1
|
Klein S, Morath B, Weitz D, Schweizer PA, Sähr A, Heeg K, Boutin S, Nurjadi D. Comparative Genomic Reveals Clonal Heterogeneity in Persistent Staphylococcus aureus Infection. Front Cell Infect Microbiol 2022; 12:817841. [PMID: 35265532 PMCID: PMC8900520 DOI: 10.3389/fcimb.2022.817841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Persistent infections caused by Staphylococcus aureus remain a clinical challenge. Adaptational mechanisms of the pathogen influencing infection persistence, treatment success, and clinical outcome in these types of infections by S. aureus have not been fully elucidated so far. We applied a whole-genome sequencing approach on fifteen isolates retrieved from a persistent S. aureus infection to determine their genetic relatedness, virulome, and resistome. The analysis of the genomic data indicates that all isolates shared a common clonal origin but displayed a heterogenous composition of virulence factors and antimicrobial resistance. This heterogeneity was reflected by different mutations in the rpoB gene that were related to the phenotypic antimicrobial resistance towards rifampicin and different minimal inhibitory concentrations of oxacillin. In addition, one group of isolates had acquired the genes encoding for staphylokinase (sak) and staphylococcal complement inhibitor (scn), leading to the truncation of the hemolysin b (hlb) gene. These features are characteristic for temperate phages of S. aureus that carry genes of the immune evasion cluster and confer triple conversion by integration into the hlb gene. Modulation of immune evasion mechanisms was demonstrated by significant differences in biofilm formation capacity, while invasion and intracellular survival in neutrophils were not uniformly altered by the presence of the immune evasion cluster. Virulence factors carried by temperate phages of S. aureus may contribute to the course of infection at different stages and affect immune evasion and pathogen persistence. In conclusion, the application of comparative genomic demonstrated clonal heterogeneity in persistent S. aureus infection.
Collapse
Affiliation(s)
- Sabrina Klein
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
- *Correspondence: Sabrina Klein,
| | - Benedict Morath
- Hospital Pharmacy, Heidelberg University Hospital, Heidelberg, Germany
- Cooperation Unit Clinical Pharmacy, Heidelberg University, Heidelberg, Germany
| | - Daniel Weitz
- Department of Cardiac Surgery, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Aline Sähr
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Klaus Heeg
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| | - Dennis Nurjadi
- Department of Infectious Diseases, Medical Microbiology and Hygiene, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Rohmer C, Wolz C. The Role of hlb-Converting Bacteriophages in Staphylococcus aureus Host Adaption. Microb Physiol 2021; 31:109-122. [PMID: 34126612 DOI: 10.1159/000516645] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 04/17/2021] [Indexed: 11/19/2022]
Abstract
As an opportunistic pathogen of humans and animals, Staphylococcus aureus asymptomatically colonizes the nasal cavity but is also a leading cause of life-threatening acute and chronic infections. The evolution of S. aureus resulting from short- and long-term adaptation to diverse hosts is tightly associated with mobile genetic elements. S. aureus strains can carry up to four temperate phages, many of which possess accessory genes encoding staphylococcal virulence factors. More than 90% of human nasal isolates of S. aureus have been shown to carry Sa3int phages, whereas invasive S. aureus isolates tend to lose these phages. Sa3int phages integrate as prophages into the bacterial hlb gene, disrupting the expression of the sphingomyelinase Hlb, an important virulence factor under specific infection conditions. Virulence factors encoded by genes carried by Sa3int phages include staphylokinase, enterotoxins, chemotaxis-inhibitory protein, and staphylococcal complement inhibitor, all of which are highly human specific and probably essential for bacterial survival in the human host. The transmission of S. aureus from humans to animals is strongly correlated with the loss of Sa3int phages, whereas phages are regained once a strain is transmitted from animals to humans. Thus, both the insertion and excision of prophages may confer a fitness advantage to this bacterium. There is also growing evidence that Sa3int phages may perform "active lysogeny," a process during which prophages are temporally excised from the chromosome without forming intact phage particles. The molecular mechanisms controlling the peculiar life cycle of Sa3int phages remain largely unclear. Nevertheless, their regulation is likely fine-tuned to ensure bacterial survival within different hosts.
Collapse
Affiliation(s)
- Carina Rohmer
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany.,Cluster of Excellence EXC 2124 "Controlling Microbes to Fight Infections", Tübingen, Germany
| |
Collapse
|
3
|
Ingmer H, Gerlach D, Wolz C. Temperate Phages of Staphylococcus aureus. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0058-2018. [PMID: 31562736 PMCID: PMC10921950 DOI: 10.1128/microbiolspec.gpp3-0058-2018] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Indexed: 12/22/2022] Open
Abstract
Most Staphylococcus aureus isolates carry multiple bacteriophages in their genome, which provide the pathogen with traits important for niche adaptation. Such temperate S. aureus phages often encode a variety of accessory factors that influence virulence, immune evasion and host preference of the bacterial lysogen. Moreover, transducing phages are primary vehicles for horizontal gene transfer. Wall teichoic acid (WTA) acts as a common phage receptor for staphylococcal phages and structural variations of WTA govern phage-host specificity thereby shaping gene transfer across clonal lineages and even species. Thus, bacteriophages are central for the success of S. aureus as a human pathogen.
Collapse
Affiliation(s)
- Hanne Ingmer
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David Gerlach
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
ϕSa3mw Prophage as a Molecular Regulatory Switch of Staphylococcus aureus β-Toxin Production. J Bacteriol 2019; 201:JB.00766-18. [PMID: 30962356 PMCID: PMC6597384 DOI: 10.1128/jb.00766-18] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 04/01/2019] [Indexed: 11/20/2022] Open
Abstract
Phage regulatory switches (phage-RSs) are a newly described form of active lysogeny where prophages function as regulatory mechanisms for expression of chromosomal bacterial genes. In Staphylococcus aureus, ϕSa3int is a widely distributed family of prophages that integrate into the β-toxin structural gene hlb, effectively inactivating it. However, β-toxin-producing strains often arise during infections and are more virulent in experimental infective endocarditis and pneumonia infections. We present evidence that in S. aureus MW2, ϕSa3mw excision is temporally and differentially responsive to growth conditions relevant to S. aureus pathogenesis. PCR analyses of ϕSa3mw (integrated and excised) and of intact hlb showed that ϕSa3mw preferentially excises in response to hydrogen peroxide-induced oxidative stress and during biofilm growth. ϕSa3mw remains as a prophage when in contact with human aortic endothelial cells in culture. A criterion for a prophage to be considered a phage-RS is the inability to lyse host cells. MW2 grown under phage-inducing conditions did not release infectious phage particles by plaque assay or transmission electron microscopy, indicating that ϕSa3mw does not carry out a productive lytic cycle. These studies highlight a dynamic, and perhaps more sophisticated, S. aureus-prophage interaction where ϕSa3int prophages provide a novel regulatory mechanism for the conditional expression of virulence factors.IMPORTANCE β-Toxin is a sphingomyelinase hemolysin that significantly contributes to Staphylococcus aureus pathogenesis. In most S. aureus isolates the prophage ϕSa3int inserts into the β-toxin gene hlb, inactivating it, but human and experimental infections give rise to β-toxin-producing variants. However, it remained to be established whether ϕSa3mw excises in response to specific environmental cues, restoring the β-toxin gene sequence. This is not only of fundamental interest but also critical when designing intervention strategies and therapeutics. We provide evidence that ϕSa3mw actively excises, allowing the conditional expression of β-toxin. ϕSa3int prophages may play a novel and largely uncharacterized role in S. aureus pathogenesis as molecular regulatory switches that promote bacterial fitness and adaptation to the challenges presented by the mammalian host.
