-event. Collinearity of either gene orders or gene families was adjusted with syntenic out-paralogs across these genomes. The genome-wide metabolic analysis predicted 11 unique putative metabolic subsystems from the CST genome for amino acid catabolism and hydrogen production. The in silico analysis of our study revealed that a characteristic system for amino acid catabolism-directed biofuel synthesis might have slowly evolved and established as a core genomic content of CST.
Collapse
|
14
|
Arrieta-Ortiz ML, Immanuel SRC, Turkarslan S, Wu WJ, Girinathan BP, Worley JN, DiBenedetto N, Soutourina O, Peltier J, Dupuy B, Bry L, Baliga NS. Predictive regulatory and metabolic network models for systems analysis of Clostridioides difficile. Cell Host Microbe 2021; 29:1709-1723.e5. [PMID: 34637780 PMCID: PMC8595754 DOI: 10.1016/j.chom.2021.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/29/2021] [Accepted: 09/16/2021] [Indexed: 12/15/2022]
Abstract
We present predictive models for comprehensive systems analysis of Clostridioides difficile, the etiology of pseudomembranous colitis. By leveraging 151 published transcriptomes, we generated an EGRIN model that organizes 90% of C. difficile genes into a transcriptional regulatory network of 297 co-regulated modules, implicating genes in sporulation, carbohydrate transport, and metabolism. By advancing a metabolic model through addition and curation of metabolic reactions including nutrient uptake, we discovered 14 amino acids, diverse carbohydrates, and 10 metabolic genes as essential for C. difficile growth in the intestinal environment. Finally, we developed a PRIME model to uncover how EGRIN-inferred combinatorial gene regulation by transcription factors, such as CcpA and CodY, modulates essential metabolic processes to enable C. difficile growth relative to commensal colonization. The C. difficile interactive web portal provides access to these model resources to support collaborative systems-level studies of context-specific virulence mechanisms in C. difficile.
Collapse
Affiliation(s)
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Brintha P Girinathan
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Jay N Worley
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Nicholas DiBenedetto
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Olga Soutourina
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-yvette 91198, France
| | - Johann Peltier
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-yvette 91198, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries anaérobies, Institut Pasteur, Université de Paris, UMR CNRS 2001, Paris 75015, France
| | - Lynn Bry
- Massachusetts Host-Microbiome Center, Brigham & Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
15
|
Jenior ML, Leslie JL, Powers DA, Garrett EM, Walker KA, Dickenson ME, Petri WA, Tamayo R, Papin JA. Novel Drivers of Virulence in Clostridioides difficile Identified via Context-Specific Metabolic Network Analysis. mSystems 2021; 6:e0091921. [PMID: 34609164 PMCID: PMC8547418 DOI: 10.1128/msystems.00919-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/17/2021] [Indexed: 12/20/2022] Open
Abstract
The pathogen Clostridioides difficile causes toxin-mediated diarrhea and is the leading cause of hospital-acquired infection in the United States. Due to growing antibiotic resistance and recurrent infection, targeting C. difficile metabolism presents a new approach to combat this infection. Genome-scale metabolic network reconstructions (GENREs) have been used to identify therapeutic targets and uncover properties that determine cellular behaviors. Thus, we constructed C. difficile GENREs for a hypervirulent isolate (strain [str.] R20291) and a historic strain (str. 630), validating both with in vitro and in vivo data sets. Growth simulations revealed significant correlations with measured carbon source usage (positive predictive value [PPV] ≥ 92.7%), and single-gene deletion analysis showed >89.0% accuracy. Next, we utilized each GENRE to identify metabolic drivers of both sporulation and biofilm formation. Through contextualization of each model using transcriptomes generated from in vitro and infection conditions, we discovered reliance on the pentose phosphate pathway as well as increased usage of cytidine and N-acetylneuraminate when virulence expression is reduced, which was subsequently supported experimentally. Our results highlight the ability of GENREs to identify novel metabolite signals in higher-order phenotypes like bacterial pathogenesis. IMPORTANCE Clostridioides difficile has become the leading single cause of hospital-acquired infections. Numerous studies have demonstrated the importance of specific metabolic pathways in aspects of C. difficile pathophysiology, from initial colonization to regulation of virulence factors. In the past, genome-scale metabolic network reconstruction (GENRE) analysis of bacteria has enabled systematic investigation of the genetic and metabolic properties that contribute to downstream virulence phenotypes. With this in mind, we generated and extensively curated C. difficile GENREs for both a well-studied laboratory strain (str. 630) and a more recently characterized hypervirulent isolate (str. R20291). In silico validation of both GENREs revealed high degrees of agreement with experimental gene essentiality and carbon source utilization data sets. Subsequent exploration of context-specific metabolism during both in vitro growth and infection revealed consistent patterns of metabolism which corresponded with experimentally measured increases in virulence factor expression. Our results support that differential C. difficile virulence is associated with distinct metabolic programs related to use of carbon sources and provide a platform for identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Matthew L. Jenior
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - Jhansi L. Leslie
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
| | - Deborah A. Powers
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| | - Elizabeth M. Garrett
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Kimberly A. Walker
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Mary E. Dickenson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - William A. Petri
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia Health System, Charlottesville, Virginia, USA
- Department of Pathology, University of Virginia Health System, Charlottesville, Virginia, USA
| | - Rita Tamayo
- Department of Microbiology & Immunology, University of North Carolina Chapel Hill School of Medicine, Chapel Hill, North Carolina, USA
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
- Department of Medicine, Division of Infectious Diseases & International Health, University of Virginia, Charlottesville, Virginia, USA
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
16
|
Ghorbani N, Assmar M, Amirmozafari N, Issazadeh K. Investigating the Efficiency of Recombinant FliC-Loaded Bacillus subtilis Spores in Mice Immunization against Salmonella enterica Serovar Typhi. IRANIAN JOURNAL OF PUBLIC HEALTH 2021; 50:1474-1482. [PMID: 34568187 PMCID: PMC8426781 DOI: 10.18502/ijph.v50i7.6638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 07/22/2020] [Indexed: 11/24/2022]
Abstract
Background: Bacterial spores are among the most efficient vaccine delivery vehicles. Because of their safety and efficacy, Bacillus subtilis spores are increasingly used in this regard. The negatively charged surfaces of the spores allow antigens to be adsorbed onto these structures. In this study, a candidate vaccine against Salmonella enterica serovar Typhi was adsorbed onto B. subtilis spores and the immunogenicity of the formulation was investigated in BALB/c mice. Methods: This work was performed during 2018–2019 in Islamic Azad University of Lahijan. FliC protein was recombinantly expressed in E. coli BL21 (DE3) cells and purified by affinity chromatography. On the other hand, B. subtilis strain PY79 (ATCC1609) was cultured in DSM medium and after the sporulation, FliC protein was adsorbed onto the spores in three different pH values (4, 7 and 10) and the adsorption was verified using dot-blot assay. FliC-adsorbed spores were then administered to BALB/c mice through the subcutaneous route. Mice immunization was evaluated by serum IgG assessment and challenge study. Results: FliC protein was successfully expressed and purified. Sporulation was controlled by phase-contrast microscopy. Serum IgG assay showed significant stimulation of the mice’s humoral immune system. Immunized mice were able to resist bacterial infection. Conclusion: The results showed the efficiency of spores as natural adjuvants for the stimulation of mice immune system. The formulation can be exploited for the delivery of recombinant vaccines against bacterial pathogens.
Collapse
Affiliation(s)
- Nafiseh Ghorbani
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran
| | - Mehdi Assmar
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran.,Department of Parasitology, Pasteur Institute of Iran, Tehran, Iran
| | - Nour Amirmozafari
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran.,Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Khosrow Issazadeh
- Department of Microbiology, Faculty of Basic Sciences, Islamic Azad University of Lahijan, Lahijan, Iran
| |
Collapse
|
17
|
Noori M, Ghalavand Z, Azimirad M, Yadegar A, Eslami G, Krutova M, Brajerova M, Goudarzi M, Zali MR. Genetic diversity and phylogenetic analysis of the surface layer protein A gene (slpA) among Clostridioides difficile clinical isolates from Tehran, Iran. Anaerobe 2021; 70:102403. [PMID: 34111549 DOI: 10.1016/j.anaerobe.2021.102403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/24/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Clostridioides difficile is the most common causative agent of healthcare-associated diarrhea. C. difficile strains produce a crystalline surface layer protein (SlpA), encoded by the slpA gene. Previous studies have shown that SlpA varies among C. difficile strains. In this study, we used the SlpA sequence-based typing system (SlpAST) for the molecular genotyping of C. difficile clinical isolates identified in Iran; the PCR ribotypes (RTs) and toxin profiles of the isolates were also characterized. Forty-eight C. difficile isolates were obtained from diarrheal patients, and characterized by capillary electrophoresis (CE) PCR ribotyping and the detection of toxin genes. In addition, the genetic diversity of the slpA gene was investigated by Sanger sequencing. The most common RTs were RT126 (20.8%), followed by RT001 (12.5%) and RT084 (10.4%). The intact PaLoc arrangement representing cdu2+/tcdR+/tcdB+/tcdE+/tcdA+/tcdC+/cdd3+ profile was the predominant pattern and cdtA and cdtB genes were found in one-third of the isolates. Using the SlpA genotyping, 12 main genotypes and 16 subtypes were identified. The SlpA type 078-1 was the most prevalent genotype (20.8%), and identified within the isolates of RT126. The yok-1, gr-1, cr-1 and kr-3 genotypes were detected in 14.5%, 12.5%, 12.5% and 8.3% of isolates, respectively. Almost all the isolates with the same RT were clustered in similar SlpA sequence types. In comparison to PCR ribotyping, SlpAST, as a simple and highly reproducible sequenced-based technique, can discriminate well between C. difficile isolates. This typing method appears to be a valuable tool for the epidemiological study of C. difficile isolates worldwide.
