1
|
Aldayel MF. Biofabrication of Silver Nanoparticles Using Pergularia tomentosa Extract and Evaluation of Their Antibacterial, Antioxidant, and Cytotoxic Properties. Life (Basel) 2024; 14:1639. [PMID: 39768346 PMCID: PMC11677515 DOI: 10.3390/life14121639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
The biosynthesis of silver nanoparticles using plant extracts is a promising field of research because of the useful biomedical applications of metal nanoparticles. In this study, the antibacterial and antioxidant properties of silver nanoparticles biosynthesized with the aqueous leaf extract of Pergularia tomentosa were defined using a simple, eco-friendly, consistent, and cost-effective method. The leaf extract of Pergularia tomentosa (PT) served as a capping and reducing agent to biosynthesize silver nanoparticles. The effects of several parameters, such as the concentration of AgNO3, ratio of AgNO3 to extract, pH, and incubation time, were examined to optimize the synthesis process. In total, 5 mM of AgNO3, a 1:0.06 ratio of AgNO3 to Pergularia tomentosa extract, pH 9.0, and reaction mixture incubation for 24 h were found to be the ideal parameters for biosynthesizing silver nanoparticles (AgNPs). UV-visible spectroscopy, X-ray diffraction (XRD), Fourier-Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy were used to characterize the biosynthesized Pergularia tomentosa silver nanoparticles (PT-AgNPs). Gram-positive bacteria (Staphylococcus aureus and Bacillus cereus) and Gram-negative bacteria (Salmonella enteritides and Escherichia coli) were used to test the PT-AgNPs' antibacterial activity. The presence of different functional groups was determined using FTIR. The AgNPs were hexagon shaped. The nanoparticles were more toxic against S. enteritides than both B. cereus and E. coli. In antioxidant analyses, the AgNPs were found to be as strong at free radical scavenging as gallic acid (standard), with IC50 values of 0.69 and 22.30 μg/mL for DPPH and ABTS radicals, respectively. Interestingly, the PT-AgNPs displayed increased anti-inflammatory activity compared with the P. tomentosa leaf extract (79% vs. 59% at 500 µg/mL). The PT-AgNPs did not display any cytotoxicity against the MCF-7 cell line at the MIC. In conclusion, silver nanoparticles fortified with Pergularia tomentosa extract exhibited potential as effective antibacterial, anti-inflammatory, and antioxidant agents, suggesting their viability as alternatives to commercially available products.
Collapse
Affiliation(s)
- Munirah F Aldayel
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
2
|
Münter KC, Lázaro-Martínez JL, Kanya S, Sawade L, Schwenke C, Pegalajar-Jurado A, Swanson T, Leaper D. Clinical efficacy and safety of a silver ion-releasing foam dressing on hard-to-heal wounds: a meta-analysis. J Wound Care 2024; 33:726-736. [PMID: 39388210 DOI: 10.12968/jowc.2024.0149] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
OBJECTIVE Delayed or stalled healing in open wounds can result from persisting chronic inflammation related to infection and/or persistent bacterial colonisation and biofilm. Treatment of hard-to-heal wounds focuses on debridement and exudate management, but also on infection prevention and control. Silver dressings have been evaluated in randomised clinical trials (RCTs); this meta-analysis evaluated the efficacy and safety of a silver ion-releasing foam dressing (Biatain Ag; Coloplast A/S, Denmark) to treat hard-to-heal wounds. METHOD Literature databases (PubMed and Cochrane Library) were searched for studies on silver ion-releasing foam dressings in the treatment of hard-to-heal wounds. Individual patient data from four RCTs were obtained and included in the meta-analysis. RESULTS Findings showed that treatment with the silver ion-releasing foam dressing was associated with a significantly higher relative reduction in wound area after four (least squares-mean difference (LS-MD): -12.55%, 95% confidence interval (CI): (-15.95, -9.16); p<0.01) and six weeks of treatment (LS-MD: -11.94%, 95%CI: (-17.21, -6.68); p<0.01) compared with controls. Significant benefits were also observed for time to disappearance of odour (hazard ratio: 1.61, 95%CI: (1.31, 1.98); p<0.01), relative reduction of exudate (LS-MD: -5.15, 95%CI: (-7.36, -2.94); p<0.01), proportion of patients with periwound erythema (relative risk (RR): 0.81, 95%CI: (0.69; 0.94); p<0.01), and less pain at dressing removal (LS-MD: -0.35, 95%CI: (-0.63, -0.06); p=0.02). No differences regarding safety outcomes were identified. CONCLUSION This meta-analysis has demonstrated beneficial outcomes and a good tolerability profile for silver ion-releasing foam dressings in the treatment of moderate-to-highly exuding wounds with delayed healing compared with control dressings.
Collapse
Affiliation(s)
| | | | - Susanne Kanya
- Wound and Skin Care Region DACH, Coloplast GmbH, Hamburg, Germany
| | | | | | | | - Terry Swanson
- South West Healthcare, Warrnambool, Victoria, Australia
| | - David Leaper
- University of Newcastle, UK
- University of Huddersfield, UK
| |
Collapse
|
3
|
Zhao Y, Wang R, Li H, Chen C, Zhou B, Weng X, Hua Y, Jia Y, Wu Y, Li Y. Impact of Easing COVID-19 Restrictions on Fear of COVID-19 and Social Support Among Chinese Students: A Longitudinal Analysis. Psychol Res Behav Manag 2023; 16:4685-4696. [PMID: 38024661 PMCID: PMC10674754 DOI: 10.2147/prbm.s434765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction This longitudinal study aims to investigate the relationship between fear of COVID-19, support-seeking behaviors, and perceived social support among Chinese college students during two distinct periods of the COVID-19 pandemic: the period of strict control (time 1) and the period following a relaxation of restrictions (time 2). Methods A total of 408 Chinese college students participated in this study. Data collection included demographic information, measures of fear of COVID-19, support-seeking behaviors, and perceived social support. Results Fear of COVID-19 at time 1 showed a significant positive association with fear of COVID-19 at time 2. The relationship between support-seeking behavior at time 1 and fear of COVID-19 at time 2 was significantly mediated through a chain mediation effect of support-seeking behavior at time 1 and perceived social support at time 2. Discussion This study contributes to the growing body of evidence on the psychological impacts of the COVID-19 pandemic and underscores the significance of social support in mitigating fear of COVID-19. It calls for a re-evaluation of public health policies considering their potential psychological effects and introduces new opportunities for developing psychosocial interventions.
Collapse
Affiliation(s)
- Yang Zhao
- Faculty of Law, Qingdao University, Qingdao, People’s Republic of China
| | - Ruizhe Wang
- HeXie Management Research Center, Xi’an Jiaotong-Liverpool University, Suzhou, People’s Republic of China
| | - Hebin Li
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Chong Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Bowen Zhou
- Department of Social Work, Hong Kong Baptist University, Hong Kong, People’s Republic of China
| | - Xinying Weng
- Department of Social and Behavioural Sciences, City University of Hong Kong, Hong Kong, People’s Republic of China
| | - Yidi Hua
- School of Humanities and Social Science, The Hong Kong University of Science and Technology, Hong Kong, People’s Republic of China
| | - Yaqi Jia
- Entrepreneurs College, Xi’an Jiaotong-Liverpool University, Suzhou, People’s Republic of China
| | - Yajun Wu
- Department of Applied Psychology, Guangdong University of Foreign Studies, Guangzhou, People’s Republic of China
| | - Ying Li
- School of Urban Governance and Public Affairs, Suzhou City University, Suzhou, People’s Republic of China
| |
Collapse
|
4
|
Xianchao D, Yi L, Chang L, Zhixin Y. Comparison of Biatain Ag and Biatain Alginate Ag dressings on skin graft donor sites: a prospective clinical trial. J Wound Care 2023; 32:cxcv-cc. [PMID: 37703218 DOI: 10.12968/jowc.2023.32.sup9a.cxcv] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
OBJECTIVE The aim of this study was to compare Biatain Ag and Biatain Alginate Ag (both Coloplast, Denmark) as skin graft donor site dressings. METHOD A single-centre, prospective, randomised clinical study was conducted. In patients who had undergone a skin graft operation, adjacent split-thickness skin graft donor sites were dressed with Biatain Ag and Biatain Alginate Ag, respectively. The primary outcomes were time to re-epithelialisation and pain score after the operation. The secondary outcomes were scar scores of the donor site after the operation, haematoma rates, infection rates, and exudation rates before wound healing. Results were compared using the Wilcoxon test and the Chi-squared test. RESULTS A total of 16 paired wounds in 16 patients were studied. The donor sites dressed with Biatain Ag needed more time for >90% re-epithelialisation than those dressed with Biatain Alginate Ag. On day 3 postoperatively, the pain scores with Biatain Ag were significantly less severe than those with Biatain Alginate Ag. On days 6, 9 and 12, the pain scores of both dressings did not differ significantly. The scar scores of the donor site dressed with Biatain Ag were significantly worse than those dressed with Biatain Alginate Ag at 6 months. With respect to infection rates, no significant differences were detected between these two groups. However, the exudation rates of the donor site dressed with Biatain Ag were significantly lower than those dressed with Biatain Alginate Ag. CONCLUSION As skin graft donor site dressings, both Biatain Ag and Biatain Alginate Ag have advantages.
Collapse
Affiliation(s)
- Ding Xianchao
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| | - Luo Yi
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| | - Liu Chang
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| | - Yan Zhixin
- Department of Burn and Plastic Surgery, Affiliated hospital of Jiangsu University, Zhenjiang, Jiangsu Province, PRC
| |
Collapse
|
5
|
Kodasi B, Kamble RR, Shettar AK, Hoskeri JH, Keri RS, Metre TV, Bheemayya L, Nadoni VB, Nayak MR. Novel jointured green synthesis of chitosan‑silver nanocomposite: An approach towards reduction of nitroarenes, anti-proliferative, wound healing and antioxidant applications. Int J Biol Macromol 2023; 246:125578. [PMID: 37379943 DOI: 10.1016/j.ijbiomac.2023.125578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/25/2023] [Accepted: 06/24/2023] [Indexed: 06/30/2023]
Abstract
Here we present the simple green synthesis of chitosan‑silver nanocomposite (CS-Ag NC) by employing kiwi fruit juice as reducing agent. The structure, morphology, and composition of CS-Ag NC were determined using characterization techniques such as XRD, SEM-EDX, UV-visible, FT-IR, particle size, and zeta potential. The prepared CS-Ag nanocomposite was effectively used as catalyst in the reduction of 4-nitrophenol (4-NP) to 4-aminophenol (4-AP) in the presence of NaBH4 as reductant, in aqueous medium at room temperature. The toxicity of CS-Ag NC was assessed on Normal (L929) cell line, Lung cancer (A549) cell line and Oral cancer (KB-3-1) cell line and their respective IC50values observed were 83.52 μg/mL, 66.74 μg/mL and 75.11 μg/mL. The CS-Ag NC displayed significant cytotoxic activity and the cell viability percentage for normal, lung and oral cancer cell lines were found to be 42.87 ± 0.0060, 31.28 ± 0.0045 and 35.90 ± 0.0065 respectively. Stronger cell migration was exemplified by CS-Ag NC and the percentage of wound closure (97.92%) was substantially identical to that of the standard drug ascorbic acid (99.27%). Further CS-Ag nanocomposite was subjected for in vitro antioxidant activity.