Collapse
|
5
|
Pérez-Montarelo D, Viedma E, Larrosa N, Gómez-González C, Ruiz de Gopegui E, Muñoz-Gallego I, San Juan R, Fernández-Hidalgo N, Almirante B, Chaves F. Molecular Epidemiology of Staphylococcus aureus Bacteremia: Association of Molecular Factors With the Source of Infection. Front Microbiol 2018; 9:2210. [PMID: 30319561 PMCID: PMC6167439 DOI: 10.3389/fmicb.2018.02210] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 08/29/2018] [Indexed: 12/16/2022] Open
Abstract
Staphylococcus aureus bacteremia (SAB) is associated with high morbidity and mortality, which varies depending on the source of infection. Nevertheless, the global molecular epidemiology of SAB and its possible association with specific virulence factors remains unclear. Using DNA microarrays, a total of 833 S. aureus strains (785 SAB and 48 colonizing strains) collected in Spain over a period of 15 years (2002–2017) were characterized to determine clonal complex (CC), agr type and repertoire of resistance and virulence genes in order to provide an epidemiological overview of CCs causing bloodstream infection, and to analyze possible associations between virulence genes and the most common sources of bacteremia. The results were also analyzed by acquisition (healthcare-associated [HA] and community-acquired [CA]), methicillin-resistant (MRSA) and methicillin-susceptible (MSSA) strains, and patient age (adults vs. children). Our results revealed high clonal diversity among SAB strains with up to 28 different CCs. The most prevalent CCs were CC5 (30.8%), CC30 (20.3%), CC45 (8.3%), CC8 (8.4%), CC15 (7.5%), and CC22 (5.9%), which together accounted for 80% of all cases. A higher proportion of CC5 was found among HA strains than CA strains (35.6 vs. 20.2%, p < 0.001). CC5 was associated with methicillin resistance (14.7 vs. 79.4%, p < 0.001), whereas CC30, CC45, and CC15 were correlated with MSSA strains (p < 0.001). Pathogen-related molecular markers significantly associated with a specific source of bacteremia included the presence of sea, undisrupted hlb and isaB genes with catheter-related bacteremia; sed, splE, and fib genes with endocarditis; undisrupted hlb with skin and soft tissue infections; and finally, CC5, msrA resistance gene and hla gene with osteoarticular source. Our study suggests an association between S. aureus genotype and place of acquisition, methicillin resistance and sources of bloodstream infection, and provides a valuable starting point for further research insights into intrinsic pathogenic mechanisms involved in the development of SAB.
Collapse
|
6
|
Expression of Staphylokinase Gene S. aureus Strains Isolated from Breast Milk and Clinical Outcomes in Breastfed Infants. BIONANOSCIENCE 2017. [DOI: 10.1007/s12668-016-0364-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
7
|
Pietrocola G, Nobile G, Rindi S, Speziale P. Staphylococcus aureus Manipulates Innate Immunity through Own and Host-Expressed Proteases. Front Cell Infect Microbiol 2017; 7:166. [PMID: 28529927 PMCID: PMC5418230 DOI: 10.3389/fcimb.2017.00166] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/18/2017] [Indexed: 01/29/2023] Open
Abstract
Neutrophils, complement system and skin collectively represent the main elements of the innate immune system, the first line of defense of the host against many common microorganisms. Bacterial pathogens have evolved strategies to counteract all these defense activities. Specifically, Staphylococcus aureus, a major human pathogen, secretes a variety of immune evasion molecules including proteases, which cleave components of the innate immune system or disrupt the integrity of extracellular matrix and intercellular connections of tissues. Additionally, S. aureus secretes proteins that can activate host zymogens which, in turn, target specific defense components. Secreted proteins can also inhibit the anti-bacterial function of neutrophils or complement system proteases, potentiating S. aureus chances of survival. Here, we review the current understanding of these proteases and modulators of host proteases in the functioning of innate immunity and describe the importance of these mechanisms in the pathology of staphylococcal diseases.
Collapse
Affiliation(s)
- Giampiero Pietrocola
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Giulia Nobile
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Simonetta Rindi
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| | - Pietro Speziale
- Unit of Biochemistry, Department of Molecular Medicine, University of PaviaPavia, Italy
| |
Collapse
|
8
|
Muñoz-Gallego I, Lora-Tamayo J, Pérez-Montarelo D, Brañas P, Viedma E, Chaves F. Influence of molecular characteristics in the prognosis of methicillin-resistant Staphylococcus aureus prosthetic joint infections: beyond the species and the antibiogram. Infection 2017; 45:533-537. [PMID: 28389926 DOI: 10.1007/s15010-017-1011-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/20/2017] [Indexed: 11/28/2022]
Abstract
We have explored the relationship of phenotypic (antibiogram, β-haemolysis, agr functionality, biofilm formation) and genotypic characteristics on the prognosis of 18 cases of methicillin-resistant S. aureus prosthetic joint infection (2005-2015). All isolates belonged to CC5, and had agr type II. This pilot study suggests that phage-borne genes belonging to the immune evasion cluster (chp, sak and scn) were more frequent among episodes with treatment failure (80.0 vs. 37.5%).
Collapse
Affiliation(s)
- Irene Muñoz-Gallego
- Servicio de Microbiología, Instituto de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Jaime Lora-Tamayo
- Unidad de Enfermedades Infecciosas, Instituto de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Avenida de Córdoba sn, Madrid, 28041, Spain.
| | - Dafne Pérez-Montarelo
- Servicio de Microbiología, Instituto de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Patricia Brañas
- Servicio de Microbiología, Instituto de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Esther Viedma
- Servicio de Microbiología, Instituto de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Fernando Chaves
- Servicio de Microbiología, Instituto de Investigación Biomédica Hospital 12 de Octubre, Hospital Universitario 12 de Octubre, Madrid, Spain
| |
Collapse
|
9
|
Giulieri SG, Holmes NE, Stinear TP, Howden BP. Use of bacterial whole-genome sequencing to understand and improve the management of invasive Staphylococcus aureus infections. Expert Rev Anti Infect Ther 2016; 14:1023-1036. [PMID: 27626511 DOI: 10.1080/14787210.2016.1233815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Management of invasive Staphylococcus aureus infections is complex. Dramatic improvements in bacterial whole genome sequencing (WGS) offer new opportunities for personalising the treatment of S. aureus infections. Areas covered: We address recent achievements in S. aureus genomics, describe genetic determinants of antibiotic resistance and summarise studies that have defined molecular characteristics associated with risk and outcome of S. aureus invasive infections. Potential clinical use of WGS for resistance prediction, infection outcome stratification and management of persistent /relapsing infections is critically discussed. Expert commentary: WGS is not only providing invaluable information to track the emergence and spread of important S. aureus clones, but also allows rapid determination of resistance genotypes in the clinical environment. An evolving opportunity is to infer clinically important outcomes and optimal therapeutic approaches from widely available S. aureus genome data, with the goal of individualizing management of invasive S. aureus infections.
