1
|
Kaspersen HP, Brouwer MS, Nunez-Garcia J, Cárdenas-Rey I, AbuOun M, Duggett N, Ellaby N, Delgado-Blas J, Hammerl JA, Getino M, Serna C, Naas T, Veldman KT, Bossers A, Sunde M, Mo SS, Jørgensen SB, Ellington M, Gonzalez-Zorn B, La Ragione R, Glaser P, Anjum MF. Escherichia coli from six European countries reveals differences in profile and distribution of critical antimicrobial resistance determinants within One Health compartments, 2013 to 2020. Euro Surveill 2024; 29:2400295. [PMID: 39574393 PMCID: PMC11583308 DOI: 10.2807/1560-7917.es.2024.29.47.2400295] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 10/07/2024] [Indexed: 11/24/2024] Open
Abstract
BackgroundAntimicrobial resistance (AMR) is a global threat. Monitoring using an integrated One Health approach is essential to detect changes in AMR occurrence.AimWe aimed to detect AMR genes in pathogenic and commensal Escherichia coli collected 2013-2020 within monitoring programmes and research from food animals, food (fresh retail raw meat) and humans in six European countries, to compare vertical and horizontal transmission.MethodsWe whole genome sequenced (WGS) 3,745 E. coli isolates, detected AMR genes using ResFinder and performed phylogenetic analysis to determine isolate relatedness and transmission. A BLASTn-based bioinformatic method compared draft IncI1 genomes to conserved plasmid references from Europe.ResultsResistance genes to medically important antimicrobials (MIA) such as extended-spectrum cephalosporins (ESC) were widespread but predicted resistance to MIAs authorised for human use (carbapenem, tigecycline) was detected only in two human and three cattle isolates. Phylogenetic analysis clustered E. coli according to phylogroups; commensal animal isolates showed greater diversity than those from human patients. Only 18 vertical animal-food and human-animal transmission events of E. coli clones were detected. However, IncI1 plasmids from different sources and/or countries carrying resistance to ESCs were conserved and widely distributed, although these variants were rarely detected in human pathogens.ConclusionUsing WGS we demonstrated AMR is driven vertically and horizontally. Human clinical isolates were more closely related, but their IncI1 plasmids were more diverse, while animal or food isolates were less similar with more conserved IncI1 plasmids. These differences likely arose from variations in selective pressure, influencing AMR evolution and transmission.
Collapse
Affiliation(s)
- Håkon P Kaspersen
- Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway
| | - Michael Sm Brouwer
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Javier Nunez-Garcia
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Ingrid Cárdenas-Rey
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Manal AbuOun
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Nicholas Duggett
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| | - Nicholas Ellaby
- United Kingdom Health Security Agency, London, United Kingdom
| | - Jose Delgado-Blas
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Jens A Hammerl
- Department of Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | - Maria Getino
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Carlos Serna
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Thierry Naas
- Bacteriology-Hygiene unit, Hopital Bicêtre, Assistance Publique-Hopitaux De Paris, University Paris-Saclay, Paris, France
| | - Kees T Veldman
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Alex Bossers
- Wageningen Bioveterinary Research part of Wageningen University and Research, Department of Bacteriology, Host-Pathogen interactions and Diagnostic Development, Lelystad, The Netherlands
| | - Marianne Sunde
- Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway
| | - Solveig S Mo
- Norwegian Veterinary Institute, Section for Food Safety and Animal Health Research, Ås, Norway
| | - Silje B Jørgensen
- Department for Microbiology and Infection Control, Department for Emergency Medicine, Akershus University Hospital, Lørenskog, Norway
| | | | - Bruno Gonzalez-Zorn
- Antimicrobial Resistance Unit, Animal Health Department, Faculty of Veterinary Medicine and VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
| | - Roberto La Ragione
- School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Philippe Glaser
- Ecology and evolution of antibiotic resistance Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Muna F Anjum
- Department of Bacteriology, Animal and Plant Health Agency, Addlestone, United Kingdom
| |
Collapse
|
2
|
Anudit C, Saraisuwan P, Kimterng C, Puangmanee C, Bamphensin N, Kerdsin A. Dissemination of Urinary Escherichia coli Phylogroup B2 in Provincial and Community Hospitals in Uthai Thani, Central Thailand. Jpn J Infect Dis 2024; 77:220-226. [PMID: 38417863 DOI: 10.7883/yoken.jjid.2023.376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Escherichia coli is a Gram-negative bacterium that causes a variety of clinical infections in humans, including diarrhea, sepsis, and urinary tract infection. This bacterium is a common multidrug-resistant threat in community and hospital settings worldwide. This study examined the antimicrobial susceptibility and genetic relationship based on Clermont phylotyping and enterobacterial repetitive intergenic consensus (ERIC)-PCR of 84 E. coli urinary isolates from provincial and community hospitals in Thailand. All isolates were susceptible to nitrofurantoin, and almost all isolates were susceptible to carbapenem, fosfomycin, and amikacin. High resistance rates to fluoroquinolone, ampicillin, and trimethoprim/sulfamethoxazole were observed. Clermont phylogroup B2 was predominant (n = 58). Subtyping of the B2 phylogroup revealed diverse subgroups, of which subgroup V (n = 11), VII (n = 9), III (n = 6), and II (n = 6) were most prevalent. ERIC-PCR showed that the strains of the B2 subgroups III and V were spread between provincial and community hospitals and between hospital wards. This evidence suggests the need for comprehensive infection control monitoring, with strong active surveillance at all hospital levels.
Collapse
Affiliation(s)
| | | | | | | | - Nicharee Bamphensin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Thailand
| | - Anusak Kerdsin
- Faculty of Public Health, Kasetsart University, Chalermphrakiat Sakon Nakhon Province Campus, Thailand
| |
Collapse
|
3
|
Langkabel N, Burgard J, Freter S, Fries R, Meemken D, Ellerbroek L. Detection of Extended-Spectrum β-Lactamase (ESBL) E. coli at Different Processing Stages in Three Broiler Abattoirs. Microorganisms 2023; 11:2541. [PMID: 37894199 PMCID: PMC10609597 DOI: 10.3390/microorganisms11102541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/28/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023] Open
Abstract
The European Food Safety Authority (EFSA) identified extended-spectrum β-lactamase/AmpC β-lactamase (ESBL/AmpC)-producing E. coli as one of the main priority hazards for poultry. Different studies detected ESBL-producing E. coli at broiler fattening farms and in abattoirs, concluding that poultry meat is a potential source of human infection. Broiler breast skin samples taken in three abattoirs with different scalding techniques were examined for ESBL-producing Escherichia (E.) coli and their phylogenetic groups. A total of 307 ESBL-producing E. coli isolates were found, and the abattoir with conventional immersion scalding with thermal treatment of the water had the lowest incidence. Phylogroups D/E and B1 were mostly detected, while phylogroups C, D, and E were not detected. Phylogroup B2 was detected in low proportions. The phylogroups B2 and D are important as they have been associated with urinary tract infections in humans, but were only detected in low proportions at different processing stages in this study. Since the risk for the consumer of being infected via chicken meat with ESBL-producing E. coli and E. coli of highly pathogenic phylogroups cannot be excluded, good kitchen hygiene is of great importance.
Collapse
Affiliation(s)
- Nina Langkabel
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163 Berlin, Germany
| | - Janine Burgard
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Sabrina Freter
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Reinhard Fries
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
| | - Diana Meemken
- Working Group Meat Hygiene, Institute of Food Safety and Food Hygiene, School of Veterinary Medicine, Freie Universität Berlin, 14163 Berlin, Germany
- Veterinary Centre for Resistance Research, Freie Universität Berlin, 14163 Berlin, Germany
| | | |
Collapse
|
4
|
Herrera-Vázquez A, Arellano-Aranda R, Hernández-Cueto D, Rodríguez-Miranda E, López-Briones S, Hernández-Luna MA. Detection of Cyclomodulin CNF-1 Toxin-Producing Strains of Escherichia coli in Pig Kidneys at a Slaughterhouse. Microorganisms 2023; 11:2065. [PMID: 37630625 PMCID: PMC10458685 DOI: 10.3390/microorganisms11082065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/02/2023] [Accepted: 08/05/2023] [Indexed: 08/27/2023] Open
Abstract
Food is often contaminated with Escherichia coli (E. coli) bacteria strains, which have been associated with different diseases, including urinary tract infections. The consumption of meat by humans is a potential route of transmission of antimicrobial resistance, and food-producing animals have been associated as a major reservoir of resistant bacterial strains. The aim of this study was to determine the presence of the E. coli strains producing the CNF-1 toxin in pig kidneys. Pig kidneys were collected from a Mexican slaughterhouse and classified according to their coloration into reddish kidneys (RK) and yellowish kidneys (YK). A tissue sample from each kidney was processed for histological analysis, the presence of E. coli was determined by conventional PCR assay, and the CNF-1 toxin was detected by both conventional PCR and Western blotting. Herein, an inflammatory cell infiltrate was found in all collected kidneys, regardless of macroscopic differences. Surprisingly, E. coli and the CNF-1 toxin were detected in all kidney samples. We clearly demonstrate contamination by CNF-1 toxin-producing E. coli in pork kidneys from a slaughterhouse, even in those without apparent damage. This suggests that pork may serve as a reservoir for pathogens, representing an important risk to human health.
Collapse
Affiliation(s)
- Arturo Herrera-Vázquez
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Rebeca Arellano-Aranda
- Department of Veterinary, Division of Life Sciences, University of Guanajuato, Campus Irapuato Salamanca, Guanajuato 36500, Mexico
| | - Daniel Hernández-Cueto
- Unit of Investigative Research on Oncological Diseases, Children’s Hospital of Mexico Federico Gomez, Mexico City 06720, Mexico
| | - Esmeralda Rodríguez-Miranda
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Sergio López-Briones
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| | - Marco Antonio Hernández-Luna
- Department of Medicine and Nutrition, Division of Health Sciences, University of Guanajuato, Campus León, Guanajuato 37670, Mexico (E.R.-M.); (S.L.-B.)
| |
Collapse
|
5
|
Ratti G, Facchin A, Stranieri A, Giordano A, Paltrinieri S, Scarpa P, Maragno D, Gazzonis A, Penati M, Luzzago C, Dall’Ara P, Lauzi S. Fecal Carriage of Extended-Spectrum β-Lactamase-/AmpC-Producing Escherichia coli in Pet and Stray Cats. Antibiotics (Basel) 2023; 12:1249. [PMID: 37627669 PMCID: PMC10451524 DOI: 10.3390/antibiotics12081249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/21/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
Dogs have been reported as potential carriers of antimicrobial-resistant bacteria, but the role of cats has been poorly studied. The aim of this study was to investigate the presence and the risk factors associated with the fecal carriage of extended-spectrum β-lactamase and AmpC (ESBL/AmpC)-producing Escherichia coli (E. coli) in pet and stray cats. Fecal samples were collected between 2020 and 2022 from healthy and unhealthy cats and screened for ESBL/AmpC-producing E. coli using selective media. The presence of ESBL/AmpC-producing E. coli was confirmed by phenotypic and molecular methods. The evaluation of minimum inhibitory concentrations (MICs) was performed on positive isolates. Host and hospitalization data were analyzed to identify risk factors. A total of 97 cats' samples were collected, and ESBL/AmpC-producing E. coli were detected in 6/97 (6.2%), supported by the detection of blaCTX-M (100%), blaTEM (83.3%), and blaSHV (16.7%) genes and the overexpression of chromosomal ampC (1%). All E. coli isolates were categorized as multidrug-resistant. Unhealthy status and previous antibiotic therapy were significantly associated with ESBL/AmpC-producing E. coli fecal carriage. Our results suggest that cats may be carriers of ESBL/AmpC-producing E. coli, highlighting the need for antimicrobial stewardship in veterinary medicine and an antimicrobial-resistance surveillance program focusing on companion animals, including stray cats.