Collapse
Affiliation(s)
- Barnabas Kodasi
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Ravindra R Kamble
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India.
| | - Arun K Shettar
- Division of Preclinical Research and Drug Development, Cytxon Biosolutions Pvt Ltd., Hubli 580031, Karnataka, India
| | - Joy H Hoskeri
- Department of Bioinformatics and Biotechnology, Karnataka State Akkamahadevi Women's University, Vijayapura 586108, Karnataka, India
| | - Rangappa S Keri
- Centre for Nano and Material Science, Jain University, Bengaluru 562112, India
| | - Tukaram V Metre
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Lokesh Bheemayya
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Vishwa B Nadoni
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| | - Manojna R Nayak
- Department of Studies in Chemistry, Karnatak University, Dharwad 580003, India
| |
Collapse
|
6
|
Aldakheel FM, Sayed MME, Mohsen D, Fagir MH, El Dein DK. Green Synthesis of Silver Nanoparticles Loaded Hydrogel for Wound Healing; Systematic Review. Gels 2023; 9:530. [PMID: 37504410 PMCID: PMC10378855 DOI: 10.3390/gels9070530] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023] Open
Abstract
Wound healing is a biological process that involves a series of consecutive process, and its impairment can lead to chronic wounds and various complications. Recently, there has been a growing interest in employing nanotechnology to enhance wound healing. Silver nanoparticles (AgNPs) have expanded significant attention due to their wide range of applications in the medical field. The advantages of AgNPs include their easy synthesis, change their shape, and high surface area. Silver nanoparticles are very efficient for topical drug administration and wound healing because of their high ratio of surface area to volume. The efficiency of AgNPs depends on the synthesis method and the intended application. Green synthesis methods offer an eco-friendly approach by utilizing natural sources such as plant extracts and fungus. The characterization of nanoparticles plays an important character, and it is accomplished through the use of several characterization methods such as UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray diffraction (XRD). These techniques are employed to confirm the specific characters of the prepared Silver Nanoparticles. Additionally, the review addresses the challenges and future perspectives of utilizing green-synthesized AgNPs loaded in Polyacrylamide hydrogel for wound healing applications, including the optimization of nanoparticle size, and release kinetics. Overall, this review highlights the potential of green-synthesized AgNPs loaded in Polyacrylamide hydrogel as promising for advanced wound healing therapies. There are different approaches of usage of AgNPs for wound healing such as polyacrylamide -hydrogels, and the mechanism after their antibacterial action, have been exposed.
Collapse
Affiliation(s)
- Fahad M Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11433, Saudi Arabia
- Prince Sattam Chair for Epidemiology and Public Health Research, College of Medicine, King Saud University, Riyadh 11461, Saudi Arabia
| | - Marwa M El Sayed
- Chemical Engineering and Pilot Plant Department, National Research Centre, Giza 12622, Egypt
| | - Dalia Mohsen
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia
- National Research Centre, Giza 12622, Egypt
| | - Mohammed H Fagir
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia
| | - Dalia K El Dein
- Clinical Laboratory Sciences Program, Inaya Medical College, Riyadh 12211, Saudi Arabia
| |
Collapse
|
7
|
Inkret S, Erceg I, Ćurlin M, Kalčec N, Peranić N, Vinković Vrček I, Domazet Jurašin D, Dutour Sikirić M. Comparison of bovine serum albumin and chitosan effects on calcium phosphate formation in the presence of silver nanoparticles. RSC Adv 2023; 13:17384-17397. [PMID: 37304776 PMCID: PMC10251191 DOI: 10.1039/d3ra02115g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/02/2023] [Indexed: 06/13/2023] Open
Abstract
The precipitation of calcium phosphates (CaPs) in the presence of more than one type of additive is of interest both from a fundamental point of view and as a possible biomimetic route for the preparation of multicomponent composites in which the activity of the components is preserved. In this study, the effect of bovine serum albumin (BSA) and chitosan (Chi) on the precipitation of CaPs in the presence of silver nanoparticles (AgNPs) stabilized with sodium bis(2-ethylhexyl)sulfosuccinate (AOT-AgNPs), poly(vinylpyrrolidone) (PVP-AgNPs), and citrate (cit-AgNPs) was investigated. In the control system, the precipitation of CaPs occurred in two steps. Amorphous calcium phosphate (ACP) was the first precipitated solid, which transformed into a mixture of calcium-deficient hydroxyapatite (CaDHA) and a smaller amount of octacalcium phosphate (OCP) after 60 min of ageing. Both biomacromolecules inhibited ACP transformation, with Chi being a stronger inhibitor due to its flexible molecular structure. As the concentration of the biomacromolecules increased, the amount of OCP decreased both in the absence and presence of AgNPs. In the presence of cit-AgNPs and two highest BSA concentrations, a change in the composition of the crystalline phase was observed. Calcium hydrogen phosphate dihydrate was formed in the mixture with CaDHA. An effect on the morphology of both the amorphous and crystalline phases was observed. The effect depended on the specific combination of biomacromolecules and differently stabilized AgNP. The results obtained suggest a simple method for fine-tuning the properties of precipitates using different classes of additives. This could be of interest for the biomimetic preparation of multifunctional composites for bone tissue engineering.
Collapse
Affiliation(s)
- Suzana Inkret
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| | - Ina Erceg
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| | - Marija Ćurlin
- School of Medicine, Catholic University of Croatia 10000 Zagreb Croatia
| | - Nikolina Kalčec
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10000 Croatia
| | - Nikolina Peranić
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10000 Croatia
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health Ksaverska Cesta 2 Zagreb 10000 Croatia
| | - Darija Domazet Jurašin
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| | - Maja Dutour Sikirić
- Laboratory for Biocolloids and Surface Chemistry, Division of Physical Chemistry, Ruđer Bošković Institute Bijenička Cesta 54 10000 Zagreb Croatia + 385 1 456 0941
| |
Collapse
|
8
|
Raval YS, Fleming D, Mohamed A, Karau MJ, Mandrekar JN, Schuetz AN, Greenwood Quaintance KE, Beyenal H, Patel R. In Vivo Activity of Hydrogen-Peroxide Generating Electrochemical Bandage Against Murine Wound Infections. ADVANCED THERAPEUTICS 2023; 6:2300059. [PMID: 37485434 PMCID: PMC10361686 DOI: 10.1002/adtp.202300059] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Indexed: 03/06/2023]
Abstract
Biofilms formed by antibiotic-resistant bacteria in wound beds present unique challenges in terms of treating wound infections. In this work, the in vivo activity of a novel electrochemical bandage (e-bandage) composed of carbon fabric and controlled by a wearable potentiostat, designed to continuously deliver low amounts of hydrogen peroxide (H2O2) was evaluated against methicillin-resistant Staphylococcus aureus (MRSA), multidrug-resistant Pseudomonas aeruginosa (MDR-PA) and mixed-species (MRSA and MDR-PA) wound infections. Wounds created on Swiss Webster mice were infected with the above-named bacteria and biofilms allowed to establish on wound beds for 3 days. e-Bandages, which electrochemically reduce dissolved oxygen to H2O2 when polarized at -0.6 VAg/AgCl, were placed atop the infected wound bed and polarized continuously for 48 hours. Polarized e-bandage treatment resulted in significant reductions (p <0.001) of both mono-species and mixed-species wound infections. After e-bandage treatment, electron microscopy showed degradation of bacterial cells, and histopathology showed no obvious alteration to the inflammatory host response. Blood biochemistries showed no abnormalities. Taken all together, results of this work suggest that the described H2O2-producing e-bandage can effectively reduce in vivo MRSA, MDR-PA and mixed-species wound biofilms, and should be further developed as a potential antibiotic-free strategy for treatment of wound infections.
Collapse
Affiliation(s)
- Yash S. Raval
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | - Derek Fleming
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | - Abdelrhman Mohamed
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Melissa J. Karau
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | | | - Audrey N. Schuetz
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
| | | | - Haluk Beyenal
- The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, WA
| | - Robin Patel
- Department of Laboratory Medicine and Division of Clinical Microbiology, Mayo Clinic, Rochester, MN
- Division of Public Health, Infectious Diseases, and Occupational Medicine, Mayo Clinic, Rochester, MN
| |
Collapse
|
9
|
Choi YS, Kim YH, An HM, Bae SK, Lee YK. Efficacy of Silver Nanoparticles-Loaded Bone Cement against an MRSA Induced-Osteomyelitis in a Rat Model. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:medicina59040811. [PMID: 37109771 PMCID: PMC10146363 DOI: 10.3390/medicina59040811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/12/2023] [Accepted: 04/17/2023] [Indexed: 04/29/2023]
Abstract
Background and Objectives: The purpose of this study was to assess the cytotoxicity and antibacterial effects of AgNP-impregnated Tetracalcium phosphate-dicalcium phosphate dihydrate (TTCP-DCPD). Materials and Methods: Using in vitro experiments, the cytotoxicity of AgNP-impregnated TTCP-DCPD against fibroblasts and osteocytes was assessed in terms of cell viability by water-soluble tetrazolium salt assay. To assess antibacterial effects, a disc diffusion test was used; osteomyelitis was induced first in vivo, by injection of methicillin-resistant Staphylococcus aureus into the tibia of rats. AgNP-impregnated TTCP-DCPD bone cement was then applied at various silver concentrations for 3 or 12 weeks. Antibacterial effects were assessed by culturing and reverse transcription-polymerase chain reaction (RT-PCR). For histological observation, the bone tissues were stained using hematoxylin and eosin. Results: Cell viability was decreased by the impregnated bone cement but did not differ according to AgNP concentration. The diameter of the growth-inhibited zone of MRSA was between 4.1 and 13.3 mm on the disks treated with AgNP, indicating antimicrobial effects. In vivo, the numbers of bacterial colonies were reduced in the 12-week treatment groups compared to the 3-week treatment groups. The groups treated with a higher (10×) dose of AgNP (G2-G5) showed a tendency of lower bacterial colony counts compared to the group without AgNP (G1). The PCR analysis results showed a tendency of decreased bacterial gene expression in the AgNP-impregnated TTCP-DCPD groups (G2-G5) compared to the group without AgNP (G1) at 3 and 12 weeks. In the H&E staining, the degree of inflammation and necrosis of the AgNP-impregnated TTCP-DCPD groups (G2-G5) showed a tendency to be lower at 3 and 12 weeks compared to the control group. Our results suggest that AgNP-impregnated TTCP-DCPD cement has antimicrobial effects. Conclusions: This study indicates that AgNP-impregnated TTCP-DCPD bone cement could be considered to treat osteomyelitis.
Collapse
Affiliation(s)
- Young Suk Choi
- Department of Biology, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Chungcheoungnam-do, Republic of Korea
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
| | - Young Hwan Kim
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
| | - Hye Min An
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
- Department of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Chungcheoungnam-do, Republic of Korea
| | - Sung Kyoung Bae
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
- Department of Medical Sciences, Soonchunhyang University, 22, Soonchunhyang-ro, Asan-si 31538, Chungcheoungnam-do, Republic of Korea
| | - Young Koo Lee
- Department of Orthopedic Surgery, Soonchunhyang University Bucheon Hospital, 170, Jomaru-ro, Wonmi-gu, Bucheon-si 14584, Gyeonggi-do, Republic of Korea
| |
Collapse
|
10
|
Biosensing and anti-inflammatory effects of silver, copper and iron nanoparticles from the leaf extract of Catharanthus roseus. BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES 2023. [DOI: 10.1186/s43088-023-00358-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023] Open
Abstract
Abstract
Background
In this study, we present a low-cost, environmentally friendly method for producing silver, copper, and iron nanoparticles using fresh Catharanthus roseus leaf extract. The biomolecules found in the plant extract play a crucial role as stabilizing and reducing agents. The spectral profile of the UV–visible spectrophotometer was measured to confirm and identify the biosynthesized nanoparticles. The synthesized nanoparticles were tested for biosensing activities and anti-inflammatory effects.
Result
UV–visible spectra showed a prominent surface resonance peak of 415 nm, 300 nm, and 400 nm, corresponding to the formation of silver, copper, and iron nanoparticles, respectively. The in vitro anti-inflammatory properties of the synthesized AgNPs, CuNPs, and FeNPs showed the maximum inhibition of protein denaturation at 58%, 54.15%, and 44.26% at a concentration of 400 µg/ml, respectively. Furthermore, at a 400 µg/ml concentration, Diclofenac, utilized as a control, showed a maximal inhibition of 93.37%. According to the biosensing activity, these nanoparticles are also a good source for biosensing hazardous heavy salts. So, this article provides the first description of the silver, copper, and iron nanoparticles from Catharanthus roseus leave biosensing capabilities and anti-inflammatory characteristics.
