1
|
Altenburger MJ, Bergmann ME, Ledernez LA, Romanos G. In Situ Eradication of Mature Oral Biofilm on Titanium Implant Surfaces Using Cold Atmospheric Plasma. Dent J (Basel) 2025; 13:210. [PMID: 40422630 DOI: 10.3390/dj13050210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 04/21/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025] Open
Abstract
Objective: This study evaluated the effectiveness of a new cold atmospheric plasma device (AmbiJet) for eradicating mature oral biofilm on titanium implant surfaces, aiming to improve decontamination methods for the treatment of peri-implant infections. Material and methods: Mature oral biofilms were grown on titanium disks placed in participants' mouths. These disks were divided into control and plasma treatment groups. The AmbiJet device delivered plasma directly to the implant surface for 3 min per 20 mm2, utilizing the applicator nozzle and implant as electrodes. Biofilm reduction was quantified by counting colony-forming units (CFUs). Results: Cold plasma treatment rendered approximately 90% of samples bacteria-free. A > 6-log10 reduction (≈99.9999%) in bacterial load was achieved in 30% of samples, with an overall average reduction of 4.9-log10 across all treated samples. The temperature during treatment remained below 40 °C. Conclusions: Within the study's limitations, cold atmospheric plasma effectively eradicates mature oral biofilm on titanium surfaces. This high disinfection efficacy is likely due to the combined action of reactive species and electrical phenomena, which does not cause significant temperature increases.
Collapse
Affiliation(s)
- Markus Jörg Altenburger
- Department of Orthodontics, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
- Department of Operative Dentistry and Periodontology, Center for Dental Medicine, Medical Center-University of Freiburg, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Hugstetter Straße 55, 79106 Freiburg, Germany
| | - Michael Eckhard Bergmann
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Freiburger Medizintechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Loic Alain Ledernez
- Laboratory for Biomedical Microtechnology, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
- Freiburger Medizintechnik, Georges-Koehler-Allee 103, 79110 Freiburg, Germany
| | - Georgios Romanos
- Department of Periodontics and Endodontics, School of Dental Medicine, Stony Brook University, 106 Rockland Hall, Stony Brook, NY 11794, USA
| |
Collapse
|
2
|
Sasaki‐Higashimoto I, Fujishima F, Ishida H, Taniyama Y, Ozawa Y, Nakamura T, Nakaya N, Sato C, Okamoto H, Tsunokake J, Kunimitsu A, Mozumi T, Kamei T, Suzuki T. Histopathological study of the localization/distribution of Fusobacterium nucleatum in esophageal cancer. Pathol Int 2025; 75:82-91. [PMID: 39760468 PMCID: PMC11848974 DOI: 10.1111/pin.13505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 11/04/2024] [Accepted: 12/18/2024] [Indexed: 01/07/2025]
Abstract
Fusobacterium nucleatum is implicated in esophageal cancer; however, its distribution in esophageal cancer tissues remains unknown. This study aimed to clarify the presence and distribution of F. nucleatum in esophageal cancer tissues using fluorescence in situ hybridization (FISH). Tissues collected from 70 patients with esophageal squamous cell carcinoma were examined using FISH. Corresponding normal epithelium and metastatic lymph nodes were assessed. F. nucleatum was identified more frequently in esophageal cancer tissues than in the normal epithelium. F. nucleatum also showed significant correlation with factors associated with tumor progression, such as pT factor and tumor size. As tumor progression advanced, the area occupied by F. nucleatum gradually became larger. F. nucleatum positivity was observed around the deep edge of the tumor nest (border-dense type) or identified diffusely in the tumor nest (diffuse distributed type). Furthermore, F. nucleatum was observed in metastatic lymph nodes, lesions of venous invasion, and walls of veins in normal epithelium. In conclusion, we visualized F. nucleatum using FISH and identified different distribution patterns of F. nucleatum, highlighting the spot density of its presence in tumor tissues. Recognizing this quantitative change is pivotal for establishing F. nucleatum as a reliable biomarker.
Collapse
Affiliation(s)
- Iku Sasaki‐Higashimoto
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | | | - Hirotaka Ishida
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yusuke Taniyama
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Yohei Ozawa
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Tomohiro Nakamura
- Department of Data Science, Faculty of Data ScienceKyoto Women's UniversityKyotoJapan
| | - Naoki Nakaya
- Department of Health Behavioral EpidemiologyTohoku University Graduate School of MedicineSendaiJapan
| | - Chiaki Sato
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Hiroshi Okamoto
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Junichi Tsunokake
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | - Atsushi Kunimitsu
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | - Takeru Mozumi
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
- Department of PathologyTohoku University HospitalSendaiJapan
| | - Takashi Kamei
- Department of SurgeryTohoku University Graduate School of MedicineSendaiJapan
| | - Takashi Suzuki
- Department of PathologyTohoku University HospitalSendaiJapan
| |
Collapse
|
3
|
Enax J, Fandrich P, Schulze zur Wiesche E, Epple M. The Remineralization of Enamel from Saliva: A Chemical Perspective. Dent J (Basel) 2024; 12:339. [PMID: 39590389 PMCID: PMC11592461 DOI: 10.3390/dj12110339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/26/2024] [Accepted: 10/21/2024] [Indexed: 11/28/2024] Open
Abstract
The natural remineralization of enamel is of major importance for oral health. In principle, early erosions (demineralization) induced by acidic beverages and foods as well as initial caries lesions can be covered and remineralized by the deposition of calcium phosphate, i.e., tooth mineral. This remineralization effect is characterized by the presence of calcium and phosphate ions in saliva that form hydroxyapatite on the enamel surface. Although it is apparently a simple crystallization, it turns out that remineralization under in vivo conditions is actually a very complex process. Calcium phosphate can form a number of solid phases of which hydroxyapatite is only one. Precipitation involves the formation of metastable phases like amorphous calcium phosphate that convert into biological apatite in a number of steps. Nanoscopic clusters of calcium phosphate that can attach on the enamel surface are also present in saliva. Thus, remineralization under strictly controlled in vitro conditions (e.g., pH, ion concentrations, no additives) is already complex, but it becomes even more complicated under the actual conditions in the oral cavity. Here, biomolecules are present in saliva, which interact with the forming calcium phosphate mineral. For instance, there are salivary proteins which have the function of inhibiting crystallization to avoid overshooting remineralization. Finally, the presence of bacteria and an extracellular matrix in plaque and the presence of proteins in the pellicle have strong influences on the precipitation on the enamel surface. The current knowledge on the remineralization of the enamel is reviewed from a chemical perspective with a special focus on the underlying crystallization phenomena and the effects of biological compounds that are present in saliva, pellicle, and plaque. Basically, the remineralization of enamel follows the same principles as calculus formation. Notably, both processes are far too complex to be understood on a microscopic basis under in vivo conditions, given the complicated process of mineral formation in the presence of a plethora of foreign ions and biomolecules.
Collapse
Affiliation(s)
- Joachim Enax
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (J.E.); (P.F.); (E.S.z.W.)
| | - Pascal Fandrich
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (J.E.); (P.F.); (E.S.z.W.)
| | - Erik Schulze zur Wiesche
- Research Department, Dr. Kurt Wolff GmbH & Co. KG, Johanneswerkstr. 34–36, 33611 Bielefeld, Germany; (J.E.); (P.F.); (E.S.z.W.)
| | - Matthias Epple
- Inorganic Chemistry and Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Universitaetsstr. 5–7, 45117 Essen, Germany
| |
Collapse
|
4
|
Cobo F, Aguilera-Franco M, Pérez-Carrasco V, García-Salcedo JA, Navarro-Marí JM. Bacteremia caused by Veillonella parvula: Two case reports and a review of the literature. Anaerobe 2024; 88:102879. [PMID: 38906317 DOI: 10.1016/j.anaerobe.2024.102879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/23/2024]
Abstract
Veillonella parvula is a non-motile gram-negative coccus that forms part of the normal microbiota in several body sites and which has been rarely isolated as cause of infections in human population, particularly in bacteremias. Here we give the overview of characteristics of genus Veillonella and the summary of its role in infections, particularly in bacteremia. We additionally report two patients with bacteremia due to V. parvula. Two sets of blood cultures of each patient yielded a pure culture of an anaerobic microorganism identified as V. parvula by MALDI-TOF MS, and confirmed by 16S rRNA gene sequencing. The two patients were male and one of them had risk factors for anaerobic bacteremia. The isolates were susceptible to most antibiotics and the outcome was successful in both patients. Bacteremia due to V. parvula is still rare. MALDI-TOF MS appear to be an excellent tool for the correct identification of these species.
Collapse
Affiliation(s)
- Fernando Cobo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain.
| | - María Aguilera-Franco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - Virginia Pérez-Carrasco
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José A García-Salcedo
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| | - José María Navarro-Marí
- Department of Microbiology and Instituto de Investigación Biosanitaria Ibs.GRANADA, University Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
5
|
Alawadi A, AbdulAzees PA, Lin CY, Haney SJ, Hanlon JP, Angelara K, Taft RM, Amaechi BT. Application of organoselenium in inhibiting Candida albicans biofilm adhesion on 3D printed denture base material. J Prosthodont 2024; 33:460-466. [PMID: 37422719 DOI: 10.1111/jopr.13733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 07/06/2023] [Indexed: 07/10/2023] Open
Abstract
PURPOSE Denture Stomatitis, a chronic mucosal inflammation associated with Candida albicans, is common among denture wearers. Several health conditions have been linked to chronic Candida infections. The complex, multifactorial nature of denture stomatitis requires the continuous pursuit of effective long-term solutions. The present in vitro study investigated the effect of incorporating organoselenium into 3D-printed denture base resin on C. albicans adhesion and biofilm formation. MATERIALS AND METHODS Thirty disks were fabricated using 3D-printed denture base resin and assigned to three experimental groups (10/group): disks without organoselenium (control), disks with 0.5% organoselenium (0.5%SE), and disks with 1% organoselenium (1%SE). Each disk was incubated with approximately 1 × 106 cells/mL of C. albicans for 48 h. Microbial viability (CFU/mL) was quantified by the spread plate method, while Confocal laser scanning microscopy and scanning electron microscope were performed for quantifying the biofilm thickness and examining biofilm morphology, respectively. Data were analyzed using One-way ANOVA with Tukey's multiple comparisons test. RESULTS CFU/mL was significantly (p < 0.05) higher in Control when compared with 0.5%SE and 1%SE, but no significant difference between 0.5%SE and 1%SE. A similar trend was observed with biofilm thickness except that there was no significant difference between the Control and 0.5%SE. There was C. albicans biofilm adhesion on the Control disks, with yeast cells and hyphae formation, whereas on 0.5%SE and 1%SE, there was inhibition of yeast cells transition to hyphae formation. CONCLUSIONS Incorporation of organoselenium into 3D-printed denture base resin was effective in reducing C. albicans biofilm formation and growth on denture base material.