Collapse
Affiliation(s)
- Gabriele Ratti
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Alessia Facchin
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Angelica Stranieri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Alessia Giordano
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Saverio Paltrinieri
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Paola Scarpa
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Deborah Maragno
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Alessia Gazzonis
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Martina Penati
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
- Laboratory of Animal Infectious Diseases (MiLab), University of Milan, 26900 Lodi, Italy
| | - Camilla Luzzago
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Paola Dall’Ara
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| | - Stefania Lauzi
- Department of Veterinary Medicine and Animal Sciences (DIVAS), University of Milan, 26900 Lodi, Italy; (G.R.); (A.F.); (A.S.); (A.G.); (S.P.); (P.S.); (D.M.); (A.G.); (M.P.); (C.L.); (S.L.)
| |
Collapse
|
6
|
Schwan CL, Bastos LM, Young S, Domesle K, Ge B, Hsu CH, Li C, Strain E, Vipham J, Jones C, Amachawadi R, Nagaraja TG, Trinetta V. Graphical abstractGenotypic and Phenotypic Characterization of Antimicrobial and Heavy Metal tolerance in Salmonella enterica and Escherichia coli Isolates from Swine Feed Mills. J Food Prot 2023:100113. [PMID: 37290750 DOI: 10.1016/j.jfp.2023.100113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023]
Abstract
Antimicrobials and heavy metals are commonly used in the animal feed industry. The role of in-feed antimicrobials on the evolution and persistence of resistance in enteric bacteria is not well described. Whole-Genome Sequencing (WGS) is widely used for genetic characterizations of bacterial isolates, including antimicrobial resistance, heavy metal tolerance, virulence factors, and relatedness to other sequenced isolates. The goals of this study were to i) use WGS to characterize Salmonella enterica (n = 33) and Escherichia coli (n = 30) isolated from swine feed and feed mill environments; and ii) investigate their genotypic and phenotypic antimicrobial and heavy metal tolerance. Salmonella isolates belonged to 10 serovars, the most common being Cubana, Senftenberg, and Tennessee. E. coli isolates were grouped into 22 O groups. Phenotypic resistance to at least one antimicrobial was observed in 19 Salmonella (57.6%) and 17 E. coli (56.7%) isolates, whereas multidrug resistance (resistant to ≥ 3 antimicrobial classes) was observed in four Salmonella (12%) and two E. coli (7%) isolates. Antimicrobial resistance genes were identified in 17 Salmonella (51%) and 29 E. coli (97%), with 11 and 29 isolates possessing genes conferring resistance to multiple antimicrobial classes. Phenotypically, 53% Salmonella and 58% E. coli presented resistance to copper and arsenic. All isolates that possessed the copper resistance operon were resistant to the highest concentration tested (40 mM). Heavy metal tolerance genes to copper and silver were present in 26 Salmonella isolates. Our study showed a strong agreement between predicted and measured resistances when comparing genotypic and phenotypic data for antimicrobial resistance, with an overall concordance of 99% and 98.3% for Salmonella and E. coli, respectively.
Collapse
Affiliation(s)
- Carla L Schwan
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Leonardo M Bastos
- Department of Crop and Soil Sciences, University of Georgia, Athens, GA, USA
| | - Shenia Young
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Kelly Domesle
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Beilei Ge
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Chih-Hao Hsu
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Cong Li
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Errol Strain
- Center for Veterinary Medicine, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Jessie Vipham
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Cassandra Jones
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA
| | - Raghavendra Amachawadi
- Department of Clinical Sciences, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Tiruvoor G Nagaraja
- Department of Diagnostic Medicine/Pathobiology, College of Veterinary Medicine, Kansas State University, Manhattan, KS, USA
| | - Valentina Trinetta
- Department of Animal Sciences and Industry, College of Agriculture, Kansas State University, Manhattan, KS, USA.
| |
Collapse
|
7
|
Tao J, Liu D, Xiong J, Shan W, Dou L, Zhai W, Wang Y, Shen J, Wen K. MC-PRPA-HLFIA Cascade Detection System for Point-of-Care Testing Pan-Drug-Resistant Genes in Urinary Tract Infection Samples. Int J Mol Sci 2023; 24:ijms24076784. [PMID: 37047757 PMCID: PMC10095522 DOI: 10.3390/ijms24076784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/21/2023] [Accepted: 04/02/2023] [Indexed: 04/14/2023] Open
Abstract
Recently, urinary tract infection (UTI) triggered by bacteria carrying pan-drug-resistant genes, including carbapenem resistance gene blaNDM and blaKPC, colistin resistance gene mcr-1, and tet(X) for tigecycline resistance, have been reported, posing a serious challenge to the treatment of clinical UTI. Therefore, point-of-care (POC) detection of these genes in UTI samples without the need for pre-culturing is urgently needed. Based on PEG 200-enhanced recombinase polymerase amplification (RPA) and a refined Chelex-100 lysis method with HRP-catalyzed lateral flow immunoassay (LFIA), we developed an MCL-PRPA-HLFIA cascade assay system for detecting these genes in UTI samples. The refined Chelex-100 lysis method extracts target DNA from UTI samples in 20 min without high-speed centrifugation or pre-incubation of urine samples. Following optimization, the cascade detection system achieved an LOD of 102 CFU/mL with satisfactory specificity and could detect these genes in both simulated and actual UTI samples. It takes less than an hour to complete the process without the use of high-speed centrifuges or other specialized equipment, such as PCR amplifiers. The MCL-PRPA-HLFIA cascade assay system provides new ideas for the construction of rapid detection methods for pan-drug-resistant genes in clinical UTI samples and provides the necessary medication guidance for UTI treatment.
Collapse
Affiliation(s)
- Jin Tao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Dejun Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jincheng Xiong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Wenchong Shan
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Leina Dou
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Weishuai Zhai
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Yang Wang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| | - Kai Wen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, College of Veterinary Medicine, China Agricultural University, Beijing 100083, China
| |
Collapse
|
8
|
Chicken Production and Human Clinical Escherichia coli Isolates Differ in Their Carriage of Antimicrobial Resistance and Virulence Factors. Appl Environ Microbiol 2023; 89:e0116722. [PMID: 36651726 PMCID: PMC9973021 DOI: 10.1128/aem.01167-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Contamination of food animal products by Escherichia coli is a leading cause of foodborne disease outbreaks, hospitalizations, and deaths in humans. Chicken is the most consumed meat both in the United States and across the globe according to the U.S. Department of Agriculture. Although E. coli is a ubiquitous commensal bacterium of the guts of humans and animals, its ability to acquire antimicrobial resistance (AMR) genes and virulence factors (VFs) can lead to the emergence of pathogenic strains that are resistant to critically important antibiotics. Thus, it is important to identify the genetic factors that contribute to the virulence and AMR of E. coli. In this study, we performed in-depth genomic evaluation of AMR genes and VFs of E. coli genomes available through the National Antimicrobial Resistance Monitoring System GenomeTrackr database. Our objective was to determine the genetic relatedness of chicken production isolates and human clinical isolates. To achieve this aim, we first developed a massively parallel analytical pipeline (Reads2Resistome) to accurately characterize the resistome of each E. coli genome, including the AMR genes and VFs harbored. We used random forests and hierarchical clustering to show that AMR genes and VFs are sufficient to classify isolates into different pathogenic phylogroups and host origin. We found that the presence of key type III secretion system and AMR genes differentiated human clinical isolates from chicken production isolates. These results further improve our understanding of the interconnected role AMR genes and VFs play in shaping the evolution of pathogenic E. coli strains. IMPORTANCE Pathogenic Escherichia coli causes disease in both humans and food-producing animals. E. coli pathogenesis is dependent on a repertoire of virulence factors and antimicrobial resistance genes. Food-borne outbreaks are highly associated with the consumption of undercooked and contaminated food products. This association highlights the need to understand the genetic factors that make E. coli virulent and pathogenic in humans and poultry. This research shows that E. coli isolates originating from human clinical settings and chicken production harbor different antimicrobial resistance genes and virulence factors that can be used to classify them into phylogroups and host origins. In addition, to aid in the repeatability and reproducibility of the results presented in this study, we have made a public repository of the Reads2Resistome pipeline and have provided the accession numbers associated with the E. coli genomes analyzed.
Collapse
|
9
|
Yang C, Diarra MS, Attiq Rehman M, Li L, Yu H, Yin X, Aslam M, Carrillo CD, Yang C, Gong J. Virulence potential of antimicrobial-resistant extraintestinal pathogenic Escherichia coli from retail poultry meat in a Caenorhabditis elegans model. J Food Prot 2023; 86:100008. [PMID: 36916583 DOI: 10.1016/j.jfp.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 12/23/2022]
Abstract
Healthy poultry can be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC), some of which could be multidrug resistant to antimicrobials. These ExPEC strains could contaminate the environment and/or food chain representing thus, food safety and human health risk. However, few studies have shown the virulence of poultry-source antimicrobial-resistant (AMR) ExPEC in humans. This study characterized AMR ExPEC and investigated the virulence potential of some of their isolates in a Caenorhabditis elegans infection model. A total of 46 E. coli isolates from poultry (chicken, n = 29; turkey, n = 12) retail meats and chicken feces (n = 4), or humans (n = 1) were sequenced and identified as ExPEC. Except eight, all remaining 38 ExPEC isolates were resistant to at least one antibiotic and carried corresponding antimicrobial resistance genes (ARGs). About 27 of the 46 ExPEC isolates were multidrug-resistant (≥3 antibiotic classes). Seven ExPEC isolates from chicken or turkey meats were of serotype O25:H4 and sequence type (ST) 131 which clustered with an isolate from a human urinary tract infection (UTI) case having the same serotype and ST. The C. elegans challenge model using eight of studied ExPEC isolates harboring various ARGs and virulence genes (VGs) showed that regardless of their ARG or VG numbers in tested poultry meat and feces, ExPEC significantly reduced the life span of the nematode (P < 0.05) similarly to a human UTI isolate. This study indicated the pathogenic potential of AMR ExPEC from retail poultry meat or feces, but more studies are warranted to establish their virulence in poultry and human. Furthermore, relationships between specific resistance profiles and/or VGs in these E. coli isolates for their pathogenicity deserve investigations.