Conclusion
Overall, this study revealed that due to their biocompatibility, silver, copper, and iron nanoparticles could be appealing and environmentally acceptable options that could be used as innovative therapeutic agents for the prevention and treatment of inflammation. The primary outcome of the research will be the development of potential pharmaceutical uses for the C. roseus medicinal plant in the biomedical and nanotechnology-based industries.
Collapse
|
11
|
Matlou ML, Malan FP, Nkadimeng S, McGaw L, Tembu VJ, Manicum ALE. Exploring the in vitro anticancer activities of Re(I) picolinic acid and its fluorinated complex derivatives on lung cancer cells: a structural study. J Biol Inorg Chem 2023; 28:29-41. [PMID: 36463538 DOI: 10.1007/s00775-022-01971-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/04/2022] [Indexed: 12/07/2022]
Abstract
Fifteen rhenium(I) tricarbonyl complexes of the form fac-[Re(N,O')(CO)3(X)], where N,O'-bidentate ligand = 2-picolinic acid (Pico); 3,5-difluoropyridine-2-carboxylic acid (Dfpc); 3-trifluoromethyl-pyridine-2-carboxylic acid (Tfpc) and X = H2O; pyrazole (Pz); pyridine (Py); imidazole (Im); and methanol (CH3OH) were synthesized using the '2 + 1' mixed ligand approach with an average yield of 84%. The complexes were characterized using the following spectroscopic techniques: IR, 1H and 13C NMR, UV/Vis, and single-crystal X-ray diffraction. The effect of the fluorine atoms on the backbone of the N,O'-bidentate ligand was investigated and a trend was noticed in the carbonyl stretching frequencies: with Pico < Tfpc < Dfpc. The in vitro biological screening on Vero (healthy mammalian), HeLa (cervical carcinoma) and A549 (lung cancer) cells revealed one toxic complex, fac-[Re(Pico)(CO)3(H2O)], with respective LC50 values of 9.0 ± 0.9, 15.8 ± 4.9 (SI = 0.570) and 20.9 ± 0.8 (SI = 0.430) μg/mL. As a result, it can be used as a positive control drug of toxicity.
Collapse
Affiliation(s)
- Mabu L Matlou
- Department of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria, 0001, South Africa
| | - Frederick P Malan
- Department of Chemistry, University of Pretoria, 02 Lynnwood Road, Hatfield, Pretoria, 0001, South Africa
| | - Sanah Nkadimeng
- Department of Life and Consumer Sciences, University of South Africa, Private Bag X6, Florida Campus, Florida, 1710, South Africa
| | - Lyndy McGaw
- Phytomedicine Programme, Department of Paraclinical Sciences, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Vuyelwa J Tembu
- Department of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria, 0001, South Africa
| | - Amanda-Lee E Manicum
- Department of Chemistry, Tshwane University of Technology, P.O. Box X680, Pretoria, 0001, South Africa.
| |
Collapse
|
12
|
Tu L, Fan Y, Deng Y, Hu L, Sun H, Zheng B, Lu D, Guo C, Zhou L. Production and Anti-Inflammatory Performance of PVA Hydrogels Loaded with Curcumin Encapsulated in Octenyl Succinic Anhydride Modified Schizophyllan as Wound Dressings. Molecules 2023; 28:molecules28031321. [PMID: 36770985 PMCID: PMC9921521 DOI: 10.3390/molecules28031321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/25/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Amphiphilic polysaccharides can be used as wall materials and applied to encapsulate hydrophobic active chemicals; moreover, there is significant demand for novel medical high-molecular-weight materials with various functions. In order to prepare amphiphilic schizophyllan (SPG), octenyl succinic anhydride (OSA) was chosen to synthesize OSA-modified schizophyllan (OSSPG) using an esterified reaction. The modification of OSSPG was demonstrated through FT-IR and thermal analysis. Moreover, it was found that OSSPG has a better capacity for loading curcumin, and the loading amount was 20 μg/mg, which was 2.6 times higher than that of SPG. In addition, a hydrogel made up of PVA, borax, and C-OSSPG (OSSPG loaded with curcumin) was prepared by means of the one-pot method, based on the biological effects of curcumin and the immune-activating properties of SPG. The mechanical properties and biological activity of the hydrogel were investigated. The experimental results show that the dynamic cross-linking of PVA and borax provided the C-OSSPG/BP hydrogel dressing with exceptional self-healing properties, and it was discovered that the C-OSSPG content increased the hydrogel's swelling and moisturizing properties. In fibroblast cell tests, the cells treated with hydrogel had survival rates of 80% or above. Furthermore, a hydrogel containing C-OSSPG could effectively promote cell migration. Due to the excellent anti-inflammatory properties of curcumin, the hydrogel also significantly reduces the generation of inflammatory factors, such as TNF-α and IL-6, and thus has a potential application as a wound dressing medicinal material.
Collapse
Affiliation(s)
- Lingyun Tu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yifeng Fan
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Yongfei Deng
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Lu Hu
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Huaiqing Sun
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
| | - Bisheng Zheng
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Dengjun Lu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Chaowan Guo
- Guangdong Marubi Biotechnology Co., Ltd., Guangzhou 510700, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| | - Lin Zhou
- Guangdong Provincial Key Laboratory of Advanced Drug Delivery, Guangdong Provincial Engineering Center of Topical Precise Drug Delivery System, School of Life Sciences and Biopharmaceutics, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Correspondence: (D.L.); (C.G.); (L.Z.)
| |
Collapse
|
13
|
Bergonzi C, Bianchera A, Remaggi G, Ossiprandi MC, Bettini R, Elviri L. 3D Printed Chitosan/Alginate Hydrogels for the Controlled Release of Silver Sulfadiazine in Wound Healing Applications: Design, Characterization and Antimicrobial Activity. MICROMACHINES 2023; 14:137. [PMID: 36677198 PMCID: PMC9866939 DOI: 10.3390/mi14010137] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The growing demand for personalized medicine requires innovation in drug manufacturing to combine versatility with automation. Here, three-dimensional (3D) printing was explored for the production of chitosan (CH)/alginate (ALG)-based hydrogels intended as active dressings for wound healing. ALG hydrogels were loaded with 0.75% w/v silver sulfadiazine (SSD), selected as a drug model commonly used for the therapeutic treatment of infected burn wounds, and four different 3D CH/ALG architectures were designed to modulate the release of this active compound. CH/ALG constructs were characterized by their water content, elasticity and porosity. ALG hydrogels (Young's modulus 0.582 ± 0.019 Mpa) were statistically different in terms of elasticity compared to CH (Young's modulus 0.365 ± 0.015 Mpa) but very similar in terms of swelling properties (water content in ALG: 93.18 ± 0.88% and in CH: 92.76 ± 1.17%). In vitro SSD release tests were performed by using vertical diffusion Franz cells, and statistically significant different behaviors in terms of the amount and kinetics of drugs released were observed as a function of the construct. Moreover, strong antimicrobial potency (100% of growth inhibition) against Staphylococcus aureus and Pseudomonas aeruginosa was demonstrated depending on the type of construct, offering a proof of concept that 3D printing techniques could be efficiently applied to the production of hydrogels for controlled drug delivery.
Collapse
Affiliation(s)
- Carlo Bergonzi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Annalisa Bianchera
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Giulia Remaggi
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | | | - Ruggero Bettini
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| | - Lisa Elviri
- Food and Drug Department, University of Parma, Parco Area delle Scienze 27/a, 43124 Parma, Italy
| |
Collapse
|
14
|
The Impact of Antiseptic-Loaded Bacterial Nanocellulose on Different Biofilms-An Effective Treatment for Chronic Wounds? J Clin Med 2022; 11:jcm11226634. [PMID: 36431111 PMCID: PMC9692265 DOI: 10.3390/jcm11226634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/10/2022] Open
Abstract
Introduction: Pathogenic biofilms are an important factor for impaired wound healing, subsequently leading to chronic wounds. Nonsurgical treatment of chronic wound infections is limited to the use of conventional systemic antibiotics and antiseptics. Wound dressings based on bacterial nanocellulose (BNC) are considered a promising approach as an effective carrier for antiseptics. The aim of the present study was to investigate the antimicrobial activity of antiseptic-loaded BNC against in vitro biofilms. Materials and Methods: BNC was loaded with the commercially available antiseptics Prontosan® and Octenisept®. The silver-based dressing Aquacel®Ag Extra was used as a positive control. The biofilm efficacy of the loaded BNC sheets was tested against an in vitro 24-hour biofilm of Staphylococcus aureus and Candida albicans and a 48-hour biofilm of Pseudomonas aeruginosa. In vivo tests using a porcine excisional wound model was used to analyze the effect of a prolonged treatment with the antiseptics on the healing process. Results: We observed complete eradication of S. aureus biofilm in BNC loaded with Octenisept® and C. albicans biofilm for BNC loaded with Octenisept® or Prontosan®. Treatment with unloaded BNC also resulted in a statistically significant reduction in bacterial cell density of S. aureus compared to untreated biofilm. No difference on the wound healing outcome was observed for the wounds treated for seven days using BNC alone in comparison to BNC combined with Prontosan® or with Octenisept®. Conclusions: Based on these results, antiseptic-loaded BNC represents a promising and effective approach for the treatment of biofilms. Additionally, the prolonged exposure to the antiseptics does not affect the healing outcome. Prevention and treatment of chronic wound infections may be feasible with this novel approach and may even be superior to existing modalities.
Collapse
|
15
|
Das D, Bhattacharyya S, Bhattacharyya M, Mandal P. Green chemistry inspired formation of bioactive stable colloidal nanosilver and its wide-spectrum functionalised properties for sustainable industrial escalation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
|
16
|
Zhang J, Xu Q, Li H, Zhang S, Hong A, Jiang Y, Hu N, Chen G, Fu H, Yuan M, Dai B, Chu L, Yang D, Xie Y. Self-Powered Electrodeposition System for Sub-10-nm Silver Nanoparticles with High-Efficiency Antibacterial Activity. J Phys Chem Lett 2022; 13:6721-6730. [PMID: 35849530 DOI: 10.1021/acs.jpclett.2c01737] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Recently, silver nanoparticles (AgNPs) have been widely applied in sterilization due to their excellent antibacterial properties. However, AgNPs require rigorous storage conditions because their antibacterial performances are significantly affected by environmental conditions. Instant fabrication provides a remedy for this drawback. In this study, we propose a self-powered electrodeposition system to synthesize sub-10-nm AgNPs, consisting of a triboelectric nanogenerator (TENG) as the self-powered source, a capacitor for storing electrical energy from the TENG, and an electrochemical component for electrodeposition. The self-powered system with larger capacitance and discharging voltage tends to deliver smaller AgNPs due to the nucleation mechanism dominated by current density. Furthermore, antibacterial tests reveal that compared to direct current (DC) electrodeposition, the TENG-based electrodeposition can synthesize finer-sized AgNPs (<10 nm) with overwhelming antibacterial effect against Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) (with 100% efficiency at 2 h). This work provides a new strategy for the self-powered, instant, and controllable electrodeposition of nanoparticles.