Collapse
Affiliation(s)
- Stefano G Giulieri
- a Microbiological Diagnostic Unit Public Health Laboratory , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,b Infectious Diseases Service , Department of Medicine, Lausanne University Hospital , Lausanne , Switzerland
| | - Natasha E Holmes
- c Infectious Diseases Department , Austin Health , Heidelberg , Australia
| | - Timothy P Stinear
- d Doherty Applied Microbial Genomics , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,e Department of Microbiology and Immunology , The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| | - Benjamin P Howden
- a Microbiological Diagnostic Unit Public Health Laboratory , Department of Microbiology and Immunology at the Peter Doherty Institute for Infection and Immunity, University of Melbourne , Melbourne , Australia.,c Infectious Diseases Department , Austin Health , Heidelberg , Australia.,e Department of Microbiology and Immunology , The University of Melbourne at the Peter Doherty Institute for Infection and Immunity , Melbourne , Australia
| |
Collapse
|
10
|
Nguyen LT, Vogel HJ. Staphylokinase has distinct modes of interaction with antimicrobial peptides, modulating its plasminogen-activation properties. Sci Rep 2016; 6:31817. [PMID: 27554435 PMCID: PMC4995489 DOI: 10.1038/srep31817] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 07/25/2016] [Indexed: 11/09/2022] Open
Abstract
Staphylokinase (Sak) is a plasminogen activator protein that is secreted by many Staphylococcus aureus strains. Sak also offers protection by binding and inhibiting specific antimicrobial peptides (AMPs). Here, we evaluate Sak as a more general interaction partner for AMPs. Studies with melittin, mCRAMP, tritrpticin and bovine lactoferricin indicate that the truncation of the first ten residues of Sak (SakΔN10), which occurs in vivo and uncovers important residues in a bulge region, improves its affinity for AMPs. Melittin and mCRAMP have a lower affinity for SakΔN10, and in docking studies, they bind to the N-terminal segment and bulge region of SakΔN10. By comparison, lactoferricin and tritrpticin form moderately high affinity 1:1 complexes with SakΔN10 and their cationic residues form several electrostatic interactions with the protein's α-helix. Overall, our work identifies two distinct AMP binding surfaces on SakΔN10 whose occupation would lead to either inhibition or promotion of its plasminogen activating properties.
Collapse
Affiliation(s)
- Leonard T Nguyen
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Hans J Vogel
- Biochemistry Research Group, Department of Biological Sciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
11
|
Ko YP, Flick MJ. Fibrinogen Is at the Interface of Host Defense and Pathogen Virulence in Staphylococcus aureus Infection. Semin Thromb Hemost 2016; 42:408-21. [PMID: 27056151 PMCID: PMC5514417 DOI: 10.1055/s-0036-1579635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Fibrinogen not only plays a pivotal role in hemostasis but also serves key roles in antimicrobial host defense. As a rapidly assembled provisional matrix protein, fibrin(ogen) can function as an early line of host protection by limiting bacterial growth, suppressing dissemination of microbes to distant sites, and mediating host bacterial killing. Fibrinogen-mediated host antimicrobial activity occurs predominantly through two general mechanisms, namely, fibrin matrices functioning as a protective barrier and fibrin(ogen) directly or indirectly driving host protective immune function. The potential of fibrin to limit bacterial infection and disease has been countered by numerous bacterial species evolving and maintaining virulence factors that engage hemostatic system components within vertebrate hosts. Bacterial factors have been isolated that simply bind fibrinogen or fibrin, promote fibrin polymer formation, or promote fibrin dissolution. Staphylococcus aureus is an opportunistic gram-positive bacterium, the causative agent of a wide range of human infectious diseases, and a prime example of a pathogen exquisitely sensitive to host fibrinogen. Indeed, current data suggest fibrinogen serves as a context-dependent determinant of host defense or pathogen virulence in Staphylococcus infection whose ultimate contribution is dictated by the expression of S. aureus virulence factors, the path of infection, and the tissue microenvironment.
Collapse
Affiliation(s)
- Ya-Ping Ko
- Center for Infectious and Inflammatory Diseases, Institute for Biosciences and Technology, Texas A&M Health Science Center, Houston, Texas
| | - Matthew J. Flick
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Thomer L, Schneewind O, Missiakas D. Pathogenesis of Staphylococcus aureus Bloodstream Infections. ANNUAL REVIEW OF PATHOLOGY 2016; 11:343-64. [PMID: 26925499 PMCID: PMC5068359 DOI: 10.1146/annurev-pathol-012615-044351] [Citation(s) in RCA: 189] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus, a Gram-positive bacterium colonizing nares, skin, and the gastrointestinal tract, frequently invades the skin, soft tissues, and bloodstreams of humans. Even with surgical and antibiotic therapy, bloodstream infections are associated with significant mortality. The secretion of coagulases, proteins that associate with and activate the host hemostatic factor prothrombin, and the bacterial surface display of agglutinins, proteins that bind polymerized fibrin, are key virulence strategies for the pathogenesis of S. aureus bloodstream infections, which culminate in the establishment of abscess lesions. Pathogen-controlled processes, involving a wide spectrum of secreted factors, are responsible for the recruitment and destruction of immune cells, transforming abscess lesions into purulent exudate, with which staphylococci disseminate to produce new infectious lesions or to infect new hosts. Research on S. aureus bloodstream infections is a frontier for the characterization of protective vaccine antigens and the development of immune therapeutics aiming to prevent disease or improve outcomes.