Collapse
Affiliation(s)
- Chongwu Yang
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9; Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Moussa S Diarra
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| | - Muhammad Attiq Rehman
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Linyan Li
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, China
| | - Hai Yu
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Xianhua Yin
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9
| | - Mueen Aslam
- Lacombe Research Centre, AAFC, Lacombe, Alberta, Canada T4L1W1
| | - Catherine D Carrillo
- Canadian Food Inspection Agency (CFIA), Ottawa Laboratory (Carling), Ottawa, Ontario, Canada K1Y 4K7
| | - Chengbo Yang
- Department of Animal Science, University of Manitoba, Winnipeg, Manitoba, Canada R3T 2N2
| | - Joshua Gong
- Guelph Research and Development Centre, Agriculture Agri-Food Canada (AAFC), Guelph, Ontario, Canada N1G 5C9.
| |
Collapse
|
10
|
Chodkowska KA, Iwiński H, Wódz K, Nowak T, Różański H. In Vitro Assessment of Antimicrobial Activity of Phytobiotics Composition towards of Avian Pathogenic Escherichia coli (APEC) and Other E. coli Strains Isolated from Broiler Chickens. Antibiotics (Basel) 2022; 11:antibiotics11121818. [PMID: 36551476 PMCID: PMC9774517 DOI: 10.3390/antibiotics11121818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/09/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
Escherichia coli infections (including APEC) in broiler chickens are not only a health and economic problem of the flock, but also a significant health threat to poultry meat consumers. The prophylactic and therapeutic effects of the phytobiotic composition on E. coli in broiler chickens were previously described. However, most of the data were related to the reference strains (for both in vitro and in vivo models). Based on the previous studies in human and animals, E. coli strains seem to be multidrug resistance. This, in turn, makes it necessary to develop effective alternative methods of treating this type of infection already at the stage of poultry production. In the present study, the antibacterial activity against various strains of E. coli (including APEC) was assessed for two innovative phytobiotics mixtures: H1, containing thymol, menthol, linalool, trans-anethole, methyl salicylate, 1,8-cineol, and p-cymene; H2, in addition to compounds from H1, containing terpinen-4-ol and γ-terpinene. The unique mixtures of phytobiotics used in the experiment were effective against various strains of E. coli, also against APEC, isolated from broiler chickens from traditional industrial breeding, as well as against those showing colistin resistance. The minimum inhibitory concentration (MIC) values for these unique mixtures were: For H1 1:512 for APEC and non-APEC E. coli strains isolated from day old chicks (DOCs), 1:512 for non-APEC, and 1:1024 for non-APEC isolated from broilers sample. For mixture H2, MIC for APEC from both type of samples (DOCs and broilers) was 1:1024 and for non-APEC (DOCs and broilers) was 1:512. The results suggest that phytobiotic compositions used in this study can be successfully used as a natural alternative to antibiotics in the treatment of E. coli infections in broiler chickens. The promising results may be a crucial point for further analyses in broiler flocks exposed to E. coli infections and where it is necessary to reduce the level of antibiotics or completely eliminate them, thus reducing the risk of foodborne infections.
Collapse
Affiliation(s)
- Karolina A. Chodkowska
- Krzyżanowski Partners Spółka z o.o., Zakładowa 7, 26-670 Pionki, Poland
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Correspondence: ; Tel.: +48-726220144
| | - Hubert Iwiński
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, C.K. Norwida 25, 50-375 Wrocław, Poland
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland
| | - Tomasz Nowak
- Laboratory of Molecular Biology, Vet-Lab Brudzew, Turkowska 58c, 62-720 Brudzew, Poland
| | - Henryk Różański
- AdiFeed Sp. z o.o., Opaczewska, 02-201 Warszawa, Poland
- Laboratory of Industrial and Experimental Biology, Institute for Health and Economics, Carpathian State University in Krosno, Rynek 1, 38-400 Krosno, Poland
| |
Collapse
|
11
|
Sivaranjani M, McCarthy MC, Sniatynski MK, Wu L, Dillon JAR, Rubin JE, White AP. Biofilm Formation and Antimicrobial Susceptibility of E. coli Associated With Colibacillosis Outbreaks in Broiler Chickens From Saskatchewan. Front Microbiol 2022; 13:841516. [PMID: 35783405 PMCID: PMC9247541 DOI: 10.3389/fmicb.2022.841516] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/19/2022] [Indexed: 11/16/2022] Open
Abstract
The global poultry industry has grown to the extent that the number of chickens now well exceeds the number of humans on Earth. Escherichia coli infections in poultry cause significant morbidity and economic losses for producers each year. We obtained 94 E. coli isolates from 12 colibacillosis outbreaks on Saskatchewan farms and screened them for antimicrobial resistance and biofilm formation. Fifty-six isolates were from broilers with confirmed colibacillosis, and 38 isolates were from healthy broilers in the same flocks (cecal E. coli). Resistance to penicillins, tetracyclines, and aminoglycosides was common in isolates from all 12 outbreaks, while cephalosporin resistance varied by outbreak. Most E. coli were able to form biofilms in at least one of three growth media (1/2 TSB, M63, and BHI broth). There was an overall trend that disease-causing E. coli had more antibiotic resistance and were more likely to form biofilms in nutrient-rich media (BHI) as compared to cecal strains. However, on an individual strain basis, there was no correlation between antimicrobial resistance and biofilm formation. The 21 strongest biofilm forming strains consisted of both disease-causing and cecal isolates that were either drug resistant or susceptible. Draft whole genome sequencing indicated that many known antimicrobial resistance genes were present on plasmids, with disease-causing E. coli having more plasmids on average than their cecal counterparts. We tested four common disinfectants for their ability to kill 12 of the best biofilm forming strains. All disinfectants killed single cells effectively, but biofilm cells were more resistant, although the difference was less pronounced for the disinfectants that have multiple modes of action. Our results indicate that there is significant diversity and complexity in E. coli poultry isolates, with different lifestyle pressures affecting disease-causing and cecal isolates.
Collapse
Affiliation(s)
- Murugesan Sivaranjani
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Madeline C. McCarthy
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michelle K. Sniatynski
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Linzhi Wu
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
| | - Jo-Anne R. Dillon
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Joseph E. Rubin
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Aaron P. White
- Vaccine and Infectious Disease Organization, Saskatoon, SK, Canada
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Aaron P. White,
| |
Collapse
|
12
|
Li M, Wang K, Tang A, Tang A, Chen A, Huang Z. Investigation of the Genes Involved in the Outbreaks of Escherichia coli and Salmonella spp. in the United States. Antibiotics (Basel) 2021; 10:1274. [PMID: 34680854 PMCID: PMC8532668 DOI: 10.3390/antibiotics10101274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
Salmonella spp. and Escherichiacoli (E. coli) are two of the deadliest foodborne pathogens in the US. Genes involved in antimicrobial resistance, virulence, and stress response, enable these pathogens to increase their pathogenicity. This study aims to examine the genes detected in both outbreak and non-outbreak Salmonella spp. and E. coli by analyzing the data from the National Centre for Biotechnology Information (NCBI) Pathogen Detection Isolates Browser database. A multivariate statistical analysis was conducted on the genes detected in isolates of outbreak Salmonella spp., non-outbreak Salmonella spp., outbreak E. coli, and non-outbreak E. coli. The genes from the data were projected onto a two-dimensional space through principal component analysis. Hierarchical clustering was then used to quantify the relationship between the genes in the dataset. Most of the outlier genes identified in E. coli isolates are virulence genes, while outlier genes identified in Salmonella spp. are mainly involved in stress response. Gene epeA, which encodes a high-molecular-weight serine protease autotransporter of Enterobacteriaceae (SPATE) protein, along with subA and subB that encode cytotoxic activity, may contribute to the pathogenesis of outbreak E. coli. The iro operon and ars operon may play a role in the ecological success of the epidemic clones of Salmonella spp. Concurrent relationships between esp and ter operons in E. coli and pco and sil operons in Salmonella spp. are found. Stress-response genes (asr, golT, golS), virulence gene (sinH), and antimicrobial resistance genes (mdsA and mdsB) in Salmonella spp. also show a concurrent relationship. All these findings provide helpful information for experiment design to combat outbreaks of E. coli and Salmonella spp.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuyi Huang
- Department of Chemical and Biological Engineering, Villanova University, Villanova, PA 19085, USA; (M.L.); (K.W.); (A.T.); (A.T.); (A.C.)
| |
Collapse
|
13
|
Zou M, Ma PP, Liu WS, Liang X, Li XY, Li YZ, Liu BT. Prevalence and Antibiotic Resistance Characteristics of Extraintestinal Pathogenic Escherichia coli among Healthy Chickens from Farms and Live Poultry Markets in China. Animals (Basel) 2021; 11:ani11041112. [PMID: 33924454 PMCID: PMC8070349 DOI: 10.3390/ani11041112] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/05/2021] [Accepted: 04/07/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Chicken meat has been proved to be a suspected source of extraintestinal pathogenic Escherichia coli (ExPEC), causing several diseases in humans, and bacteria in healthy chickens can contaminate chicken carcasses at the slaughter; however, reports about the prevalence and molecular characteristics of ExPEC in healthy chickens are still rare. In this study, among 926 E. coli isolates from healthy chickens in China, 22 (2.4%) were qualified as ExPEC and these ExPEC isolates were clonally unrelated. A total of six serogroups were identified in this study, with O78 being the most predominant type, and all the six serogroups had been frequently reported in human ExPEC isolates in many countries. All the 22 ExPEC isolates were multidrug-resistant and most isolates carried both blaCTX-M and fosA3 resistance genes. Notably, plasmid-borne colistin resistance gene mcr-1 was identified in six ExPEC isolates, among which two carried additional carbapenemase gene blaNDM, compromising both the efficacies of the two critically important drugs for humans, carbapenems and colistin. These results highlight that healthy chickens can serve as a potential reservoir for multidrug resistant ExPEC isolates, including mcr-1-containing ExPEC. Abstract Chicken products and chickens with colibacillosis are often reported to be a suspected source of extraintestinal pathogenic Escherichia coli (ExPEC) causing several diseases in humans. Such pathogens in healthy chickens can also contaminate chicken carcasses at the slaughter and then are transmitted to humans via food supply; however, reports about the ExPEC in healthy chickens are still rare. In this study, we determined the prevalence and characteristics of ExPEC isolates in healthy chickens in China. A total of 926 E. coli isolates from seven layer farms (371 isolates), one white-feather broiler farm (78 isolates) and 17 live poultry markets (477 isolates from yellow-feather broilers) in 10 cities in China, were isolated and analyzed for antibiotic resistance phenotypes and genotypes. The molecular detection of ExPEC among these healthy chicken E. coli isolates was performed by PCRs, and the serogroups and antibiotic resistance characteristics of ExPEC were also analyzed. Pulsed-field gel electrophoresis (PFGE) and Multilocus sequence typing (MLST) were used to analyze the genetic relatedness of these ExPEC isolates. We found that the resistance rate for each of the 15 antimicrobials tested among E. coli from white-feather broilers was significantly higher than that from brown-egg layers and that from yellow-feather broilers in live poultry markets (p < 0.05). A total of 22 of the 926 E. coli isolates (2.4%) from healthy chickens were qualified as ExPEC, and the detection rate (7.7%, 6/78) of ExPEC among white-feather broilers was significantly higher than that (1.6%, 6/371) from brown-egg layers and that (2.1%, 10/477) from yellow-feather broilers (p < 0.05). PFGE and MLST analysis indicated that clonal dissemination of these ExPEC isolates was unlikely. Serogroup O78 was the most predominant type among the six serogroups identified in this study, and all the six serogroups had been frequently reported in human ExPEC isolates in many countries. All the 22 ExPEC isolates were multidrug-resistant (MDR) and the resistance rates to ampicillin (100%) and sulfamethoxazole-trimethoprim (100%) were the highest, followed by tetracycline (95.5%) and doxycycline (90.9%). blaCTX-M was found in 15 of the 22 ExPEC isolates including 10 harboring additional fosfomycin resistance gene fosA3. Notably, plasmid-borne colistin resistance gene mcr-1 was identified in six ExPEC isolates in this study. Worryingly, two ExPEC isolates were found to carry both mcr-1 and blaNDM, compromising both the efficacies of carbapenems and colistin. The presence of ExPEC isolates in healthy chickens, especially those carrying mcr-1 and/or blaNDM, is alarming and will pose a threat to the health of consumers. To our knowledge, this is the first report of mcr-1-positive ExPEC isolates harboring blaNDM from healthy chickens.