Collapse
Affiliation(s)
- Jianghong Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Qinghao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Hang Li
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Siyuan Zhang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Anjin Hong
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China
| | - Yawei Jiang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Ning Hu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Guoliang Chen
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute for Advanced Ceramics, Harbin Institute of Technology, Harbin, Heilongjiang 150080, China
| | - Haoyang Fu
- School of Materials Science and Engineering, Nanyang Technological University, Singapore 639798, Singapore
- State Key Laboratory for Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Ming Yuan
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Baoying Dai
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| | - Liang Chu
- Electronics and Information College, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Dongliang Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
- Institute of Advanced Materials, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing 211800, China
| | - Yannan Xie
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials, Jiangsu Key Laboratory for Biosensors, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210023, China
| |
Collapse
|
17
|
Sangeetha M, Banurekha J, Mahendran C, Kumar M, Venkateshwaralu BS. Optimization and bio genic synthesis of silver nanoparticle from psychotria octosulcata w.a talbot and its in vitro anti-inflammatory application. INTERNATIONAL JOURNAL OF NANOSCIENCE 2022. [DOI: 10.1142/s0219581x22500193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Gaikwad S, Birla S, Ingle AP, Gade A, Ingle P, Golińska P, Rai M. Superior in vivo Wound-Healing Activity of Mycosynthesized Silver Nanogel on Different Wound Models in Rat. Front Microbiol 2022; 13:881404. [PMID: 35722297 PMCID: PMC9202502 DOI: 10.3389/fmicb.2022.881404] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Wound healing is a complex phenomenon particularly owing to the rise in antimicrobial resistance. This has attracted the attention of the scientific community to search for new alternative solutions. Among these, silver being antimicrobial has been used since ancient times. Considering this fact, the main goal of our study was to evaluate the wound-healing ability of mycofabricated silver nanoparticles (AgNPs). We have focused on the formulation of silver nanogel for the management of wounds in albino Wistar rats. Mycosynthesized AgNPs from Fusarium oxysporum were used for the development of novel wound-healing antimicrobial silver nanogel with different concentrations of AgNPs, i.e., 0.1, 0.5, and 1 mg g-1. The formulated silver nanogel demonstrated excellent wound-healing activity in the incision, excision, and burn wound-healing model. In the incision wound-healing model, silver nanogel at a concentration of 0.5 mg g-1 exhibited superior wound-healing effect, whereas in the case of excision and burn wound-healing model, silver nanogel at the concentrations of 0.1 and 1 mg g-1 showed enhanced wound-healing effect, respectively. Moreover, silver nanogel competently arrests the bacterial growth on the wound surface and offers an improved local environment for scald wound healing. Histological studies of healed tissues and organs of the rat stated that AgNPs at less concentration (1 mg g-1) do not show any toxic or adverse effect on the body and promote wound healing of animal tissue. Based on these studies, we concluded that the silver nanogel prepared from mycosynthesized AgNPs can be used as a promising antimicrobial wound dressing.
Collapse
Affiliation(s)
- Swapnil Gaikwad
- Department of Biotechnology, SGB Amravati University, Amravati, India.,Microbial Diversity Research Center, Dr. D. Y. Patil Biotechnology and Bioinformatics Institute, Dr. D. Y. Patil Vidyapeeth, Pune, India
| | - Sonal Birla
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Avinash P Ingle
- Biotechnology Centre, Department of Agricultural Botany, Dr. Panjabrao Deshmukh Agricultural University, Akola, India
| | - Aniket Gade
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Pramod Ingle
- Department of Biotechnology, SGB Amravati University, Amravati, India
| | - Patrycja Golińska
- Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| | - Mahendra Rai
- Department of Biotechnology, SGB Amravati University, Amravati, India.,Department of Microbiology, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
19
|
Binding of silver nanowaste using jellyfish immune reaction extract and an assessment of aquatic toxicity. Mol Cell Toxicol 2021. [DOI: 10.1007/s13273-021-00199-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Haque ST, Saha SK, Haque ME, Biswas N. Nanotechnology-based therapeutic applications: in vitro and in vivo clinical studies for diabetic wound healing. Biomater Sci 2021; 9:7705-7747. [PMID: 34709244 DOI: 10.1039/d1bm01211h] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Diabetic wounds often indicate chronic complications that are difficult to treat. Unfortunately, existing conventional treatment modalities often cause unpremeditated side effects, given the need to develop alternative therapeutic phenotypes that are safe or have minimal side effects and risks. Nanotechnology-based platforms, including nanotherapeutics, nanoparticles (NPs), nanofibers, nanohydrogels, and nanoscaffolds, have garnered attention for their groundbreaking potential to decipher the biological environment and offer personalized treatment methods for wound healing. These nanotechnology-based platforms can successfully overcome the impediments posed by drug toxicity, existing treatment modalities, and the physiology and complexity of the wound sites. Furthermore, studies have shown that they play an essential role in influencing angiogenesis, collagen production, and extracellular matrix (ECM) synthesis, which are integral in skin repair mechanisms. In this review, we emphasized the importance of various nanotechnology-based platforms for healing diabetic wounds and report on the innovative preclinical and clinical outcomes of different nanotechnology-based platforms. This review also outlined the limitations of existing conventional treatment modalities and summarized the physiology of acute and chronic diabetic wounds.
Collapse
Affiliation(s)
- Sheikh Tanzina Haque
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia.
| | - Subbroto Kumar Saha
- Department of Biochemistry and Molecular Medicine, University of California, Davis School of Medicine, Sacramento, CA 95817, USA.,Department of Stem Cell and Regenerative Biotechnology, Incurable Disease Animal Model & Stem Cell Institute (IDASI), Konkuk University, 120 Neugdong-ro, Gwangjin-gu, Seoul 05029, Korea.
| | - Md Enamul Haque
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh.
| | - Nirupam Biswas
- Department of Surgery, Indiana University School of Medicine, Indianapolis, IN-46202, USA.,Department of Immunology and Microbial Diseases, Albany Medical College, Albany, NY-12208, USA.
| |
Collapse
|
21
|
Dsouza M, Jayabalan SS. Analysis of the size reduction of AgNPs loaded hydrogel and its effect on the anti-bacterial activity. IET Nanobiotechnol 2021; 15:545-557. [PMID: 34694740 PMCID: PMC8675773 DOI: 10.1049/nbt2.12037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 09/30/2020] [Accepted: 12/14/2020] [Indexed: 11/20/2022] Open
Abstract
This article analyses the effect of the size reduced Silver (Ag) loaded hydrogel by (a) lyophilisation (S1) (b) ball milling (S2) techniques and its effect on anti-bacterial activity. The g loaded hydrogel, S1 and S2 shows an increase in swelling with an increase in pH. The swelling is more for Ag loaded hydrogel in low pH. For pH above 7, the swelling ratio of Ag loaded hydrogel and S1 are almost the same while S2 shows very less swelling. The anti-bacterial studies reveal that S1 and Ag loaded hydrogel reacted well in S. aureus (Staphylococcus aureus) but no zone formation was seen in S2 .whereas no zone was formed in S1 and S2 for E-coli (Escherichia coli). As the next step, the anti-bacterial activity of Ag loaded hydrogel with the addition of curcumin (CS1-size reduced by lyophilisation, CS2-size reduced by ball milling) and turmeric (TS1-size reduced by lyophilisation, TS2-size reduced by ball milling) were investigated. In case of E.coli, a zonal formation of 1.2 cm for TS1 and 1.1 cm for TS2 and 1 cm for CS1 and 0.2 cm for CS2 was observed. For S.aureus, 1.1 and 1 cm were seen for TS1 and CS1. TS2 and CS2 did not show any zone formation. These studies clearly show that size reduction by lyophilisation (S1, TS1 and CS1) is more efficient in all the cases when compared to the ball milling technique (S2, TS2 and CS2). Comparing TS1 with S1 and CS1, TS1 has highly efficient/effective anti-bacterial properties than S1 and CS1. Therefore, lyophilised hydrogel incorporating turmeric and silver (TS1) is an excellent choice compared to using curcumin for wound dressing applications.
Collapse
Affiliation(s)
- Michelle Dsouza
- Centre for Nanotechnology Research, Vellore Institute of Technology, Vellore, India
| | | |
Collapse
|
22
|
An X, Liu L, Schaefer M, Yan B, Scholz C, Hillmer S, Wang K, Luo Y, Ji H, Gladkich J, Herr I. Alpha-Lipoic Acid Prevents Side Effects of Therapeutic Nanosilver without Compromising Cytotoxicity in Experimental Pancreatic Cancer. Cancers (Basel) 2021; 13:4770. [PMID: 34638256 PMCID: PMC8507678 DOI: 10.3390/cancers13194770] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 01/14/2023] Open
Abstract
Silver nanoparticles (AgNPs) have attracted attention in cancer therapy and might support the treatment of pancreatic ductal adenocarcinoma (PDAC). Silver is in clinical use in wound dressings, catheters, stents and implants. However, the side effects of systemic AgNP treatment due to silver accumulation limit its therapeutic application. We evaluated whether the antioxidant and natural agent α-lipoic acid might prevent these side effects. We synthesized AgNPs using an Ionic-Pulser® Pro silver generator and determined the concentration by inductively coupled plasma-optical emission spectrometry. The effect of α-lipoic acid was examined in four PDAC and two nonmalignant cell lines by MTT, FACS analysis, TEM, xenotransplantation and immunohistochemistry. The viability of PDAC cells was nearly totally abolished by AgNP treatment, whereas nonmalignant cells largely resisted. α-Lipoic acid prevented AgNP-induced cytotoxicity in nonmalignant cells but not in PDAC cells, which might be due to the higher sensitivity of malignant cells to silver-induced cytotoxicity. α-Lipoic acid protected mitochondria from AgNP-induced damage and led to precipitation of AgNPs. AgNPs reduced the growth of tumor xenografts, and cotreatment with α-lipoic acid protected chick embryos from AgNP-induced liver damage. Together, α-lipoic acid strongly reduced AgNP-induced side effects without weakening the therapeutic efficacy.
Collapse
Affiliation(s)
- Xuefeng An
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Li Liu
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Michael Schaefer
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Bin Yan
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Christian Scholz
- Institute of Earth Sciences, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Stefan Hillmer
- Electron Microscopy Core Facility, University of Heidelberg, 69120 Heidelberg, Germany;
| | - Kangtao Wang
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Yiqiao Luo
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Huihui Ji
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Jury Gladkich
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| | - Ingrid Herr
- Department of General, Visceral & Transplant Surgery, Molecular OncoSurgery, Section Surgical Research, University of Heidelberg, 69120 Heidelberg, Germany; (X.A.); (L.L.); (M.S.); (B.Y.); (K.W.); (Y.L.); (H.J.); (J.G.)
| |
Collapse
|
23
|
Haspeslagh M, Van Hecke LL, Hermans K, Chiers K, Pint E, Wilmink JM, Martens AM. Limited added value of negative pressure wound therapy compared with calcium alginate dressings for second intention healing in a noncontaminated and contaminated equine distal limb wound model. Equine Vet J 2021; 54:592-600. [PMID: 34115409 DOI: 10.1111/evj.13487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 05/18/2021] [Accepted: 05/29/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Distal limb wounds in horses often show aberrant healing due to a slow inflammatory response. In human medicine, negative pressure wound therapy (NPWT) is used for the treatment of chronic wounds with a similar inflammatory response. OBJECTIVES To compare the effect of NPWT to calcium alginate dressings on the healing of (non) contaminated equine distal limb wounds. STUDY DESIGN Controlled experiment. METHODS Circular wounds were created on the left and right dorsomedial metacarpus of 10 horses. In five horses, the wounds were contaminated with Staphylococcus aureus and Pseudomonas aeruginosa. In all horses, one limb was treated with NPWT, the other with calcium alginate dressings. Treatments were applied during nine days for noncontaminated wounds and six days for contaminated wounds. Noninvasive (clinical assessment, bacteriology swabs, thermographic images and wound dimensions) and invasive (biopsies for histology and growth factor analysis) measurements were taken regularly for 71 and 29 days respectively. Effects of selected parameters on continuous dependent variables were analysed using ANOVA, while for discrete dependent variables, logistic regression was applied. RESULTS In noncontaminated wounds, there was significantly less wound retraction in the early healing stages when treated with NPWT (mean difference [95% CI] = 19.2% [13.3%-25.1%]; P = .005), although wound size was not significantly different between NPWT and control wounds at later healing stages. Noncontaminated control wounds had a significantly higher neutrophil influx (OR [95% CI] = 1.99 [1.49-2.66]; P < .001) and lower macrophage influx (OR [95% CI] = 0.75 [0.60-0.93]; P = .008) compared with NPWT-treated wounds. Bacterial load and the presence of growth factors did not differ between treatments in noncontaminated wounds. In contaminated wounds, no differences between treatments were observed in wound size, histological parameters, bacterial load or growth factor concentration. MAIN LIMITATIONS Sample size is small. CONCLUSIONS No long-term advantage was detected with NPWT compared with calcium alginate dressings in noncontaminated or contaminated equine distal limb wounds healing by second intention.