Collapse
Affiliation(s)
- Maryam Noori
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zohreh Ghalavand
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Masoumeh Azimirad
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abbas Yadegar
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Gita Eslami
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Marcela Krutova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Marie Brajerova
- Department of Medical Microbiology, Charles University, 2nd Faculty of Medicine and Motol University Hospital, Prague, Czech Republic
| | - Mehdi Goudarzi
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
18
|
Riedel T, Neumann-Schaal M, Wittmann J, Schober I, Hofmann JD, Lu CW, Dannheim A, Zimmermann O, Lochner M, Groß U, Overmann J. Characterization of Clostridioides difficile DSM 101085 with A-B-CDT+ Phenotype from a Late Recurrent Colonization. Genome Biol Evol 2021; 12:566-577. [PMID: 32302381 PMCID: PMC7250501 DOI: 10.1093/gbe/evaa072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/10/2020] [Indexed: 12/29/2022] Open
Abstract
During the last decades, hypervirulent strains of Clostridioides difficile with frequent disease recurrence and increased mortality appeared. Clostridioides difficile DSM 101085 was isolated from a patient who suffered from several recurrent infections and colonizations, likely contributing to a fatal outcome. Analysis of the toxin repertoire revealed the presence of a complete binary toxin locus and an atypical pathogenicity locus consisting of only a tcdA pseudogene and a disrupted tcdC gene sequence. The pathogenicity locus shows upstream a transposon and has been subject to homologous recombination or lateral gene transfer events. Matching the results of the genome analysis, neither TcdA nor TcdB production but the expression of cdtA and cdtB was detected. This highlights a potential role of the binary toxin C. difficile toxin in this recurrent colonization and possibly further in a host-dependent virulence. Compared with the C. difficile metabolic model strains DSM 28645 (630Δerm) and DSM 27147 (R20291), strain DSM 101085 showed a specific metabolic profile, featuring changes in the threonine degradation pathways and alterations in the central carbon metabolism. Moreover, products originating from Stickland pathways processing leucine, aromatic amino acids, and methionine were more abundant in strain DSM 101085, indicating a more efficient use of these substrates. The particular characteristics of strain C. difficile DSM 101085 may represent an adaptation to a low-protein diet in a patient with recurrent infections.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Julia Danielle Hofmann
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Chia-Wen Lu
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Antonia Dannheim
- Department of Bioinformatics and Biochemistry and Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Germany
| | - Ortrud Zimmermann
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, a Joint Venture between the Medical School Hannover (MHH) and the Helmholtz Centre for Infection Research (HZI), Hannover, Germany
| | - Uwe Groß
- Institute of Medical Microbiology, University Medical Center Göttingen, Germany.,Göttingen International Health Network, Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technical University of Braunschweig, Germany
| |
Collapse
|
19
|
Kartalidis P, Skoulakis A, Tsilipounidaki K, Florou Z, Petinaki E, Fthenakis GC. Clostridioides difficile as a Dynamic Vehicle for the Dissemination of Antimicrobial-Resistance Determinants: Review and In Silico Analysis. Microorganisms 2021; 9:microorganisms9071383. [PMID: 34202117 PMCID: PMC8307371 DOI: 10.3390/microorganisms9071383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 01/11/2023] Open
Abstract
The present paper is divided into two parts. The first part focuses on the role of Clostridioides difficile in the accumulation of genes associated with antimicrobial resistance and then the transmission of them to other pathogenic bacteria occupying the same human intestinal niche. The second part describes an in silico analysis of the genomes of C. difficile available in GenBank, with regard to the presence of mobile genetic elements and antimicrobial resistance genes. The diversity of the C. difficile genome is discussed, and the current status of resistance of the organisms to various antimicrobial agents is reviewed. The role of transposons associated with antimicrobial resistance is appraised; the importance of plasmids associated with antimicrobial resistance is discussed, and the significance of bacteriophages as a potential shuttle for antimicrobial resistance genes is presented. In the in silico study, 1101 C. difficile genomes were found to harbor mobile genetic elements; Tn6009, Tn6105, CTn7 and Tn6192, Tn6194 and IS256 were the ones more frequently identified. The genes most commonly harbored therein were: ermB, blaCDD, vanT, vanR, vanG and vanS. Tn6194 was likely associated with resistance to erythromycin, Tn6192 and CTn7 with resistance to the β-lactams and vancomycin, IS256 with resistance to aminoglycoside and Tn6105 to vancomycin.
Collapse
Affiliation(s)
- Philip Kartalidis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Anargyros Skoulakis
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Katerina Tsilipounidaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Zoi Florou
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - Efthymia Petinaki
- Department of Clinical and Laboratory Research, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41110 Larissa, Greece; (P.K.); (A.S.); (K.T.); (Z.F.); (E.P.)
| | - George C. Fthenakis
- Veterinary Faculty, University of Thessaly, 43100 Karditsa, Greece
- Correspondence:
| |
Collapse
|
20
|
Ammam F, Patin D, Coullon H, Blanot D, Lambert T, Mengin-Lecreulx D, Candela T. AsnB is responsible for peptidoglycan precursor amidation in Clostridium difficile in the presence of vancomycin. MICROBIOLOGY-SGM 2021; 166:567-578. [PMID: 32375990 DOI: 10.1099/mic.0.000917] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Clostridium difficile 630 possesses a cryptic but functional gene cluster vanG Cd homologous to the vanG operon of Enterococcus faecalis. Expression of vanG Cd in the presence of subinhibitory concentrations of vancomycin is accompanied by peptidoglycan amidation on the meso-DAP residue. In this paper, we report the presence of two potential asparagine synthetase genes named asnB and asnB2 in the C. difficile genome whose products were potentially involved in this peptidoglycan structure modification. We found that asnB expression was only induced when C. difficile was grown in the presence of vancomycin, yet independently from the vanG Cd resistance and regulation operons. In addition, peptidoglycan precursors were not amidated when asnB was inactivated. No change in vancomycin MIC was observed in the asnB mutant strain. In contrast, overexpression of asnB resulted in the amidation of most of the C. difficile peptidoglycan precursors and in a weak increase of vancomycin susceptibility. AsnB activity was confirmed in E. coli. In contrast, the expression of the second asparagine synthetase, AsnB2, was not induced in the presence of vancomycin. In summary, our results demonstrate that AsnB is responsible for peptidoglycan amidation of C. difficile in the presence of vancomycin.
Collapse
Affiliation(s)
- Fariza Ammam
- Present address: Department of Engineering Science, University of Oxford, Parks Road, Oxford,OX1 3PJ, UK.,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| | - Delphine Patin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Héloise Coullon
- Present address: Division of Infectious Diseases, Department of Medicine, Washington University, School of Medicine, St. Louis, MO, USA.,Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| | - Didier Blanot
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Thierry Lambert
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| | - Dominique Mengin-Lecreulx
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Thomas Candela
- Université Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, Jouy en Josas, France
| |
Collapse
|
21
|
Oatley P, Kirk JA, Ma S, Jones S, Fagan RP. Spatial organization of Clostridium difficile S-layer biogenesis. Sci Rep 2020; 10:14089. [PMID: 32839524 PMCID: PMC7445750 DOI: 10.1038/s41598-020-71059-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/09/2020] [Indexed: 12/29/2022] Open
Abstract
Surface layers (S-layers) are protective protein coats which form around all archaea and most bacterial cells. Clostridium difficile is a Gram-positive bacterium with an S-layer covering its peptidoglycan cell wall. The S-layer in C. difficile is constructed mainly of S-layer protein A (SlpA), which is a key virulence factor and an absolute requirement for disease. S-layer biogenesis is a complex multi-step process, disruption of which has severe consequences for the bacterium. We examined the subcellular localization of SlpA secretion and S-layer growth; observing formation of S-layer at specific sites that coincide with cell wall synthesis, while the secretion of SlpA from the cell is relatively delocalized. We conclude that this delocalized secretion of SlpA leads to a pool of precursor in the cell wall which is available to repair openings in the S-layer formed during cell growth or following damage.