Collapse
Affiliation(s)
- Lena Thomer
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | - Olaf Schneewind
- Department of Microbiology, University of Chicago, Chicago, Illinois 60637;
| | | |
Collapse
|
13
|
DNA microarray analysis of Staphylococcus aureus causing bloodstream infection: bacterial genes associated with mortality? Eur J Clin Microbiol Infect Dis 2016; 35:1285-95. [PMID: 27177754 DOI: 10.1007/s10096-016-2663-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 04/24/2016] [Indexed: 01/07/2023]
Abstract
Providing evidence for microbial genetic determinants' impact on outcome in Staphylococcus aureus bloodstream infections (SABSI) is challenging due to the complex and dynamic microbe-host interaction. Our recent population-based prospective study reported an association between the S. aureus clonal complex (CC) 30 genotype and mortality in SABSI patients. This follow-up investigation aimed to examine the genetic profiles of the SABSI isolates and test the hypothesis that specific genetic characteristics in S. aureus are associated with mortality. SABSI isolates (n = 305) and S. aureus CC30 isolates from asymptomatic nasal carriers (n = 38) were characterised by DNA microarray analysis and spa typing. Fisher's exact test, least absolute shrinkage and selection operator (LASSO) and elastic net regressions were performed to discern within four groups defined by patient outcome and characteristics. No specific S. aureus genetic determinants were found to be associated with mortality in SABSI patients. By applying LASSO and elastic net regressions, we found evidence suggesting that agrIII and cna were positively and setC (=selX) and seh were negatively associated with S. aureus CC30 versus non-CC30 isolates. The genes chp and sak, encoding immune evasion molecules, were found in higher frequencies in CC30 SABSI isolates compared to CC30 carrier isolates, indicating a higher virulence potential. In conclusion, no specific S. aureus genes were found to be associated with mortality by DNA microarray analysis and state-of-the-art statistical analyses. The next natural step is to test the hypothesis in larger samples with higher resolution methods, like whole genome sequencing.
Collapse
|
14
|
Tissue Plasminogen Activator Coating on Implant Surfaces Reduces Staphylococcus aureus Biofilm Formation. Appl Environ Microbiol 2015; 82:394-401. [PMID: 26519394 DOI: 10.1128/aem.02803-15] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 10/21/2015] [Indexed: 12/15/2022] Open
Abstract
Staphylococcus aureus biofilm infections of indwelling medical devices are a major medical challenge because of their high prevalence and antibiotic resistance. As fibrin plays an important role in S. aureus biofilm formation, we hypothesize that coating of the implant surface with fibrinolytic agents can be used as a new method of antibiofilm prophylaxis. The effect of tissue plasminogen activator (tPA) coating on S. aureus biofilm formation was tested with in vitro microplate biofilm assays and an in vivo mouse model of biofilm infection. tPA coating efficiently inhibited biofilm formation by various S. aureus strains. The effect was dependent on plasminogen activation by tPA, leading to subsequent local fibrin cleavage. A tPA coating on implant surfaces prevented both early adhesion and later biomass accumulation. Furthermore, tPA coating increased the susceptibility of biofilm infections to antibiotics. In vivo, significantly fewer bacteria were detected on the surfaces of implants coated with tPA than on control implants from mice treated with cloxacillin. Fibrinolytic coatings (e.g., with tPA) reduce S. aureus biofilm formation both in vitro and in vivo, suggesting a novel way to prevent bacterial biofilm infections of indwelling medical devices.
Collapse
|
15
|
Kwiecinski J, Peetermans M, Liesenborghs L, Na M, Björnsdottir H, Zhu X, Jacobsson G, Johansson BR, Geoghegan JA, Foster TJ, Josefsson E, Bylund J, Verhamme P, Jin T. Staphylokinase Control of Staphylococcus aureus Biofilm Formation and Detachment Through Host Plasminogen Activation. J Infect Dis 2015; 213:139-48. [PMID: 26136471 DOI: 10.1093/infdis/jiv360] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 06/22/2015] [Indexed: 02/07/2023] Open
Abstract
Staphylococcus aureus biofilms, a leading cause of persistent infections, are highly resistant to immune defenses and antimicrobial therapies. In the present study, we investigated the contribution of fibrin and staphylokinase (Sak) to biofilm formation. In both clinical S. aureus isolates and laboratory strains, high Sak-producing strains formed less biofilm than strains that lacked Sak, suggesting that Sak prevents biofilm formation. In addition, Sak induced detachment of mature biofilms. This effect depended on plasminogen activation by Sak. Host-derived fibrin, the main substrate cleaved by Sak-activated plasminogen, was a major component of biofilm matrix, and dissolution of this fibrin scaffold greatly increased susceptibility of biofilms to antibiotics and neutrophil phagocytosis. Sak also attenuated biofilm-associated catheter infections in mouse models. In conclusion, our results reveal a novel role for Sak-induced plasminogen activation that prevents S. aureus biofilm formation and induces detachment of existing biofilms through proteolytic cleavage of biofilm matrix components.
Collapse
Affiliation(s)
- Jakub Kwiecinski
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Marijke Peetermans
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Manli Na
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Halla Björnsdottir
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Xuefeng Zhu
- Department of Medical Biochemistry and Cell Biology
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, Skövde, Sweden
| | | | - Joan A Geoghegan
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Timothy J Foster
- Department of Microbiology, Moyne Institute of Preventive Medicine, School of Genetics and Microbiology, Trinity College, Dublin, Ireland
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| | - Johan Bylund
- Department of Rheumatology and Inflammation Research, Institute of Medicine Department of Oral Microbiology and Immunology, Sahlgrenska Academy at University of Gothenburg
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, Department of Cardiovascular Sciences, University of Leuven, Belgium
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine
| |
Collapse
|
16
|
Peetermans M, Vanassche T, Liesenborghs L, Claes J, Vande Velde G, Kwiecinksi J, Jin T, De Geest B, Hoylaerts MF, Lijnen RH, Verhamme P. Plasminogen activation by staphylokinase enhances local spreading of S. aureus in skin infections. BMC Microbiol 2014; 14:310. [PMID: 25515118 PMCID: PMC4274676 DOI: 10.1186/s12866-014-0310-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2014] [Accepted: 11/24/2014] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Staphylococcus aureus (S. aureus) is a frequent cause of skin and soft tissue infections. A unique feature of S. aureus is the combined presence of coagulases that trigger fibrin formation and of the plasminogen activator staphylokinase (SAK). Whereas the importance of fibrin generation for S. aureus virulence has been established, the role of SAK remains unclear. We studied the role of plasminogen activation by SAK in a skin infection model in mice and evaluated the impact of alpha-2-antiplasmin (α2AP) deficiency on the spreading and proteolytic activity of S. aureus skin infections. The species-selectivity of SAK was overcome by adenoviral expression of human plasminogen. Bacterial spread and density was assessed non-invasively by imaging the bioluminescence of S. aureus Xen36. RESULTS SAK-mediated plasmin activity increased the local invasiveness of S. aureus, leading to larger lesions with skin disruption as well as decreased bacterial clearance by the host. Even though fibrin and bacterial surfaces protected SAK-mediated plasmin activity from inhibition by α2AP, the deficiency of α2AP resulted in increased bacterial spreading. SAK-mediated plasmin also induced secondary activation of gelatinases, shown both in vitro and in lesions from the in vivo model. CONCLUSION SAK contributes to the phenotype of S. aureus skin infections by enhancing bacterial spreading as a result of fibrinolytic and proteolytic activation.