Collapse
Affiliation(s)
- Ahmad Alawadi
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Parveez Ahmed AbdulAzees
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Chun-Yen Lin
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
- Department of Family Dentistry and Oral Diagnosis, School of Dentistry, Tri-Service General Hospital and National Defense Medical Center, Taipei, Taiwan
| | - Stephan J Haney
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - John P Hanlon
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Konstantina Angelara
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Robert M Taft
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| | - Bennett T Amaechi
- Department of Comprehensive Dentistry, University of Texas Health Science Center at San Antonio, School of Dentistry, San Antonio, Texas, USA
| |
Collapse
|
6
|
Chen D, Chew D, Xiang Q, Lam T, Dai Y, Liu J, Wang L, He T, Strand R, Zhang X, Lim L, Xu J, Shi Y, Dong W. Interactions and effects of a stannous-containing sodium fluoride dentifrice on oral pathogens and the oral microbiome. Front Microbiol 2024; 15:1327913. [PMID: 38426054 PMCID: PMC10902866 DOI: 10.3389/fmicb.2024.1327913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024] Open
Abstract
Numerous studies have investigated the effects of stannous ions on specific microbes and their efficacy in reducing dental plaque. Nonetheless, our understanding of their impact on the oral microbiome is still a subject of ongoing exploration. Therefore, this study sought to evaluate the effects of a stannous-containing sodium fluoride dentifrice in comparison to a zinc-containing sodium fluoride dentifrice and a control group on intact, healthy oral biofilms. Utilizing the novel 2bRAD-M approach for species-resolved metagenomics, and FISH/CLSM with probes targeting periodontal and caries associated species alongside Sn2+ and Zn2+ ions, we collected and analyzed in situ biofilms from 15 generally healthy individuals with measurable dental plaque and treated the biofilms with dentifrices to elucidate variations in microbial distribution. Although significant shifts in the microbiome upon treatment were not observed, the use of a stannous-containing sodium fluoride dentifrice primarily led to an increase in health-associated commensal species and decrease in pathogenic species. Notably, FISH/CLSM analysis highlighted a marked reduction in representative species associated with periodontitis and caries following treatment with the use of a stannous-containing sodium fluoride dentifrice, as opposed to a zinc-containing sodium fluoride dentifrice and the control group. Additionally, Sn2+ specific intracellular imaging reflected the colocalization of Sn2+ ions with P. gingivalis but not with other species. In contrast, Zn2+ ions exhibited non-specific binding, thus suggesting that Sn2+ could exhibit selective binding toward pathogenic species. Altogether, our results demonstrate that stannous ions could help to maintain a healthy oral microbiome by preferentially targeting certain pathogenic bacteria to reverse dysbiosis and underscores the importance of the continual usage of such products as a preventive measure for oral diseases and the maintenance of health.
Collapse
Affiliation(s)
- Danyan Chen
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Stomatology, Yiwu Central Hospital, Yiwu, Zhejiang, China
| | - Dillon Chew
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Qianfeng Xiang
- Department of Dentistry-Regenerative Biomaterials, Radboud University Medical Center, Nijmegen, Netherlands
| | - TzeHau Lam
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Yajie Dai
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
| | - Jiquan Liu
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Lijiang Wang
- Procter & Gamble Technology Co. Ltd, Beijing, China
| | - Tao He
- The Procter & Gamble Company, Mason, OH, United States
| | - Ross Strand
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Xiaolan Zhang
- Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Linda Lim
- Singapore Innovation Center, The Procter & Gamble Company, Singapore, Singapore
| | - Jian Xu
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Key Laboratory of Energy Genetics, Shandong Energy Institute, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yunming Shi
- Procter & Gamble Technology Co. Ltd, Beijing, China
| | - Weili Dong
- State Key Laboratory of Oral and Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
7
|
Zuber P, Kreth J. Aspects of oral streptococcal metabolic diversity: Imagining the landscape beneath the fog. Mol Microbiol 2023; 120:508-524. [PMID: 37329112 DOI: 10.1111/mmi.15106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/29/2023] [Accepted: 05/31/2023] [Indexed: 06/18/2023]
Abstract
It is widely acknowledged that the human-associated microbial community influences host physiology, systemic health, disease progression, and even behavior. There is currently an increased interest in the oral microbiome, which occupies the entryway to much of what the human initially encounters from the environment. In addition to the dental pathology that results from a dysbiotic microbiome, microbial activity within the oral cavity exerts significant systemic effects. The composition and activity of the oral microbiome is influenced by (1) host-microbial interactions, (2) the emergence of niche-specific microbial "ecotypes," and (3) numerous microbe-microbe interactions, shaping the underlying microbial metabolic landscape. The oral streptococci are central players in the microbial activity ongoing in the oral cavity, due to their abundance and prevalence in the oral environment and the many interspecies interactions in which they participate. Streptococci are major determinants of a healthy homeostatic oral environment. The metabolic activities of oral Streptococci, particularly the metabolism involved in energy generation and regeneration of oxidative resources vary among the species and are important factors in niche-specific adaptations and intra-microbiome interactions. Here we summarize key differences among streptococcal central metabolic networks and species-specific differences in how the key glycolytic intermediates are utilized.
Collapse
Affiliation(s)
- Peter Zuber
- Restorative Dentistry, School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Jens Kreth
- School of Dentistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
8
|
Rikvold PT, Kambourakis Johnsen K, Leonhardt D, Møllebjerg A, Nielsen SM, Skov Hansen LB, Meyer RL, Schlafer S. A New Device for In Situ Dental Biofilm Collection Additively Manufactured by Direct Metal Laser Sintering and Vat Photopolymerization. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1036-1045. [PMID: 37886402 PMCID: PMC10599433 DOI: 10.1089/3dp.2022.0009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
Dental biofilms are complex medical biofilms that cause caries, the most prevalent disease of humankind. They are typically collected using handcrafted intraoral devices with mounted carriers for biofilm growth. As the geometry of handcrafted devices is not standardized, the shear forces acting on the biofilms and the access to salivary nutrients differ between carriers. The resulting variability in biofilm growth renders the comparison of different treatment modalities difficult. The aim of the present work was to design and validate an additively manufactured intraoral device with a dental bar produced by direct metal laser sintering and vat photopolymerized inserts with standardized geometry for the mounting of biofilm carriers. Additive manufacturing reduced the production time and cost, guaranteed an accurate fit of the devices and facilitated the handling of carriers without disturbing the biofilm. Biofilm growth was robust, with increasing thickness over time and moderate inter- and intraindividual variation (coefficients of variance 0.48-0.87). The biofilms showed the typical architecture and composition of dental biofilms, as evidenced by confocal microscopy and 16S rRNA gene sequencing. Deeper inserts offering increased protection from shear tended to increase the biofilm thickness, whereas prolonged exposure to sucrose during growth increased the biofilm volume but not the thickness. Ratiometric pH imaging revealed considerable pH variation between participants and also inside single biofilms. Intraoral devices for biofilm collection constitute a new application for medical additive manufacturing and offer the best possible basis for studying the influence of different treatment modalities on biofilm growth, composition, and virulence. The Clinical Trial Registration number is: 1-10-72-193-20.
Collapse
Affiliation(s)
- Pernille Thestrup Rikvold
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Karina Kambourakis Johnsen
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Dirk Leonhardt
- Central Laboratory, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| | - Andreas Møllebjerg
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Aarhus, Denmark
| | - Signe Maria Nielsen
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Aarhus, Denmark
| | | | - Rikke Louise Meyer
- Interdisciplinary Nanoscience Center (iNANO), Science and Technology, Aarhus University, Aarhus, Denmark
| | - Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Aarhus, Denmark
| |
Collapse
|
9
|
Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol 2023; 13:1237164. [PMID: 37712058 PMCID: PMC10499362 DOI: 10.3389/fcimb.2023.1237164] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 08/11/2023] [Indexed: 09/16/2023] Open
Abstract
Bacterial biofilms can be found in most environments on our planet, and the human body is no exception. Consisting of microbial cells encased in a matrix of extracellular polymers, biofilms enable bacteria to sequester themselves in favorable niches, while also increasing their ability to resist numerous stresses and survive under hostile circumstances. In recent decades, biofilms have increasingly been recognized as a major contributor to the pathogenesis of chronic infections. However, biofilms also occur in or on certain tissues in healthy individuals, and their constituent species are not restricted to canonical pathogens. In this review, we discuss the evidence for where, when, and what types of biofilms occur in the human body, as well as the diverse ways in which they can impact host health under homeostatic and dysbiotic states.
Collapse
Affiliation(s)
| | - Man-Wah Tan
- Department of Infectious Diseases, Genentech, South San Francisco, CA, United States
| |
Collapse
|
10
|
Ancuta DL, Alexandru DM, Crivineanu M, Coman C. Induction of Periodontitis Using Bacterial Strains Isolated from the Human Oral Microbiome in an Experimental Rat Model. Biomedicines 2023; 11:2098. [PMID: 37626595 PMCID: PMC10452127 DOI: 10.3390/biomedicines11082098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 07/07/2023] [Accepted: 07/12/2023] [Indexed: 08/27/2023] Open
Abstract
Periodontal disease is that condition resulting in the destruction of periodontal tissues, bone resorption, and tooth loss, the etiology of which is linked to immunological and microbiological factors. The aim of this study was to evaluate the potential trigger of periodontal disease in a rat model using bacterial species incriminated in the pathology of human periodontitis and to establish their optimal concentrations capable of reproducing the disease, with the idea of subsequently developing innovative treatments for the condition. In this study, we included 15 male Wistar rats, aged 20 weeks, which we divided into three groups. In each group, we applied ligatures with gingival retraction wire on the maxillary incisors. The ligature and the gingival sac were contaminated by oral gavage with a mixture of fresh cultures of Aggregatibacter actinomycetemcomitans (A.a), Fusobacterium nucleatum (F.n) and Streptococcus oralis (S.o) in concentrations of 108, 109, and 1010 CFU/mL each for 5 days a week for 4 weeks. During the clinical monitoring period of 28 days, overlapped with the period of oral contamination, we followed the expression of clinical signs specific to periodontitis. We also monitored the evolution of body weight and took weekly samples from the oral cavity for the microbiological identification of the tested bacteria and blood samples for hematological examination. At the end of the study, the animals were euthanized, and the ligated incisors were taken for histopathological analysis. The characteristic symptomatology of periodontal disease was expressed from the first week of the study and was maintained until the end, and we were able to identify the bacteria during each examination. Hematologically, the number of neutrophils decreased dramatically (p < 0.0001) in the case of the 109 group, unlike the other groups, as did the number of lymphocytes. Histopathologically, we identified neutrophilic infiltrate in all groups, as well as the presence of coccobacilli, periodontal tissue hyperplasia, and periodontal lysis. In the 109 group, we also observed pulpal tissue with necrotic bone fragments and pyogranulomatous inflammatory reaction. By corroborating the data, we can conclude that for the development of periodontal disease using A.a, F.n, and S.o, a concentration of 109 or 1010 CFU/mL is required, which must necessarily contaminate a ligature thread applied to the level of the rat's dental pack.