Collapse
Affiliation(s)
- Peter Oatley
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
- School of Medicine, University of Central Lancashire, Preston, PR1 7BH, UK.
| | - Joseph A Kirk
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK
| | - Shuwen Ma
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Simon Jones
- Department of Chemistry, University of Sheffield, Sheffield, S3 7HF, UK
| | - Robert P Fagan
- Department of Molecular Biology and Biotechnology, Florey Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
22
|
Soutourina O, Dubois T, Monot M, Shelyakin PV, Saujet L, Boudry P, Gelfand MS, Dupuy B, Martin-Verstraete I. Genome-Wide Transcription Start Site Mapping and Promoter Assignments to a Sigma Factor in the Human Enteropathogen Clostridioides difficile. Front Microbiol 2020; 11:1939. [PMID: 32903654 PMCID: PMC7438776 DOI: 10.3389/fmicb.2020.01939] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/23/2020] [Indexed: 12/12/2022] Open
Abstract
The emerging human enteropathogen Clostridioides difficile is the main cause of diarrhea associated with antibiotherapy. Regulatory pathways underlying the adaptive responses remain understudied and the global view of C. difficile promoter structure is still missing. In the genome of C. difficile 630, 22 genes encoding sigma factors are present suggesting a complex pattern of transcription in this bacterium. We present here the first transcriptional map of the C. difficile genome resulting from the identification of transcriptional start sites (TSS), promoter motifs and operon structures. By 5′-end RNA-seq approach, we mapped more than 1000 TSS upstream of genes. In addition to these primary TSS, this analysis revealed complex structure of transcriptional units such as alternative and internal promoters, potential RNA processing events and 5′ untranslated regions. By following an in silico iterative strategy that used as an input previously published consensus sequences and transcriptomic analysis, we identified candidate promoters upstream of most of protein-coding and non-coding RNAs genes. This strategy also led to refine consensus sequences of promoters recognized by major sigma factors of C. difficile. Detailed analysis focuses on the transcription in the pathogenicity locus and regulatory genes, as well as regulons of transition phase and sporulation sigma factors as important components of C. difficile regulatory network governing toxin gene expression and spore formation. Among the still uncharacterized regulons of the major sigma factors of C. difficile, we defined the SigL regulon by combining transcriptome and in silico analyses. We showed that the SigL regulon is largely involved in amino-acid degradation, a metabolism crucial for C. difficile gut colonization. Finally, we combined our TSS mapping, in silico identification of promoters and RNA-seq data to improve gene annotation and to suggest operon organization in C. difficile. These data will considerably improve our knowledge of global regulatory circuits controlling gene expression in C. difficile and will serve as a useful rich resource for scientific community both for the detailed analysis of specific genes and systems biology studies.
Collapse
Affiliation(s)
- Olga Soutourina
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France.,Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| | - Thomas Dubois
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Marc Monot
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | | | - Laure Saujet
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Pierre Boudry
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Mikhail S Gelfand
- Institute for Information Transmission Problems, Moscow, Russia.,Skolkovo Institute of Science and Technology, Moscow, Russia
| | - Bruno Dupuy
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèses des Bactéries Anaérobies, Institut Pasteur, UMR CNRS 2001, Université de Paris, Paris, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
23
|
Regulation and Anaerobic Function of the Clostridioides difficile β-Lactamase. Antimicrob Agents Chemother 2019; 64:AAC.01496-19. [PMID: 31611350 DOI: 10.1128/aac.01496-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 10/07/2019] [Indexed: 01/05/2023] Open
Abstract
Clostridioides difficile causes severe antibiotic-associated diarrhea and colitis. C. difficile is an anaerobic, Gram-positive sporeformer that is highly resistant to β-lactams, the most commonly prescribed antibiotics. The resistance of C. difficile to β-lactam antibiotics allows the pathogen to replicate and cause disease in antibiotic-treated patients. However, the mechanisms of β-lactam resistance in C. difficile are not fully understood. Our data reinforce prior evidence that C. difficile produces a β-lactamase, which is a common β-lactam resistance mechanism found in other bacterial species. Here, we characterize the C. difficile bla operon that encodes a lipoprotein of unknown function and a β-lactamase that was greatly induced in response to several classes of β-lactam antibiotics. An in-frame deletion of the operon abolished β-lactamase activity in C. difficile strain 630Δerm and resulted in decreased resistance to the β-lactam ampicillin. We found that the activity of this β-lactamase, BlaCDD, is dependent upon the redox state of the enzyme. In addition, we observed that transport of BlaCDD out of the cytosol and to the cell surface is facilitated by an N-terminal signal sequence. Our data demonstrate that a cotranscribed lipoprotein, BlaX, aids in BlaCDD activity. Further, we identified a conserved BlaRI regulatory system and demonstrated via insertional disruption that BlaRI controls transcription of the blaXCDD genes in response to β-lactams. These results provide support for the function of a β-lactamase in C. difficile antibiotic resistance and reveal the unique roles of a coregulated lipoprotein and reducing environment in C. difficile β-lactamase activity.
Collapse
|
24
|
Zheng N, Gu Y, Hong Y, Sheng L, Chen L, Zhang F, Hou J, Zhang W, Zhang Z, Jia W, Li H. Vancomycin pretreatment attenuates acetaminophen-induced liver injury through 2-hydroxybutyric acid. J Pharm Anal 2019; 10:560-570. [PMID: 33425450 PMCID: PMC7775853 DOI: 10.1016/j.jpha.2019.11.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/11/2019] [Accepted: 11/05/2019] [Indexed: 12/25/2022] Open
Abstract
Liver injury caused by acetaminophen (AP) overdose is a leading public health problem. Although AP-induced liver injury is well recognized as the formation of N-acetyl-p-benzoquinone (NAPQI), a toxic metabolite of AP, resulting in cell damage, emerging evidence indicates that AP-induced liver injury is also associated with gut microbiota. However, the gut microbiota-involved mechanism remains largely unknown. In our study, we found that vancomycin (Vac) pretreatment (100 mg/kg, twice a day for 4 days) attenuated AP-induced liver injury, altered the composition of gut microbiota, and changed serum metabolic profile. Moreover, we identified Vac pretreatment elevated cecum and serum 2-hydroxybutyric acid (2-HB), which ameliorated AP-induced cell damage and liver injury in mice by reducing AP bioavailability and elevating GSH levels. Our current results revealed the novel role of 2-HB in protecting AP-induced liver injury and add new evidence for gut microbiota in affecting AP toxicity. Vac pretreatment attenuated AP-induced liver injury in rats. Vac pretreatment elevated metabolite 2-HB both in cecum and serum. 2-HB attenuated the AP-induced hepatotoxicity both in vitro and in vivo.
Collapse
Affiliation(s)
- Ningning Zheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Yu Gu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Ying Hong
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Lili Sheng
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Linlin Chen
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Feng Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Jie Hou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, 116044, China
| | - Weidong Zhang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.,School of Pharmacy, Second Military Medical University, Shanghai, 200433, China
| | - Zean Zhang
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Wei Jia
- University of Hawaii Cancer Center, Honolulu, HI, 96813, USA.,Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Houkai Li
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|
25
|
Wu Y, Yang L, Li WG, Zhang WZ, Liu ZJ, Lu JX. Microevolution within ST11 group Clostridioides difficile isolates through mobile genetic elements based on complete genome sequencing. BMC Genomics 2019; 20:796. [PMID: 31666016 PMCID: PMC6822371 DOI: 10.1186/s12864-019-6184-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 10/15/2019] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Clade 5 Clostridioides difficile diverges significantly from the other clades and is therefore, attracting increasing attention due its great heterogeneity. In this study, we used third-generation sequencing techniques to sequence the complete whole genomes of three ST11 C. difficile isolates, RT078 and another two new ribotypes (RTs), obtained from three independent hospitalized elderly patients undergoing antibiotics treatment. Mobile genetic elements (MGEs), antibiotic-resistance, drug resistance genes, and virulent-related genes were analyzed and compared within these three isolates. RESULTS Isolates 10,010 and 12,038 carried a distinct deletion in tcdA compared with isolate 21,062. Furthermore, all three isolates had identical deletions and point-mutations in tcdC, which was once thought to be a unique characteristic of RT078. Isolate 21,062 (RT078) had a unique plasmid, different numbers of transposons and genetic organization, and harboring special CRISPR spacers. All three isolates retained high-level sensitivity to 11 drugs and isolate 21,062 (RT078) carried distinct drug-resistance genes and loss of numerous flagellum-related genes. CONCLUSIONS We concluded that capillary electrophoresis based PCR-ribotyping is important for confirming RT078. Furthermore, RT078 isolates displayed specific MGEs, indicating an independent evolutionary process. In the further study, we could testify these findings with more RT078 isolates of divergent origins.
Collapse
Affiliation(s)
- Yuan Wu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| | - Lin Yang
- BGI-Shen zhen, main building, Beishan industry zone, Yan tian District, Shenzhen, China
| | - Wen-Ge Li
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Wen Zhu Zhang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zheng Jie Liu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jin-Xing Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China. .,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Hangzhou, China.
| |
Collapse
|
26
|
Yuan Y, Zallot R, Grove TL, Payan DJ, Martin-Verstraete I, Šepić S, Balamkundu S, Neelakandan R, Gadi VK, Liu CF, Swairjo MA, Dedon PC, Almo SC, Gerlt JA, de Crécy-Lagard V. Discovery of novel bacterial queuine salvage enzymes and pathways in human pathogens. Proc Natl Acad Sci U S A 2019; 116:19126-19135. [PMID: 31481610 PMCID: PMC6754566 DOI: 10.1073/pnas.1909604116] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Queuosine (Q) is a complex tRNA modification widespread in eukaryotes and bacteria that contributes to the efficiency and accuracy of protein synthesis. Eukaryotes are not capable of Q synthesis and rely on salvage of the queuine base (q) as a Q precursor. While many bacteria are capable of Q de novo synthesis, salvage of the prokaryotic Q precursors preQ0 and preQ1 also occurs. With the exception of Escherichia coli YhhQ, shown to transport preQ0 and preQ1, the enzymes and transporters involved in Q salvage and recycling have not been well described. We discovered and characterized 2 Q salvage pathways present in many pathogenic and commensal bacteria. The first, found in the intracellular pathogen Chlamydia trachomatis, uses YhhQ and tRNA guanine transglycosylase (TGT) homologs that have changed substrate specificities to directly salvage q, mimicking the eukaryotic pathway. The second, found in bacteria from the gut flora such as Clostridioides difficile, salvages preQ1 from q through an unprecedented reaction catalyzed by a newly defined subgroup of the radical-SAM enzyme family. The source of q can be external through transport by members of the energy-coupling factor (ECF) family or internal through hydrolysis of Q by a dedicated nucleosidase. This work reinforces the concept that hosts and members of their associated microbiota compete for the salvage of Q precursors micronutrients.