Collapse
Affiliation(s)
- Ming Zou
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Ping-Ping Ma
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Wen-Shuang Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Xiao Liang
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
| | - Xu-Yong Li
- College of Agronomy, Liaocheng University, Liaocheng 252000, China;
| | - You-Zhi Li
- Shandong Veterinary Drug Quality Inspection Institute, Jinan 250022, China;
| | - Bao-Tao Liu
- College of Veterinary Medicine, Qingdao Agricultural University, Qingdao 266109, China; (M.Z.); (P.-P.M.); (W.-S.L.); (X.L.)
- Correspondence: ; Tel.: +86-532-58957734
| |
Collapse
|
14
|
Hedman HD, Vasco KA, Zhang L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals (Basel) 2020; 10:E1264. [PMID: 32722312 PMCID: PMC7460429 DOI: 10.3390/ani10081264] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence, spread, and persistence of antimicrobial resistance (AMR) remain a pressing global health issue. Animal husbandry, in particular poultry, makes up a substantial portion of the global antimicrobial use. Despite the growing body of research evaluating the AMR within industrial farming systems, there is a gap in understanding the emergence of bacterial resistance originating from poultry within resource-limited environments. As countries continue to transition from low- to middle income countries (LMICs), there will be an increased demand for quality sources of animal protein. Further promotion of intensive poultry farming could address issues of food security, but it may also increase risks of AMR exposure to poultry, other domestic animals, wildlife, and human populations. Given that intensively raised poultry can function as animal reservoirs for AMR, surveillance is needed to evaluate the impacts on humans, other animals, and the environment. Here, we provide a comprehensive review of poultry production within low-resource settings in order to inform future small-scale poultry farming development. Future research is needed in order to understand the full extent of the epidemiology and ecology of AMR in poultry within low-resource settings.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Karla A. Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.A.V.); (L.Z.)
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.A.V.); (L.Z.)
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
15
|
Abstract
In general, foodborne diseases present themselves with gastrointestinal symptoms caused by bacterial, viral, and parasitic pathogens well established to be foodborne. These pathogens are also associated with extraintestinal clinical manifestations. Recent studies have suggested that Escherichia coli and Klebsiella pneumoniae, which both cause common extraintestinal infections such as urinary tract and bloodstream infections, may also be foodborne. The resolution and separation of these organisms into pathotypes versus commensals by modern genotyping methods have led to the identification of key lineages of these organisms causing outbreaks of extraintestinal infections. These epidemiologic observations suggested common- or point-source exposures, such as contaminated food. Here, we describe the spectrum of extraintestinal illnesses caused by recognized enteric pathogens and then review studies that demonstrate the potential role of extraintestinal pathogenic E. coli (ExPEC) and K. pneumoniae as foodborne pathogens. The impact of global food production and distribution systems on the possible foodborne spread of these pathogens is discussed.
Collapse
Affiliation(s)
- Lee W. Riley
- School of Public Health, University of California, Berkeley, California 94720, USA
| |
Collapse
|
16
|
Adegoke AA, Madu CE, Aiyegoro OA, Stenström TA, Okoh AI. Antibiogram and beta-lactamase genes among cefotaxime resistant E. coli from wastewater treatment plant. Antimicrob Resist Infect Control 2020; 9:46. [PMID: 32164766 PMCID: PMC7068970 DOI: 10.1186/s13756-020-0702-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 02/13/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The World Health Organization (WHO) recently classified Enterobacteriaceae resistance to third-generation cephalosporin into the group of pathogens with critical criteria for future research. METHODS A study to assess the antibiogram and beta-lactamase genes among the cefotaxime resistant E. coli (CREc) from a South African wastewater treatment plant (WWTP) was conducted using standard phenotypic and molecular biology characterization methods. RESULTS Approximate total E. coli (TEc) concentration (log10 CFU/mL) ranged between 5.7 and 6.8 among which cefotaxime resistant E. coli were between 1.8 and 4.8 (log10 CFU/mL) for cefotaxime antibiotic concentration of 4 and 8 mg/L in the influent samples. Effluent samples, heavily influenced by the chlorination had only 0.3 log10 CFU/mL of TEc. Fifty-one cefotaxime resistant isolates were selected out of an overall of 75 isolates, and subjected to a new round of testing, with a follow up of 36 and 48 isolates for both colistin and gentamicin, respectively as guided by initial results. Selected CREc exhibited resistance to amoxicillin-clavulanic acid (35.3%; n = 51), colistin sulphate (76.5%; n = 36), ciprofloxacin (47.1%; n = 51), gentamicin (87.5%; n = 48) and intermediate-resistance to meropenem (11.8%; n = 51). Extended spectrum-beta-lactamase genes detected, viz.: blaCTX-M (52.6%; n = 38) and blaTEM (84.2%; n = 38) and concurrent blaCTX-M + blaTEM (36.8%; n = 38), but no blaSHV was detected. Carbapenem resistance genes, blaKPC-2 (15.8%; n = 38), blaOXA-1 (57.9%; n = 38), blaNDM-1 (15.8%; n = 38) were also detected. Approximately, 10.5 - 36.8% (n = 38) co-occurrence of two or more beta-lactamase genes was detected in some isolates. Out of the selected number (n = 30), 7(23.3%) were enterotoxigenic E. coli (ETEC), 14 (46.7%) were Enteroaggregative E. coli (EAEC), but no enteropathogenic E. coli (EPEC) was detected. CONCLUSION Resistance to cefotaxime and the presence of a wide range of beta-lactamase genes exposed the potential risks associated with these pathogens via occupational and domestic exposure during the reuse of treated wastewater.
Collapse
Affiliation(s)
- Anthony Ayodeji Adegoke
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa. .,Department of Microbiology, Faculty of Science, University of Uyo, PMB 1018, Uyo, Akwa Ibom State, Nigeria. .,Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.
| | - Chibuzor Ezinne Madu
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Olayinka Ayobami Aiyegoro
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,GI Microbiology and Biotechnology Unit, Agricultural Research Council- Animal Production, Irene, 0062, South Africa
| | - Thor Axel Stenström
- SARChI, Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4000, South Africa
| | - Anthony Ifeanyi Okoh
- Applied and Environmental Microbiology Research Group (AEMREG), Department of Biochemistry and Microbiology, University of Fort Hare, Alice, South Africa.,SAMRC Microbial Water Quality Monitoring Centre, University of Fort Hare, Alice, South Africa
| |
Collapse
|
17
|
Sarowska J, Futoma-Koloch B, Jama-Kmiecik A, Frej-Madrzak M, Ksiazczyk M, Bugla-Ploskonska G, Choroszy-Krol I. Virulence factors, prevalence and potential transmission of extraintestinal pathogenic Escherichia coli isolated from different sources: recent reports. Gut Pathog 2019; 11:10. [PMID: 30828388 PMCID: PMC6383261 DOI: 10.1186/s13099-019-0290-0] [Citation(s) in RCA: 394] [Impact Index Per Article: 65.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 02/11/2019] [Indexed: 02/07/2023] Open
Abstract
Extraintestinal pathogenic E. coli (ExPEC) are facultative pathogens that are part of the normal human intestinal flora. The ExPEC group includes uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), sepsis-associated E. coli (SEPEC), and avian pathogenic E. coli (APEC). Virulence factors (VF) related to the pathogenicity of ExPEC are numerous and have a wide range of activities, from those related to bacteria colonization to those related to virulence, including adhesins, toxins, iron acquisition factors, lipopolysaccharides, polysaccharide capsules, and invasins, which are usually encoded on pathogenicity islands (PAIs), plasmids and other mobile genetic elements. Mechanisms underlying the dynamics of ExPEC transmission and the selection of virulent clones are still poorly understood and require further research. The time shift between colonization of ExPEC and the development of infection remains problematic in the context of establishing the relation between consumption of contaminated food and the appearance of first disease symptoms. What appears to be most difficult is to prove that ExPEC strains cause disease symptoms and to examine the mechanism of transition from the asymptomatic colonization of the intestines to the spreading of the bacteria outside the digestive system. A significant problem for researchers who are trying to ascribe ExPEC transmission to food, people or the environment is to draw the distinction between colonization of ExPEC and infection. Food safety is an important challenge for public health both at the production stage and in the course of its processing and distribution. Examination of the genetic similarity of ExPEC strains will allow to determine their origin from different sources. Many levels of genotyping have been proposed in which the typing of strains, plasmids and genes is compared in order to obtain a more complete picture of this complex problem. The aim of our study was to characterize E. coli strains isolated from humans, animals and food for the presence of bacterial genes encoding virulence factors such as toxins, and iron acquisition systems (siderophores) in the context of an increasing spread of ExPEC infections.
Collapse
Affiliation(s)
- Jolanta Sarowska
- 1Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland
| | - Bozena Futoma-Koloch
- 2Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Agnieszka Jama-Kmiecik
- 1Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland
| | - Magdalena Frej-Madrzak
- 1Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland
| | - Marta Ksiazczyk
- 2Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Gabriela Bugla-Ploskonska
- 2Department of Microbiology, Institute of Genetics and Microbiology, University of Wroclaw, Przybyszewskiego 63/77, 51-148 Wroclaw, Poland
| | - Irena Choroszy-Krol
- 1Department of Basic Sciences, Faculty of Health Sciences, Wroclaw Medical University, Chalubinskiego 4, 50-368 Wroclaw, Poland
| |
Collapse
|
18
|
Yousfi K, Touati A, Lefebvre B, Garneau P, Brahmi S, Gharout-Sait A, Harel J, Bekal S. Characterization of multidrug-resistant Gram-negative bacilli isolated from hospitals effluents: first report of a bla OXA-48-like in Klebsiella oxytoca, Algeria. Braz J Microbiol 2018; 50:175-183. [PMID: 30637660 DOI: 10.1007/s42770-018-0010-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 10/02/2018] [Indexed: 12/17/2022] Open
Abstract
The antibiotic susceptibility profile and antimicrobial resistance determinants were characterized on Gram-negative bacilli (GNB) isolated from Algerian hospital effluents. Among the 94 isolates, Enterobacteriaceae was the predominant family, with Escherichia coli and Klebsiella pneumoniae being the most isolated species. In non-Enterobacteriaceae, Acinetobacter and Aeromonas were the predominant species followed by Pseudomonas, Comamonas, Pasteurella, and Shewanella spp. The majority of the isolates were multidrug-resistant (MDR) and carried different antimicrobial resistance genes including blaCTX-M, blaTEM, blaSHV, blaOXA-48-like, blaOXA-23, blaOXA-51, qnrB, qnrS, tet(A), tet(B), tet(C), dfrA1, aac(3)-IIc (aacC2), aac(6')-1b, sul1, and sul2. The qacEΔ1-sul1 and intI2 signatures of class 1 and class 2 integrons, respectively, were also detected. Microarray hybridization on MDR E. coli revealed additional resistance genes (aadA1 and aph3strA, tet30, mphA, dfrA12, blacmy2, blaROB1, and cmlA1) and classified the tested strains as commensals, thus highlighting the potential role of humans in antibiotic resistance dissemination. This study is the first report of blaOXA-48-like in Klebsiella oxytoca in Algeria and blaOXA-23 in A. baumannii in Algerian hospital effluents. The presence of these bacteria and resistance genes in hospital effluents represents a serious public health concern since they can be disseminated in the environment and can colonize other hosts.