Collapse
Affiliation(s)
- Marijke Peetermans
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Thomas Vanassche
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Laurens Liesenborghs
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Jorien Claes
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Greetje Vande Velde
- Biomedical MRI/Molecular Small Animal Imaging Center, KU Leuven, Herestraat 49, Box 505, Leuven, Belgium.
| | - Jakub Kwiecinksi
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10, Box 480, Gothenburg, Sweden.
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, University of Gothenburg, Guldhedsgatan 10, Box 480, Gothenburg, Sweden.
| | - Bart De Geest
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Marc F Hoylaerts
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Roger H Lijnen
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| | - Peter Verhamme
- Center for Molecular and Vascular Biology, KU Leuven, Herestraat 49, Box 911, Leuven, Belgium.
| |
Collapse
|
17
|
Kwiecinski J, Jacobsson G, Josefsson E, Jin T. Reply to Bouchiat et al. J Infect Dis 2014; 210:1343-4. [PMID: 24795477 DOI: 10.1093/infdis/jiu247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Jakub Kwiecinski
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg
| | - Gunnar Jacobsson
- Department of Infectious Diseases, Skaraborg Hospital, Skövde, Sweden
| | - Elisabet Josefsson
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg
| | - Tao Jin
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg
| |
Collapse
|
18
|
Nawrocki KL, Crispell EK, McBride SM. Antimicrobial Peptide Resistance Mechanisms of Gram-Positive Bacteria. Antibiotics (Basel) 2014; 3:461-92. [PMID: 25419466 PMCID: PMC4239024 DOI: 10.3390/antibiotics3040461] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/25/2014] [Accepted: 09/28/2014] [Indexed: 01/09/2023] Open
Abstract
Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
Collapse
Affiliation(s)
- Kathryn L Nawrocki
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Emily K Crispell
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| | - Shonna M McBride
- Department of Microbiology and Immunology, Emory University School of Medicine, 1510 Clifton Rd, Atlanta, GA 30322, USA; (K.L.N.); (E.K.C.)
| |
Collapse
|
19
|
Salgado-Pabón W, Herrera A, Vu BG, Stach CS, Merriman JA, Spaulding AR, Schlievert PM. Staphylococcus aureus β-toxin production is common in strains with the β-toxin gene inactivated by bacteriophage. J Infect Dis 2014; 210:784-92. [PMID: 24620023 DOI: 10.1093/infdis/jiu146] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Staphylococcus aureus causes life-threatening infections, including infective endocarditis, sepsis, and pneumonia. β-toxin is a sphingomyelinase encoded for by virtually all S. aureus strains and exhibits human immune cell cytotoxicity. The toxin enhances S. aureus phenol-soluble modulin activity, and its activity is enhanced by superantigens. The bacteriophage φSa3 inserts into the β-toxin gene in human strains, inactivating it in the majority of S. aureus clonal groups. Hence, most strains are reported not to secrete β-toxin. METHODS This dynamic was investigated by examining β-toxin production by multiple clonal groups of S. aureus, both in vitro and in vivo during infections in rabbit models of infective endocarditis, sepsis, and pneumonia. RESULTS β-toxin phenotypic variants are common among strains containing φSa3. In vivo, φSa3 is differentially induced in heart vegetations, kidney abscesses, and ischemic liver compared to spleen and blood, and in vitro growth in liquid culture. Furthermore, in pneumonia, wild-type β-toxin production leads to development of large caseous lesions, and in infective endocarditis, increases the size of pathognomonic vegetations. CONCLUSIONS This study demonstrates the dynamic interaction between S. aureus and the infected host, where φSa3 serves as a regulator of virulence gene expression, and increased fitness and virulence in new environments.
Collapse
Affiliation(s)
- Wilmara Salgado-Pabón
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| | - Alfa Herrera
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| | - Bao G Vu
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| | - Christopher S Stach
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| | - Joseph A Merriman
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| | - Adam R Spaulding
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| | - Patrick M Schlievert
- Department of Microbiology, University of Iowa Carver College of Medicine, Iowa City
| |
Collapse
|
20
|
Chen CJ, Unger C, Hoffmann W, Lindsay JA, Huang YC, Götz F. Characterization and comparison of 2 distinct epidemic community-associated methicillin-resistant Staphylococcus aureus clones of ST59 lineage. PLoS One 2013; 8:e63210. [PMID: 24039691 PMCID: PMC3764004 DOI: 10.1371/journal.pone.0063210] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Accepted: 04/02/2013] [Indexed: 02/06/2023] Open
Abstract
Sequence type (ST) 59 is an epidemic lineage of community-associated (CA) methicillin-resistant Staphylococcus aureus (MRSA) isolates. Taiwanese CA-MRSA isolates belong to ST59 and can be grouped into 2 distinct clones, a virulent Taiwan clone and a commensal Asian-Pacific clone. The Taiwan clone carries the Panton–Valentine leukocidin (PVL) genes and the staphylococcal chromosomal cassette mec (SCCmec) VT, and is frequently isolated from patients with severe disease. The Asian-Pacific clone is PVL-negative, carries SCCmec IV, and a frequent colonizer of healthy children. Isolates of both clones were characterized by their ability to adhere to respiratory A549 cells, cytotoxicity to human neutrophils, and nasal colonization of a murine and murine sepsis models. Genome variation was determined by polymerase chain reaction of selected virulence factors and by multi-strain whole genome microarray. Additionally, the expression of selected factors was compared between the 2 clones. The Taiwan clone showed a much higher cytotoxicity to the human neutrophils and caused more severe septic infections with a high mortality rate in the murine model. The clones were indistinguishable in their adhesion to A549 cells and persistence of murine nasal colonization. The microarray data revealed that the Taiwan clone had lost the ø3-prophage that integrates into the β-hemolysin gene and includes staphylokinase- and enterotoxin P-encoding genes, but had retained the genes for human immune evasion, scn and chps. Production of the virulence factors did not differ significantly in the 2 clonal groups, although more α-toxin was expressed in Taiwan clone isolates from pneumonia patients. In conclusion, the Taiwan CA-MRSA clone was distinguished by enhanced virulence in both humans and an animal infection model. The evolutionary acquisition of PVL, the higher expression of α-toxin, and possibly the loss of a large portion of the β-hemolysin-converting prophage likely contribute to its higher pathogenic potential than the Asian-Pacific clone.