Collapse
Affiliation(s)
- Diana Larisa Ancuta
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
| | - Diana Mihaela Alexandru
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Maria Crivineanu
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
| | - Cristin Coman
- Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine, 050097 Bucharest, Romania; (D.M.A.); (M.C.); (C.C.)
- Cantacuzino National Medical Military Institute for Research and Development, 050096 Bucharest, Romania
- Center of Excellence in Translational Medicine, Fundeni Clinical Institute, 022328 Bucharest, Romania
| |
Collapse
|
11
|
Park S, Kumar S, Maier CS, Kreth J, Koley D. Simultaneous Chemical Mapping of Live Biofilm Microenvironmental pH and Hydrogen Peroxide in Real Time with a Triple Scanning Electrochemical Microscopy Tip. Anal Chem 2023; 95:6332-6340. [PMID: 37018485 PMCID: PMC10485357 DOI: 10.1021/acs.analchem.2c05258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
Abstract
Dental plaque biofilm is a complex ecosystem. The distribution of microbial species in the biofilm is heavily influenced by local chemical interactions that result from diverse metabolic activities and the nature of the released molecules. As a relevant example, H2O2-producing bacteria can antagonize disease-associated bacteria, leading to the maintenance of a healthy oral microbiome. Herein, we report the development of a triple-sensor (redox, pH, and H2O2) scanning electrochemical microscopy (SECM) tip capable of simultaneously mapping the pH and H2O2 concentration produced by a dental plaque-derived multispecies biofilm grown on hydroxyapatite. The pH sensor of the triple SECM tip showed a near Nernstian slope of -71.1 ± 2 mV/pH (N = 3), whereas the H2O2 sensor showed a slope of -0.052 ± 0.002 nA/μM H2O2 at pH 7.2 and a detection limit of 1.0 ± 0.2 μM (N = 7). There is no significant difference in the sensitivities of H2O2 sensors at pH 6.2, 7.2, and 8.2 at 95% CI (N = 7). The pH and H2O2 sensors demonstrated excellent reversibility with response times of 3 and 5 s, respectively, along with reliable stability over 4 h at 37 °C. The sensors did not show any cross talk between pH and H2O2 concentration ([H2O2]) measurements, highlighting the accuracy and versatility of the SECM tip. Simultaneous chemical imaging of pH and [H2O2] across the biofilm revealed a clustered distribution of local H2O2 concentrations, ranging from 0 to 17 μM. Conversely, the local pH remained constant at 7.2. The relation of local chemical profiles and the distribution of bacterial species within the oral microbiome was experimentally investigated in the context of bacterial H2O2 antagonism. The benefit of clustered H2O2 production was that the total area of H2O2 produced by smaller clusters was 67% more than that of a single cluster with the same starting number of bacteria. Thus, this triple SECM tip can potentially be used to study local molecular mechanisms that result in dysbiosis of the oral microbiome.
Collapse
Affiliation(s)
- Suji Park
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Sriram Kumar
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Claudia S Maier
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon 97201, United States
| | - Dipankar Koley
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
12
|
AlMojel N, AbdulAzees PA, Lamb EM, Amaechi BT. Determining growth inhibition of Candida albicans biofilm on denture materials after application of an organoselenium-containing dental sealant. J Prosthet Dent 2023; 129:205-212. [PMID: 34078547 DOI: 10.1016/j.prosdent.2021.04.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 04/09/2021] [Accepted: 04/09/2021] [Indexed: 01/18/2023]
Abstract
STATEMENT OF PROBLEM Denture stomatitis is a chronic inflammatory condition caused by the formation of Candida albicans biofilm on denture bases. It is associated with aggravating intraoral pain, itching, and burning sensations. It can also potentiate cardiovascular diseases and aspiration pneumonia. The problem has thus far eluded efficient, toxic-free, and cost-effective solutions. PURPOSE The purpose of this in vitro study was to investigate the effectiveness of organoselenium to inhibit the formation of C. albicans biofilm on the surface of acrylic resin denture base materials when it is either incorporated into the acrylic resin material or coated on the denture surface as a light-polymerized surface sealant. MATERIAL AND METHODS Sixty heat-polymerized polymethyl methacrylate disks were fabricated and assigned to 4 groups (n=15): disks coated with a light-polymerized organoselenium-containing enamel surface sealant (DenteShield), disks impregnated with 0.5% organoselenium (0.5% selenium), disks impregnated with 1% organoselenium (1% selenium), and disks without organoselenium (control). C. albicans biofilm was grown on each disk which had been placed in a well of the microtiter plate containing 1-mL brain heart infusion broth inoculated with C. albicans. The plates were incubated aerobically at 37 °C for 48 hours. A confocal laser scanning microscope was used to determine the biofilm thickness, biomass, and live/dead cell ratio. Biofilm morphology was examined with scanning electron microscopy, whereas microbial viability was quantified by the spread plate method. The data were analyzed by using ANOVA and Tukey-Kramer multiple comparisons (α=.05). RESULTS The microbial viability, biofilm thickness, biofilm biomass, and live/dead cell ratio were lower (P<.001) on disks in the test groups (DenteShield, 0.5% selenium, 1% selenium) when compared with the control group, with these variables being lowest in the 0.5% selenium and 1% selenium groups. The 0.5% selenium and 1% selenium groups did not differ significantly from each other in any of the variables (P>.05). Scanning electron microscope images showed inhibition of both biofilm growth and yeast to hyphae transition in the DenteShield, 0.5% selenium, and 1% selenium groups, with visible disruption of the biofilm morphology. CONCLUSIONS The present study demonstrated that organoselenium, whether incorporated into or coated on the surface of an acrylic resin denture base material, has the potential to inhibit Candida albicans biofilm growth on denture surfaces and as such can be clinically useful for the prevention of denture stomatitis.
Collapse
Affiliation(s)
- Neda AlMojel
- Former Resident, Postgraduate Prosthodontics, Department of Comprehensive Dentistry, UT Health School of Dentistry, San Antonio, Texas
| | - Parveez Ahmed AbdulAzees
- Post-doctoral fellow, Department of Comprehensive Dentistry, UT Health School of Dentistry, San Antonio, Texas
| | - E Mathew Lamb
- Assistance Professor and program director prosthodontic residency, Department of Comprehensive dentistry, UT Health School of Dentistry, San Antonio, Texas
| | - Bennett T Amaechi
- Professor and Director of Cariology, Department of Comprehensive Dentistry, UT Health School of Dentistry, San Antonio, Texas.
| |
Collapse
|
13
|
Al-Ahmad A, Haendel M, Altenburger MJ, Karygianni L, Hellwig E, Wrbas KT, Vach K, Tennert C. Biodentine Inhibits the Initial Microbial Adhesion of Oral Microbiota In Vivo. Antibiotics (Basel) 2022; 12:4. [PMID: 36671205 PMCID: PMC9855060 DOI: 10.3390/antibiotics12010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
This study aimed to evaluate the in vivo initial microbial adhesion of oral microorganisms on the biomaterial Biodentine compared to MTA and AH Plus. Cylindrical samples of the materials were prepared, and dentin slabs served as a control. An individual intraoral lower jaw splint served as a carrier for the samples and was worn by six volunteers. The specimens were worn for 120 min. Adherent bacteria were quantified by determining the colony-forming units (CFUs), while the visualization and quantification of total adherent microorganisms were facilitated by using DAPI and live/dead staining combined with fluorescence microscopy. Bovine dentin had a significantly higher number of aerobic CFUs compared to Biodentine (p = 0.017) and MTA (p = 0.013). The lowest amounts of DAPI-stained adherent microorganisms were quantified for Biodentine (15% ± 9%) and the control (18% ± 9%), while MTA showed the highest counts of initially adherent microorganisms (38% ± 10%). Significant differences were found for MTA and Biodentine (p = 0.004) as well as for MTA and the control (p = 0.021) and for AH Plus and the control (p = 0.025). Biodentine inhibited microbial adherence, thereby yielding an antimicrobial effectivity similar to that of MTA.
Collapse
Affiliation(s)
- Ali Al-Ahmad
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Michael Haendel
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Markus Joerg Altenburger
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Lamprini Karygianni
- Clinic of Conservative and Preventive Dentistry, University of Zurich, Plattenstrasse 11, 8032 Zurich, Switzerland
| | - Elmar Hellwig
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Karl Thomas Wrbas
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Kirstin Vach
- Institute of Medical Biometry and Statistics, Faculty of Medicine, University of Freiburg, Stefan-Meier-Str. 26, 79104 Freiburg, Germany
| | - Christian Tennert
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
- Department of Restorative, Preventive and Pediatric Dentistry, University of Bern, Freiburgstrasse 7, 3010 Bern, Switzerland
| |
Collapse
|
14
|
Potential in vitro anti-periodontopathogenic, anti-Chikungunya activities and in vivo toxicity of Brazilian red propolis. Sci Rep 2022; 12:21165. [PMID: 36477635 PMCID: PMC9729292 DOI: 10.1038/s41598-022-24776-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 11/21/2022] [Indexed: 12/12/2022] Open
Abstract
Bacterial and viral infections are serious public health issue. Therefore, this study aimed to evaluate the antibacterial, antibiofilm and antiviral potential of the Brazilian Red Propolis (BRP) crude hydroalcoholic extract, fractions, and isolated compounds, as well as their in vivo toxicity. The antibacterial activity was evaluated by determining the Minimum Inhibitory Concentration and the antibiofilm activity by determining the Minimum Inhibitory Concentration of Biofilm (MICB50). The viable bacteria count (Log10 UFC/mL) was also obtained. The antiviral assays were performed by infecting BHK-21 cells with Chikungunya (CHIKV) nanoluc. The toxicity of the BRP was evaluated in the Caenorhabditis elegans animal model. The MIC values for the crude hydroalcoholic extract sample ranged from 3.12 to 100 μg/mL, while fractions and isolated compounds the MIC values ranged from 1.56 to 400 μg/mL.The BRP crude hydroalcoholic extract, oblongifolin B, and gutiferone E presented MICB50 values ranging from 1.56 to 100 μg/mL against monospecies and multispecies biofilms. Neovestitol and vestitol inhibited CHIKV infection by 93.5 and 96.7%, respectively. The tests to evaluate toxicity in C. elegans demonstrated that the BRP was not toxic below the concentrations 750 μg/mL. The results constitute an alternative approach for treating various infectious diseases.