Collapse
Affiliation(s)
- Maarten Haspeslagh
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Lore L Van Hecke
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Katleen Hermans
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Koen Chiers
- Department of Pathology, Bacteriology and Poultry Diseases, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Eva Pint
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | | | - Ann M Martens
- Department of Surgery and Anaesthesiology of Domestic Animals, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
24
|
Hybrid Nanofibrous Membranes as a Promising Functional Layer for Personal Protection Equipment: Manufacturing and Antiviral/Antibacterial Assessments. Polymers (Basel) 2021; 13:polym13111776. [PMID: 34071484 PMCID: PMC8198978 DOI: 10.3390/polym13111776] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/21/2021] [Accepted: 05/23/2021] [Indexed: 11/23/2022] Open
Abstract
In this research work, nanofibrous hybrids are manufactured, characterized, and assessed as active antiviral and antibacterial membranes. In more detail, both polyvinyl alcohol (PVA) and thermoplastic polyurethane (TPU) nanofibrous (NF) membranes and their composites with embedded silver nanoparticles (Ag NPs) are manufactured by an electrospinning process. Their morphological structures have been investigated by a scanning electron microscope (SEM) which revealed a homogenous distribution and almost beads-free fibers in all manufactured samples. Characterization with spectroscopic tools has been performed and proved the successful manufacturing of Ag-incorporated PVA and TPU hybrid nanofibers. The crystalline phase of the nanofibers has been determined using an X-ray diffractometer (XRD) whose patterns showed their crystalline nature at an angle value (2θ) of less than 20°. Subsequent screening of both antiviral and antibacterial potential activities of developed nanohybrid membranes has been explored against different viruses, including SARS-Cov-2 and some bacterial strains. As a novel approach, the current work highlights potential effects of several polymeric hybrids on antiviral and antibacterial activities particularly against SARS-Cov-2. Moreover, two types of polymers have been tested and compared; PVA of excellent biodegradable and hydrophilic properties, and TPU of excellent mechanical, super elasticity, hydrophobicity, and durability properties. Such extreme polymers can serve a wide range of applications such as PPE, filtration, wound healing, etc. Consequently, assessment of their antiviral/antibacterial activities, as host matrices for Ag NPs, is needed for different medical applications. Our results showed that TPU-Ag was more effective than PVA-Ag as HIV-1 antiviral nanohybrid as well as in deactivating spike proteins of SARS-Cov-2. Both TPU-Ag and PVA-Ag nanofibrous membranes were found to have superior antimicrobial performance by increasing Ag concentration from 2 to 4 wt.%. Additionally, the developed membranes showed acceptable physical and mechanical properties along with both antiviral and antibacterial activities, which can enable them to be used as a promising functional layer in Personal Protective Equipment (PPE) such as (surgical gowns, gloves, overshoes, hair caps, etc.). Therefore, the developed functional membranes can support the decrease of both coronavirus spread and bacterial contamination, particularly among healthcare professionals within their workplace settings.
Collapse
|
25
|
Abstract
Photodynamic Inactivation is an innovative technique used to combat bacterial and viral infections which involves the use of photosensitizing agents along with light to generate cytotoxic reactive oxygen species able to kill bacteria and viruses. In the first section of this minireview, porphyrin-based fluorophores are shown to be remarkable dye candidates for PDI (photodynamic inactivation) applications. The second section is dedicated to the description of porphyrin-based antimicrobial materials and their potentialities for industrial applications such as in food packaging or antimicrobial medical devices and hygiene. Finally, the failings and perspectives of PDI are analyzed to demonstrate how the PDI technique could be an efficient and ecologically friendly antimicrobial technique.
Collapse
Affiliation(s)
| | | | - R. Guilard
- PorphyChem SAS, Dijon 21000, France
- Institut de Chimie Moléculaire de l’Université de Bourgogne, ICMUB, UMR CNRS 6302, Université de Bourgogne Franche-Comté, F-21078, France
| |
Collapse
|
26
|
Abstract
The immune system has a physiological defense function, protecting the body from infectious diseases. Antibiotics have long been one of the most important means to treat infectious diseases, but in recent years, with the emergence of more and more multidrug-resistant (MDR) bacteria, it has become urgent to find new ways or drugs to treat infectious diseases. Nanoparticles (NPs) have attracted extensive attention owing to the special properties within the particle size range of 1–100 nanometers. In addition, NPs also have special shape symmetry and relative structural stability. The emergence of nanotechnology has brought new light to the widespread existence of MDR by its different antibacterial mechanisms. In addition to antibiotic nanocarriers being able to improve the antibacterial effect of antibiotics, some NPs also have certain antibacterial effect. What is more interesting is that linking functional groups on the surface of NPS as coatings can improve the stability of the whole system and improve the biocompatibility. The present review overviews the development of antimicrobial agents, so as to better understand the causes and mechanisms of antibiotic resistance in most microbial species, and to better think and explore new strategies to solve the problem. At the same time, this review introduces how nanotechnology can be applied to anti-infection immunity and its practical application and advantages in the treatment of infection.
Collapse
|
27
|
Pourhoseini S, Enos RT, Murphy AE, Cai B, Lead JR. Characterization, bio-uptake and toxicity of polymer-coated silver nanoparticles and their interaction with human peripheral blood mononuclear cells. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2021; 12:282-294. [PMID: 33842185 PMCID: PMC8008093 DOI: 10.3762/bjnano.12.23] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 03/10/2021] [Indexed: 06/12/2023]
Abstract
Silver nanoparticles (AgNPs) are widely used in medical applications due to their antibacterial and antiviral properties. Despite the extensive study of AgNPs, their toxicity and their effect on human health is poorly understood, as a result of issues such as poor control of NP properties and lack of proper characterization. The aim of this study was to investigate the combined characterization, bio-uptake, and toxicity of well-characterized polyvinylpyrrolidone (PVP)-coated AgNPs in exposure media during exposure time using primary human cells (peripheral blood mononuclear cells (PBMCs)). AgNPs were synthesized in-house and characterized using a multimethod approach. Results indicated the transformation of NPs in RPMI medium with a change in size and polydispersity over 24 h of exposure due to dissolution and reprecipitation. No aggregation of NPs was observed in the RPMI medium over the exposure time (24 h). A dose-dependent relationship between PBMC uptake and Ag concentration was detected for both AgNP and AgNO3 treatment. There was approximately a two-fold increase in cellular Ag uptake in the AgNO3 vs the NP treatment. Cytotoxicity, using LDH and MTS assays and based on exposure concentrations was not significantly different when comparing NPs and Ag ions. Based on differential uptake, AgNPs were more toxic after normalizing toxicity to the amount of cellular Ag uptake. Our data highlights the importance of correct synthesis, characterization, and study of transformations to obtain a better understanding of NP uptake and toxicity. Statistical analysis indicated that there might be an individual variability in response to NPs, although more research is required.
Collapse
Affiliation(s)
- Sahar Pourhoseini
- Department of Ophthalmology, Baylor College of Medicine, Houston, Texas, 77030, United States
| | - Reilly T Enos
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, United States
| | - Angela E Murphy
- Department of Pathology, Microbiology, and Immunology, School of Medicine, University of South Carolina, Columbia, SC, 29209, United States
| | - Bo Cai
- Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, United States
| | - Jamie R Lead
- Center for Environmental Nanoscience and Risk, Department of Environmental Health Sciences, Arnold School of Public Health, University of South Carolina, Columbia, SC, 29208, United States
| |
Collapse
|
28
|
Ibrahim A, Hassan D, Kelany N, Kotb S, Soliman M. Validation of Three Different Sterilization Methods of Tilapia Skin Dressing: Impact on Microbiological Enumeration and Collagen Content. Front Vet Sci 2020; 7:597751. [PMID: 33426019 PMCID: PMC7785820 DOI: 10.3389/fvets.2020.597751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Tilapia fish skin has demonstrated promise as a stable and practical biological dressing to be used in wound and burn management. However, the appropriate sterilization technique of the Tilapia fish skin is crucial before its clinical application. The standard sterilization technique must eliminate harmful pathogens but maintain the structural and biochemical properties that could compromise the dressing function. This study investigated and compared the efficiency of three sterilizing agents; chlorhexidine gluconate 4% (CHG), povidone iodine 10% (PVP-I), and silver nanoparticles (25 μg/mL) (AgNPs), at three different times (5, 10, and 15 min) on Tilapia fish skin based on the microbial count, histological and collagen properties. Among the sterilization procedures, AgNPs showed rapid and complete antimicrobial activity, with a 100% reduction in microbial growth of the fish skin throughout the treated times. Furthermore, AgNPs did not impair the cellular structure or collagen fibers content of the fish skin. However, CHG and PVP-I caused alterations in the collagen content. This study demonstrated that the AgNPs treatment of Tilapia fish skin provided sterile skin while preserving the histological properties and structural integrity. These findings provide an efficient and quick sterilization method suitable for Tilapia fish skin that could be adopted as a biological dressing.
Collapse
Affiliation(s)
- Ahmed Ibrahim
- Veterinary Teaching Hospital, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Dalia Hassan
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Noura Kelany
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Saber Kotb
- Department of Animal and Poultry Hygiene, and Environmental Sanitation, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mahmoud Soliman
- Department of Veterinary Pathology and Clinical Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt.,Laboratory of Veterinary Pathology, College of Veterinary Medicine, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
29
|
Soni N, Dhiman RC. Larvicidal and antibacterial activity of aqueous leaf extract of Peepal ( Ficus religiosa) synthesized nanoparticles. Parasite Epidemiol Control 2020; 11:e00166. [PMID: 32885057 PMCID: PMC7452144 DOI: 10.1016/j.parepi.2020.e00166] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 04/22/2020] [Accepted: 07/10/2020] [Indexed: 11/09/2022] Open
Abstract
In this study, the zinc oxide nanoparticles (ZnO NPs) and titanium dioxide nanoparticles (TiO2 NPs) were synthesized using the aqueous leaf extract of Ficus religiosa (Peepal tree). The synthesized nanoparticles were tested as larvicides against the larvae of Anopheles stephensi. Further, the synthesized nanoparticles were tested as antibacterial agents against the Escherichia coli (gram negative) and Staphylococcus aureus (gram positive) bacteria. The synthesized nanoparticles were characterized with UV-visible spectroscopy, X-rays powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX). The larvicidal mortality was observed after 24 h and 48 h by probit analysis. The antibacterial activity was evaluated using the well diffusion method. The synthesized nanoparticles were irregular shape and varied size. The larvae of An. stephensi were found highly susceptible against the ZnO NPs than the TiO2 NPs and aqueous leaves extract. The highest mortality was observed in synthesized ZnO NPs against first to third instars of (LC50 50, 75, and 5 ppm) and 100% mortality in fourth instars of An. stephensi. The higher zone of inhibition was occurred against the E. coli. This report of present investigation revealed that the rapid biological synthesis of ZnO NPs and TiO2 NPs using aqueous leaf extract of F. religiosa would be effective potential larvicides for mosquito control as well as antimicrobial agents with eco-friendly approach.