Collapse
Affiliation(s)
- Khadidja Yousfi
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria.,Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Abdelaziz Touati
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria
| | - Brigitte Lefebvre
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada
| | - Philippe Garneau
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Soumia Brahmi
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria
| | - Alima Gharout-Sait
- Laboratoire d'Écologie Microbienne, FSNV, Université de Béjaia, 06000, Béjaia, Algeria
| | - Josée Harel
- Faculté de Médecine Vétérinaire, Centre de Recherche en Infectiologie Porcine, Université de Montréal, St-Hyacinthe, QC, Canada
| | - Sadjia Bekal
- Laboratoire de santé publique du Québec, Institut national de santé publique du Québec, Sainte-Anne-de-Bellevue, QC, H9X 3R5, Canada. .,Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Montréal, QC, Canada.
| |
Collapse
|
19
|
Abstract
E. coli ST131 is an important extraintestinal pathogen that can colonize the gastrointestinal tracts of humans and food animals. Here, we combined detection of accessory traits associated with avian adaptation (ColV plasmids) with high-resolution phylogenetics to quantify the portion of human infections caused by ST131 strains of food animal origin. Our results suggest that one ST131 sublineage—ST131-H22—has become established in poultry populations around the world and that meat may serve as a vehicle for human exposure and infection. ST131-H22 is just one of many E. coli lineages that may be transmitted from food animals to humans. Additional studies that combine detection of host-associated accessory elements with phylogenetics may allow us to quantify the total fraction of human extraintestinal infections attributable to food animal E. coli strains. Escherichia coli sequence type 131 (ST131) has emerged rapidly to become the most prevalent extraintestinal pathogenic E. coli clones in circulation today. Previous investigations appeared to exonerate retail meat as a source of human exposure to ST131; however, these studies focused mainly on extensively multidrug-resistant ST131 strains, which typically carry allele 30 of the fimH type 1 fimbrial adhesin gene (ST131-H30). To estimate the frequency of extraintestinal human infections arising from foodborne ST131 strains without bias toward particular sublineages or phenotypes, we conducted a 1-year prospective study of E. coli from meat products and clinical cultures in Flagstaff, Arizona. We characterized all isolates by multilocus sequence typing, fimH typing, and core genome phylogenetic analyses, and we screened isolates for avian-associated ColV plasmids as an indication of poultry adaptation. E. coli was isolated from 79.8% of the 2,452 meat samples and 72.4% of the 1,735 culture-positive clinical samples. Twenty-seven meat isolates were ST131 and belonged almost exclusively (n = 25) to the ST131-H22 lineage. All but 1 of the 25 H22 meat isolates were from poultry products, and all but 2 carried poultry-associated ColV plasmids. Of the 1,188 contemporaneous human clinical E. coli isolates, 24 were ST131-H22, one-quarter of which occurred in the same high-resolution phylogenetic clades as the ST131-H22 meat isolates and carried ColV plasmids. Molecular clock analysis of an international ST131-H22 genome collection suggested that ColV plasmids have been acquired at least six times since the 1940s and that poultry-to-human transmission is not limited to the United States.
Collapse
|
20
|
Muloi D, Ward MJ, Pedersen AB, Fèvre EM, Woolhouse ME, van Bunnik BA. Are Food Animals Responsible for Transfer of Antimicrobial-Resistant Escherichia coli or Their Resistance Determinants to Human Populations? A Systematic Review. Foodborne Pathog Dis 2018; 15:467-474. [PMID: 29708778 PMCID: PMC6103250 DOI: 10.1089/fpd.2017.2411] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The role of farm animals in the emergence and dissemination of both AMR bacteria and their resistance determinants to humans is poorly understood and controversial. Here, we systematically reviewed the current evidence that food animals are responsible for transfer of AMR to humans. We searched PubMed, Web of Science, and EMBASE for literature published between 1940 and 2016. Our results show that eight studies (18%) suggested evidence of transmission of AMR from food animals to humans, 25 studies (56%) suggested transmission between animals and humans with no direction specified and 12 studies (26%) did not support transmission. Quality of evidence was variable among the included studies; one study (2%) used high resolution typing tools, 36 (80%) used intermediate resolution typing tools, six (13%) relied on low resolution typing tools, and two (5%) based conclusions on co-occurrence of resistance. While some studies suggested to provide evidence that transmission of AMR from food animals to humans may occur, robust conclusions on the directionality of transmission cannot be drawn due to limitations in study methodologies. Our findings highlight the need to combine high resolution genomic data analysis with systematically collected epidemiological evidence to reconstruct patterns of AMR transmission between food animals and humans.
Collapse
Affiliation(s)
- Dishon Muloi
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Melissa J. Ward
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
- Nuffield Department of Clinical Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom
| | - Amy B. Pedersen
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Eric M. Fèvre
- Institute of Infection and Global Health, University of Liverpool, Liverpool, United Kingdom
- International Livestock Research Institute, Nairobi, Kenya
| | - Mark E.J. Woolhouse
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Bram A.D. van Bunnik
- Usher Institute of Population Health Sciences & Informatics, University of Edinburgh, Edinburgh, United Kingdom
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
21
|
Ramírez-Castillo FY, Moreno-Flores AC, Avelar-González FJ, Márquez-Díaz F, Harel J, Guerrero-Barrera AL. An evaluation of multidrug-resistant Escherichia coli isolates in urinary tract infections from Aguascalientes, Mexico: cross-sectional study. Ann Clin Microbiol Antimicrob 2018; 17:34. [PMID: 30041652 PMCID: PMC6057003 DOI: 10.1186/s12941-018-0286-5] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/14/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Uropathogenic Escherichia coli (UPEC) are one of the main bacteria causing urinary tract infections (UTIs). The rates of UPEC with high resistance towards antibiotics and multidrug-resistant bacteria have increased dramatically in recent years and could difficult the treatment. METHODS The aim of the study was to determine multidrug-resistant bacteria, antibiotic resistance profile, virulence traits, and genetic background of 110 E. coli isolated from community (79 isolates) and hospital-acquired (31 isolates) urinary tract infections. The plasmid-mediated quinolone resistance genes presence was also investigated. A subset of 18 isolates with a quinolone-resistance phenotype was examined for common virulence genes encoded in diarrheagenic and extra-intestinal pathogenic E. coli by a specific E. coli microarray. RESULTS Female children were the group most affected by UTIs, which were mainly community-acquired. Resistance to trimethoprim-sulfamethoxazole, ampicillin, and ampicillin-sulbactam was most prevalent. A frequent occurrence of resistance toward ciprofloxacin (47.3%), levofloxacin (43.6%) and cephalosporins (27.6%) was observed. In addition, 63% of the strains were multidrug-resistant (MDR). Almost all the fluoroquinolone (FQ)-resistant strains showed MDR-phenotype. Isolates from male patients were associated to FQ-resistant and MDR-phenotype. Moreover, hospital-acquired infections were correlated to third generation cephalosporin and nitrofurantoin resistance and the presence of kpsMTII gene. Overall, fimH (71.8%) and fyuA (68.2%), had the highest prevalence as virulence genes among isolates. However, the profile of virulence genes displayed a great diversity, which included the presence of genes related to diarrheagenic E. coli. Out of 110 isolates, 25 isolates (22.7%) were positive to qnrA, 23 (20.9%) to qnrB, 7 (6.4%) to qnrS1, 7 (6.4%) to aac(6')lb-cr, 5 (4.5%) to qnrD, and 1 (0.9%) to qnrC genes. A total of 12.7% of the isolates harbored blaCTX-M genes, with blaCTX-M-15 being the most prevalent. CONCLUSIONS Urinary tract infection due to E. coli may be difficult to treat empirically due to high resistance to commonly used antibiotics. Continuous surveillance of multidrug resistant organisms and patterns of drug resistance are needed in order to prevent treatment failure and reduce selective pressure. These findings may help choosing more suitable treatments of UTI patients in this region of Mexico.
Collapse
Affiliation(s)
- Flor Y. Ramírez-Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| | - Adriana C. Moreno-Flores
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| | - Francisco J. Avelar-González
- Laboratorio de Ciencias Ambientales, Departamento de Fisiología y Farmacología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| | - Francisco Márquez-Díaz
- Departamento de Infectología, Centenario Hospital Miguel Hidalgo, Galeana Sur 495, Obraje, 20000 Aguascalientes, Mexico
| | - Josée Harel
- Département de pathologie et microbiologie, Centre de Recherche en Infectologíe Porcine et Aviaire, Faculté de Médecine Vétérinaire, Université de Montréal, 3200, rue Sicott, Saint-Hyacinthe, Montreal, QC J2S 2M2 Canada
| | - Alma L. Guerrero-Barrera
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Universidad Autónoma de Aguascalientes, Av. Universidad 940, Col. Cd. Universitaria, 20131 Aguascalientes, Mexico
| |
Collapse
|
22
|
Kołsut J, Borówka P, Marciniak B, Wójcik E, Wojtasik A, Strapagiel D, Dastych J. In silico Analysis of Virulence Associated Genes in Genomes of Escherichia Coli Strains Causing Colibacillosis in Poultry. J Vet Res 2017; 61:421-426. [PMID: 29978104 PMCID: PMC5937339 DOI: 10.1515/jvetres-2017-0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/03/2017] [Indexed: 11/15/2022] Open
Abstract
Introduction Colibacillosis - the most common disease of poultry, is caused mainly by avian pathogenic Escherichia coli (APEC). However, thus far, no pattern to the molecular basis of the pathogenicity of these bacteria has been established beyond dispute. In this study, genomes of APEC were investigated to ascribe importance and explore the distribution of 16 genes recognised as their virulence factors. Material and Methods A total of 14 pathogenic for poultry E. coli strains were isolated, and their DNA was sequenced, assembled de novo, and annotated. Amino acid sequences from these bacteria and an additional 16 freely available APEC amino acid sequences were analysed with the DIFFIND tool to define their virulence factors. Results The DIFFIND tool enabled quick, reliable, and convenient assessment of the differences between compared amino acid sequences from bacterial genomes. The presence of 16 protein sequences indicated as pathogenicity factors in poultry resulted in the generation of a heatmap which categorises genomes in terms of the existence and similarity of the analysed protein sequences. Conclusion The proposed method of detection of virulence factors using the capabilities of the DIFFIND tool may be useful in the analysis of similarities of E. coli and other sequences deriving from bacteria. Phylogenetic analysis resulted in reliable segregation of 30 APEC strains into five main clusters containing various virulence associated genes (VAGs).