Collapse
|
15
|
Sekundo C, Langowski E, Wolff D, Boutin S, Frese C. Maintaining oral health for a hundred years and more? - An analysis of microbial and salivary factors in a cohort of centenarians. J Oral Microbiol 2022; 14:2059891. [PMID: 35401946 PMCID: PMC8986295 DOI: 10.1080/20002297.2022.2059891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Abstract
Aim To investigate associations between oral health-related conditions and the oral microbiome in a representative study sample of centenarians. Materials and methods Clinical and microbial parameters from 54 centenarians were assessed in the Heidelberg Dental Centenarian Study. Plaque and salivary samples were collected, and the microbiota was characterized by 16S rRNA gene sequencing. Results Diversity and structure of the oral microbiome were mainly influenced by the presence of natural teeth and the number of decayed, missing, and filled teeth (0.028 ≤ p ≤ 0.001 in plaque and salivary samples). Centenarians with less caries experience possessed a more diverse oral microbiome. Moreover, the number of dental visits also showed a significant influence on the microbial composition. Most centenarians presented with hyposalivation (mean stimulated flow rate = 0.84 ± 0.55 ml/min), a low buffering capacity, and an acidic pH. The latter was between 5.0 and 5.8 in 46.3% of cases, and we observed that an increased salivary pH correlated with higher alpha-diversity in both salivary and plaque samples. Conclusion The microbiome diversity correlated significantly with successful oral aging. In addition, regular dental visits were a beneficial factor. However, diversity can be negatively influenced by hyposalivation, associated with pH changes due to aging effects.
Collapse
Affiliation(s)
- Caroline Sekundo
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Eva Langowski
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Diana Wolff
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Sébastien Boutin
- Department of Infectious Disease, Medical Microbiology and Hygiene, University Hospital Heidelberg, Heidelberg, Germany
- Translational Lung Research Center Heidelberg (TLRC), German Center for Lung Research (DZL), Heidelberg, Germany
| | - Cornelia Frese
- Department of Conservative Dentistry, Clinic for Oral, Dental and Maxillofacial Diseases, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
16
|
Zhou P, Manoil D, Belibasakis GN, Kotsakis GA. Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology. FRONTIERS IN ORAL HEALTH 2022; 2:774115. [PMID: 35048073 PMCID: PMC8757872 DOI: 10.3389/froh.2021.774115] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
The genus Veillonella comprises 16 characterized species, among which eight are commonly found in the human oral cavity. The high abundance of Veillonella species in the microbiome of both supra- and sub-gingival biofilms, and their interdependent relationship with a multitude of other bacterial species, suggest veillonellae to play an important role in oral biofilm ecology. Development of oral biofilms relies on an incremental coaggregation process between early, bridging and later bacterial colonizers, ultimately forming multispecies communities. As early colonizer and bridging species, veillonellae are critical in guiding the development of multispecies communities in the human oral microenvironment. Their ability to establish mutualistic relationships with other members of the oral microbiome has emerged as a crucial factor that may contribute to health equilibrium. Here, we review the general characteristics, taxonomy, physiology, genomic and genetics of veillonellae, as well as their bridging role in the development of oral biofilms. We further discuss the role of Veillonella spp. as potential “accessory pathogens” in the human oral cavity, capable of supporting colonization by other, more pathogenic species. The relationship between Veillonella spp. and dental caries, periodontitis, and peri-implantitis is also recapitulated in this review. We finally highlight areas of future research required to better understand the intergeneric signaling employed by veillonellae during their bridging activities and interspecies mutualism. With the recent discoveries of large species and strain-specific variation within the genus in biological and virulence characteristics, the study of Veillonella as an example of highly adaptive microorganisms that indirectly participates in dysbiosis holds great promise for broadening our understanding of polymicrobial disease pathogenesis.
Collapse
Affiliation(s)
- Peng Zhou
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios A Kotsakis
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
17
|
Reina BD, Santezi Neto C, Garcia PPNS, Chorilli M, Calixto GMF, Dovigo LN. Bioadhesive Curcumin-Mediated Photodynamic Inactivation and Its Potential to Cause Undesirable Effects on Dental and Restorative Surfaces. Pharmaceutics 2021; 13:pharmaceutics13091458. [PMID: 34575534 PMCID: PMC8468794 DOI: 10.3390/pharmaceutics13091458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/26/2021] [Accepted: 09/07/2021] [Indexed: 11/25/2022] Open
Abstract
Curcumin-mediated Photodynamic Inactivation (PDI) has shown great potential to disinfect specific sites on tooth enamel but may involve contact with restorative materials. Thus, before use in dentistry, it is necessary to investigate whether the PDI protocol causes undesirable changes in the surfaces of aesthetic restorative materials and dental enamel. This study investigated the effect of PDI mediated by curcumin (CUR) in a liquid crystal precursor system on color stability (ΔE), surface roughness (Ra), and microhardness (kgf) of three different composite resins and bovine dental enamel specimens. The microhardness and roughness readings were performed 60 days after the treatments while the color readings were performed immediately, 24, 48, and 72 h, 7, 14, 21, 30, and 60 days after the treatments. Results showed that CUR mediated-PDI does not seem to have the potential to promote any esthetic or mechanical changes to the surface of tooth enamel and can be applied safely in clinical practice. However, the results on color, roughness, and hardness obtained for composite resins show that some negative effects can be produced, depending on the type of restorative material; more experiments must be performed with different formulations and, perhaps, with lower concentrations of CUR.
Collapse
Affiliation(s)
- Bárbara Donadon Reina
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara SP 14801-903, Brazil; (B.D.R.); (P.P.N.S.G.)
| | - Carolina Santezi Neto
- Independent Researcher, the Moment of the Submission (Unaffiliated Researcher), São Carlos SP 14801-903, Brazil;
| | - Patrícia Petromilli Nordi Sasso Garcia
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara SP 14801-903, Brazil; (B.D.R.); (P.P.N.S.G.)
| | - Marlus Chorilli
- Department of Drugs and Medicines, School of Pharmacy, São Paulo State University (UNESP), Rodovia Araraquara-Jaú, Km. 1, Araraquara SP 14800-903, Brazil;
| | - Giovana Maria Fioramonti Calixto
- Department of Biosciences, Piracicaba Dental School, University of Campinas (UNICAMP), Avenida Limeira, Piracicaba SP 13414-903, Brazil;
| | - Lívia Nordi Dovigo
- Department of Social Dentistry, School of Dentistry, São Paulo State University (UNESP), Rua Humaitá 1680, Araraquara SP 14801-903, Brazil; (B.D.R.); (P.P.N.S.G.)
- Correspondence:
| |
Collapse
|
18
|
The Influence of Modified Experimental Dental Resin Composites on the Initial In Situ Biofilm-A Triple-Blinded, Randomized, Controlled Split-Mouth Trial. Polymers (Basel) 2021; 13:polym13162814. [PMID: 34451352 PMCID: PMC8400102 DOI: 10.3390/polym13162814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 01/27/2023] Open
Abstract
The purpose of the study was to investigate the bacterial viability of the initial biofilm on the surface of experimental modified dental resin composites. Twenty-five healthy individuals with good oral hygiene were included in this study. In a split-mouth design, they received acrylic splints with five experimental composite resin specimens. Four of them were modified with either a novel polymeric hollow-bead delivery system or methacrylated polymerizable Irgasan (Antibacterial B), while one specimen served as an unmodified control (ST). A delivery system based on Poly-Pore® was loaded with one of the active agents: Tego® Protect 5000 (Antiadhesive A), Dimethicone (Antiadhesive B), or Irgasan (Antibacterial A). All study subjects refrained from toothbrushing during the study period. Specimens were detached from the splints after 8 h and given a live/dead staining before fluorescence microscopy. A Friedman test and a post hoc Nemenyi test were applied with a significance level at p < 0.05. In summary, all materials but Antibacterial B showed a significant antibacterial effect compared to ST. The results suggested the role of the materials’ chemistry in the dominance of cell adhesion. In conclusion, dental resin composites with Poly-Pore-loaded active agents showed antibacterial effectiveness in situ.
Collapse
|
19
|
Al-Ahmad A, Wollensak K, Rau S, Guevara Solarte DL, Paschke S, Lienkamp K, Staszewski O. How Do Polymer Coatings Affect the Growth and Bacterial Population of a Biofilm Formed by Total Human Salivary Bacteria?-A Study by 16S-RNA Sequencing. Microorganisms 2021; 9:1427. [PMID: 34361863 PMCID: PMC8304871 DOI: 10.3390/microorganisms9071427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/23/2022] Open
Abstract
Antimicrobial surface modifications are required to prevent biomaterial-associated biofilm infections, which are also a major concern for oral implants. The aim of this study was to evaluate the influence of three different coatings on the biofilm formed by human saliva. Biofilms grown from human saliva on three different bioactive poly(oxanorbornene)-based polymer coatings (the protein-repellent PSB: poly(oxanorbornene)-based poly(sulfobetaine), the protein-repellent and antimicrobial PZI: poly(carboxyzwitterion), and the mildly antimicrobial and protein-adhesive SMAMP: synthetic mimics of antimicrobial peptides) were analyzed and compared with the microbial composition of saliva, biofilms grown on uncoated substrates, and biofilms grown in the presence of chlorhexidine digluconate. It was found that the polymer coatings significantly reduced the amount of adherent bacteria and strongly altered the microbial composition, as analyzed by 16S RNA sequencing. This may hold relevance for maintaining oral health and the outcome of oral implants due to the existing synergism between the host and the oral microbiome. Especially the reduction of some bacterial species that are associated with poor oral health such as Tannerella forsythia and Fusobacterium nucleatum (observed for PSB and SMAMP), and Prevotella denticola (observed for all coatings) may positively modulate the oral biofilm, including in situ.
Collapse
Affiliation(s)
- Ali Al-Ahmad
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
| | - Kira Wollensak
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; (S.P.); (K.L.)
| | - Sibylle Rau
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
| | - Diana Lorena Guevara Solarte
- Medical Center, Department of Operative Dentistry and Periodontology, Faculty of Medicine, University of Freiburg, Hugstetter Strasse 55, 79106 Freiburg, Germany; (K.W.); (S.R.); (D.L.G.S.)
| | - Stefan Paschke
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; (S.P.); (K.L.)
| | - Karen Lienkamp
- Bioactive Polymer Synthesis and Surface Engineering Group, Department of Microsystems Engineering (IMTEK) and Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany; (S.P.); (K.L.)