Collapse
Affiliation(s)
- Namita Soni
- Environmental Epidemiology Division, ICMR-National Institute of Malaria Research, New Delhi, India 110077
| | - Ramesh C. Dhiman
- Environmental Epidemiology Division, ICMR-National Institute of Malaria Research, New Delhi, India 110077
| |
Collapse
|
30
|
Zendegani E, Dolatabadi S. The Efficacy of Imipenem Conjugated with Synthesized Silver Nanoparticles Against Acinetobacter baumannii Clinical Isolates, Iran. Biol Trace Elem Res 2020; 197:330-340. [PMID: 31701463 DOI: 10.1007/s12011-019-01962-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 10/28/2019] [Indexed: 01/18/2023]
Abstract
Carbapenem-resistant Acinetobacter baumannii (CRAB) remains as a serious cause of infectious diseases and septic mortality in hospitalized patients worldwide. This study was conducted to evaluate the antimicrobial effect of imipenem conjugated silver nanoparticles (AgNPs) on resistant isolated A. baumannii from nosocomial infections.The antimicrobial susceptibility test of 100 A. baumannii clinical isolates against different antibiotics was performed. PCR was used to confirm bacterial resistance and to identify different genes encoding Ambler class β-lactamases. The chemically synthesized AgNPs were characterized using UV-vis spectroscopy, X-ray diffraction (XRD), transmission electron microscopy (TEM), and Fourier-transform infrared (FTIR). The stability, drug release kinetic, and cytotoxicity (MTT assay) of AgNPs were also investigated. The imipenem were conjugated with AgNPs, and conjugants were characterized as discussed above. Minimum inhibitory concentration (MIC) of the AgNPs and conjugants were tested against A. baumannii isolates and compared with imipenem alone.The results revealed that among all isolated A. baumannii, 76% showed resistant to imipenem (MIC ≥ 64 μg/mL to ≥ 256 μg/mL). The blaOXA-23, blaPER, blaOXA-40, and blaIMP genes were the most prevalent genes. UV-vis spectroscopy, XRD, TEM, and FTIR analysis confirmed synthesis of AgNPs (average size of 10-40 nm) and conjugation with imipenem. The release of imipenem from AgNPs can be defined as Fickian diffusion model. The MIC values of AgNPs conjugated with imipenem against resistant A. baumannii were decreased in a dose dependent manner and were based on existence of resistant genes. The AgNPs also showed low cytotoxic effects.The results suggest that imipenem-AgNPs has a strong potency as a powerful antibacterial agent against multi-resistant A. baumannii.
Collapse
Affiliation(s)
- Elham Zendegani
- Department of Microbiology, Faculty of Sciences, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran
| | - Samaneh Dolatabadi
- Department of Microbiology, Faculty of Sciences, Neyshabur Branch, Islamic Azad University, Neyshabur, Iran.
| |
Collapse
|
31
|
Krishnan PD, Banas D, Durai RD, Kabanov D, Hosnedlova B, Kepinska M, Fernandez C, Ruttkay-Nedecky B, Nguyen HV, Farid A, Sochor J, Narayanan VHB, Kizek R. Silver Nanomaterials for Wound Dressing Applications. Pharmaceutics 2020; 12:E821. [PMID: 32872234 PMCID: PMC7557923 DOI: 10.3390/pharmaceutics12090821] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/19/2020] [Accepted: 08/25/2020] [Indexed: 12/14/2022] Open
Abstract
Silver nanoparticles (AgNPs) have recently become very attractive for the scientific community due to their broad spectrum of applications in the biomedical field. The main advantages of AgNPs include a simple method of synthesis, a simple way to change their morphology and high surface area to volume ratio. Much research has been carried out over the years to evaluate their possible effectivity against microbial organisms. The most important factors which influence the effectivity of AgNPs against microorganisms are the method of their preparation and the type of application. When incorporated into fabric wound dressings and other textiles, AgNPs have shown significant antibacterial activity against both Gram-positive and Gram-negative bacteria and inhibited biofilm formation. In this review, the different routes of synthesizing AgNPs with controlled size and geometry including chemical, green, irradiation and thermal synthesis, as well as the different types of application of AgNPs for wound dressings such as membrane immobilization, topical application, preparation of nanofibers and hydrogels, and the mechanism behind their antimicrobial activity, have been discussed elaborately.
Collapse
Affiliation(s)
- Priya Dharshini Krishnan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Dominik Banas
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno-Bohunice, Czech Republic; (D.B.); (D.K.)
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
| | - Ramya Devi Durai
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Daniil Kabanov
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 753/5, 625 00 Brno-Bohunice, Czech Republic; (D.B.); (D.K.)
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
| | - Bozena Hosnedlova
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
| | - Marta Kepinska
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
| | - Carlos Fernandez
- School of Pharmacy and Life Sciences, Robert Gordon University, Garthdee Road, Aberdeen AB10 7QB, UK;
| | - Branislav Ruttkay-Nedecky
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
- Department of Molecular Pharmacy, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| | - Hoai Viet Nguyen
- Research Center for Environmental Monitoring and Modeling, University of Science, Vietnam National University, 334 Nguyen Trai Street, Hanoi 100000, Vietnam;
| | - Awais Farid
- Division of Environment and Sustainability, Hong Kong University of Science and Technology, Room 4412, Clear Water Bay, Kowloon, Hong Kong, China;
| | - Jiri Sochor
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
| | - Vedha Hari B. Narayanan
- Department of Pharmacy, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur 613-401, India; (P.D.K.); (R.D.D.)
| | - Rene Kizek
- Department of Research and Development, Prevention Medicals, Tovarni 342, 742 13 Studenka-Butovice, Czech Republic;
- Department of Viticulture and Enology, Faculty of Horticulture, Mendel University in Brno, Valticka 337, 691 44 Lednice, Czech Republic; (B.H.); (J.S.)
- Department of Biomedical and Environmental Analyses, Faculty of Pharmacy, Wroclaw Medical University, Borowska 211, 50-556 Wroclaw, Poland;
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| |
Collapse
|
32
|
Parvekar P, Palaskar J, Metgud S, Maria R, Dutta S. The minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus. Biomater Investig Dent 2020; 7:105-109. [PMID: 32939454 PMCID: PMC7470068 DOI: 10.1080/26415275.2020.1796674] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 07/09/2020] [Indexed: 12/13/2022] Open
Abstract
AIM To determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of silver nanoparticles against Staphylococcus aureus (S. aureus).Methodology: The antimicrobial efficacy of the silver nanoparticles was determined by the standard methods of Clinical and Laboratory Standards Institute (CLSI). Different concentrations of silver nanoparticles were prepared, and MIC was calculated by tube macro-dilution method. The MBC was determined by the lowest concentration that kills 99.9% of the initial bacterial population. The data were analyzed by ANOVA and Tukey's post hoc test using SPSS software. RESULTS The MIC and MBC of silver nanoparticles against S. aureus was found to be 0.625 mg/ml. CONCLUSION The result obtained from this study shows that silver nanoparticles have potential bactericidal effects against S. aureus at a concentration of 0.625 mg/ml. Silver nanoparticles can be incorporated in the root canal medicaments, sealers and irrigants as it possess potent antimicrobial efficacy against S. aureus.
Collapse
Affiliation(s)
- Prashik Parvekar
- Pacific Academy of Higher Education, Research University, Udaipur, India
| | - Jayant Palaskar
- Department of Prosthodontics, Sinhagad Dental College, Pune, India
| | - Sandeep Metgud
- Department of Endodontics, Pacific Dental College, Udaipur, India
| | - Rahul Maria
- Department of Endodontics, Bhabha College of Dental Sciences, Bhopal, India
| | - Smita Dutta
- Department of Endodontics, College of Dental Medicine, Qassim University, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Silver-decorated mesostructured cellular silica foams as excellent antibacterial hemostatic agents for rapid and effective treatment of hemorrhage. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111105. [PMID: 32600708 DOI: 10.1016/j.msec.2020.111105] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 04/21/2020] [Accepted: 05/18/2020] [Indexed: 01/19/2023]
Abstract
Uncontrolled bleeding, such as deep, narrow or irregular wound hemorrhage, has been a major cause of death in peacetime and wartime. Besides, traditional hemostatic agents are lack of antibacterial properties, which could not provide effective protection on open wound. In this paper, a novel antibacterial hemostatic agent composed of mesostructured cellular silica foams (MCF) decorated with silver ions (MCF-Ag) was synthesized by hydrothermal method. Hemorrhage wound infected with Escherichia coli was applied to evaluate its antibacterial and hemostatic performance both in vitro and in vivo. Both MCF and MCF-Ag showed excellent hemostasis in vitro and in vivo. The MCF-Ag demonstrated significant antibacterial effect. By contrast, no obvious antibacterial effect was observed from the MCF. The above results demonstrate that the MCF-Ag is an excellent antibacterial hemostatic agent with splendid water absorption and antibacterial capacity.
Collapse
|
34
|
Ultraviolet Irradiation Enhances the Microbicidal Activity of Silver Nanoparticles by Hydroxyl Radicals. Int J Mol Sci 2020; 21:ijms21093204. [PMID: 32366059 PMCID: PMC7247328 DOI: 10.3390/ijms21093204] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 12/02/2022] Open
Abstract
It is known that silver has microbicidal qualities; even at a low concentration, silver is active against many kinds of bacteria. Silver nanoparticles (AgNPs) have been extensively studied for a wide range of applications. Alternately, the toxicity of silver to human cells is considerably lower than that to bacteria. Recent studies have shown that AgNPs also have antiviral activity. We found that large amounts of hydroxyl radicals—highly reactive molecular species—are generated when AgNPs are irradiated with ultraviolet (UV) radiation with a wavelength of 365 nm, classified as ultraviolet A (UVA). In this study, we used electron spin resonance direct detection to confirm that UV irradiation of AgNPs produced rapid generation of hydroxyl radicals. As hydroxyl radicals are known to degrade bacteria, viruses, and some chemicals, the enhancement of the microbicidal activity of AgNPs by UV radiation could be valuable for the protection of healthcare workers and the prevention of the spread of infectious diseases.
Collapse
|
35
|
Smith R, Russo J, Fiegel J, Brogden N. Antibiotic Delivery Strategies to Treat Skin Infections When Innate Antimicrobial Defense Fails. Antibiotics (Basel) 2020; 9:E56. [PMID: 32024064 PMCID: PMC7168299 DOI: 10.3390/antibiotics9020056] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/26/2020] [Accepted: 01/28/2020] [Indexed: 12/14/2022] Open
Abstract
The epidermal skin barrier protects the body from a host of daily challenges, providing protection against mechanical insults and the absorption of chemicals and xenobiotics. In addition to the physical barrier, the epidermis also presents an innate defense against microbial overgrowth. This is achieved through the presence of a diverse collection of microorganisms on the skin (the "microbiota") that maintain a delicate balance with the host and play a significant role in overall human health. When the skin is wounded, the local tissue with a compromised barrier can become colonized and ultimately infected if bacterial growth overcomes the host response. Wound infections present an immense burden in healthcare costs and decreased quality of life for patients, and treatment becomes increasingly important because of the negative impact that infection has on slowing the rate of wound healing. In this review, we discuss specific challenges of treating wound infections and the advances in drug delivery platforms and formulations that are under development to improve topical delivery of antimicrobial treatments.
Collapse
Affiliation(s)
- R. Smith
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
| | - J. Russo
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - J. Fiegel
- Department of Chemical and Biochemical Engineering, The University of Iowa, Iowa City, IA 52242, USA; (R.S.); (J.F.)
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
| | - N. Brogden
- Department of Pharmaceutical Sciences and Experimental Therapeutics, The University of Iowa, Iowa City, IA 52242, USA;
- Department of Dermatology, The University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
36
|
Kumar S, Nehra M, Kedia D, Dilbaghi N, Tankeshwar K, Kim KH. Nanotechnology-based biomaterials for orthopaedic applications: Recent advances and future prospects. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110154. [DOI: 10.1016/j.msec.2019.110154] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/04/2019] [Accepted: 08/31/2019] [Indexed: 12/13/2022]
|
37
|
Bonilla-Gameros L, Chevallier P, Sarkissian A, Mantovani D. Silver-based antibacterial strategies for healthcare-associated infections: Processes, challenges, and regulations. An integrated review. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2019; 24:102142. [PMID: 31843661 DOI: 10.1016/j.nano.2019.102142] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/16/2019] [Accepted: 12/05/2019] [Indexed: 10/25/2022]
Abstract
Healthcare-associated infections (HCAIs) are a major cause of morbidity and mortality worldwide. One of the main routes of transmission is by contact with contaminated surfaces, where nosocomial pathogens form sessile communities called biofilms. When forming biofilms, these pathogens are extremely resistant to antibiotics and standard cleaning procedures. In this regard, in order to eliminate the extent of biofilm formation on these surfaces, intensive efforts have been deployed, particularly in recent years, to develop new antibacterial surfaces containing silver or silver compounds, which can be used to prevent the formation of biofilm. In this review, recent developments in the design and manufacturing of silver-based antibacterial surfaces are described in detail. Up-to-date toxicity and governmental regulations are then extensively presented. Finally, based on current research in this promising field, the main challenges and perspectives for their effective implementation are discussed.