Collapse
Affiliation(s)
| | - Paulina Borówka
- Department of Anthropology, Faculty of Biology and Environmental Protection, University of Lodz, 90-231 Lodz, Poland.,Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-231 Lodz, Poland
| | - Błażej Marciniak
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-231 Lodz, Poland
| | | | | | - Dominik Strapagiel
- Biobank Lab, Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, 90-231 Lodz, Poland
| | | |
Collapse
|
23
|
Hutton TA, Innes GK, Harel J, Garneau P, Cucchiara A, Schifferli DM, Rankin SC. Phylogroup and virulence gene association with clinical characteristics of Escherichia coli urinary tract infections from dogs and cats. J Vet Diagn Invest 2017; 30:64-70. [PMID: 28971754 DOI: 10.1177/1040638717729395] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Escherichia coli isolates from infections outside the gastrointestinal tract are termed extra-intestinal pathogenic E. coli (ExPEC) and can be divided into different subpathotypes; one of these is uropathogenic E. coli (UPEC). The frequency with which UPEC strains cause urinary tract infections in dogs and cats is not well documented. We used an oligonucleotide microarray to characterize 60 E. coli isolates associated with the urinary tract of dogs ( n = 45) and cats ( n = 15), collected from 2004 to 2007, into ExPEC and UPEC and to correlate results with patient clinical characteristics. Microarray analysis was performed, and phylogroup was determined by a quadruplex PCR assay. Isolates that were missing 1 or 2 of the gene determinants representative of a function (capsule, iron uptake related genes, or specific adhesins) were designated as "non-classifiable" by microarray. Phylogroup B2 was positively associated with the UPEC subpathotype ( p < 0.0005) and negatively associated with "non-classifiable" isolates ( p < 0.0005). Phylogroup D was positively associated with ExPEC pathotype ( p = 0.025) and negatively associated with UPEC subpathotype ( p = 0.014). The ExPEC pathotype was positively associated with hospitalization for one or more days ( p = 0.031). The UPEC subpathotype was negatively associated with previous antimicrobial therapy ( p = 0.045) and previous hospitalization within the 3 mo prior to the positive culture ( p = 0.041). The UPEC subpathotype was positively associated with prostatitis ( p = 0.073) and negatively associated with current immunosuppressive therapy ( p = 0.090). Our results indicate that the case history observations may be critically important during the interpretation of laboratory results to encourage judicious use of antimicrobials.
Collapse
Affiliation(s)
- Tabitha A Hutton
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| | - Gabriel K Innes
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| | - Josée Harel
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| | - Philippe Garneau
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| | - Andrew Cucchiara
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| | - Dieter M Schifferli
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| | - Shelley C Rankin
- School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA (Hutton, Innes, Schifferli, Rankin).,The Research Group on Infectious Diseases in Animal Production, Faculty of Veterinary Medicine, University of Montreal St-Hyacinthe, Quebec, Canada (Harel, Garneau).,Center for Translational and Clinical Research and Center for Clinical Epidemiology and Biostatistics, School of Medicine, University of Pennsylvania, Philadelphia, PA (Cucchiara)
| |
Collapse
|
24
|
Zinc treatment is efficient against Escherichia coli α-haemolysin-induced intestinal leakage in mice. Sci Rep 2017; 7:45649. [PMID: 28361997 PMCID: PMC5374507 DOI: 10.1038/srep45649] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 03/01/2017] [Indexed: 12/17/2022] Open
Abstract
Zinc homoeostasis exerts protective effects in inflammatory intestinal diseases and zinc supplementation has been successfully used for treating infectious diarrhoea. This study aimed at a characterisation of zinc effects on focal leak induction by α-haemolysin (HlyA)-producing Escherichia coli (E. coli) as protective mechanism for colitis. We conducted in vivo experiments by oral challenge of gnotobiotic mice colonised with HlyA-expressing E. coli-536. Mice were either fed a defined normal or high zinc diet to analyse effects of zinc as a therapeutic regimen. HlyA-deficient E. coli-536 mutants were used as controls. Mice infected with HlyA-producing E. coli showed impaired barrier integrity when receiving normal zinc. High zinc supplementation in HlyA-producing E. coli-infected mice reduced epithelial dysfunction as indicated by ameliorated macromolecule permeability. Reduced size of focal leaks with diminished bacterial translocation was observed as inherent mechanisms of this zinc action. In human colon cell monolayers application of zinc rescued the HlyA-dependent decline in transepithelial electrical resistance via reduction of the calcium entry into HlyA-exposed cells. Calcium-dependent cell exfoliation was identified as mechanism for focal leak induction. In conclusion, zinc supplementation protects from HlyA-induced barrier dysfunction in vivo and in vitro, providing an explanation for the protective efficacy of zinc in intestinal disorders.
Collapse
|
25
|
Su JQ, Cui L, Chen QL, An XL, Zhu YG. Application of genomic technologies to measure and monitor antibiotic resistance in animals. Ann N Y Acad Sci 2016; 1388:121-135. [DOI: 10.1111/nyas.13296] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 10/04/2016] [Accepted: 10/18/2016] [Indexed: 11/27/2022]
Affiliation(s)
- Jian-Qiang Su
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Li Cui
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Qing-Lin Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Xin-Li An
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
| | - Yong-Guan Zhu
- Key Lab of Urban Environment and Health, Institute of Urban Environment; Chinese Academy of Sciences; Xiamen China
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences; Chinese Academy of Sciences; Beijing China
| |
Collapse
|
26
|
Abstract
The emergence of genomics over the last 10 years has provided new insights into the evolution and virulence of extraintestinal Escherichia coli. By combining population genetics and phylogenetic approaches to analyze whole-genome sequences, it became possible to link genomic features to specific phenotypes, such as the ability to cause urinary tract infections. An E. coli chromosome can vary extensively in length, ranging from 4.3 to 6.2 Mb, encoding 4,084 to 6,453 proteins. This huge diversity is structured as a set of less than 2,000 genes (core genome) that are conserved between all the strains and a set of variable genes. Based on the core genome, the history of the species can be reliably reconstructed, revealing the recent emergence of phylogenetic groups A and B1 and the more ancient groups B2, F, and D. Urovirulence is most often observed in B2/F/D group strains and is a multigenic process involving numerous combinations of genes and specific alleles with epistatic interactions, all leading down multiple evolutionary paths. The genes involved mainly code for adhesins, toxins, iron capture systems, and protectins, as well as metabolic pathways and mutation-rate-control systems. However, the barrier between commensal and uropathogenic E. coli strains is difficult to draw as the factors that are responsible for virulence have probably also been selected to allow survival of E. coli as a commensal in the intestinal tract. Genomic studies have also demonstrated that infections are not the result of a unique and stable isolate, but rather often involve several isolates with variable levels of diversity that dynamically changes over time.
Collapse
|
27
|
Abstract
Several potential reservoirs for the Escherichia coli strains that cause most human extraintestinal infections (extraintestinal pathogenic E. coli; ExPEC) have been identified, including the human intestinal tract and various non-human reservoirs, such as companion animals, food animals, retail meat products, sewage, and other environmental sources. Understanding ExPEC reservoirs, chains of transmission, transmission dynamics, and epidemiologic associations will assist greatly in finding ways to reduce the ExPEC-associated disease burden. The need to clarify the ecological behavior of ExPEC is all the more urgent because environmental reservoirs may contribute to acquisition of antimicrobial resistance determinants and selection for and amplification of resistant ExPEC. In this chapter, we review the evidence for different ExPEC reservoirs, with particular attention to food and food animals, and discuss the public health implications of these reservoirs for ExPEC dissemination and transmission.
Collapse
|
28
|
Wyrsch ER, Roy Chowdhury P, Chapman TA, Charles IG, Hammond JM, Djordjevic SP. Genomic Microbial Epidemiology Is Needed to Comprehend the Global Problem of Antibiotic Resistance and to Improve Pathogen Diagnosis. Front Microbiol 2016; 7:843. [PMID: 27379026 PMCID: PMC4908116 DOI: 10.3389/fmicb.2016.00843] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 05/22/2016] [Indexed: 11/18/2022] Open
Abstract
Contamination of waste effluent from hospitals and intensive food animal production with antimicrobial residues is an immense global problem. Antimicrobial residues exert selection pressures that influence the acquisition of antimicrobial resistance and virulence genes in diverse microbial populations. Despite these concerns there is only a limited understanding of how antimicrobial residues contribute to the global problem of antimicrobial resistance. Furthermore, rapid detection of emerging bacterial pathogens and strains with resistance to more than one antibiotic class remains a challenge. A comprehensive, sequence-based genomic epidemiological surveillance model that captures essential microbial metadata is needed, both to improve surveillance for antimicrobial resistance and to monitor pathogen evolution. Escherichia coli is an important pathogen causing both intestinal [intestinal pathogenic E. coli (IPEC)] and extraintestinal [extraintestinal pathogenic E. coli (ExPEC)] disease in humans and food animals. ExPEC are the most frequently isolated Gram negative pathogen affecting human health, linked to food production practices and are often resistant to multiple antibiotics. Cattle are a known reservoir of IPEC but they are not recognized as a source of ExPEC that impact human or animal health. In contrast, poultry are a recognized source of multiple antibiotic resistant ExPEC, while swine have received comparatively less attention in this regard. Here, we review what is known about ExPEC in swine and how pig production contributes to the problem of antibiotic resistance.
Collapse
Affiliation(s)
- Ethan R Wyrsch
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| | - Piklu Roy Chowdhury
- The ithree Institute, University of Technology Sydney, SydneyNSW, Australia; NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, SydneyNSW, Australia
| | - Toni A Chapman
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Ian G Charles
- Institute of Food Research, Norwich Research Park Norwich, UK
| | - Jeffrey M Hammond
- NSW Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Sydney NSW, Australia
| | - Steven P Djordjevic
- The ithree Institute, University of Technology Sydney, Sydney NSW, Australia
| |
Collapse
|
29
|
Manges A. Escherichia coli and urinary tract infections: the role of poultry-meat. Clin Microbiol Infect 2016; 22:122-129. [DOI: 10.1016/j.cmi.2015.11.010] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 11/23/2015] [Accepted: 11/24/2015] [Indexed: 12/31/2022]
|
30
|
Schauss T, Glaeser SP, Gütschow A, Dott W, Kämpfer P. Improved detection of extended spectrum beta-lactamase (ESBL)-producing Escherichia coli in input and output samples of German biogas plants by a selective pre-enrichment procedure. PLoS One 2015; 10:e0119791. [PMID: 25799434 PMCID: PMC4370489 DOI: 10.1371/journal.pone.0119791] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 01/29/2015] [Indexed: 12/12/2022] Open
Abstract
The presence of extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli was investigated in input (manure from livestock husbandry) and output samples of six German biogas plants in 2012 (one sampling per biogas plant) and two German biogas plants investigated in an annual cycle four times in 2013/2014. ESBL-producing Escherichia coli were cultured by direct plating on CHROMagar ESBL from input samples in the range of 100 to 104 colony forming units (CFU) per g dry weight but not from output sample. This initially indicated a complete elimination of ESBL-producing E. coli by the biogas plant process. Detected non target bacteria were assigned to the genera Acinetobacter, Pseudomonas, Bordetella, Achromobacter, Castellaniella, and Ochrobactrum. A selective pre-enrichment procedure increased the detection efficiency of ESBL-producing E. coli in input samples and enabled the detection in five of eight analyzed output samples. In total 119 ESBL-producing E. coli were isolated from input and 46 from output samples. Most of the E. coli isolates carried CTX-M-type and/or TEM-type beta lactamases (94%), few SHV-type beta lactamase (6%). Sixty-four blaCTX-M genes were characterized more detailed and assigned mainly to CTX-M-groups 1 (85%) and 9 (13%), and one to group 2. Phylogenetic grouping of 80 E. coli isolates showed that most were assigned to group A (71%) and B1 (27%), only one to group D (2%). Genomic fingerprinting and multilocus sequence typing (MLST) showed a high clonal diversity with 41 BOX-types and 19 ST-types. The two most common ST-types were ST410 and ST1210. Antimicrobial susceptibility testing of 46 selected ESBL-producing E. coli revealed that several isolates were additionally resistant to other veterinary relevant antibiotics and some grew on CHROMagar STEC but shiga-like toxine (SLT) genes were not detected. Resistance to carbapenems was not detected. In summary the study showed for the first time the presence of ESBL-producing E. coli in output samples of German biogas plants.