Collapse
Affiliation(s)
- Yifeng Yuan
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Rémi Zallot
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Tyler L Grove
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - Daniel J Payan
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Isabelle Martin-Verstraete
- Laboratoire de Pathogénèse des Bactéries Anaérobies, Institut Pasteur et Université de Paris, F-75015 Paris, France
| | - Sara Šepić
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611
| | - Seetharamsingh Balamkundu
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Ramesh Neelakandan
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Vinod K Gadi
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Chuan-Fa Liu
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
| | - Manal A Swairjo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, CA 92182
- The Viral Information Institute, San Diego State University, San Diego, CA 92182
| | - Peter C Dedon
- Singapore-MIT Alliance for Research and Technology, Infectious Disease Interdisciplinary Research Group, 138602 Singapore, Singapore
- Department of Biological Engineering and Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139
- Center for Environmental Health Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Steven C Almo
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461
| | - John A Gerlt
- Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Valérie de Crécy-Lagard
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL 32611;
- University of Florida Genetics Institute, Gainesville, FL 32610
| |
Collapse
|
27
|
Bouillaut L, Newton W, Sonenshein AL, Belitsky BR. DdlR, an essential transcriptional regulator of peptidoglycan biosynthesis in Clostridioides difficile. Mol Microbiol 2019; 112:1453-1470. [PMID: 31483905 DOI: 10.1111/mmi.14371] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2019] [Indexed: 12/11/2022]
Abstract
D-Ala-D-Ala ligase, encoded by ddl genes, is responsible for the synthesis of a dipeptide, D-Ala-D-Ala, an essential precursor of bacterial peptidoglycan. In Clostridioides difficile, the single ddl gene is located upstream of the ddlR gene, which encodes a putative transcriptional regulator. Using mutational and transcriptional analysis and DNA-binding assays, DdlR was found to be a direct activator of the ddl ddlR operon. DdlR is a member of the MocR/GabR-type proteins that have aminotransferase-like, pyridoxal 5'-phosphate-binding domains. A DdlR mutation that prevented covalent binding of pyridoxal 5'-phosphate abolished the ability of DdlR to activate transcription. Addition of D-Ala-D-Ala to the medium inactivated DdlR, reducing dipeptide biosynthesis. In contrast, D-Ala-D-Ala limitation caused a dramatic increase in expression from the ddl promoter. Though uncommon for transcription regulators, C. difficile DdlR is essential, as the ddlR null mutant cells could not grow even in complex laboratory media in the absence of D-Ala-D-Ala. A dyad symmetry sequence, which is located immediately upstream of the -35 region of the ddl promoter, serves as an important element of the DdlR-binding site. This sequence is conserved upstream of putative DdlR targets in other bacteria of classes Clostridia and Bacilli, indicating a similar mode of regulation of these genes.
Collapse
Affiliation(s)
- Laurent Bouillaut
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - William Newton
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Abraham L Sonenshein
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Boris R Belitsky
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| |
Collapse
|
28
|
Dubois T, Tremblay YDN, Hamiot A, Martin-Verstraete I, Deschamps J, Monot M, Briandet R, Dupuy B. A microbiota-generated bile salt induces biofilm formation in Clostridium difficile. NPJ Biofilms Microbiomes 2019; 5:14. [PMID: 31098293 PMCID: PMC6509328 DOI: 10.1038/s41522-019-0087-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
Clostridium difficile is a major cause of nosocomial infections. Bacterial persistence in the gut is responsible for infection relapse; sporulation and other unidentified mechanisms contribute to this process. Intestinal bile salts cholate and deoxycholate stimulate spore germination, while deoxycholate kills vegetative cells. Here, we report that sub-lethal concentrations of deoxycholate stimulate biofilm formation, which protects C. difficile from antimicrobial compounds. The biofilm matrix is composed of extracellular DNA and proteinaceous factors that promote biofilm stability. Transcriptomic analysis indicates that deoxycholate induces metabolic pathways and cell envelope reorganization, and represses toxin and spore production. In support of the transcriptomic analysis, we show that global metabolic regulators and an uncharacterized lipoprotein contribute to deoxycholate-induced biofilm formation. Finally, Clostridium scindens enhances biofilm formation of C. difficile by converting cholate into deoxycholate. Together, our results suggest that deoxycholate is an intestinal signal that induces C. difficile persistence and may increase the risk of relapse.
Collapse
Affiliation(s)
- Thomas Dubois
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Present Address: INRA, UMR UMET, Villeneuve d’Ascq, France
| | - Yannick D. N. Tremblay
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Audrey Hamiot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
- Present Address: INRA, UMR UMET, Villeneuve d’Ascq, France
| | - Isabelle Martin-Verstraete
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Julien Deschamps
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Marc Monot
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Romain Briandet
- Institut Micalis, INRA, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Bruno Dupuy
- Laboratoire Pathogenèse des Bactéries Anaérobies, Institut Pasteur, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
29
|
Moore RJ, Lacey JA. Genomics of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0033-2018. [PMID: 31215504 PMCID: PMC11257213 DOI: 10.1128/microbiolspec.gpp3-0033-2018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2018] [Indexed: 12/12/2022] Open
Abstract
Whole-genome sequences are now available for all the clinically important clostridia and many of the lesser or opportunistically pathogenic clostridia. The complex clade structures of C. difficile, C. perfringens, and the species that produce botulinum toxins have been delineated by whole-genome sequence analysis. The true clostridia of cluster I show relatively low levels of gross genomic rearrangements within species, in contrast to the species of cluster XI, notably C. difficile, which have been found to have very plastic genomes with significant levels of chromosomal rearrangement. Throughout the clostridial phylotypes, a large proportion of the strain diversity is driven by the acquisition and loss of mobile elements, including phages, plasmids, insertion sequences, and transposons. Genomic analysis has been used to investigate the diversity and spread of C. difficile within hospital settings, the zoonotic transfer of isolates, and the emergence, origins, and geographic spread of epidemic ribotypes. In C. perfringens the clades defined by chromosomal sequence analysis show no indications of clustering based on host species or geographical location. Whole-genome sequence analysis helps to define the different survival and pathogenesis strategies that the clostridia use. Some, such as C. botulinum, produce toxins which rapidly act to kill the host, whereas others, such as C. perfringens and C. difficile, produce less lethal toxins which can damage tissue but do not rapidly kill the host. The genomes provide a resource that can be mined to identify potential vaccine antigens and targets for other forms of therapeutic intervention.
Collapse
Affiliation(s)
- Robert J Moore
- Host-Microbe Interactions Laboratory, School of Science, RMIT University, Bundoora, Victoria 3083, Australia
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Jake A Lacey
- Doherty Department, University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria 3000, Australia
| |
Collapse
|
30
|
Independent Microevolution Mediated by Mobile Genetic Elements of Individual Clostridium difficile Isolates from Clade 4 Revealed by Whole-Genome Sequencing. mSystems 2019; 4:mSystems00252-18. [PMID: 30944881 PMCID: PMC6435816 DOI: 10.1128/msystems.00252-18] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/18/2019] [Indexed: 12/15/2022] Open
Abstract
Mobile genetic elements play a key role in the continuing evolution of Clostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4 C. difficile isolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/b with aac(6′) aph(2′′) instead of catD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates. Horizontal gene transfer of mobile genetic elements (MGEs) accounts for the mosaic genome of Clostridium difficile, leading to acquisition of new phenotypes, including drug resistance and reconstruction of the genomes. MGEs were analyzed according to the whole-genome sequences of 37 C. difficile isolates with a variety of sequence types (STs) within clade 4 from China. Great diversity was found in each transposon even within isolates with the same ST. Two novel transposons were identified in isolates ZR9 and ZR18, of which approximately one third to half of the genes showed heterogenous origins compared with the usual intestinal bacterial genes. Most importantly, catD, known to be harbored by Tn4453a/b, was replaced by aac(6′) aph(2′′) in isolates 2, 7, and 28. This phenomenon illustrated the frequent occurrence of gene exchanges between C. difficile and other enterobacteria with individual heterogeneity. Numerous prophages and CRISPR arrays were identified in C. difficile isolates of clade 4. Approximately 20% of spacers were located in prophage-carried CRISPR arrays, providing a new method for typing and tracing the origins of closely related isolates, as well as in-depth studies of the mechanism underlying genome remodeling. The rates of drug resistance were obviously higher than those reported previously around the world, although all isolates retained high sensitivity to vancomycin and metronidazole. The increasing number of C. difficile isolates resistant to all antibiotics tested here suggests the ease with which resistance is acquired in vivo. This study gives insights into the genetic mechanism of microevolution within clade 4. IMPORTANCE Mobile genetic elements play a key role in the continuing evolution of Clostridium difficile, resulting in the emergence of new phenotypes for individual isolates. On the basis of whole-genome sequencing analysis, we comprehensively explored transposons, CRISPR, prophage, and genetic sites for drug resistance within clade 4 C. difficile isolates with different sequence types. Great diversity in MGEs and a high rate of multidrug resistance were found within this clade, including new transposons, Tn4453a/b with aac(6′) aph(2′′) instead of catD, and a relatively high rate of prophage-carried CRISPR arrays. These findings provide important new insights into the mechanism of genome remodeling within clade 4 and offer a new method for typing and tracing the origins of closely related isolates.