- Institut für Materialwissenschaft und Werkstoffkunde, Universität des Saarlandes, Campus, 66123 Saarbrücken, Germany
| | - Ori Staszewski
- Medical Center, Institute of Neuropathology, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| |
Collapse
|
20
|
Dental Biofilm and Saliva Microbiome and Its Interplay with Pediatric Allergies. Microorganisms 2021; 9:microorganisms9061330. [PMID: 34207425 PMCID: PMC8235788 DOI: 10.3390/microorganisms9061330] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 06/07/2021] [Accepted: 06/15/2021] [Indexed: 12/17/2022] Open
Abstract
Little is known about the interplay and contribution of oral microorganisms to allergic diseases, especially in children. The aim of the clinical study was to associate saliva and dental biofilm microbiome with allergic disease, in particular with allergic asthma. In a single-center study, allergic/asthmatic children (n = 15; AA-Chd; age 10.7 ± 2.9), atopic/allergic children (n = 16; AT/AL-Chd; 11.3 ± 2.9), and healthy controls (n = 15; CON-Chd; age 9.9 ± 2.2) were recruited. After removing adhering biofilms from teeth and collecting saliva, microbiome was analyzed by using a 16s-rRNA gene-based next-generation sequencing in these two mediums. Microbiome structure differed significantly between saliva and dental biofilms (β-diversity). Within the groups, the dental biofilm microbiome of AA-Chd and AT/AL-Chd showed a similar microbial fingerprint characterized by only a small number of taxa that were enriched or depleted (4) compared to the CON-Chd, while both diseased groups showed a stronger microbial shift compared to CON-Chd, revealing 14 taxa in AA-Chd and 15 taxa in AT/AL-Chd that were different. This could be the first note to the contribution of dental biofilm and its metabolic activity to allergic health or disease.
Collapse
|
21
|
Abstract
Ecologists have long recognized the importance of spatial scale in understanding structure-function relationships among communities of organisms within their environment. Here, we review historical and contemporary studies of dental plaque community structure in the context of three distinct scales: the micro (1-10 µm), meso (10-100 µm) and macroscale (100 µm to ≥1 cm). Within this framework, we analyze the compositional nature of dental plaque at the macroscale, the molecular interactions of microbes at the microscale, and the emergent properties of dental plaque biofilms at the mesoscale. Throughout our analysis of dental plaque across spatial scales, we draw attention to disease and health-associated structure-function relationships and include a discussion of host immune involvement in the mesoscale structure of periodontal disease-associated biofilms. We end with a discussion of two filamentous organisms, Fusobacterium nucleatum and Corynebacterium matruchotii, and their relevant contributions in structuring dental plaque biofilms.
Collapse
Affiliation(s)
| | - Alex M. Valm
- Department of Biological Sciences, The University at Albany, State University of New York, Albany, New York, USA
| |
Collapse
|
22
|
Ma L, Cao Z. Membrane vesicles from periodontal pathogens and their potential roles in periodontal disease and systemic illnesses. J Periodontal Res 2021; 56:646-655. [PMID: 33826135 DOI: 10.1111/jre.12884] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 02/18/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022]
Abstract
Periodontium is an ordered ecological system where a dynamic equilibrium exists between oral microorganisms and the host defense system, and periodontal disease occurs whenever the balance is broken. Periodontal pathogens mainly include gram-negative anaerobic bacteria and emerging gram-positive microbes, which have a large variety of virulence factors and influence disease initiation and progression. Recently, different types of bacterial membrane vesicles (MVs), formed by bubbling of membrane materials from living cells or in conditions of endolysin-triggered cell death, have gained interests as a novel virulence factor for periodontopathogens. MVs load multiple sorted cargo molecules, such as proteins, lipids, and genetic materials, and actively participate in toxin transport, signal delivery, and periodontal disease pathogenesis. Since periodontitis is recognized as a risk factor for many systemic diseases, periodontal MVs could work as a bridge for periodontal diseases and systemic illnesses. Furthermore, MVs with unique nature and advantages are promising candidates as vaccines and drug delivery vehicles. In this review, we provided an overview of different types and compositions of periodontal MVs, described their involvements in the pathogenesis of periodontitis and several general diseases, and discussed potential applications of periodontal MVs in vaccination and drug delivery.
Collapse
Affiliation(s)
- Li Ma
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhengguo Cao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
23
|
Göstemeyer G, Woike H, Paris S, Schwendicke F, Schlafer S. Root Caries Preventive Effect of Varnishes Containing Fluoride or Fluoride + Chlorhexidine/Cetylpyridinium Chloride In Vitro. Microorganisms 2021; 9:microorganisms9040737. [PMID: 33916105 PMCID: PMC8065905 DOI: 10.3390/microorganisms9040737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/08/2021] [Accepted: 03/31/2021] [Indexed: 11/23/2022] Open
Abstract
Caries preventive varnishes containing only fluoride might differ from those containing a combination of fluoride and antimicrobial components in terms of mineralization properties and their impact on the cariogenic biofilm. We compared a fluoride and a fluoride + chlorhexidine (CHX)/cetylpyridinium chloride (CPC) varnish on root caries formation in vitro. One hundred bovine root dentin samples were allocated to five groups (n = 20/group): (1) 7700 ppm fluoride varnish (Fluorprotector S (F)), (2) experimental placebo varnish for F (F-P), (3) 1400 ppm fluoride + 0.3% CHX/0.5% CPC varnish (Cervitec F (CF)), (4) experimental placebo varnish for CF (CF-P), (5) untreated control. Cariogenic challenge was provided using a multi-station, continuous-culture 3-species (Streptococcus mutans (SM), Lactobacillus rhamnosus (LR), Actinomyces naeslundii (AN)) biofilm model for 10 days. Mineral loss (ΔZ) was evaluated using transversal microradiography and bacterial counts in the biofilm assessed as colony-forming units. Fluorescence in situ hybridization (FISH) and confocal microscopy were performed to assess the three-dimensional biofilm architecture. Mean ± SD (vol% × μm) ΔZ was significantly lower for F (9133 ± 758) and CF (9835 ± 1677) compared to control (11362 ± 919) (p < 0.05), without significant differences between F and CF. SM counts were significantly lower and LR counts significantly higher in F- and CF-biofilms compared to control. AN counts were significantly higher in the F-biofilms than in all other groups. According to FISH, SM and LR invaded dentinal tubules only in the control-group. In the CF-group, the basal biofilm layer did not contain SM and AN. Both F and CF varnishes had similar caries-preventive effects and a considerable impact on biofilm structure and composition.
Collapse
Affiliation(s)
- Gerd Göstemeyer
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
- Correspondence: ; Tel.: +49-30-450-562-328
| | - Helen Woike
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
| | - Sebastian Paris
- Department of Operative and Preventive Dentistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany; (H.W.); (S.P.)
| | - Falk Schwendicke
- Department of Oral Diagnostics, Digital Health and Health Services Research, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Aßmannshauser Straße 4-6, 14197 Berlin, Germany;
| | - Sebastian Schlafer
- Section for Oral Ecology and Caries Control, Department of Dentistry and Oral Health, Aarhus University, Vennelyst Boulevard 9, 8000 Aarhus C, Denmark;
| |
Collapse
|
24
|
Ding Y, Zhang H, Wang X, Zu H, Wang C, Dong D, Lyu M, Wang S. Immobilization of Dextranase on Nano-Hydroxyapatite as a Recyclable Catalyst. MATERIALS (BASEL, SWITZERLAND) 2020; 14:E130. [PMID: 33396810 PMCID: PMC7796272 DOI: 10.3390/ma14010130] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/23/2020] [Accepted: 12/25/2020] [Indexed: 01/24/2023]
Abstract
The immobilization technology provides a potential pathway for enzyme recycling. Here, we evaluated the potential of using dextranase immobilized onto hydroxyapatite nanoparticles as a promising inorganic material. The optimal immobilization temperature, reaction time, and pH were determined to be 25 °C, 120 min, and pH 5, respectively. Dextranase could be loaded at 359.7 U/g. The immobilized dextranase was characterized by field emission gun-scanning electron microscope (FEG-SEM), X-ray diffraction (XRD), and Fourier-transformed infrared spectroscopy (FT-IR). The hydrolysis capacity of the immobilized enzyme was maintained at 71% at the 30th time of use. According to the constant temperature acceleration experiment, it was estimated that the immobilized dextranase could be stored for 99 days at 20 °C, indicating that the immobilized enzyme had good storage properties. Sodium chloride and sodium acetic did not desorb the immobilized dextranase. In contrast, dextranase was desorbed by sodium fluoride and sodium citrate. The hydrolysates were 79% oligosaccharides. The immobilized dextranase could significantly and thoroughly remove the dental plaque biofilm. Thus, immobilized dextranase has broad potential application in diverse fields in the future.
Collapse
Affiliation(s)
- Yanshuai Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hao Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xuelian Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hangtian Zu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Cang Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Dongxue Dong
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Mingsheng Lyu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei 230039, China
| | - Shujun Wang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China; (Y.D.); (H.Z.); (X.W.); (H.Z.); (C.W.); (D.D.); (M.L.)
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Collaborative Innovation Center of Modern Biological Manufacturing, Anhui University, Hefei 230039, China
| |
Collapse
|
25
|
Influence of Probiotics on the Salivary Microflora Oral Streptococci and Their Integration into Oral Biofilm. Antibiotics (Basel) 2020; 9:antibiotics9110803. [PMID: 33202719 PMCID: PMC7697717 DOI: 10.3390/antibiotics9110803] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/05/2020] [Accepted: 11/10/2020] [Indexed: 02/07/2023] Open
Abstract
Probiotics’ ability to integrate into dental biofilms is not yet clarified. The aim of this trial was to detect probiotic bacteria from probiotic products in dental biofilm and saliva during and after intake. In this parallel, randomized clinical trial, 39 subjects wore customized appliances to build up intra-oral biofilms (72-h periods). The trial was divided into screening (S) to determine baseline biofilm flora, intervention (I), and wash out (WO). During I (28 days), subjects consumed a product containing (a) Enterococcus faecalis (b) Lactobacilluscasei, or (c) Lactobacillus rhamnosus GG. Probiotic bacteria and Streptococci spp. were detected in the biofilms and saliva of the 35 subjects that were included in the analysis. During I and WO, the ratio of probiotics in the biofilm was very low compared to total bacterial load, while saliva had slightly but not significantly higher values. No significant changes of probiotic bacteria (p > 0.05) were found at any visit during I or WO. The proportion of streptococci was significantly reduced (p < 0.05) during I and even lower in WO, compared to S. Probiotic bacteria could neither integrate nor persist in dental biofilm and saliva but did influence the growth of streptococci in biofilm and saliva.