Collapse
Affiliation(s)
- Chih-Jung Chen
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- * E-mail:
| | - Clemens Unger
- Institut für Tropenmedizin, Wilhelmstraße 27, Tübingen, Germany
| | | | - Jodi A. Lindsay
- Department of Cellular & Molecular Medicine, St George’s, University of London, Cranmer Terrace, London, United Kingdom
| | - Yhu-Chering Huang
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Friedrich Götz
- Department of Microbial Genetics, Faculty of Biology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
21
|
Kwiecinski J, Jacobsson G, Karlsson M, Zhu X, Wang W, Bremell T, Josefsson E, Jin T. Staphylokinase Promotes the Establishment of Staphylococcus aureus Skin Infections While Decreasing Disease Severity. J Infect Dis 2013; 208:990-9. [DOI: 10.1093/infdis/jit288] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
22
|
Xia G, Wolz C. Phages of Staphylococcus aureus and their impact on host evolution. INFECTION GENETICS AND EVOLUTION 2013; 21:593-601. [PMID: 23660485 DOI: 10.1016/j.meegid.2013.04.022] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/25/2013] [Accepted: 04/18/2013] [Indexed: 01/01/2023]
Abstract
Most of the dissimilarity between Staphylococcus aureus strains is due to the presence of mobile genetic elements such as bacteriophages or pathogenicity islands. These elements provide the bacteria with additional genes that enable them to establish a new lifestyle that is often accompanied by a shift to increased pathogenicity or a jump to a new host. S. aureus phages may carry genes coding for diverse virulence factors such as Panton-Valentine leukocidin, staphylokinase, enterotoxins, chemotaxis-inhibitory proteins, or exfoliative toxins. Phages also mediate the transfer of pathogenicity islands in a highly coordinated manner and are the primary vehicle for the horizontal transfer of chromosomal and extra-chromosomal genes. Here, we summarise recent advances regarding phage classification, genome organisation and function of S. aureus phages with a particular emphasis on their role in the evolution of the bacterial host.
Collapse
Affiliation(s)
- Guoqing Xia
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhornstrasse-6, 72076 Tübingen, Germany; German Center for Infection Research (DZIF), Tübingen, Germany
| | - Christiane Wolz
- Interfaculty Institute of Microbiology and Infection Medicine, University of Tübingen, Elfriede-Aulhornstrasse-6, 72076 Tübingen, Germany.
| |
Collapse
|
23
|
Koch TK, Reuter M, Barthel D, Böhm S, van den Elsen J, Kraiczy P, Zipfel PF, Skerka C. Staphylococcus aureus proteins Sbi and Efb recruit human plasmin to degrade complement C3 and C3b. PLoS One 2012; 7:e47638. [PMID: 23071827 PMCID: PMC3469469 DOI: 10.1371/journal.pone.0047638] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 09/13/2012] [Indexed: 11/19/2022] Open
Abstract
Upon host infection, the human pathogenic microbe Staphylococcus aureus (S. aureus) immediately faces innate immune reactions such as the activated complement system. Here, a novel innate immune evasion strategy of S. aureus is described. The staphylococcal proteins surface immunoglobulin-binding protein (Sbi) and extracellular fibrinogen-binding protein (Efb) bind C3/C3b simultaneously with plasminogen. Bound plasminogen is converted by bacterial activator staphylokinase or by host-specific urokinase-type plasminogen activator to plasmin, which in turn leads to degradation of complement C3 and C3b. Efb and to a lesser extend Sbi enhance plasmin cleavage of C3/C3b, an effect which is explained by a conformational change in C3/C3b induced by Sbi and Efb. Furthermore, bound plasmin also degrades C3a, which exerts anaphylatoxic and antimicrobial activities. Thus, S. aureus Sbi and Efb comprise platforms to recruit plasmin(ogen) together with C3 and its activation product C3b for efficient degradation of these complement components in the local microbial environment and to protect S. aureus from host innate immune reactions.
Collapse
Affiliation(s)
- Tina K. Koch
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection, Biology, Jena, Germany
| | - Michael Reuter
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection, Biology, Jena, Germany
| | - Diana Barthel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection, Biology, Jena, Germany
| | - Sascha Böhm
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection, Biology, Jena, Germany
| | | | - Peter Kraiczy
- Institute of Medical Microbiology and Infection Control, University Hospital Frankfurt, Germany
| | - Peter F. Zipfel
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection, Biology, Jena, Germany
- Friedrich Schiller University Jena, Germany
| | - Christine Skerka
- Department of Infection Biology, Leibniz Institute for Natural Product Research and Infection, Biology, Jena, Germany
- * E-mail:
| |
Collapse
|
24
|
van Hal SJ, Jensen SO, Vaska VL, Espedido BA, Paterson DL, Gosbell IB. Predictors of mortality in Staphylococcus aureus Bacteremia. Clin Microbiol Rev 2012; 25:362-86. [PMID: 22491776 PMCID: PMC3346297 DOI: 10.1128/cmr.05022-11] [Citation(s) in RCA: 684] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Staphylococcus aureus bacteremia (SAB) is an important infection with an incidence rate ranging from 20 to 50 cases/100,000 population per year. Between 10% and 30% of these patients will die from SAB. Comparatively, this accounts for a greater number of deaths than for AIDS, tuberculosis, and viral hepatitis combined. Multiple factors influence outcomes for SAB patients. The most consistent predictor of mortality is age, with older patients being twice as likely to die. Except for the presence of comorbidities, the impacts of other host factors, including gender, ethnicity, socioeconomic status, and immune status, are unclear. Pathogen-host interactions, especially the presence of shock and the source of SAB, are strong predictors of outcomes. Although antibiotic resistance may be associated with increased mortality, questions remain as to whether this reflects pathogen-specific factors or poorer responses to antibiotic therapy, namely, vancomycin. Optimal management relies on starting appropriate antibiotics in a timely fashion, resulting in improved outcomes for certain patient subgroups. The roles of surgery and infectious disease consultations require further study. Although the rate of mortality from SAB is declining, it remains high. Future international collaborative studies are required to tease out the relative contributions of various factors to mortality, which would enable the optimization of SAB management and patient outcomes.
Collapse
Affiliation(s)
- Sebastian J van Hal
- Department of Microbiology and Infectious Diseases, Sydney South West Pathology Service—Liverpool, South Western Sydney Local Health Network, Sydney, New South Wales, Australia.
| | | | | | | | | | | |
Collapse
|
25
|
Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243-54. [PMID: 21560069 PMCID: PMC11115334 DOI: 10.1007/s00018-011-0716-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen's surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Biotechnology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
26
|
Piechowicz L, Galin’︁ski J, Garbacz K, Haras K. Bacteriophage analysis of staphylokinase-negative Staphylococcus aureus strains isolated from people. J Basic Microbiol 2010; 50:557-61. [DOI: 10.1002/jobm.201000019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
27
|
Abstract
Temperate bacteriophages play an important role in the pathogenicity of Staphylococcus aureus, for instance, by mediating the horizontal gene transfer of virulence factors. Here we established a classification scheme for staphylococcal prophages of the major Siphoviridae family based on integrase gene polymorphism. Seventy-one published genome sequences of staphylococcal phages were clustered into distinct integrase groups which were related to the chromosomal integration site and to the encoded virulence gene content. Analysis of three marker modules (lysogeny, tail, and lysis) for phage functional units revealed that these phages exhibit different degrees of genome mosaicism. The prevalence of prophages in a representative S. aureus strain collection consisting of 386 isolates of diverse origin was determined. By linking the phage content to dominant S. aureus clonal complexes we could show that the distribution of bacteriophages varied remarkably between lineages, indicating restriction-based barriers. A comparison of colonizing and invasive S. aureus strain populations revealed that hlb-converting phages were significantly more frequent in colonizing strains.