Collapse
|
31
|
Neumann-Schaal M, Jahn D, Schmidt-Hohagen K. Metabolism the Difficile Way: The Key to the Success of the Pathogen Clostridioides difficile. Front Microbiol 2019; 10:219. [PMID: 30828322 PMCID: PMC6384274 DOI: 10.3389/fmicb.2019.00219] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 01/28/2019] [Indexed: 12/11/2022] Open
Abstract
Strains of Clostridioides difficile cause detrimental diarrheas with thousands of deaths worldwide. The infection process by the Gram-positive, strictly anaerobic gut bacterium is directly related to its unique metabolism, using multiple Stickland-type amino acid fermentation reactions coupled to Rnf complex-mediated sodium/proton gradient formation for ATP generation. Major pathways utilize phenylalanine, leucine, glycine and proline with the formation of 3-phenylproprionate, isocaproate, butyrate, 5-methylcaproate, valerate and 5-aminovalerate. In parallel a versatile sugar catabolism including pyruvate formate-lyase as a central enzyme and an incomplete tricarboxylic acid cycle to prevent unnecessary NADH formation completes the picture. However, a complex gene regulatory network that carefully mediates the continuous adaptation of this metabolism to changing environmental conditions is only partially elucidated. It involves the pleiotropic regulators CodY and SigH, the known carbon metabolism regulator CcpA, the proline regulator PrdR, the iron regulator Fur, the small regulatory RNA CsrA and potentially the NADH-responsive regulator Rex. Here, we describe the current knowledge of the metabolic principles of energy generation by C. difficile and the underlying gene regulatory scenarios.
Collapse
Affiliation(s)
- Meina Neumann-Schaal
- Leibniz Institute DSMZ, German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany.,Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Braunschweig, Germany
| | - Dieter Jahn
- Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Braunschweig, Germany.,Institute of Microbiology, Braunschweig University of Technology, Braunschweig, Germany
| | - Kerstin Schmidt-Hohagen
- Integrated Centre of Systems Biology (BRICS), Braunschweig University of Technology, Braunschweig, Germany.,Department of Bioinformatics and Biochemistry, Braunschweig University of Technology, Braunschweig, Germany
| |
Collapse
|
32
|
Berges M, Michel AM, Lassek C, Nuss AM, Beckstette M, Dersch P, Riedel K, Sievers S, Becher D, Otto A, Maaß S, Rohde M, Eckweiler D, Borrero-de Acuña JM, Jahn M, Neumann-Schaal M, Jahn D. Iron Regulation in Clostridioides difficile. Front Microbiol 2018; 9:3183. [PMID: 30619231 PMCID: PMC6311696 DOI: 10.3389/fmicb.2018.03183] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/10/2018] [Indexed: 12/13/2022] Open
Abstract
The response to iron limitation of several bacteria is regulated by the ferric uptake regulator (Fur). The Fur-regulated transcriptional, translational and metabolic networks of the Gram-positive, pathogen Clostridioides difficile were investigated by a combined RNA sequencing, proteomic, metabolomic and electron microscopy approach. At high iron conditions (15 μM) the C. difficile fur mutant displayed a growth deficiency compared to wild type C. difficile cells. Several iron and siderophore transporter genes were induced by Fur during low iron (0.2 μM) conditions. The major adaptation to low iron conditions was observed for the central energy metabolism. Most ferredoxin-dependent amino acid fermentations were significantly down regulated (had, etf, acd, grd, trx, bdc, hbd). The substrates of these pathways phenylalanine, leucine, glycine and some intermediates (phenylpyruvate, 2-oxo-isocaproate, 3-hydroxy-butyryl-CoA, crotonyl-CoA) accumulated, while end products like isocaproate and butyrate were found reduced. Flavodoxin (fldX) formation and riboflavin biosynthesis (rib) were enhanced, most likely to replace the missing ferredoxins. Proline reductase (prd), the corresponding ion pumping RNF complex (rnf) and the reaction product 5-aminovalerate were significantly enhanced. An ATP forming ATPase (atpCDGAHFEB) of the F0F1-type was induced while the formation of a ATP-consuming, proton-pumping V-type ATPase (atpDBAFCEKI) was decreased. The [Fe-S] enzyme-dependent pyruvate formate lyase (pfl), formate dehydrogenase (fdh) and hydrogenase (hyd) branch of glucose utilization and glycogen biosynthesis (glg) were significantly reduced, leading to an accumulation of glucose and pyruvate. The formation of [Fe-S] enzyme carbon monoxide dehydrogenase (coo) was inhibited. The fur mutant showed an increased sensitivity to vancomycin and polymyxin B. An intensive remodeling of the cell wall was observed, Polyamine biosynthesis (spe) was induced leading to an accumulation of spermine, spermidine, and putrescine. The fur mutant lost most of its flagella and motility. Finally, the CRISPR/Cas and a prophage encoding operon were downregulated. Fur binding sites were found upstream of around 20 of the regulated genes. Overall, adaptation to low iron conditions in C. difficile focused on an increase of iron import, a significant replacement of iron requiring metabolic pathways and the restructuring of the cell surface for protection during the complex adaptation phase and was only partly directly regulated by Fur.
Collapse
Affiliation(s)
- Mareike Berges
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Annika-Marisa Michel
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | - Christian Lassek
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Aaron M Nuss
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Michael Beckstette
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Petra Dersch
- Department of Molecular Infection Biology, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Katharina Riedel
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Susanne Sievers
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Andreas Otto
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Sandra Maaß
- Center for Functional Genomics of Microbes (CFGM), Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Manfred Rohde
- Central Facility for Microscopy, Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany
| | - Denitsa Eckweiler
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany
| | | | - Martina Jahn
- Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| | - Meina Neumann-Schaal
- Leibniz-Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Braunschweig, Germany
| | - Dieter Jahn
- Braunschweig Integrated Centre of Systems Biology (BRICS), Technische Universität Braunschweig, Braunschweig, Germany.,Institute of Microbiology, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
33
|
Increased sporulation underpins adaptation of Clostridium difficile strain 630 to a biologically-relevant faecal environment, with implications for pathogenicity. Sci Rep 2018; 8:16691. [PMID: 30420658 PMCID: PMC6232153 DOI: 10.1038/s41598-018-35050-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/24/2018] [Indexed: 02/07/2023] Open
Abstract
Clostridium difficile virulence is driven primarily by the processes of toxinogenesis and sporulation, however many in vitro experimental systems for studying C. difficile physiology have arguably limited relevance to the human colonic environment. We therefore created a more physiologically–relevant model of the colonic milieu to study gut pathogen biology, incorporating human faecal water (FW) into growth media and assessing the physiological effects of this on C. difficile strain 630. We identified a novel set of C. difficile–derived metabolites in culture supernatants, including hexanoyl– and pentanoyl–amino acid derivatives by LC-MSn. Growth of C. difficile strain 630 in FW media resulted in increased cell length without altering growth rate and RNA sequencing identified 889 transcripts as differentially expressed (p < 0.001). Significantly, up to 300–fold increases in the expression of sporulation–associated genes were observed in FW media–grown cells, along with reductions in motility and toxin genes’ expression. Moreover, the expression of classical stress–response genes did not change, showing that C. difficile is well–adapted to this faecal milieu. Using our novel approach we have shown that interaction with FW causes fundamental changes in C. difficile biology that will lead to increased disease transmissibility.
Collapse
|
34
|
Ghattargi VC, Gaikwad MA, Meti BS, Nimonkar YS, Dixit K, Prakash O, Shouche YS, Pawar SP, Dhotre DP. Comparative genome analysis reveals key genetic factors associated with probiotic property in Enterococcus faecium strains. BMC Genomics 2018; 19:652. [PMID: 30180794 PMCID: PMC6122445 DOI: 10.1186/s12864-018-5043-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 08/27/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Enterococcus faecium though commensal in the human gut, few strains provide a beneficial effect to humans as probiotics while few are responsible for the nosocomial infection. Comparative genomics of E. faecium can decipher the genomic differences responsible for probiotic, pathogenic and non-pathogenic properties. In this study, we compared E. faecium strain 17OM39 with a marketed probiotic, non-pathogenic non-probiotic (NPNP) and pathogenic strains. RESULTS E. faecium 17OM39 was found to be closely related with marketed probiotic strain T110 based on core genome analysis. Strain 17OM39 was devoid of known vancomycin, tetracycline resistance and functional virulence genes. Moreover, E. faecium 17OM39 genome was found to be more stable due to the absence of frequently found transposable elements. Genes imparting beneficial functional properties were observed to be present in marketed probiotic T110 and 17OM39 strains. Genes associated with colonization and survival within gastrointestinal tract was also detected across all the strains. CONCLUSIONS Beyond shared genetic features; this study particularly identified genes that are responsible for imparting probiotic, non-pathogenic and pathogenic features to the strains of E. faecium. Higher genomic stability, absence of known virulence factors and antibiotic resistance genes and close genomic relatedness with marketed probiotics makes E. faecium 17OM39 a potential probiotic candidate. The work presented here demonstrates that comparative genome analyses can be applied to large numbers of genomes, to find potential probiotic candidates.