Collapse
Affiliation(s)
- Linda Bonilla-Gameros
- Laboratory for Biomaterials and Bioengineering (CRC-I) Department of Min-Met-Mat Engineering and the CHU de Québec Research Center, Laval University, Québec, QC, Canada
| | - Pascale Chevallier
- Laboratory for Biomaterials and Bioengineering (CRC-I) Department of Min-Met-Mat Engineering and the CHU de Québec Research Center, Laval University, Québec, QC, Canada
| | | | - Diego Mantovani
- Laboratory for Biomaterials and Bioengineering (CRC-I) Department of Min-Met-Mat Engineering and the CHU de Québec Research Center, Laval University, Québec, QC, Canada.
| |
Collapse
|
38
|
Synthesis of silver nanoparticles using leaves of Catharanthus roseus and their antimicrobial activity. APPLIED NANOSCIENCE 2019. [DOI: 10.1007/s13204-019-01221-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
39
|
Bouqellah NA, Mohamed MM, Ibrahim Y. Synthesis of eco-friendly silver nanoparticles using Allium sp . and their antimicrobial potential on selected vaginal bacteria. Saudi J Biol Sci 2019; 26:1789-1794. [PMID: 31762659 PMCID: PMC6864148 DOI: 10.1016/j.sjbs.2018.04.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 03/06/2018] [Accepted: 04/01/2018] [Indexed: 11/26/2022] Open
Abstract
Allium cepa and garlic Allium sativa plants were used to evaluate their potential synthesis of silver nanoparticles and their antibacterial effect on Streptococcus pneumoniae and Pseudomonas aeruginosa. Transmission electron microscopy (SEM) was used to distinguish the morphology of the nanoparticles attained from plant extracts. Energy dispersive X-ray (EDX) spectrometer established the existence of elemental sign of the silver and homogenous allocation of silver nanoparticles. Diffraction by using X ray (XRD) analysis for the formed AgNPs revealed spherical plus cubical shapes structure with different planes ranged between 111 and 311 planes. The antibacterial action of AgNPs against vaginal pathogens, Streptococcus pneumoniae and Pseudomonas aeruginosa was recognized. Our work showed a rapid, eco-safety and suitable method for the synthesis of AgNPs from Allium cepa and garlic Allium sativa extracts and can be used in biomedical applications.
Collapse
Affiliation(s)
- Nahla Alsayed Bouqellah
- Taibah University, Faculty of Science, Biology Department, P.O. Box 25233, Almadinah Almunawwarah, Saudi Arabia
| | - Mohamed M. Mohamed
- Alexandria University, Faculty of Science, Botany and Microbiology Department, P.O. Box 21511, Alexandria, Egypt
- Stockton University, School of Natural Sciences and Mathematics, Biology department, Galloway, NJ 08205-9441, USA
| | - Yasmine Ibrahim
- New Jersey Institute of Technology, Biological Sciences Department, Albert Dorman Honors College, Newark, NJ 07102, USA
| |
Collapse
|
40
|
Chandra H, Patel D, Kumari P, Jangwan J, Yadav S. Phyto-mediated synthesis of zinc oxide nanoparticles of Berberis aristata: Characterization, antioxidant activity and antibacterial activity with special reference to urinary tract pathogens. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 102:212-220. [DOI: 10.1016/j.msec.2019.04.035] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 03/25/2019] [Accepted: 04/12/2019] [Indexed: 01/21/2023]
|
41
|
Joshi N, Pathak A, Anupam R, Jain N, Singh J, Upadhyaya CP. A Rapid and Efficient Biosynthesis of Metallic Nanoparticles Using Aqueous Extract of Chia (Salvia hispanica L.) Seeds. BIONANOSCIENCE 2019. [DOI: 10.1007/s12668-019-00672-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
42
|
Nejaddehbashi F, Hashemitabar M, Bayati V, Moghimipour E, Movaffagh J, Orazizadeh M, Abbaspour MR. Incorporation of Silver Sulfadiazine into An Electrospun Composite of Polycaprolactone as An Antibacterial Scaffold for Wound Healing in Rats. CELL JOURNAL 2019; 21:379-390. [PMID: 31376319 PMCID: PMC6722444 DOI: 10.22074/cellj.2020.6341] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 12/02/2018] [Indexed: 11/24/2022]
Abstract
Objective Fabrication of an antibiotic-loaded scaffold with controlled release properties for wound dressing is one of
tissue engineering challenges. The aim of this study was to evaluate the wound-healing effectiveness of 500-µm thick
polycaprolactone (PCL) nanofibrous mat containing silver sulfadiazine (SSD) as an antibacterial agent.
Materials and Methods In this experimental study, an electrospun membrane of PCL nanofibrous mat containing 0.3%
weight SSD with 500 µm thickness, was prepared. Morphological and thermomechanical characteristics of nanofibers
were evaluated. Drug content and drug release properties as well as the surface hydrophobicity of the nanofibrous
membrane were determined. Antimicrobial properties and cellular viability of the scaffold were also examined. A full
thickness wound of 400 mm2 was created in rats, to evaluate the wound-healing effects of PCL/SSD blend in comparison
with PCL and vaseline gas used as the control group.
Results SSD at a concentration of 0.3% improved physicochemical properties of PCL. This concentration of SSD did
not inhibit the attachment of human dermal fibroblasts (HDFs) to nanofibers in vitro, but showed antibacterial activity
against Gram-positive Staphylococcus aureus (ST) and Gram-negative Pseudomonas aeruginosa (PS). Overall,
results showed that SSD improves characteristics of PCL nanofibrous film and improves wound-healing process in
one-week earlier compared to control.
Conclusion Cytotoxicity of SSD in fabricated nanofibrous mat is a critical challenge in designing an effective wound
dressing that neutralizes cellular toxicity and improves antimicrobial activity. The PCL/SSD nanofibrous membrane with 500-
µm thickness and 0.3% (w/v) SSD showed applicable characteristics as a wound dressing and it accelerated wound healing
process in vivo.
Collapse
Affiliation(s)
- Fereshteh Nejaddehbashi
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mahmoud Hashemitabar
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Vahid Bayati
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Eskandar Moghimipour
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Nanotechnology Research Center, Faculty of Pharmacy, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Jabraeel Movaffagh
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Orazizadeh
- Cellular and Molecular Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran. Electronic Address:.,Department of Anatomical Sciences, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mohammad Reza Abbaspour
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran. Electronic Address:
| |
Collapse
|
43
|
Nakamura S, Sato M, Sato Y, Ando N, Takayama T, Fujita M, Ishihara M. Synthesis and Application of Silver Nanoparticles (Ag NPs) for the Prevention of Infection in Healthcare Workers. Int J Mol Sci 2019; 20:E3620. [PMID: 31344881 PMCID: PMC6695748 DOI: 10.3390/ijms20153620] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/23/2019] [Indexed: 12/21/2022] Open
Abstract
Silver is easily available and is known to have microbicidal effect; moreover, it does not impose any adverse effects on the human body. The microbicidal effect is mainly due to silver ions, which have a wide antibacterial spectrum. Furthermore, the development of multidrug-resistant bacteria, as in the case of antibiotics, is less likely. Silver ions bind to halide ions, such as chloride, and precipitate; therefore, when used directly, their microbicidal activity is shortened. To overcome this issue, silver nanoparticles (Ag NPs) have been recently synthesized and frequently used as microbicidal agents that release silver ions from particle surface. Depending on the specific surface area of the nanoparticles, silver ions are released with high efficiency. In addition to their bactericidal activity, small Ag NPs (<10 nm in diameter) affect viruses although the microbicidal effect of silver mass is weak. Because of their characteristics, Ag NPs are useful countermeasures against infectious diseases, which constitute a major issue in the medical field. Thus, medical tools coated with Ag NPs are being developed. This review outlines the synthesis and utilization of Ag NPs in the medical field, focusing on environment-friendly synthesis and the suppression of infections in healthcare workers (HCWs).
Collapse
Affiliation(s)
- Shingo Nakamura
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan.
| | - Masahiro Sato
- Section of Gene Expression Regulation, Frontier Science Research Center, Kagoshima University, Kagoshima 890-8544, Japan
| | - Yoko Sato
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Naoko Ando
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Tomohiro Takayama
- Department of Oral and Maxillofacial Surgery, National Defense Medical College Hospital, Saitama 359-8513, Japan
| | - Masanori Fujita
- Division of Environmental Medicine, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| | - Masayuki Ishihara
- Division of Biomedical Engineering, National Defense Medical College Research Institute, Saitama 359-8513, Japan
| |
Collapse
|
44
|
Hosny AEDM, Rasmy SA, Aboul-Magd DS, Kashef MT, El-Bazza ZE. The increasing threat of silver-resistance in clinical isolates from wounds and burns. Infect Drug Resist 2019; 12:1985-2001. [PMID: 31372006 PMCID: PMC6636436 DOI: 10.2147/idr.s209881] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 01/08/2023] Open
Abstract
Purpose The widespread use of silver-containing compounds has led to emergence of silver-resistant bacteria. Few studies are available on the detectability of plasmid-mediated silver-resistance in developing countries. Therefore, we aimed to detect silver-resistance in isolates from wounds and burns, and to genetically characterize plasmid-mediated silver-resistance genes (sil genes). Methods One hundred and fifty clinical isolates were obtained from burns and wounds. They were identified using the suitable Analytical Profile Index and MicroScan identification systems. Their antimicrobial susceptibility was tested by the disk diffusion and broth microdilution methods. Their silver nitrate (AgNO3) minimum inhibitory concentration (MIC) was determined using the broth macrodilution method. The presence of different sil genes on plasmids extracted from silver-resistant isolates and the replicon types of the extracted plasmids were investigated using polymerase chain reaction (PCR). The ability of these plasmids to impart silver-resistance was tested by transformation. Results All except two isolates were multidrug-resistant. Nineteen silver-resistant bacterial isolates (12.6%) were detected; with AgNO3 MIC ≥512 µg/mL. They were identified as Klebsiella pneumoniae (n=7), Staphylococcus aureus (n=4), Escherichia coli (n=2), Enterobacter cloacae (n=2), Pseudomonas aeruginosa (n=2) and Acinetobacter baumannii (n=2). PCR revealed the presence of different sil genes on the extracted plasmids. Plasmid transformation resulted in the transfer of silver-resistance to the resulting transformants. The extracted plasmids had different replicon types. Conclusion Plasmid-mediated silver-resistance was detected for the first time, in clinical P. aeruginosa, A. baumannii and S. aureus isolates; in addition to its detection in K. pneumoniae, E. coli and Enterobacter cloacae. Therefore, strict monitoring on the use of silver compounds in medical settings is required; with implementation of an approved standardized method for silver-resistance detection.
Collapse
Affiliation(s)
- Alaa El-Dien Ms Hosny
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Salwa A Rasmy
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Dina S Aboul-Magd
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Mona T Kashef
- Microbiology and Immunology Department, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Zeinab E El-Bazza
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| |
Collapse
|
45
|
Wiegand C, Fink S, Hipler UC, Beier O, Horn K, Pfuch A, Schimanski A, Grünler B. Cold atmospheric pressure plasmas exhibit antimicrobial properties against critical bacteria and yeast species. J Wound Care 2019; 26:462-468. [PMID: 28795887 DOI: 10.12968/jowc.2017.26.8.462] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
OBJECTIVE Cold atmospheric pressure plasmas (CAPPs) have been used to sterilise implant materials and other thermally unstable medical products and to modify chemical surfaces. This study investigates the antimicrobial effect of the gas and input power used to generate CAPPs on microorganisms causing skin infections, such as Staphylococcus aureus, Pseudomonas aeruginosa, Candida albicans and Malassezia pachydermatis. METHOD Microorganisms were cultivated on Mueller Hinton 2 (MH2) agar plates. CAPP treatment was performed using the Plasma BLASTER MEF. To investigate the antimicrobial effects the following CAPP parameters were varied: the gas used, input power, as well as number of treatments and treatment time. RESULTS The antimicrobial efficacy of the CAPPs was found to increase with increasing input power and treatment time (or cycles). Furthermore the plasma generated from nitrogen is more effective than from air. CONCLUSION The study showed that CAPPs demonstrate strong bactericidal and fungicidal properties in vitro. The selective application of CAPPs for the treatment of wound infections may offer a promising supplementary tool alongside current therapies.