Collapse
|
28
|
Mann NH. The potential of phages to prevent MRSA infections. Res Microbiol 2008; 159:400-5. [PMID: 18541414 DOI: 10.1016/j.resmic.2008.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Revised: 03/25/2008] [Accepted: 04/14/2008] [Indexed: 11/19/2022]
Abstract
This short review attempts to examine whether there is a potential for the use of phages capable of infecting Staphylococcus aureus to eradicate or reduce nasal colonisation, thereby reducing the overall infection burden in patient populations identified as being at risk from MRSA infections. There is clear evidence that nasal decolonisation may be of benefit to certain patient groups and also that phages can effectively combat experimentally induced S. aureus infections in animals. However, this is not in itself enough to validate the use of phages for decolonisation and, given the appearance of strains resistant to currently used topical antibiotics, there is a need for clinical trials of this prophylactic use of phages.
Collapse
Affiliation(s)
- Nicholas H Mann
- Novolytics Ltd., Unit 26, Barclays Venture Centre, Sir William Lyons Road, Coventry CV4 7EZ, UK.
| |
Collapse
|
29
|
Jin T, Bokarewa M, Zhu Y, Tarkowski A. Staphylokinase reduces plasmin formation by endogenous plasminogen activators. Eur J Haematol 2008; 81:8-17. [PMID: 18331597 DOI: 10.1111/j.1600-0609.2008.01066.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Hyperfibrinolysis is a consequence of imbalance between fibrinolytic activators and their inhibitors. Increased levels of circulating plasminogen (Plg) activators such as tissue- or urokinase-type plasminogen activators (tPA or uPA respectively) are the most common causes of hyperfibrinolysis, occasionally causing major hemorrhages. We found that staphylokinase (SAK), a well-known Plg activator of bacterial origin, inhibits Plg activation mediated by endogenous tPA and uPA. Furthermore, mixture of SAK with tPA led to a significantly reduced Plg-dependent fibrinolysis. This inhibitory effect was exerted through direct action of SAK on Plg rather than indirectly on tPA or uPA. Inhibition of Plg activation by SAK is readily abrogated by interaction of SAK with human neutrophil peptides (HNPs). Finally, we show that NH2-terminal residues of SAK are important for the inhibitory effect of SAK on tPA- and uPA-mediated Plg activation. In conclusion, SAK reduces tPA/uPA-mediated Plg activation by means of SAK.Plg complex formation, consequently downregulating tPA/uPA-induced fibrinolysis.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, Sahlgrenska University Hospital, Göteborg, Sweden.
| | | | | | | |
Collapse
|
30
|
Methicillin-sensitive Staphylococcus aureus bacteraemia and endocarditis among injection drug users and nonaddicts: host factors, microbiological and serological characteristics. J Infect 2008; 56:249-56. [PMID: 18314197 DOI: 10.1016/j.jinf.2008.01.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 12/31/2007] [Accepted: 01/15/2008] [Indexed: 11/21/2022]
Abstract
BACKGROUND Endocarditis has been associated with lower mortality and fewer complications among injection drug users (IDUs) than nonaddicts in Staphylococcus aureus bacteraemia (SAB). The better prognosis of IDUs has not been clarified but it has generally been explained by younger age and other host factors. In this study, bacterial strains, their virulence factors, and host immune responses were compared among IDUs and nonaddicts with SAB, including those with and without endocarditis. METHODS A total of 430 consecutive adult patients with methicillin-sensitive SAB were followed prospectively for 3 months. All 44 IDUs were included, and 44 nonaddicts as controls for them. According to the modified Duke criteria, 20 patients in both groups had endocarditis. For each addict without endocarditis, an age and sex matched nonaddict was selected as a control. S. aureus isolates were assigned a genotype by PFGE, Panton-Valentine leukocidin (PVL), staphylokinase (SAK), protease, and haemolysin production. Acute and convalescent sera were tested for antibodies to alpha-haemolysin (ASTA) and teichoic acid (TAA). RESULTS There were no differences between IDUs and nonaddicts with SAB in the proportion of patients with a deep infection (98% vs 86%, P=0.06) or a thromboembolic complication (30% vs 14%, P=0.12). Endocarditis among IDUs was not associated with any specific strains, and only the FIN-4 strain was observed more often in IDUs than in nonaddicts (21% vs 5%, P=0.03). The majority of isolates (98%) were PVL negative, and there were no differences in the numbers of SAK, protease and haemolysin production among strains between IDUs and nonaddicts. However, haemolytic properties were found more frequently in strains from IDUs without endocarditis than those with endocarditis (88% vs 47%, P=0.007). IDUs displayed more often elevated TAA titers than nonaddicts, especially in endocarditis at acute phase (33% vs 5%, P=0.04) and at convalescent phase (50% vs 10%, P=0.01). The ASTA titer was more frequently initially positive among IDUs without endocarditis than with endocarditis (44% vs 6%, P=0.01). CONCLUSIONS Characterization of the bacterial strains and their virulence factors, and host immune responses did not reveal significant differences between IDUs and nonaddicts with similar clinical picture of SAB. Serological tests were not helpful in identifying patients with endocarditis.
Collapse
|
31
|
Braff MH, Jones AL, Skerrett SJ, Rubens CE. Staphylococcus aureus exploits cathelicidin antimicrobial peptides produced during early pneumonia to promote staphylokinase-dependent fibrinolysis. J Infect Dis 2007; 195:1365-72. [PMID: 17397009 PMCID: PMC2366818 DOI: 10.1086/513277] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2006] [Accepted: 11/22/2006] [Indexed: 01/15/2023] Open
Abstract
The increasing prevalence of Staphylococcus aureus strains isolated from hospital- and community-acquired respiratory tract infections is an important public health concern worldwide. The majority of S. aureus strains produce staphylokinase, a plasminogen activator capable of inactivating neutrophil alpha-defensins and of impairing phagocytosis via opsonin degradation. Cathelicidin antimicrobial peptides are present at sites of infection before the release of neutrophil alpha-defensins. Therefore, we hypothesized that staphylokinase interacts with cathelicidin during the early pathogenesis of S. aureus airway infection. In a mouse intranasal infection model, cathelicidin was strongly up-regulated in the airways during the development of staphylococcal pneumonia. In vitro, cathelicidin bound directly to staphylokinase and augmented staphylokinase-dependent plasminogen activation and fibrinolysis at concentrations consistent with those detected in the airways during infection. These data suggest that staphylokinase production may be a novel virulence mechanism by which S. aureus exploits cathelicidin to promote fibrinolysis, leading to enhanced bacterial dissemination and invasive infection.