Collapse
Affiliation(s)
- Thorsten Schauss
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, IFZ-Heinrich-Buff-Ring 26–32, D-35390, Giessen, Germany
| | - Stefanie P. Glaeser
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, IFZ-Heinrich-Buff-Ring 26–32, D-35390, Giessen, Germany
- * E-mail: (SPG); (PK)
| | - Alexandra Gütschow
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, IFZ-Heinrich-Buff-Ring 26–32, D-35390, Giessen, Germany
| | - Wolfgang Dott
- Institut für Hygiene und Umweltmedizin, Rheinisch-Westfälische Technische Hochschule, D-52057, Aachen, Germany
| | - Peter Kämpfer
- Institut für Angewandte Mikrobiologie, Justus-Liebig-Universität Giessen, IFZ-Heinrich-Buff-Ring 26–32, D-35390, Giessen, Germany
- * E-mail: (SPG); (PK)
| |
Collapse
|
31
|
Manges AR, Harel J, Masson L, Edens TJ, Portt A, Reid-Smith RJ, Zhanel GG, Kropinski AM, Boerlin P. Multilocus sequence typing and virulence gene profiles associated with Escherichia coli from human and animal sources. Foodborne Pathog Dis 2015; 12:302-10. [PMID: 25774654 DOI: 10.1089/fpd.2014.1860] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We investigated whether specific sequence types, and their shared virulence gene profiles, may be associated with both human and food animal reservoirs. A total of 600 Escherichia coli isolates were assembled from human (n=265) and food-animal (n=335) sources from overlapping geographic areas and time periods (2005-2010) in Canada. The entire collection was subjected to multilocus sequence typing and a subset of 286 E. coli isolates was subjected to an E. coli-specific virulence gene microarray. The most common sequence type (ST) was E. coli ST10, which was present in all human and food-animal sources, followed by ST69, ST73, ST95, ST117, and ST131. A core group of virulence genes was associated with all 10 common STs including artJ, ycfZ, csgA, csgE, fimA, fimH, gad, hlyE, ibeB, mviM, mviN, and ompA. STs 73, 92, and 95 exhibited the largest number of virulence genes, and all were exclusively identified from human infections. ST117 was found in both human and food-animal sources and shared virulence genes common in extraintestinal pathogenic E. coli lineages. Select groups of E. coli may be found in both human and food-animal reservoirs.
Collapse
Affiliation(s)
- Amee R Manges
- 1 School of Population and Public Health, University of British Columbia , Vancouver, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Impact of UV and peracetic acid disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli in wastewater effluents. Appl Environ Microbiol 2015; 80:3656-66. [PMID: 24727265 DOI: 10.1128/aem.00418-14] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Wastewater discharges may increase the populations of pathogens, including Escherichia coli, and of antimicrobial-resistant strains in receiving waters. This study investigated the impact of UV and peracetic acid (PAA) disinfection on the prevalence of virulence and antimicrobial resistance genes in uropathogenic Escherichia coli (UPEC), the most abundant E. coli pathotype in municipal wastewaters. Laboratory disinfection experiments were conducted on wastewater treated by physicochemical, activated sludge, or biofiltration processes; 1,766 E. coli isolates were obtained for the evaluation. The target disinfection level was 200 CFU/100 ml, resulting in UV and PAA doses of 7 to 30 mJ/cm(2) and 0.9 to 2.0 mg/liter, respectively. The proportions of UPECs were reduced in all samples after disinfection, with an average reduction by UV of 55% (range, 22% to 80%) and by PAA of 52% (range, 11% to 100%). Analysis of urovirulence genes revealed that the decline in the UPEC populations was not associated with any particular virulence factor. A positive association was found between the occurrence of urovirulence and antimicrobial resistance genes (ARGs). However, the changes in the prevalence of ARGs in potential UPECs were different following disinfection, i.e., UV appears to have had no effect, while PAA significantly reduced the ARG levels. Thus, this study showed that both UV and PAA disinfections reduced the proportion of UPECs and that PAA disinfection also reduced the proportion of antimicrobial resistance gene-carrying UPEC pathotypes in municipal wastewaters.
Collapse
|
33
|
Zoonotic potential of Escherichia coli isolates from retail chicken meat products and eggs. Appl Environ Microbiol 2014; 81:1177-87. [PMID: 25480753 DOI: 10.1128/aem.03524-14] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chicken products are suspected as a source of extraintestinal pathogenic Escherichia coli (ExPEC), which causes diseases in humans. The zoonotic risk to humans from chicken-source E. coli is not fully elucidated. To clarify the zoonotic risk posed by ExPEC in chicken products and to fill existing knowledge gaps regarding ExPEC zoonosis, we evaluated the prevalence of ExPEC on shell eggs and compared virulence-associated phenotypes between ExPEC and non-ExPEC isolates from both chicken meat and eggs. The prevalence of ExPEC among egg-source isolates was low, i.e., 5/108 (4.7%). Based on combined genotypic and phenotypic screening results, multiple human and avian pathotypes were represented among the chicken-source ExPEC isolates, including avian-pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and sepsis-associated E. coli (SEPEC), as well as an undefined ExPEC group, which included isolates with fewer virulence factors than the APEC, UPEC, and NMEC isolates. These findings document a substantial prevalence of human-pathogenic ExPEC-associated genes and phenotypes among E. coli isolates from retail chicken products and identify key virulence traits that could be used for screening.
Collapse
|
34
|
Obeng AS, Rickard H, Ndi O, Sexton M, Barton M. Prevalence of Antimicrobial Resistance in Enterococci and Escherichia coli in Meat Chicken Flocks During a Production Cycle and Egg Layer Pullets During Rearing. ACTA ACUST UNITED AC 2014. [DOI: 10.3923/ijps.2014.489.503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
35
|
Biswal BK, Mazza A, Masson L, Gehr R, Frigon D. Impact of wastewater treatment processes on antimicrobial resistance genes and their co-occurrence with virulence genes in Escherichia coli. WATER RESEARCH 2014; 50:245-253. [PMID: 24380739 DOI: 10.1016/j.watres.2013.11.047] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Revised: 11/29/2013] [Accepted: 11/30/2013] [Indexed: 06/03/2023]
Abstract
An increase in the frequency of antimicrobial resistance genes (ARGs) in bacteria including Escherichia coli could be a threat to public health. This study investigated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of ARGs in E. coli isolates. In total, 719 E. coli were isolated from the influent and effluent (prior to disinfection) of two activated sludge and two physicochemical municipal treatment plants, and genotyped using DNA microarrays. Changes in the abundance of ARGs in the E. coli population were different for the two treatment processes. Activated sludge treatment did not change the prevalence of ARG-possessing E. coli but increased the abundance of ARGs in the E. coli genome while physicochemical treatment reduced both the prevalence of ARG-carrying E. coli as well as the frequency of ARGs in the E. coli genome. Most E. coli isolates from the four treatment plants possessed ARGs of multiple antimicrobial classes, mainly aminoglycoside, β-lactams, quinolone and tetracyclines. In addition these isolates harboured DNA insertion sequence elements including integrase and transposase. A significant positive association was found between the occurrence of ARGs and virulence genotypes.
Collapse
Affiliation(s)
- Basanta Kumar Biswal
- Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, Québec H3A 0C3, Canada
| | - Alberto Mazza
- National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | - Luke Masson
- National Research Council of Canada, Montréal, Québec H4P 2R2, Canada
| | - Ronald Gehr
- Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, Québec H3A 0C3, Canada
| | - Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, Québec H3A 0C3, Canada.
| |
Collapse
|
36
|
Characterization of Extraintestinal Pathogenic Escherichia coli isolated from retail poultry meats from Alberta, Canada. Int J Food Microbiol 2014; 177:49-56. [PMID: 24607423 DOI: 10.1016/j.ijfoodmicro.2014.02.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2013] [Revised: 02/06/2014] [Accepted: 02/14/2014] [Indexed: 11/23/2022]
Abstract
Extraintestinal Pathogenic Escherichia coli (ExPEC) have the potential to spread through fecal waste resulting in the contamination of both farm workers and retail poultry meat in the processing plants or environment. The objective of this study was to characterize ExPEC from retail poultry meats purchased from Alberta, Canada and to compare them with 12 human ExPEC representatives from major ExPEC lineages. Fifty-four virulence genes were screened by a set of multiplex PCRs in 700 E. coli from retail poultry meat samples. ExPEC was defined as the detection of at least two of the following virulence genes: papA/papC, sfa, kpsMT II and iutA. Genetic relationships between isolates were determined using pulsed field gel electrophoresis (PFGE). Fifty-nine (8.4%) of the 700 poultry meat isolates were identified as ExPEC and were equally distributed among the phylogenetic groups A, B1, B2 and D. Isolates of phylogenetic group A possessed up to 12 virulence genes compared to 24 and 18 genes in phylogenetic groups B2 and D, respectively. E. coli identified as ExPEC and recovered from poultry harbored as many virulence genes as those of human isolates. In addition to the iutA gene, siderophore-related iroN and fyuA were detected in combination with other virulence genes including those genes encoding for adhesion, protectin and toxin while the fimH, ompT, traT, uidA and vat were commonly detected in poultry ExPEC. The hemF, iss and cvaC genes were found in 40% of poultry ExPEC. All human ExPEC isolates harbored concnf (cytotoxic necrotizing factor 1 altering cytoskeleton and causing necrosis) and hlyD (hemolysin transport) genes which were not found in poultry ExPEC. PFGE analysis showed that a few poultry ExPEC isolates clustered with human ExPEC isolates at 55-70% similarity level. Comparing ExPEC isolated from retail poultry meats provides insight into their virulence potential and suggests that poultry associated ExPEC may be important for retail meat safety. Investigations into the ability of our poultry ExPEC to cause human infections are warranted.