Collapse
Affiliation(s)
- C Wiegand
- Biochemist, Scientific Associate, Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | - S Fink
- Scientific Associate, Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | - U-C Hipler
- Head of Laboratory, Department of Dermatology, University Hospital Jena, Erfurter Straße 35, D-07740 Jena, Germany
| | - O Beier
- Research Scientist, Department of Surface Engineering/Plasma Technology, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - K Horn
- Research Scientist, Department of Surface Engineering/Plasma Technology, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - A Pfuch
- Head of Department Plasma Technology, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - A Schimanski
- Managing Director of Innovent, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| | - B Grünler
- Managing Director of Innovent, Innovent e.v. Technology Development Jena, Pruessingstrasse 27B, D-07745 Jena, Germany
| |
Collapse
|
46
|
Raval YS, Mohamed A, Zmuda HM, Patel R, Beyenal H. Hydrogen-Peroxide-Generating Electrochemical Scaffold Eradicates Methicillin-Resistant Staphylococcus aureus Biofilms. GLOBAL CHALLENGES (HOBOKEN, NJ) 2019; 3:1800101. [PMID: 31218078 PMCID: PMC6551415 DOI: 10.1002/gch2.201800101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 02/11/2019] [Indexed: 06/09/2023]
Abstract
Increasing rates of chronic wound infections caused by antibiotic-resistant bacteria are a crisis in healthcare settings. Biofilms formed by bacterial communities in these wounds create a complex environment, enabling bacteria to persist, even with antibiotic treatment. Wound infections caused by methicillin-resistant Staphylococcus aureus (MRSA) are major causes of morbidity in clinical practice. There is a need for new therapeutic interventions not based on antibiotics. Hydrogen peroxide (H2O2) is a known antibacterial/antibiofilm agent, continuous delivery of which has been challenging. A conductive electrochemical scaffold (e-scaffold) is developed, which is composed of carbon fabric that electrochemically reduces dissolved oxygen into H2O2 when polarized at -0.6 VAg/AgCl, as a novel antibiofilm wound dressing material. In this study, the in vitro antibiofilm activity of the e-scaffold against MRSA is investigated. The developed e-scaffold efficiently eradicates MRSA biofilms, based on bacterial quantitation and ATP measurements. Moreover, imaging hinted at the possibility of cell-membrane damage as a mechanism of action. These results suggest that an H2O2-generating e-scaffold may be a novel platform for eliminating MRSA biofilms without using antibiotics and may be useful to treat chronic MRSA wound infections.
Collapse
Affiliation(s)
- Yash S. Raval
- Division of Clinical MicrobiologyMayo ClinicRochesterMN55905USA
| | - Abdelrhman Mohamed
- The Gene and Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWA99164USA
| | - Hannah M. Zmuda
- Division of Clinical MicrobiologyMayo ClinicRochesterMN55905USA
- The Gene and Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWA99164USA
| | - Robin Patel
- Division of Clinical MicrobiologyMayo ClinicRochesterMN55905USA
- Division of Infectious DiseasesMayo ClinicRochesterMN55905USA
| | - Haluk Beyenal
- The Gene and Voiland School of Chemical Engineering and BioengineeringWashington State UniversityPullmanWA99164USA
| |
Collapse
|
47
|
Paul P, Kolesinska B, Sujka W. Chitosan and Its Derivatives - Biomaterials with Diverse Biological Activity for Manifold Applications. Mini Rev Med Chem 2019; 19:737-750. [DOI: 10.2174/1389557519666190112142735] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/19/2018] [Accepted: 10/21/2018] [Indexed: 12/24/2022]
Abstract
Derived from chitin, chitosan is a natural polycationic linear polysaccharide being the second
most abundant polymer next to cellulose. The main obstacle in the wide use of chitosan is its almost
complete lack of solubility in water and alkaline solutions. To break this obstacle, the structure of
chitosan is subjected to modification, improving its physic-chemical properties and facilitating application
as components of composites or hydrogels. Derivatives of chitosan are biomaterials useful for different
purposes because of their lack of toxicity, low allergenicity, biocompatibility and biodegradability.
This review presents the methods of chemical modifications of chitosan which allow to obtain tailor-
made properties required for a variety of biomedical applications. Selected pharmaceutical and
biomedical applications of chitosan derivatives are also highlighted. Possibility to manage waste from
arthropod and crab processing is also emphasized.
Collapse
Affiliation(s)
- Paulina Paul
- Tricomed SA, ul. Swietojanska 5/9, 93-493 Lodz, Poland
| | - Beata Kolesinska
- Institute of Organic Chemistry, Lodz University of Technology, Zeromskiego 116, 90-924 Lodz, Poland
| | - Witold Sujka
- Tricomed SA, ul. Swietojanska 5/9, 93-493 Lodz, Poland
| |
Collapse
|
48
|
Rashaan ZM, Krijnen P, Kwa KA, van der Vlies CH, Schipper IB, Breederveld RS. Flaminal® versus Flamazine® in the treatment of partial thickness burns: A randomized controlled trial on clinical effectiveness and scar quality (FLAM study). Wound Repair Regen 2019; 27:257-267. [PMID: 30675745 PMCID: PMC6850327 DOI: 10.1111/wrr.12699] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 11/30/2022]
Abstract
Although partial thickness burns are the most frequently reported burn injuries, there is no consensus on the optimal treatment. The objective of this study was to compare the clinical effectiveness and scar quality of Flaminal® Forte to silver sulfadiazine (Flamazine®) in the treatment of partial thickness burns. In this two-arm open label multicenter randomized controlled trial, adult patients with acute partial thickness burns and an affected total body surface area of less than 30% were randomized between Flaminal® Forte and Flamazine® and followed for 12 months. Dressing changes in the Flamazine® group were performed daily, and in the Flaminal® group during the first 3 days post burn and thereafter every other day until complete wound healing or surgery. Forty-one patients were randomly allocated to Flaminal® Forte and 48 patients to Flamazine®. The primary outcome was time to wound healing, which did not differ between the groups: median 18 days with Flaminal® Forte (range 8-49 days) versus 16 days with Flamazine® (range 7-48 days; p = 0.24). Regarding the secondary outcomes during hospital admission, there were no statistically significant differences between the groups concerning need for surgery, pain scores, pruritus, or pain-related and anticipatory anxiety. More patients in the Flaminal® group developed wound colonization (78% versus 32%, p < 0.001), but the treatment groups did not differ regarding the incidence of local infections and use of systemic antibiotics. In terms of scar quality, no statistically significant differences between both treatment groups were found regarding subjective scar assessment (Patient and Observer Scar Assessment Scale (POSAS)), scar melanin and pigmentation (DermaSpectrometer®), and scar elasticity and maximal extension (Cutometer®) during 12 month postburn. In conclusion, time to wound healing did not differ, but the use of Flaminal® Forte seemed favorable because less dressing changes are needed which lowers the burden of wound care.
Collapse
Affiliation(s)
- Zjir M. Rashaan
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Department of SurgeryRed Cross HospitalBeverwijkThe Netherlands
- Burn CentreRed Cross HospitalBeverwijkThe Netherlands
| | - Pieta Krijnen
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Kelly A.A. Kwa
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Burn CentreRed Cross HospitalBeverwijkThe Netherlands
| | - Cornelis H. van der Vlies
- Burn Centre and Department of SurgeryMaasstad HospitalRotterdamThe Netherlands
- Trauma Research Unit Department of Surgery, Erasmus MCUniversity Medical Center RotterdamRotterdamThe Netherlands
| | - Inger B. Schipper
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
| | - Roelf S. Breederveld
- Department of SurgeryLeiden University Medical CentreLeidenThe Netherlands
- Burn CentreRed Cross HospitalBeverwijkThe Netherlands
| |
Collapse
|
49
|
Chhibber S, Gondil VS, Singla L, Kumar M, Chhibber T, Sharma G, Sharma RK, Wangoo N, Katare OP. Effective Topical Delivery of H-AgNPs for Eradication of Klebsiella pneumoniae-Induced Burn Wound Infection. AAPS PharmSciTech 2019; 20:169. [PMID: 31004249 DOI: 10.1208/s12249-019-1350-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/22/2019] [Indexed: 11/30/2022] Open
Abstract
The aim of the present study was to explore the therapeutic efficacy of microemulsion-based delivery of histidine-capped silver nanoparticles in eradicating Klebsiella pneumoniae-induced burn wound infection. The developed microemulsion was characterized on the basis of differential light scattering, phase separation, refractive index, and specific conductance. Emulgel was prepared and characterized on the basis of thixotropy, texture, differential scanning calorimetry, and release kinetics. Emulgel was further evaluated in skin irritation and in vivo studies, namely full-thickness K. pneumoniae-induced burn wound infection treatment via topical route. Efficacy of treatment was evaluated in terms of bacterial load, histopathology, wound contraction, and other infection markers. The developed emulgel provided significant in vivo antibacterial activity of histidine-capped silver nanoparticle preparations via topical route and resulted in reduction in bacterial load, wound contraction, and enhanced skin healing as well as decrement of inflammatory markers such as malondialdehyde, myeloperoxidase, and reactive nitrogen intermediate compared to untreated animals. The present study encourages the further employment of histidine-capped silver nanoparticles along with microemulsion-based drug delivery system in combating antibiotic-resistant topical infections.
Collapse
|
50
|
Rashid S, Azeem M, Khan SA, Shah MM, Ahmad R. Characterization and synergistic antibacterial potential of green synthesized silver nanoparticles using aqueous root extracts of important medicinal plants of Pakistan. Colloids Surf B Biointerfaces 2019; 179:317-325. [PMID: 30981067 DOI: 10.1016/j.colsurfb.2019.04.016] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 03/30/2019] [Accepted: 04/07/2019] [Indexed: 01/02/2023]
Abstract
In the past few years, biologically synthesized silver nanoparticles (AgNPs) have been standout amongst the most utilized nanoparticles both in the field of therapeutics and clinical practices. Therefore, the current study aimed to synthesize AgNPs for the first time using aqueous root extracts of important plants of Pakistan i.e. Bergenia ciliata, Bergenia stracheyi, Rumex dantatus and Rumex hastatus and characterize them. In addition, antibacterial activity of synthesized AgNPs at 30-150 μg/well was assessed using well diffusion method against Staphylococcus aureus, Staphylococcus haemolyticus, Bacillus cereus, Escherichia coli, Salmonella typhi and Pseudomonas aeruginosa bacterial strains that are considered most harmful bacteria for human beings. The characterization of synthesized AgNPs showed the absorption maxima ranged from 434 to 451 nm and XRD confirmed the crystalline nature of AgNPs as well as FTIR elucidated the involvement of biomolecules for reduction and capping of AgNPs. SEM determined the average size of AgNPs ranging from 25 to 73 nm and strong signals of silver were captured in EDX images. The result of antibacterial activity showed that only aqueous root extracts of all selected plants were inactive against all the tested bacterial strains. However, importantly, direct relationship between zone of inhibition of S. aureus, S. typhi and P. aeruginosa was found with increasing concentration of AgNPs of each selected plant. Moreover, S. haemolyticus was only inhibited by R. hastatus based AgNPs at only high concentrations and E. coli was inhibited by R. dantatus and R. hastatus based AgNPs. However, B. cereus was not inhibited by any AgNPs except R. hastatus and R. hastatus based AgNPs have greater antibacterial potential among all the synthesized AgNPs. These results suggest that synthesized AgNPs have improved antibacterial potential of root extracts of each selected plant and these synthesized AgNPs could be used in pharmaceutical and homeopathic industry for the cure of human diseases.
Collapse
Affiliation(s)
- Saddaf Rashid
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Muhammad Azeem
- Department of Chemistry, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Sabaz Ali Khan
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Mohammad Maroof Shah
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan
| | - Rafiq Ahmad
- Biotechnology Program, Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, 22060, Abbottabad, Pakistan.
| |
Collapse
|