Collapse
Affiliation(s)
- Marissa H. Braff
- Division of Infectious Disease, Children’s Hospital and Regional Medical Center, University of Washington, Seattle
- Department of Pediatrics, University of Washington, Seattle
| | - Amanda L. Jones
- Division of Infectious Disease, Children’s Hospital and Regional Medical Center, University of Washington, Seattle
- Department of Pediatrics, University of Washington, Seattle
| | | | - Craig E. Rubens
- Division of Infectious Disease, Children’s Hospital and Regional Medical Center, University of Washington, Seattle
- Department of Pediatrics, University of Washington, Seattle
| |
Collapse
|
32
|
Goerke C, Wirtz C, Flückiger U, Wolz C. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol Microbiol 2006; 61:1673-85. [PMID: 16968231 DOI: 10.1111/j.1365-2958.2006.05354.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Bacteriophages serve as a driving force in microbial evolution, adaptation to new environments and the pathogenesis of human bacterial infections. In Staphylococcus aureus phages encoding immune evasion molecules (SAK, SCIN, CHIPS), which integrate specifically into the beta-haemolysin (Hlb) gene, are widely distributed. When comparing S. aureus strain collections from infectious and colonizing situations we could detect a translocation of sak-encoding phages to atypical genomic integration sites in the bacterium only in the disease-related isolates. Additionally, significantly more Hlb producing strains were detected in the infectious strain collection. Extensive phage dynamics (intragenomic translocation, duplication, transfer between hosts, recombination events) during infection was shown by analysing cocolonizing and consecutive isolates of patients. This activity leads to the splitting of the strain population into various subfractions exhibiting different virulence potentials (Hlb-production and/or production of immune evasion molecules). Thus, phage-inducing conditions and strong selection for survival of the bacterial host after phage movement are typical for the infectious situation. Further in vitro characterization of phages revealed that: (i) SAK is encoded not only on serogroup F phages showing a conserved tropism for hlb but also on serogroup B phages which always integrate in a distinct intergenic region, (ii) the level of sak transcription correlates to phage inducibility but is independent of the phage localization in the chromosome, and (iii) phages can be stabilized extra-chromosomally during their life cycle.
Collapse
Affiliation(s)
- Christiane Goerke
- Institut für Medical Mikrobiologie und Hygiene, Universitätsklinikum Tübingen, Elfriede-Aulhorn-Str. 6, 72076 Tübingen, Germany.
| | | | | | | |
Collapse
|
33
|
Abstract
Staphylococcus aureus can cause superficial skin infections and, occasionally, deep-seated infections that entail spread through the blood stream. The organism expresses several factors that compromise the effectiveness of neutrophils and macrophages, the first line of defence against infection. S. aureus secretes proteins that inhibit complement activation and neutrophil chemotaxis or that lyse neutrophils, neutralizes antimicrobial defensin peptides, and its cell surface is modified to reduce their effectiveness. The organism can survive in phagosomes, express polysaccharides and proteins that inhibit opsonization by antibody and complement, and its cell wall is resistant to lysozyme. Furthermore, S. aureus expresses several types of superantigen that corrupt the normal humoral immune response, resulting in anergy and immunosuppression. In contrast, Staphylococcus epidermidis must rely primarily on cell-surface polymers and the ability to form a biolfilm to survive in the host.
Collapse
Affiliation(s)
- Timothy J Foster
- Microbiology Department, Moyne Institute of Preventive Medicine, Trinity College, Dublin 2, Ireland.
| |
Collapse
|
34
|
Jin T, Bokarewa M, Tarkowski A. The role of urokinase in innate immunity against Staphylococcus aureus. Microbes Infect 2005; 7:1170-5. [PMID: 15996887 DOI: 10.1016/j.micinf.2005.03.038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 03/23/2005] [Accepted: 03/28/2005] [Indexed: 11/29/2022]
Abstract
Urokinase (uPA) is a serine protease that not only displays fibrinolytic function but also promotes host leukocytes to home to inflammatory sites. We have recently demonstrated that staphylokinase (SAK), which is a fibrinolytic protein secreted by Staphylococcus aureus, forms complexes with human neutrophil peptides (HNPs), which are members of the defensin family and have anti-microbial properties, thereby inhibiting the bactericidal effects of the HNPs. The aim of this study was to assess whether endogenous uPA, which has fibrinolytic properties similar to those of SAK, binds to HNPs and interferes with SAK/HNPs interaction. To this end, an ELISA was used to analyze the interactions between uPA and HNPs. HMW uPA had the ability to bind to both HNP types. The biological consequences of the formation of this complex were analyzed with respect to its bactericidal properties. HMW uPA killed S. aureus, albeit at relatively high doses (50-100 mug/ml). In contrast, the binding of HMW uPA to HNPs had no impact on the bactericidal functions of the HNPs. Importantly, the addition of HMW uPA to SAK eliminated the ability of SAK to neutralize HNPs. Our results demonstrate that endogenous HMW uPA inhibits S. aureus growth both directly, by cytolysis, and indirectly, by abrogation of the neutralizing effect of SAK on the bactericidal activities of HNPs. These findings indicate novel functions of HMW uPA in the host defense against staphylococcal infections.
Collapse
Affiliation(s)
- Tao Jin
- Department of Rheumatology and Inflammation Research, University of Göteborg, 41346 Göteborg, Sweden.
| | | | | |
Collapse
|
35
|
Bjerketorp J, Jacobsson K, Frykberg L. The von Willebrand factor-binding protein (vWbp) ofStaphylococcus aureusis a coagulase. FEMS Microbiol Lett 2004. [DOI: 10.1111/j.1574-6968.2004.tb09549.x] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
36
|
Tarkowski A, Bokarewa M, Collins LV, Gjertsson I, Hultgren OH, Jin T, Jonsson IM, Josefsson E, Sakiniene E, Verdrengh M. Current status of pathogenetic mechanisms in staphylococcal arthritis. FEMS Microbiol Lett 2002; 217:125-32. [PMID: 12480095 DOI: 10.1111/j.1574-6968.2002.tb11466.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Interactions between staphylococci and the joint tissues of the host lead typically to rapidly progressing and highly destructive processes. Staphylococci possess a vast arsenal of components and products that contribute to the pathogenesis of joint infection. Occasionally these compounds have overlapping activities and act either in concert or alone. Host responsiveness to staphylococcal infection displays an even more complex pattern. Most of the cells and molecules that participate in the innate immune system protect the host against bacteria. However, the staphylococci have developed systems that counteract endogenous protective mechanisms. Interestingly, certain cells and molecules of the acquired immune system potentiate the severity of infection by triggering exaggerated responses to the staphylococcal danger signals. This review deals with the intricate host-bacterium interactions that occur during experimental septic arthritis, and outlines potential preventive and treatment modalities.
Collapse
Affiliation(s)
- Andrej Tarkowski
- Department of Rheumatology and Inflammation Research, University of Göteborg, Guldhedsgatan 10, 413 46 Göteborg, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|