Collapse
|
37
|
Ramírez Castillo FY, Avelar González FJ, Garneau P, Márquez Díaz F, Guerrero Barrera AL, Harel J. Presence of multi-drug resistant pathogenic Escherichia coli in the San Pedro River located in the State of Aguascalientes, Mexico. Front Microbiol 2013; 4:147. [PMID: 23785356 PMCID: PMC3683621 DOI: 10.3389/fmicb.2013.00147] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 05/25/2013] [Indexed: 11/13/2022] Open
Abstract
Contamination of surface waters in developing countries is a great concern. Treated and untreated wastewaters have been discharged into rivers and streams, leading to possible waterborne infection outbreaks and may represent a significant dissemination mechanism of antibiotic resistance genes. In this study, the water quality of San Pedro River, the main river and pluvial collector of the Aguascalientes State, Mexico was assessed. Thirty sample locations were tested throughout the River. The main physicochemical parameters of water were evaluated. Results showed high levels of fecal pollution as well as inorganic and organic matter abundant enough to support the heterotrophic growth of microorganisms. These results indicate poor water quality in samples from different locations. One hundred and fifty Escherichia coli were collected and screened by PCR for several virulence genes. Isolates were classified as either pathogenic (n = 91) or commensal (n = 59). The disc diffusion method was used to determine antimicrobial susceptibility to 13 antibiotics. Fifty-two percent of the isolates were resistant to at least one antimicrobial agent and 30.6% were multi-resistant. Eighteen E. coli strains were quinolone resistant of which 16 were multi-resistant. Plasmid-mediated quinolone resistance (PMQR) genes were detected in 12 isolates. Mutations at the Ser-83→Leu and/or Asp-87→Asn in the gyrA gene were detected as well as mutations at the Ser-80→Ile in parC. An E. coli microarray (Maxivirulence V 3.1) was used to characterize the virulence and antimicrobial resistance genes profiles of the fluoroquinolone-resistant isolates. Antimicrobial resistance genes such as bla TEM, sulI, sulII, dhfrIX, aph3 (strA), and tet (B) as well as integrons were found in fluoroquinolone (FQ) resistance E. coli strains. The presence of potential pathogenic E. coli and antibiotic resistance in San Pedro River such as FQ resistant E. coli could pose a potential threat to human and animal health.
Collapse
Affiliation(s)
- Flor Y Ramírez Castillo
- Laboratorio de Biología Celular y Tisular, Departamento de Morfología, Centro de Ciencias Básicas, Universidad Autónoma de Aguascalientes Aguascalientes, México
| | | | | | | | | | | |
Collapse
|
38
|
Hammami S, Saidani M, Ferjeni S, Aissa I, Slim A, Boutiba-Ben Boubaker I. Characterization of Extended Spectrum β-Lactamase-ProducingEscherichia coliin Community-Acquired Urinary Tract Infections in Tunisia. Microb Drug Resist 2013; 19:231-6. [DOI: 10.1089/mdr.2012.0172] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Affiliation(s)
- Samia Hammami
- Laboratoire de Recherche “Résistance aux Antimicrobiens,” Faculté de Médecine, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Mabrouka Saidani
- Laboratoire de Recherche “Résistance aux Antimicrobiens,” Faculté de Médecine, Hôpital Charles Nicolle, Tunis, Tunisia
- Department of Microbiology, Hopital Charles Nicolle, Tunis, Tunisia
| | - Sana Ferjeni
- Laboratoire de Recherche “Résistance aux Antimicrobiens,” Faculté de Médecine, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Ines Aissa
- Laboratoire de Recherche “Résistance aux Antimicrobiens,” Faculté de Médecine, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Amin Slim
- Laboratoire de Recherche “Résistance aux Antimicrobiens,” Faculté de Médecine, Hôpital Charles Nicolle, Tunis, Tunisia
- Department of Microbiology, Hopital Charles Nicolle, Tunis, Tunisia
| | - Ilhem Boutiba-Ben Boubaker
- Laboratoire de Recherche “Résistance aux Antimicrobiens,” Faculté de Médecine, Hôpital Charles Nicolle, Tunis, Tunisia
- Department of Microbiology, Hopital Charles Nicolle, Tunis, Tunisia
| |
Collapse
|
39
|
Identification of potentially diarrheagenic atypical enteropathogenic Escherichia coli strains present in Canadian food animals at slaughter and in retail meats. Appl Environ Microbiol 2013; 79:3892-6. [PMID: 23584785 DOI: 10.1128/aem.00182-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
This study identified and characterized enteropathogenic Escherichia coli (EPEC) in the Canadian food supply. Eighteen of 450 E. coli isolates from food animal sources were identified as atypical EPEC (aEPEC). Several of the aEPEC isolates identified in this study possessed multiple virulence genes, exhibited adherence and attaching and effacing (A/E) lesion formation, disrupted tight junctions, and were coclassified with the extraintestinal pathogenic E. coli (ExPEC) and enterotoxigenic E. coli (ETEC) pathotypes.
Collapse
|
40
|
Nordstrom L, Liu CM, Price LB. Foodborne urinary tract infections: a new paradigm for antimicrobial-resistant foodborne illness. Front Microbiol 2013; 4:29. [PMID: 23508293 PMCID: PMC3589730 DOI: 10.3389/fmicb.2013.00029] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 02/03/2013] [Indexed: 01/12/2023] Open
Abstract
Urinary tract infections (UTIs) are among the most common bacterial infections worldwide. Disproportionately affecting women, UTIs exact a substantial public burden each year in terms of direct medical expenses, decreased quality of life, and lost productivity. Increasing antimicrobial resistance among strains of extraintestinal pathogenic Escherichia coli challenges successful treatment of UTIs. Community-acquired UTIs were long considered sporadic infections, typically caused by the patients' native gastrointestinal microbiota; however, the recent recognition of UTI outbreaks with probable foodborne origins has shifted our understanding of UTI epidemiology. Along with this paradigm shift come new opportunities to disrupt the infection process and possibly quell increasing resistance, including the elimination of non-therapeutic antimicrobial use in food-animal production.
Collapse
Affiliation(s)
- Lora Nordstrom
- Division of Pathogen Genomics, Center for Food Microbiology and Environmental Health, The Translational Genomics Research Institute Flagstaff, AZ, USA
| | | | | |
Collapse
|
41
|
Frigon D, Biswal BK, Mazza A, Masson L, Gehr R. Biological and physicochemical wastewater treatment processes reduce the prevalence of virulent Escherichia coli. Appl Environ Microbiol 2013; 79:835-44. [PMID: 23160132 PMCID: PMC3568565 DOI: 10.1128/aem.02789-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 11/13/2012] [Indexed: 12/25/2022] Open
Abstract
Effluents discharged from wastewater treatment plants are possible sources of pathogenic bacteria, including Escherichia coli, in the freshwater environment, and determining the possible selection of pathogens is important. This study evaluated the impact of activated sludge and physicochemical wastewater treatment processes on the prevalence of potentially virulent E. coli. A total of 719 E. coli isolates collected from four municipal plants in Québec before and after treatment were characterized by using a customized DNA microarray to determine the impact of treatment processes on the frequency of specific pathotypes and virulence genes. The percentages of potentially pathogenic E. coli isolates in the plant influents varied between 26 and 51%, and in the effluents, the percentages were 14 to 31%, for a reduction observed at all plants ranging between 14 and 45%. Pathotypes associated with extraintestinal pathogenic E. coli (ExPEC) were the most abundant at three of the four plants and represented 24% of all isolates, while intestinal pathogenic E. coli pathotypes (IPEC) represented 10% of the isolates. At the plant where ExPEC isolates were not the most abundant, a large number of isolates were classified as both ExPEC and IPEC; overall, 6% of the isolates were classified in both groups, with the majority being from the same plant. The reduction of the proportion of pathogenic E. coli could not be explained by the preferential loss of one virulence gene or one type of virulence factor; however, the quinolone resistance gene (qnrS) appears to enhance the loss of virulence genes, suggesting a mechanism involving the loss of pathogenicity islands.
Collapse
Affiliation(s)
- Dominic Frigon
- Department of Civil Engineering and Applied Mechanics, McGill University, Montréal, Québec, Canada.
| | | | | | | | | |
Collapse
|
42
|
Bergeron CR, Prussing C, Boerlin P, Daignault D, Dutil L, Reid-Smith RJ, Zhanel GG, Manges AR. Chicken as reservoir for extraintestinal pathogenic Escherichia coli in humans, Canada. Emerg Infect Dis 2012; 18:415-21. [PMID: 22377351 PMCID: PMC3309577 DOI: 10.3201/eid1803.111099] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Urinary tract infections can be difficult and expensive to treat. Most (85%) are caused by bacteria called E. coli. Historically, doctors have believed that these urinary tract E. coli came from the patient’s own intestines. But recently, Canadian researchers discovered that not only can these E. coli come from outside the patient’s intestines, they can actually come from outside the patient: from food. After comparing the genetic makeup of E. coli from human urinary tract infections with E. coli from retail meat (chicken, beef, and pork), they concluded that chickens are a likely source of E. coli and that the infections probably come directly from the chickens themselves, not from human contamination during food processing. Therefore, prevention of E. coli urinary tract infections in people might need to start on chicken farms. We previously described how retail meat, particularly chicken, might be a reservoir for extraintestinal pathogenic Escherichia coli (ExPEC) causing urinary tract infections (UTIs) in humans. To rule out retail beef and pork as potential reservoirs, we tested 320 additional E. coli isolates from these meats. Isolates from beef and pork were significantly less likely than those from chicken to be genetically related to isolates from humans with UTIs. We then tested whether the reservoir for ExPEC in humans could be food animals themselves by comparing geographically and temporally matched E. coli isolates from 475 humans with UTIs and from cecal contents of 349 slaughtered animals. We found genetic similarities between E. coli from animals in abattoirs, principally chickens, and ExPEC causing UTIs in humans. ExPEC transmission from food animals could be responsible for human infections, and chickens are the most probable reservoir.
Collapse
Affiliation(s)
- Catherine Racicot Bergeron
- Department of Epidemiology, Biostatistics and Occupational Health, McGill University, 1020 Pine Ave West, 36B, Montréal, QC H3A 1A2, Canada
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Is Escherichia coli urinary tract infection a zoonosis? Proof of direct link with production animals and meat. Eur J Clin Microbiol Infect Dis 2011; 31:1121-9. [PMID: 22033854 DOI: 10.1007/s10096-011-1417-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Accepted: 09/03/2011] [Indexed: 10/16/2022]
Abstract
Recently, it has been suggested that the Escherichia coli causing urinary tract infection (UTI) may come from meat and animals. The purpose was to investigate if a clonal link existed between E. coli from animals, meat and UTI patients. Twenty-two geographically and temporally matched B2 E. coli from UTI patients, community-dwelling humans, broiler chicken meat, pork, and broiler chicken, previously identified to exhibit eight virulence genotypes by microarray-detection of approximately 300 genes, were investigated for clonal relatedness by PFGE. Nine isolates were selected and tested for in vivo virulence in the mouse model of ascending UTI. UTI and community-dwelling human strains were closely clonally related to meat strains. Several human derived strains were also clonally interrelated. All nine isolates regardless of origin were virulent in the UTI model with positive urine, bladder and kidney cultures. Further, isolates with the same gene profile also yielded similar bacterial counts in urine, bladder and kidneys. This study showed a clonal link between E. coli from meat and humans, providing solid evidence that UTI is zoonosis. The close relationship between community-dwelling human and UTI isolates may indicate a point source spread, e.g. through contaminated meat.
Collapse
|