Collapse
|
26
|
Abdullah N, Al Marzooq F, Mohamad S, Abd Rahman N, Rani KGA, Chi Ngo H, Samaranayake LP. The antibacterial efficacy of silver diamine fluoride (SDF) is not modulated by potassium iodide (KI) supplements: A study on in-situ plaque biofilms using viability real-time PCR with propidium monoazide. PLoS One 2020; 15:e0241519. [PMID: 33141868 PMCID: PMC7608867 DOI: 10.1371/journal.pone.0241519] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
Silver diamine fluoride (SDF) is commonly used to arrest caries lesions, especially in early childhood caries. Recently, it was suggested that SDF can be combined with potassium iodide (KI) to minimize the discoloration of demineralized dentine associated with SDF application. However, the antibacterial efficacy of SDF alone or combined with KI on in-situ biofilm is unknown. Hence, we compared the anti-plaque biofilm efficacy of two different commercially available SDF solutions, with or without KI, using an in-situ biofilm, analysed using viability real-time PCR with propidium monoazide (PMA). Appliance-borne in-situ biofilm samples (n = 90) were grown for a period of 6 h in five healthy subjects who repeated the experiment on three separate occasions, using a validated, novel, intraoral device. The relative anti-biofilm efficacy of two SDF formulations; 38.0% Topamine (SDFT) and 31.3%, Riva Star (SDFR), KI alone, and KI in combination with SDFR (SDFR+KI) was compared. The experiments were performed by applying an optimized volume of the agents onto the biofilm for 1min, mimicking the standard clinical procedure. Afterwards the viability of the residual biofilm bacteria was quantified using viability real-time PCR with PMA, then the percentage of viable from total bacteria was calculated. Both SDF formulations (SDFT and SDFR) exhibited potent antibacterial activities against the in-situ biofilm; however, there was non-significant difference in their efficacy. KI alone did not demonstrate any antibacterial effect, and there was non-significant difference in the antibacterial efficacy of SDF alone compared to SDF with KI, (SDFT v SDFR/KI). Thus, we conclude that the antibacterial efficacy of SDF against plaque biofilms is not modulated by KI supplements. Viability real-time PCR with PMA was successfully used to analyze the viability of naturally grown oral biofilm; thus, the same method can be used to test the antimicrobial effect of other agents on oral biofilms in future research.
Collapse
Affiliation(s)
- Nizam Abdullah
- College of Dental Medicine, University of Sharjah, Sharjah, UAE
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | - Farah Al Marzooq
- Department of Medical Microbiology and Immunology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, UAE
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
- * E-mail:
| | - Normastura Abd Rahman
- School of Dental Sciences, Universiti Sains Malaysia Health Campus, Kubang Kerian, Kelantan, Malaysia
| | | | - Hien Chi Ngo
- College of Dental Medicine, University of Sharjah, Sharjah, UAE
- UWA Dental School, The University of Western Australia, Nedlands, Australia
| | - Lakshman Perera Samaranayake
- College of Dental Medicine, University of Sharjah, Sharjah, UAE
- Faculty of Dentistry, University of Hong Kong, Hong Kong, China (SAR)
| |
Collapse
|
27
|
Suzuki I, Shimizu T, Senpuku H. Short chain fatty acids induced the type 1 and type 2 fimbrillin-dependent and fimbrillin-independent initial attachment and colonization of Actinomyces oris monoculture but not coculture with streptococci. BMC Microbiol 2020; 20:329. [PMID: 33129273 PMCID: PMC7603776 DOI: 10.1186/s12866-020-01976-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 09/15/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Actinomyces oris is an early colonizer and has two types of fimbriae on its cell surface, type 1 fimbriae (FimP and FimQ) and type 2 fimbriae (FimA and FimB), which contribute to the attachment and coaggregation with other bacteria and the formation of biofilm on the tooth surface, respectively. Short-chain fatty acids (SCFAs) are metabolic products of oral bacteria including A. oris and regulate pH in dental plaques. To clarify the relationship between SCFAs and fimbrillins, effects of SCFAs on the initial attachment and colonization (INAC) assay using A. oris wild type and fimbriae mutants was investigated. INAC assays using A. oris MG1 strain cells were performed with SCFAs (acetic, butyric, propionic, valeric and lactic acids) or a mixture of them on human saliva-coated 6-well plates incubated in TSB with 0.25% sucrose for 1 h. The INAC was assessed by staining live and dead cells that were visualized with a confocal microscope. RESULTS Among the SCFAs, acetic, butyric and propionic acids and a mixture of acetic, butyric and propionic acids induced the type 1 and type 2 fimbriae-dependent and independent INAC by live A. oris, but these cells did not interact with streptococci. The main effects might be dependent on the levels of the non-ionized acid forms of the SCFAs in acidic stress conditions. GroEL was also found to be a contributor to the FimA-independent INAC by live A. oris cells stimulated with non-ionized acid. CONCLUSION SCFAs affect the INAC-associated activities of the A. oris fimbrillins and non-fimbrillins during ionized and non-ionized acid formations in the form of co-culturing with other bacteria in the dental plaque but not impact the interaction of A. oris with streptococci.
Collapse
Affiliation(s)
- Itaru Suzuki
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.,Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
| | - Takehiko Shimizu
- Department of Pediatric Dentistry, Nihon University Graduate School of Dentistry at Matsudo, Chiba, Japan
| | - Hidenobu Senpuku
- Department of Bacteriology I, National Institute of Infectious Diseases, 1-23-1 Toyama, Shinjuku-ku, Tokyo, 162-8640, Japan.
| |
Collapse
|
28
|
Golovko G, Kamil K, Albayrak L, Nia AM, Duarte RSA, Chumakov S, Fofanov Y. Identification of multidimensional Boolean patterns in microbial communities. MICROBIOME 2020; 8:131. [PMID: 32917276 PMCID: PMC7488411 DOI: 10.1186/s40168-020-00853-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/04/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND Identification of complex multidimensional interaction patterns within microbial communities is the key to understand, modulate, and design beneficial microbiomes. Every community has members that fulfill an essential function affecting multiple other community members through secondary metabolism. Since microbial community members are often simultaneously involved in multiple relations, not all interaction patterns for such microorganisms are expected to exhibit a visually uninterrupted pattern. As a result, such relations cannot be detected using traditional correlation, mutual information, principal coordinate analysis, or covariation-based network inference approaches. RESULTS We present a novel pattern-specific method to quantify the strength and estimate the statistical significance of two-dimensional co-presence, co-exclusion, and one-way relation patterns between abundance profiles of two organisms as well as extend this approach to allow search and visualize three-, four-, and higher dimensional patterns. The proposed approach has been tested using 2380 microbiome samples from the Human Microbiome Project resulting in body site-specific networks of statistically significant 2D patterns as well as revealed the presence of 3D patterns in the Human Microbiome Project data. CONCLUSIONS The presented study suggested that search for Boolean patterns in the microbial abundance data needs to be pattern specific. The reported presence of multidimensional patterns (which cannot be reduced to a combination of two-dimensional patterns) suggests that multidimensional (multi-organism) relations may play important roles in the organization of microbial communities, and their detection (and appropriate visualization) may lead to a deeper understanding of the organization and dynamics of microbial communities. Video Abstract.
Collapse
Affiliation(s)
- George Golovko
- Department of Pharmacology and Toxicology, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
| | - Khanipov Kamil
- Department of Pharmacology and Toxicology, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
| | - Levent Albayrak
- Department of Pharmacology and Toxicology, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
| | - Anna M. Nia
- Department of Molecular Biophysics, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
| | | | - Sergei Chumakov
- Department of Physics, University of Guadalajara, Revolucion, 1500 Guadalajara, Jalisco Mexico
| | - Yuriy Fofanov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
- Sealy Center for Structural Biology and Molecular Biophysics, University of Texas Medical Branch–Galveston, Galveston, TX 77555-0144 USA
| |
Collapse
|
29
|
Kvich L, Burmølle M, Bjarnsholt T, Lichtenberg M. Do Mixed-Species Biofilms Dominate in Chronic Infections?-Need for in situ Visualization of Bacterial Organization. Front Cell Infect Microbiol 2020; 10:396. [PMID: 32850494 PMCID: PMC7419433 DOI: 10.3389/fcimb.2020.00396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/29/2020] [Indexed: 12/19/2022] Open
Abstract
Chronic infections present a serious economic burden to health-care systems. The severity and prevalence of chronic infections are continuously increasing due to an aging population and an elevated number of lifestyle related diseases such as diabetes. Treatment of chronic infections has proven difficult, mainly due to the presence of biofilms that render bacteria more tolerant toward antimicrobials and the host immune response. Chronic infections have been described to harbor several different bacterial species and it has been hypothesized that microscale interactions and mixed-species consortia are present as described for most natural occurring biofilms i.e., aquatic systems and industrial settings, but also for some commensal human biofilms i.e., the mouth microbiota. However, the presence of mixed-species biofilms in chronic infections is most often an assumption based on culture-based methods and/or by means of molecular approaches, such as PCR and sequencing performed from homogenized bulk tissue samples. These methods disregard the spatial organization of the bacterial community and thus valuable information on biofilm aggregate composition, spatial organization, and possible interactions between different species is lost. Hitherto, only few studies have made visual in situ presentations of mixed-species biofilms in chronic infections, which is pivotal for the description of bacterial composition, spatial distribution, and interspecies interaction on the microscale. In order for bacteria to interact (synergism, commensalism, mutualism, competition, etc.) they need to be in close proximity to each other on the scale where they can affect e.g., solute concentrations. We argue that visual proof of mixed species biofilms in chronic infections is scarce compared to what is seen in e.g., environmental biofilms and call for a debate on the importance of mixed-species biofilm in chronic infections.