Collapse
Affiliation(s)
- Vikas C. Ghattargi
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Meghana A. Gaikwad
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Bharati S. Meti
- Department of Biotechnology, Basaveshwar Engineering College, Bagalkot, Karnataka 587102 India
| | - Yogesh S. Nimonkar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Kunal Dixit
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Om Prakash
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Yogesh S. Shouche
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Shrikant P. Pawar
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| | - Dhiraj P. Dhotre
- National Centre for Microbial Resource (NCMR), National Centre for Cell Science (NCCS), Pune, Maharashtra 411021 India
| |
Collapse
|
35
|
Roberts AP, Smits WK. The evolving epidemic of Clostridium difficile 630. Anaerobe 2018; 53:2-4. [PMID: 29730161 DOI: 10.1016/j.anaerobe.2018.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/24/2018] [Accepted: 04/26/2018] [Indexed: 02/04/2023]
Abstract
Clostridium difficile is a major pathogen responsible for a range of diseases in humans and animals. The genetic tools used to explore C. difficile biology are a relatively recent development in comparison to those used to investigate some other pathogens. Consequently, a rapid and haphazard dispersal of strains throughout the scientific community has led to the evolution of different C. difficile lineages within strains in different geographical locations and these genotypic differences are likely to affect the phenotype of the organism. Here we review the history of C. difficile 630, the first genome-sequenced C. difficile isolate and the most widely distributed reference strain, and its derivatives. We also invite researchers to take part in a community wide genome sequencing study to trace the evolution of these strains as they have travelled between laboratories around the world.
Collapse
Affiliation(s)
- Adam P Roberts
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, UK; Research Centre for Drugs and Diagnostics, Liverpool School of Tropical Medicine, Liverpool, UK.
| | - Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
36
|
Li Z, Liu X, Zhao J, Xu K, Tian T, Yang J, Qiang C, Shi D, Wei H, Sun S, Cui Q, Li R, Niu Y, Huang B. Comparison of a newly developed binary typing with ribotyping and multilocus sequence typing methods for Clostridium difficile. J Microbiol Methods 2018; 147:50-55. [DOI: 10.1016/j.mimet.2018.02.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/22/2018] [Accepted: 02/22/2018] [Indexed: 12/19/2022]
|
37
|
Scott A, Tien YC, Drury CF, Reynolds WD, Topp E. Enrichment of antibiotic resistance genes in soil receiving composts derived from swine manure, yard wastes, or food wastes, and evidence for multiyear persistence of swine Clostridium spp. Can J Microbiol 2018; 64:201-208. [DOI: 10.1139/cjm-2017-0642] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The impact of amendment with swine manure compost (SMC), yard waste compost (YWC), or food waste compost (FWC) on the abundance of antibiotic resistance genes in soil was evaluated. Following a commercial-scale application of the composts in a field experiment, soils were sampled periodically for a decade, and archived air-dried. Soil DNA was extracted and gene targets quantified by qPCR. Compared with untreated control soil, all 3 amendment types increased the abundance of gene targets for up to 4 years postapplication. The abundance of several gene targets was much higher in soil amended with SMC than in soil receiving either YWC or FWC. The gene target ermB remained higher in the SMC treatment for a decade postapplication. Clostridia were significantly more abundant in the SMC-amended soil throughout the decade following application. Eight percent of Clostridium spp. isolates from the SMC treatment carried ermB. Overall, addition of organic amendments to soils has the potential to increase the abundance of antibiotic resistance genes. Amendments of fecal origin, such as SMC, will in addition entrain bacteria carrying antibiotic resistance genes. Environmentally recalcitrant clostridia, and the antibiotic resistance genes that they carry, will persist for many years under field conditions following the application of SMC.
Collapse
Affiliation(s)
- Andrew Scott
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Yuan-Ching Tien
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
| | - Craig F. Drury
- Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, ON N0R 1G0, Canada
| | - W. Daniel Reynolds
- Agriculture and Agri-Food Canada, 2585 County Road 20, Harrow, ON N0R 1G0, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, 1391 Sandford Street, London, ON N5V 4T3, Canada
- Department of Biology, University of Western Ontario, London, ON N6A 5B7, Canada
| |
Collapse
|
38
|
Bradshaw WJ, Roberts AK, Shone CC, Acharya KR. The structure of the S-layer of Clostridium difficile. J Cell Commun Signal 2018; 12:319-331. [PMID: 29170885 PMCID: PMC5842191 DOI: 10.1007/s12079-017-0429-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 10/25/2017] [Indexed: 12/28/2022] Open
Abstract
The nosocomially acquired pathogen Clostridium difficile is the primary causative agent of antibiotic associated diarrhoea and causes tens of thousands of deaths globally each year. C. difficile presents a paracrystalline protein array on the surface of the cell known as an S-layer. S-layers have been demonstrated to possess a wide range of important functions, which, combined with their inherent accessibility, makes them a promising drug target. The unusually complex S-layer of C. difficile is primarily comprised of the high- and low- molecular weight S-layer proteins, HMW SLP and LMW SLP, formed from the cleavage of the S-layer precursor protein, SlpA, but may also contain up to 28 SlpA paralogues. A model of how the S-layer functions as a whole is required if it is to be exploited in fighting the bacterium. Here, we provide a summary of what is known about the S-layer of C. difficile and each of the paralogues and, considering some of the domains present, suggest potential roles for them.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK
- Public Health England, Porton Down, Salisbury, SP4 0JG, UK
| | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath, BA2 7AY, UK.
| |
Collapse
|
39
|
Identification of large cryptic plasmids in Clostridioides (Clostridium) difficile. Plasmid 2018; 96-97:25-38. [DOI: 10.1016/j.plasmid.2018.04.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/12/2018] [Accepted: 04/23/2018] [Indexed: 12/17/2022]
|
40
|
Muñoz M, Ríos-Chaparro DI, Herrera G, Soto-De Leon SC, Birchenall C, Pinilla D, Pardo-Oviedo JM, Josa DF, Patarroyo MA, Ramírez JD. New Insights into Clostridium difficile (CD) Infection in Latin America: Novel Description of Toxigenic Profiles of Diarrhea-Associated to CD in Bogotá, Colombia. Front Microbiol 2018; 9:74. [PMID: 29441053 PMCID: PMC5797639 DOI: 10.3389/fmicb.2018.00074] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 01/11/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridium difficile (CD) produces antibiotic associated diarrhea and leads to a broad range of diseases. The source of CD infection (CDI) acquisition and toxigenic profile are factors determining the impact of CD. This study aimed at detecting healthcare facility onset- (HCFO) and community-onset (CO) CDI and describing their toxigenic profiles in Bogotá, Colombia. A total of 217 fecal samples from patients suffering diarrhea were simultaneously submitted to two CDI detection strategies: (i) in vitro culture using selective chromogenic medium (SCM; chromID, bioMérieux), followed verification by colony screening (VCS), and (ii) molecular detection targeting constitutive genes, using two conventional PCR tests (conv.PCR) (conv.16S y conv.gdh) and a quantitative test (qPCR.16s). The CD toxigenic profile identified by any molecular test was described using 6 tests independently for describing PaLoc and CdtLoc organization. High overall CDI frequencies were found by both SCM (52.1%) and conv.PCR (45.6% for conv.16S and 42.4% for conv.gdh), compared to reductions of up to half the frequency by VCS (27.2%) or qPCR.16S (22.6%). Infection frequencies were higher for SCM and conv.16S regarding HCFO but greater for CO concerning conv.gdh, such differences being statistically significant. Heterogeneous toxigenic profiles were found, including amplification with lok1/3 primers simultaneously with other PaLoc markers (tcdA, tcdB or tcdC). These findings correspond the first report regarding the differential detection of CDI using in vitro culture and molecular detection tests in Colombia, the circulation of CD having heterogeneous toxigenic profiles and molecular arrays which could affect the impact of CDI epidemiology.
Collapse
Affiliation(s)
- Marina Muñoz
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia.,Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Dora I Ríos-Chaparro
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| | - Giovanny Herrera
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| | - Sara C Soto-De Leon
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia
| | | | - Darío Pinilla
- Hospital Universitario Mayor-Méderi, Bogotá, Colombia
| | | | | | - Manuel A Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia, Bogotá, Colombia.,Universidad del Rosario, School of Medicine and Health Sciences, Bogotá, Colombia
| | - Juan D Ramírez
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| |
Collapse
|
41
|
Yan LH, Le Roux A, Boyapelly K, Lamontagne AM, Archambault MA, Picard-Jean F, Lalonde-Seguin D, St-Pierre E, Najmanovich RJ, Fortier LC, Lafontaine D, Marsault É. Purine analogs targeting the guanine riboswitch as potential antibiotics against Clostridioides difficile. Eur J Med Chem 2017; 143:755-768. [PMID: 29220796 DOI: 10.1016/j.ejmech.2017.11.079] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/14/2022]
Abstract
Riboswitches recently emerged as possible targets for the development of alternative antimicrobial approaches. Guanine-sensing riboswitches in the bacterial pathogen Clostridioides difficile (formerly known as Clostridium difficile) constitute potential targets based on their involvement in the regulation of basal metabolic control of purine compounds. In this study, we deciphered the structure-activity relationship of several guanine derivatives on the guanine riboswitch and determined their antimicrobial activity. We describe the synthesis of purine analogs modified in ring B as well as positions 2 and 6. Their biological activity was determined by measuring their affinity for the C. difficile guanine riboswitch and their inhibitory effect on bacterial growth, including a counter-screen to discriminate against riboswitch-independent antibacterial effects. Altogether, our results suggest that improvements in riboswitch binding affinity in vitro do not necessarily translate into improved antibacterial activity in bacteria, despite the fact that some structure-activity relationship was observed at least with respect to binding affinity.
Collapse
Affiliation(s)
- Lok-Hang Yan
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Antoine Le Roux
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Kumaraswamy Boyapelly
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Anne-Marie Lamontagne
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Marie-Ann Archambault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Frédéric Picard-Jean
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - David Lalonde-Seguin
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Emilie St-Pierre
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Rafael J Najmanovich
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biochemistry, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada
| | - Louis-Charles Fortier
- Department of Microbiology and Infectious Diseases, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Daniel Lafontaine
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Biology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada.
| | - Éric Marsault
- Institut de Pharmacologie de Sherbrooke, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada; Department of Pharmacology-Physiology, Université de Sherbrooke, 3001, 12e av nord, Sherbrooke, Québec, J1H 5N4, Canada.
| |
Collapse
|
42
|
Muñoz M, Camargo M, Ríos-Chaparro DI, Gómez P, Patarroyo MA, Ramírez JD. Community-acquired infection with hypervirulent Clostridium difficile isolates that carry different toxin and antibiotic resistance loci: a case report. Gut Pathog 2017; 9:63. [PMID: 29151897 PMCID: PMC5680771 DOI: 10.1186/s13099-017-0212-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/01/2017] [Indexed: 01/05/2023] Open
Abstract
Background Clostridium difficile infection (CDI) leads to the onset of antibiotic-associated diarrhea (AAD) and a wide range of gastrointestinal pathologies. Currently, CDI is one of the most important opportunistic infections at the intrahospital level and an exponential increase in community-acquired infections has been reported. Herein, we evaluated the relationships (at phylogenetic and genetic population structure levels), as well as the molecular toxigenic and antibiotic resistance profiles of a set of isolates established from a case of community acquired-CDI. Case presentation A 30-year-old woman with no history of hospitalization who was exposed to antibiotics (ampicillin/sulbactam and metronidazole) after a cat-bite wound was presented. The patient had a continuous episode of diarrhea; a stool sample was then collected and community acquired-CDI was confirmed by molecular tests and in vitro culture. Seven isolates were established and subsequently subjected to: (i) Multilocus sequence typing, all isolates belonging to ST-1 (associated with hypervirulent strain (027/BI/NAP1); (ii) description of their toxigenic profile: two of the isolates (Gcol.49 and Gcol.91) were positive for the genes coding for the major toxins (tcdA and tcdB) and their negative regulator (tcdC). All isolates were positive for the cdtB gene encoding one of the binary toxin subunits, while only two (Gcol.51 and Gcol.52) were positive for cdtA; and (iii) identification of antibiotic resistance molecular markers, where there was no difference in gyrA or gyrB gene polymorphisms (related to quinolone resistance), but rather at loci presence/absence, being just one isolate negative, whereas the others showed a differential presence of the tet, ermB and Tn916 regions. The former was associated with resistance to tetracycline and the other two for erythromycin/clindamycin. Conclusions This case represents the first report of community acquired-CDI in Colombia associated with hypervirulent strains and shows that isolates obtained from a single patient can carry different toxin and antibiotic resistance loci. Electronic supplementary material The online version of this article (10.1186/s13099-017-0212-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Muñoz
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia.,Posgrado Interfacultades Doctorado en Biotecnología, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Milena Camargo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia
| | - Dora Inés Ríos-Chaparro
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| | - Paula Gómez
- Universidad del Rosario, School of Medicine and Health Sciences, Bogotá, Colombia
| | - Manuel Alfonso Patarroyo
- Molecular Biology and Immunology Department, Fundación Instituto de Inmunología de Colombia (FIDIC), Bogotá, Colombia.,Universidad del Rosario, School of Medicine and Health Sciences, Bogotá, Colombia
| | - Juan David Ramírez
- Universidad del Rosario, Facultad de Ciencias Naturales y Matemáticas, Programa de Biología, Grupo de Investigaciones Microbiológicas-UR (GIMUR), Bogotá, Colombia
| |
Collapse
|
43
|
Bradshaw WJ, Kirby JM, Roberts AK, Shone CC, Acharya KR. The molecular structure of the glycoside hydrolase domain of Cwp19 from Clostridium difficile. FEBS J 2017; 284:4343-4357. [PMID: 29083543 PMCID: PMC5765458 DOI: 10.1111/febs.14310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/03/2017] [Accepted: 10/25/2017] [Indexed: 12/15/2022]
Abstract
Clostridium difficile is a burden to healthcare systems around the world, causing tens of thousands of deaths annually. The S‐layer of the bacterium, a layer of protein found of the surface of cells, has received a significant amount of attention over the past two decades as a potential target to combat the growing threat presented by C. difficile infections. The S‐layer contains a wide range of proteins, each of which possesses three cell wall‐binding domains, while many also possess a “functional” region. Here, we present the high resolution structure of the functional region of one such protein, Cwp19 along with preliminary functional characterisation of the predicted glycoside hydrolase. Cwp19 has a TIM barrel fold and appears to possess a high degree of substrate selectivity. The protein also exhibits peptidoglycan hydrolase activity, an order of magnitude slower than that of lysozyme and is the first member of glycoside hydrolase‐like family 10 to be characterised. This research goes some way to understanding the role of Cwp19 in the S‐layer of C. difficile. Database Structural data are available in the PDB under the accession numbers 5OQ2 and 5OQ3.
Collapse
Affiliation(s)
- William J Bradshaw
- Department of Biology and Biochemistry, University of Bath, UK.,Public Health England, Salisbury, UK
| | | | | | | | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, UK
| |
Collapse
|
44
|
Smits WK. SNP-ing out the differences: Investigating differences between Clostridium difficile lab strains. Virulence 2017; 8:613-617. [PMID: 27791481 PMCID: PMC5626201 DOI: 10.1080/21505594.2016.1250998] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 10/12/2016] [Indexed: 12/15/2022] Open
Affiliation(s)
- Wiep Klaas Smits
- Department of Medical Microbiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
45
|
Jenior ML, Leslie JL, Young VB, Schloss PD. Clostridium difficile Colonizes Alternative Nutrient Niches during Infection across Distinct Murine Gut Microbiomes. mSystems 2017; 2:e00063-17. [PMID: 28761936 PMCID: PMC5527303 DOI: 10.1128/msystems.00063-17] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 07/03/2017] [Indexed: 01/01/2023] Open
Abstract
Clostridium difficile is the largest single cause of hospital-acquired infection in the United States. A major risk factor for Clostridium difficile infection (CDI) is prior exposure to antibiotics, as they disrupt the gut bacterial community which protects from C. difficile colonization. Multiple antibiotic classes have been associated with CDI susceptibility, many leading to distinct community structures stemming from variation in bacterial targets of action. These community structures present separate metabolic challenges to C. difficile. Therefore, we hypothesized that the pathogen adapts its physiology to the nutrients within different gut environments. Utilizing an in vivo CDI model, we demonstrated that C. difficile highly colonized ceca of mice pretreated with any of three antibiotics from distinct classes. Levels of C. difficile spore formation and toxin activity varied between animals based on the antibiotic pretreatment. These physiologic processes in C. difficile are partially regulated by environmental nutrient concentrations. To investigate metabolic responses of the bacterium in vivo, we performed transcriptomic analysis of C. difficile from ceca of infected mice across pretreatments. This revealed heterogeneous expression in numerous catabolic pathways for diverse growth substrates. To assess which resources C. difficile exploited, we developed a genome-scale metabolic model with a transcriptome-enabled metabolite scoring algorithm integrating network architecture. This platform identified nutrients that C. difficile used preferentially between pretreatments, which were validated through untargeted mass spectrometry of each microbiome. Our results supported the hypothesis that C. difficile inhabits alternative nutrient niches across cecal microbiomes with increased preference for nitrogen-containing carbon sources, particularly Stickland fermentation substrates and host-derived glycans. IMPORTANCE Infection by the bacterium Clostridium difficile causes an inflammatory diarrheal disease which can become life threatening and has grown to be the most prevalent nosocomial infection. Susceptibility to C. difficile infection is strongly associated with previous antibiotic treatment, which disrupts the gut microbiota and reduces its ability to prevent colonization. In this study, we demonstrated that C. difficile altered pathogenesis between hosts pretreated with antibiotics from separate classes and exploited different nutrient sources across these environments. Our metabolite score calculation also provides a platform to study nutrient requirements of pathogens during an infection. Our results suggest that C. difficile colonization resistance is mediated by multiple groups of bacteria competing for several subsets of nutrients and could explain why total reintroduction of competitors through fecal microbial transplant currently is the most effective treatment for recurrent CDI. This work could ultimately contribute to the identification of targeted, context-dependent measures that prevent or reduce C. difficile colonization, including pre- and probiotic therapies.
Collapse
Affiliation(s)
- Matthew L. Jenior
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jhansi L. Leslie
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vincent B. Young
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, Division of Infectious Diseases, University of Michigan, Ann Arbor, Michigan, USA
| | - Patrick D. Schloss
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
46
|
Elliott B, Androga GO, Knight DR, Riley TV. Clostridium difficile infection: Evolution, phylogeny and molecular epidemiology. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2017; 49:1-11. [PMID: 28012982 DOI: 10.1016/j.meegid.2016.12.018] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 02/07/2023]
Abstract
Over the recent decades, Clostridium difficile infection (CDI) has emerged as a global public health threat. Despite growing attention, C. difficile remains a poorly understood pathogen, however, the exquisite sensitivity offered by next generation sequencing (NGS) technology has enabled analysis of the genome of C. difficile, giving us access to massive genomic data on factors such as virulence, evolution, and genetic relatedness within C. difficile groups. NGS has also demonstrated excellence in investigations of outbreaks and disease transmission, in both small and large-scale applications. This review summarizes the molecular epidemiology, evolution, and phylogeny of C. difficile, one of the most important pathogens worldwide in the current antibiotic resistance era.