Collapse
Affiliation(s)
- Lasse Kvich
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Thomas Bjarnsholt
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Microbiology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Mads Lichtenberg
- Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, Costerton Biofilm Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Desch A, Freifrau von Maltzahn N, Stumpp N, Dalton M, Yang I, Stiesch M. Biofilm formation on zirconia and titanium over time-An in vivo model study. Clin Oral Implants Res 2020; 31:865-880. [PMID: 32583509 DOI: 10.1111/clr.13632] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 04/21/2020] [Accepted: 05/24/2020] [Indexed: 01/08/2023]
Abstract
OBJECTIVES The aim of this study was to evaluate volume, vitality and diversity of biofilms on the abutment materials zirconia and titanium as a function of time using an in vivo model for the biofilm formation. MATERIALS AND METHODS The development of biofilms on zirconia and titanium grade 4 test specimens in the human oral cavity over time was analysed. After pretreatment, a total of 96 titanium and 96 zirconia discs were fixed on 12 composite splints, which were worn by 12 volunteers. After 6 hr, 24 hr, 3 days and 5 days, biofilms on 48 specimens of each material were analysed with confocal laser scanning microscopy (CLSM). The microbiota composition on the other 48 test specimens was examined using full-length 16S sequence analysis. Statistical analysis was performed by SPSS and R, and level of significance was set at 0.05. RESULTS Confocal laser scanning microscopy analysis of the biofilms revealed significant changes in volume over time on zirconia and titanium. The material did not significantly influence the volume or live/dead ratio at the individual time points. The composition of the microbiome was influenced by the age of the biofilm, but not by the material of the test specimen. The most frequently found bacteria were Streptococcus spp., followed by Neisseria spp., Rothia spp., Haemophilus spp., Gemella spp. and Abiotrophia spp. CONCLUSIONS On both materials, the quantity and diversity of the microbiome increased over time. Apart from a slight difference in Veillonella abundance at one time point, there were no significant differences between zirconia and titanium.
Collapse
Affiliation(s)
- Anton Desch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | | | - Nico Stumpp
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Marly Dalton
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Ines Yang
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| | - Meike Stiesch
- Department of Prosthetic Dentistry and Biomedical Materials Science, Hannover Medical School, Hannover, Germany
| |
Collapse
|
31
|
Ayoub HM, Gregory RL, Tang Q, Lippert F. Comparison of human and bovine enamel in a microbial caries model at different biofilm maturations. J Dent 2020; 96:103328. [DOI: 10.1016/j.jdent.2020.103328] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 03/13/2020] [Accepted: 03/24/2020] [Indexed: 11/25/2022] Open
|
32
|
Sharma A. Persistence of Tannerella forsythia and Fusobacterium nucleatum in dental plaque: a strategic alliance. CURRENT ORAL HEALTH REPORTS 2020; 7:22-28. [PMID: 36779221 PMCID: PMC9917731 DOI: 10.1007/s40496-020-00254-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
PURPOSE OF REVIEW The Gram-negative oral pathogen Tannerella forsythia is implicated in the pathogenesis of periodontitis, an inflammatory disease characterized by progressive destruction of the tooth supporting structures affecting over 700 million people worldwide. This review highlights the basis of why and how T. forsythia interacts with Fusobacterium nucleatum, a bacterium considered to be a bridge between the early and late colonizing bacteria of the dental plaque. RECENT FINDINGS The recent findings indicate that these two organisms have a strong mutualistic relationship that involves foraging by T. forsythia on F. nucleatum peptidoglycan and utilization of glucose, released by the hydrolytic activity of T. forsythia glucanase, as a nutrient by F. nucleatum. In addition, T. forsythia has the unique ability to generate a toxic and inflammogenic compound, methylglyoxal, from glucose. This compound can induce inflammation, leading to the degradation of periodontal tissues and release of host components as nutrients for bacteria to further exacerbate the disease. SUMMARY In summary, this article will present our current understanding of mechanisms underpinning T. forsythia-F. nucleatum mutualism, and how this mutualism might impact periodontal disease progression.
Collapse
Affiliation(s)
- Ashu Sharma
- Department of Oral Biology, School of Dental Medicine, 3435 Main Street, University at Buffalo, State University of New York, Buffalo, NY 14214
| |
Collapse
|
33
|
Amaechi BT, Abdul Azees PA, Menon S, Kasundra H. In vitro evaluation of the effects of Ultrasound Tongue Scraper on bacteria and biofilm formation. ACTA ACUST UNITED AC 2019; 10:e12471. [PMID: 31541515 DOI: 10.1111/jicd.12471] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 06/08/2019] [Accepted: 08/20/2019] [Indexed: 11/26/2022]
Abstract
AIM Oral malodor is a common condition caused by some Gram-negative oral bacteria, among which are the 3 red complex bacteria (RCB). The present study investigated the effectiveness of the Ultrasound Tongue Scraper (UTS) to disrupt the structural morphology of the bacteria and their biofilm. METHODS While developing over 72 hours, multispecies biofilms of RCB (Porphromonas gingivalis, Tryponema denticola, Tannerella forsythia) were treated every 24 hours with 1.6-MHz ultrasound waves generated with UTS. An untreated group served as controls. Confocal laser scanning microscopy was used to determine the biofilm thickness, biomass and live : dead cell ratio at each time point (24, 48 and 72 hours). Biofilm morphology and bacteria ultrastructure were viewed using scanning/transmission electron microscopy, respectively. Data were analyzed using ANOVA and Tukey tests. RESULTS At each time point, the 3 variables were significantly lower in treated samples than the untreated. Significant biofilm disruption was observed in treated samples at each time period while the untreated had intact biofilm morphology. Cells in treated samples showed disrupted cell wall, cytoplasmic material, huge vacuoles and heterogeneity in electron density, while these cell organelles remained intact in untreated samples. CONCLUSION The UTS has an inhibitory effect on RCB and could be useful for oral malodor management.
Collapse
Affiliation(s)
- Bennett T Amaechi
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health, San Antonio, USA
| | - Parveez Ahamed Abdul Azees
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health, San Antonio, USA
| | - Suchitra Menon
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health, San Antonio, USA
| | - Hariyali Kasundra
- Department of Comprehensive Dentistry, School of Dentistry, University of Texas Health, San Antonio, USA
| |
Collapse
|
34
|
Mark Welch JL, Dewhirst FE, Borisy GG. Biogeography of the Oral Microbiome: The Site-Specialist Hypothesis. Annu Rev Microbiol 2019; 73:335-358. [PMID: 31180804 PMCID: PMC7153577 DOI: 10.1146/annurev-micro-090817-062503] [Citation(s) in RCA: 152] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Microbial communities are complex and dynamic, composed of hundreds of taxa interacting across multiple spatial scales. Advances in sequencing and imaging technology have led to great strides in understanding both the composition and the spatial organization of these complex communities. In the human mouth, sequencing results indicate that distinct sites host microbial communities that not only are distinguishable but to a meaningful degree are composed of entirely different microbes. Imaging suggests that the spatial organization of these communities is also distinct. Together, the literature supports the idea that most oral microbes are site specialists. A clear understanding of microbiota structure at different sites in the mouth enables mechanistic studies, informs the generation of hypotheses, and strengthens the position of oral microbiology as a model system for microbial ecology in general.
Collapse
Affiliation(s)
| | - Floyd E. Dewhirst
- The Forsyth Institute, Cambridge MA 02142 and Harvard School of Dental Medicine, Boston MA 02115
| | | |
Collapse
|
35
|
Abdullah N, Al-Marzooq F, Mohamad S, Abd Rahman N, Chi Ngo H, Perera Samaranayake L. Intraoral appliances for in situ oral biofilm growth: a systematic review. J Oral Microbiol 2019; 11:1647757. [PMID: 31489127 PMCID: PMC6713217 DOI: 10.1080/20002297.2019.1647757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 07/15/2019] [Accepted: 07/22/2019] [Indexed: 10/29/2022] Open
Abstract
Background: Oral biofilms are the root cause of major oral diseases. As in vitro biofilms are not representative of the intraoral milieu, various devices have been manufactured over the years to develop Appliance Grown Oral Biofilm (AGOB). Objective: To review various intraoral appliances used to develop AGOB for microbiological analysis, and to judge the optimal means for such analyses. Design: Four databases (PubMed, Science Direct, Scopus and Medline) were searched by two independent reviewers, and articles featuring the key words 'device' OR 'splint' OR 'appliance'; 'Oral biofilm' OR 'dental plaque'; 'in vivo' OR 'in situ'; 'Microbiology' OR 'Bacteria' OR 'microbiome'; were included. The standard Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) were adopted for data gathering. Results: Of the 517 articles which met the initial inclusion criteria, 24 were deemed eligible for review. The age of the AGOB, sampled at various intervals, ranged from 30 min to 28 days. The most commonly used microbiome analytical methods were fluorescence microscopy, total cell count using conventional, and molecular tools including Next Generation Sequencing (NGS) platforms. Conclusions: No uniformly superior method for collecting AGOB could be discerned. NGS platforms are preferable for AGOB analyses.
Collapse
Affiliation(s)
- Nizam Abdullah
- College of Dental Medicine, University of Sharjah, Sharjah, UAE.,School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Farah Al-Marzooq
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, UAE
| | - Suharni Mohamad
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Normastura Abd Rahman
- School of Dental Sciences, Universiti Sains Malaysia, Health Campus, Kota Bharu, Malaysia
| | - Hien Chi Ngo
- College of Dental Medicine, University of Sharjah, Sharjah, UAE
| | - Lakshman Perera Samaranayake
- College of Dental Medicine, University of Sharjah, Sharjah, UAE.,Faculty of Dentistry, University of Hong Kong, Hong Kong
| |
Collapse
|
36
|
Inactivation of oral biofilms using visible light and water-filtered infrared A radiation and indocyanine green. Future Med Chem 2019; 11:1721-1739. [PMID: 31368351 DOI: 10.4155/fmc-2018-0522] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Aim: To investigate the antimicrobial photodynamic therapy (aPDT) of visible light and water-filtered infrared A radiation in combination with indocyanine green (ICG) on planktonic oral microorganisms as well as on oral biofilm. Methods: The irradiation was conducted for 5 min in combination with ICG. Treatment with chlorhexidine served as a positive control. The number of colony forming units and bacterial vitality were quantified. Results: All tested bacterial strains and salivary bacteria were killed at a level of 3log10. The colony forming units of the initial mature oral biofilms were strongly reduced. The high bactericidal effect of aPDT was confirmed by live/dead staining. Conclusion: The aPDT using visible light and water-filtered infrared A radiation and ICG has the potential to treat periodontitis and peri-implantitis.