Collapse
Affiliation(s)
- Briony Elliott
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia
| | - Grace O Androga
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Daniel R Knight
- School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia
| | - Thomas V Riley
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, Australia; School of Pathology and Laboratory Medicine, The University of Western Australia, Crawley, Australia; School of Veterinary and Life Sciences, Murdoch University, Murdoch, Australia; Department of Microbiology, PathWest Laboratory Medicine, Perth, Australia.
| |
Collapse
|
47
|
Dannheim H, Riedel T, Neumann-Schaal M, Bunk B, Schober I, Spröer C, Chibani CM, Gronow S, Liesegang H, Overmann J, Schomburg D. Manual curation and reannotation of the genomes of Clostridium difficile 630Δerm and C. difficile 630. J Med Microbiol 2017; 66:286-293. [DOI: 10.1099/jmm.0.000427] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Affiliation(s)
- Henning Dannheim
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig and Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Meina Neumann-Schaal
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig and Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Cynthia Maria Chibani
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology, Göttingen Genomics Laboratory, Georg-August-University Göttingen, Grisebachstraße 8, 37077 Göttingen, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, 38124 Braunschweig, Germany
- German Center for Infection Research (DZIF), Partner Site Hannover–Braunschweig, Inhoffenstraße 7B, 38124 Braunschweig, Germany
| | - Dietmar Schomburg
- Department of Bioinformatics and Biochemistry, Technische Universität Braunschweig and Braunschweig Integrated Centre of Systems Biology (BRICS), Rebenring 56, 38106 Braunschweig, Germany
| |
Collapse
|
48
|
Riedel T, Wittmann J, Bunk B, Schober I, Spröer C, Gronow S, Overmann J. A Clostridioides difficile bacteriophage genome encodes functional binary toxin-associated genes. J Biotechnol 2017; 250:23-28. [PMID: 28216103 DOI: 10.1016/j.jbiotec.2017.02.017] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 02/10/2017] [Accepted: 02/15/2017] [Indexed: 12/29/2022]
Abstract
Pathogenic clostridia typically produce toxins as virulence factors which cause severe diseases in both humans and animals. Whereas many clostridia like e.g., Clostridium perfringens, Clostridium botulinum or Clostridium tetani were shown to contain toxin-encoding plasmids, only toxin genes located on the chromosome were detected in Clostridioides difficile so far. In this study, we determined, annotated, and analyzed the complete genome of the bacteriophage phiSemix9P1 using single-molecule real-time sequencing technology (SMRT). To our knowledge, this represents the first C. difficile-associated bacteriophage genome that carries a complete functional binary toxin locus in its genome.
Collapse
Affiliation(s)
- Thomas Riedel
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany.
| | - Johannes Wittmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Boyke Bunk
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Isabel Schober
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany
| | - Cathrin Spröer
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Sabine Gronow
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| | - Jörg Overmann
- Leibniz Institute DSMZ-German Collection of Microorganisms and Cell Cultures, Inhoffenstraße 7B, Braunschweig, Germany; North German Center of Microbial Genomics, Germany; German Center for Infection Research (DZIF), Partner Site Hannover-Braunschweig, Braunschweig, Germany
| |
Collapse
|
49
|
Chu M, Mallozzi MJG, Roxas BP, Bertolo L, Monteiro MA, Agellon A, Viswanathan VK, Vedantam G. A Clostridium difficile Cell Wall Glycopolymer Locus Influences Bacterial Shape, Polysaccharide Production and Virulence. PLoS Pathog 2016; 12:e1005946. [PMID: 27741317 PMCID: PMC5065235 DOI: 10.1371/journal.ppat.1005946] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Clostridium difficile is a diarrheagenic pathogen associated with significant mortality and morbidity. While its glucosylating toxins are primary virulence determinants, there is increasing appreciation of important roles for non-toxin factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) influence the virulence of various pathogens. Five C. difficile CWGs, including PSII, have been structurally characterized, but their biosynthesis and significance in C. difficile infection is unknown. We explored the contribution of a conserved CWG locus to C. difficile cell-surface integrity and virulence. Attempts at disrupting multiple genes in the locus, including one encoding a predicted CWG exporter mviN, were unsuccessful, suggesting essentiality of the respective gene products. However, antisense RNA-mediated mviN downregulation resulted in slight morphology defects, retarded growth, and decreased surface PSII deposition. Two other genes, lcpA and lcpB, with putative roles in CWG anchoring, could be disrupted by insertional inactivation. lcpA- and lcpB- mutants had distinct phenotypes, implying non-redundant roles for the respective proteins. The lcpB- mutant was defective in surface PSII deposition and shedding, and exhibited a remodeled cell surface characterized by elongated and helical morphology, aberrantly-localized cell septae, and an altered surface-anchored protein profile. Both lcpA- and lcpB- strains also displayed heightened virulence in a hamster model of C. difficile disease. We propose that gene products of the C. difficile CWG locus are essential, that they direct the production/assembly of key antigenic surface polysaccharides, and thereby have complex roles in virulence. Clostridium difficile infection is a leading healthcare-onset bacterial disease, and its management and prevention imposes significant clinical and financial burdens worldwide. While toxins TcdA and TcdB are the primary virulence factors, there is increasing interest in, and appreciation of, non-toxin virulence factors in C. difficile pathogenesis. Cell wall glycopolymers (CWGs) are important virulence determinants in many pathogens, but their role(s) in C. difficile pathogenesis is unclear. We propose a model for C. difficile CWG biosynthesis, and demonstrate that alterations in cell wall assembly profoundly impact bacterial morphology and virulence.
Collapse
Affiliation(s)
- Michele Chu
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Michael J. G. Mallozzi
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Bryan P. Roxas
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - Lisa Bertolo
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Mario A. Monteiro
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
| | - V. K. Viswanathan
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Bio5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
| | - Gayatri Vedantam
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, United States of America
- Department of Immunobiology, Bio5 Institute for Collaborative Research, University of Arizona, Tucson, Arizona, United States of America
- Southern Arizona VA Healthcare System, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
50
|
Collery MM, Kuehne SA, McBride SM, Kelly ML, Monot M, Cockayne A, Dupuy B, Minton NP. What's a SNP between friends: The influence of single nucleotide polymorphisms on virulence and phenotypes of Clostridium difficile strain 630 and derivatives. Virulence 2016; 8:767-781. [PMID: 27652799 PMCID: PMC5626343 DOI: 10.1080/21505594.2016.1237333] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Clostridium difficile is a major cause of antibiotic induced diarrhea worldwide, responsible for significant annual mortalities and represents a considerable economic burden on healthcare systems. The two main C. difficile virulence factors are toxins A and B. Isogenic toxin B mutants of 2 independently isolated erythromycin-sensitive derivatives (630E and 630Δerm) of strain 630 were previously shown to exhibit substantively different phenotypes. Compared to 630, strain 630E and its progeny grow slower, achieve lower final cell densities, exhibit a reduced capacity for spore-formation, produce lower levels of toxin and are less virulent in the hamster infection model. By the same measures, strain 630Δerm and its derivatives more closely mirror the behavior of 630. Genome sequencing revealed that 630Δerm had acquired 7 unique Single Nucleotide Polymorphisms (SNPs) compared to 630 and 630E, while 630E had 9 SNPs and a DNA inversion not found in the other 2 strains. The relatively large number of mutations meant that the identification of those responsible for the altered properties of 630E was not possible, despite the restoration of 3 mutations to wildtype by allelic exchange and comparative RNAseq analysis of all 3 strains. The latter analysis revealed large differences in gene expression between the 3 strains, explaining in part why no single SNP could restore the phenotypic differences. Our findings suggest that strain 630Δerm should be favored over 630E as a surrogate for 630 in genetic-based studies. They also underline the importance of effective strain curation and the need to genome re-sequence master seed banks wherever possible.
Collapse
Affiliation(s)
- Mark M Collery
- a Clostridia Research Group , BBSRC/EPSRC Synthetic Biology Research Center (SBRC), School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Sarah A Kuehne
- a Clostridia Research Group , BBSRC/EPSRC Synthetic Biology Research Center (SBRC), School of Life Sciences, University of Nottingham , Nottingham , UK.,b NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust , University of Nottingham , Nottingham , UK
| | - Shonna M McBride
- c Department of Microbiology and Immunology , Emory Antibiotic Resistance Center, Emory University , Atlanta , GA , USA
| | - Michelle L Kelly
- a Clostridia Research Group , BBSRC/EPSRC Synthetic Biology Research Center (SBRC), School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Marc Monot
- d Laboratoire Pathogenèse des Bactéries Anaérobies , Institut Pasteur , Paris , France
| | - Alan Cockayne
- a Clostridia Research Group , BBSRC/EPSRC Synthetic Biology Research Center (SBRC), School of Life Sciences, University of Nottingham , Nottingham , UK
| | - Bruno Dupuy
- d Laboratoire Pathogenèse des Bactéries Anaérobies , Institut Pasteur , Paris , France
| | - Nigel P Minton
- a Clostridia Research Group , BBSRC/EPSRC Synthetic Biology Research Center (SBRC), School of Life Sciences, University of Nottingham , Nottingham , UK.,b NIHR Biomedical Research Unit in Gastrointestinal and Liver Diseases at Nottingham University Hospitals NHS Trust , University of Nottingham , Nottingham , UK
| |
Collapse
|