Collapse
|
37
|
Renson A, Jones HE, Beghini F, Segata N, Zolnik CP, Usyk M, Moody TU, Thorpe L, Burk R, Waldron L, Dowd JB. Sociodemographic variation in the oral microbiome. Ann Epidemiol 2019; 35:73-80.e2. [PMID: 31151886 PMCID: PMC6626698 DOI: 10.1016/j.annepidem.2019.03.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 02/18/2019] [Accepted: 03/15/2019] [Indexed: 12/21/2022]
Abstract
PURPOSE Variations in the oral microbiome are potentially implicated in social inequalities in oral disease, cancers, and metabolic disease. We describe sociodemographic variation of oral microbiomes in a diverse sample. METHODS We performed 16S rRNA sequencing on mouthwash specimens in a subsample (n = 282) of the 2013-2014 population-based New York City Health and Nutrition Examination Study. We examined differential abundance of 216 operational taxonomic units, and alpha and beta diversity by age, sex, income, education, nativity, and race/ethnicity. For comparison, we examined differential abundance by diet, smoking status, and oral health behaviors. RESULTS Sixty-nine operational taxonomic units were differentially abundant by any sociodemographic variable (false discovery rate < 0.01), including 27 by race/ethnicity, 21 by family income, 19 by education, 3 by sex. We found 49 differentially abundant by smoking status, 23 by diet, 12 by oral health behaviors. Genera differing for multiple sociodemographic characteristics included Lactobacillus, Prevotella, Porphyromonas, Fusobacterium. CONCLUSIONS We identified oral microbiome variation consistent with health inequalities, more taxa differing by race/ethnicity than diet, and more by SES variables than oral health behaviors. Investigation is warranted into possible mediating effects of the oral microbiome in social disparities in oral and metabolic diseases and cancers.
Collapse
Affiliation(s)
- Audrey Renson
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY; Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC.
| | - Heidi E Jones
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY
| | - Francesco Beghini
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Nicola Segata
- Department of Cellular, Computational and Integrative Biology, University of Trento, Trento, Italy
| | - Christine P Zolnik
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY; Department of Biology, Long Island University, Brooklyn, NY
| | - Mykhaylo Usyk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY
| | - Thomas U Moody
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY; Immunology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY
| | - Lorna Thorpe
- Department of Population Health, NYU School of Medicine, New York, NY
| | - Robert Burk
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, NY; Departments of Microbiology and Immunology, Epidemiology and Population Health, and Obstetrics, Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY
| | - Levi Waldron
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY; Institute for Implementation Science in Population Health, City University of New York, New York, NY
| | - Jennifer B Dowd
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, City University of New York, New York, NY; Department of Global Health and Social Medicine, King's College London, London, UK
| |
Collapse
|
38
|
Smida I, Pentelescu C, Pentelescu O, Sweidan A, Oliviero N, Meuric V, Martin B, Colceriu L, Bonnaure‐Mallet M, Tamanai‐Shacoori Z. Benefits of sea buckthorn (Hippophae rhamnoides) pulp oil‐based mouthwash on oral health. J Appl Microbiol 2019; 126:1594-1605. [DOI: 10.1111/jam.14210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 11/20/2018] [Accepted: 01/14/2019] [Indexed: 11/27/2022]
Affiliation(s)
- I. Smida
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - C. Pentelescu
- Odontology Department School of Dentistry University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - O. Pentelescu
- Department of Animal Science University of Agricultural Sciences and Veterinary Medicine Cluj‐Napoca Romania
| | - A. Sweidan
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - N. Oliviero
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - V. Meuric
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
- CHU Rennes Rennes France
| | - B. Martin
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| | - L. Colceriu
- Odontology Department School of Dentistry University of Medicine and Pharmacy “Iuliu Hatieganu” Cluj‐Napoca Romania
| | - M. Bonnaure‐Mallet
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
- CHU Rennes Rennes France
| | - Z. Tamanai‐Shacoori
- INSERM U 1241 INRA Université de Rennes 1 Université Bretagne Loire Nutrition Metabolism and Cancer Rennes France
| |
Collapse
|
39
|
High-Throughput Sequencing Analysis of Microbial Profiles in the Dry Socket. J Oral Maxillofac Surg 2019; 77:1548-1556. [PMID: 30946809 DOI: 10.1016/j.joms.2019.02.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/26/2019] [Accepted: 02/26/2019] [Indexed: 11/22/2022]
Abstract
PURPOSE The aim of this study was to explore and describe the microbial profiles of dry socket (DS) and identify the key microbial population as a possible disease-related factor. MATERIALS AND METHODS Bacterial samples were collected from patients who underwent surgical mandibular third molar extraction and were divided in 3 groups: the disease (D) group composed of patients who were diagnosed with DS; the treated (T) group composed of patients from the D group who received treatment; and the control (C) group composed of patients who did not have adverse reactions after tooth extraction. Bacterial DNA was extracted and the V3 and V4 hypervariable regions of the bacterial 16S rRNA gene were amplified and subjected to sequencing. Sequence data were analyzed using alpha and beta diversity indices. RESULTS In total, 772,169 high-quality sequences were detected from 31 samples. Using a 97% similarity level, 531 operational taxonomic units were detected. In addition, 10 phyla, 23 classes, 38 orders, 63 families, and 116 genera were found. Composition of the microbial community in the D group differed considerably from that of the T and C groups. Furthermore, a specific microbial pattern, which included Parvimonas, Peptostreptococcus, Prevotella, Fusobacterium, Slackia, Oribacterium, and Solobacterium species, appeared abundantly in the D group compared with the T and C groups. Moreover, Parvimonas, Peptostreptococcus, Prevotella, and Fusobacterium species had important roles in discriminating the D group from the other 2 groups. CONCLUSION These results suggest differences in the microbial community composition among DSs, normal-healing sockets, and post-treated sockets. These results provide better insight into the development of DS and enhance the understanding of DS. Nonetheless, further studies are necessary to investigate and confirm how these differential bacteria contribute to the development of the disease.
Collapse
|
40
|
Randomised in situ clinical trial investigating self-assembling peptide matrix P11-4 in the prevention of artificial caries lesions. Sci Rep 2019; 9:269. [PMID: 30670760 PMCID: PMC6343002 DOI: 10.1038/s41598-018-36536-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 11/21/2018] [Indexed: 11/26/2022] Open
Abstract
The aim was to investigate the ability of self-assembling Peptide P11-4 Matrix (SAPM) to remineralize artificial initial caries lesions compared to the use of fluoride varnish. Volunteers were recruited for this randomised, cross-over in situ trial. Bovine specimens, half including orthodontic brackets, were recessed on the buccal aspects of mandibular appliances. Specimens included internal sound enamel control, a demineralised control and a part exposed during the in situ phase. Each phase lasted four weeks, followed by a one-week washout. Treatment groups were: A: negative control, no treatment,B: positive control, 22,600 ppm fluoride varnish,C: test group, 1,000 ppm SAPM. Laser fluorescence values (LF) were measured before/after demineralisation, and after the in situ period. Micro-CT analysis was used to assess mineral changes within the specimens after the in situ phase. In specimens without brackets, ΔLF values after in situ phase were: A: +5.28, B: +0.85, C: −2.89. Corresponding ΔLF for specimens with brackets were: A: +5.77, B: +1.30, C: −3.15. LF-values between groups significantly differed from each other (p < 0.0001) after the in situ phase. Micro-CT analysis yielded no significant difference among groups for specimens without brackets. For specimens with brackets, the test group showed significantly more remineralisation than the negative (p = 0.01) and positive control (p = 0.003). Within the limitations of the study, SAPM showed prevention of caries and remineralisation of enamel around orthodontic brackets.
Collapse
|
41
|
High-resolution novel method for tracking bacteria in a multi-species biofilm. Arch Microbiol 2019; 201:259-266. [PMID: 30610246 DOI: 10.1007/s00203-018-1614-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 12/03/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023]
Abstract
The aim of this study is to establish a novel high resolution tracking ability of a specific bacterium in multispecies biofilm. A periodontal multispecies biofilm was constructed with Streptococcus sanguis, Actinomyces naeslundii, Porphyromonas gingivalis and Fusobacterium nucleatum. A single species was stained with fluorescein isothiocyanate (FITC). The mature biofilm was stained for viability (propidium iodide) and analysis was performed with flow cytometry. The sensitivity of the assay was compared with colony forming units (CFU) counts. A single cell suspension of P. gingivalis was grown in broth and biofilm to identify the location of these events on side scatter and forward scatter. The sensitivity of the assay was comparable to that of the CFU counts. The assay allows quantification of the ratio of a single bacterium within the biofilm, and its viable proportion. The described method is reproducible and of high resolution, and allows the examination of microbes' composition and viability within a biofilm structure.
Collapse
|
42
|
In Vitro Comparison of the Efficacy of Peri-Implantitis Treatments on the Removal and Recolonization of Streptococcus gordonii Biofilm on Titanium Disks. MATERIALS 2018; 11:ma11122484. [PMID: 30563297 PMCID: PMC6316998 DOI: 10.3390/ma11122484] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 12/16/2022]
Abstract
Objective: To compare the efficacy of four commonly used clinical procedures in removing Streptococcus gordonii biofilms from titanium disks, and the recolonization of the treated surfaces. Background: Successful peri-implantitis treatment depends on the removal of the dental biofilm. Biofilm that forms after implant debridement may threaten the success of the treatment and the long-term stability of the implants. Methods:S. gordonii biofilms were grown on titanium disks for 48 h and removed using a plastic curette, air-abrasive device (Perio-Flow®), titanium brush (TiBrush®), or implantoplasty. The remaining biofilm and the recolonization of the treated disks were observed using scanning electron microscopy and quantified after staining with crystal violet. Surface roughness (Ra and Rz) was measured using a profilometer. Results:S. gordonii biofilm biomass was reduced after treatment with Perio-Flow®, TiBrush®, and implantoplasty (all p < 0.05), but not plastic curette (p > 0.05), compared to the control group. Recolonization of S. gordonii after treatment was lowest after Perio-Flow®, TiBrush®, and implantoplasty (all p < 0.05 vs. control), but there was no difference between the plastic curette and the control group (p > 0.05). Ra and Rz values ranged from 1–6 µm to 1–2 µm and did not differ statistically between the control, plastic curette, Perio-Flow, and TiBrush groups. However, the implantoplasty group showed a Ra value below 1 µm (p < 0.01, ANOVA, Tukey). Conclusions: Perio-Flow®, TiBrush®, and implantoplasty were more effective than the plastic curette at removing the S. gordonii biofilm and preventing recolonization. These results should influence the surgical management of peri-implantitis.
Collapse
|
43
|
Role of SCFAs for Fimbrillin-Dependent Biofilm Formation of Actinomyces oris. Microorganisms 2018; 6:microorganisms6040114. [PMID: 30428566 PMCID: PMC6313811 DOI: 10.3390/microorganisms6040114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 11/08/2018] [Accepted: 11/10/2018] [Indexed: 11/23/2022] Open
Abstract
Actinomyces oris expresses type 1 and 2 fimbriae on the cell surface. Type 2 fimbriae mediate co-aggregation and biofilm formation and are composed of the shaft fimbrillin FimA and the tip fimbrillin FimB. Short-chain fatty acids (SCFAs) are metabolic products of oral bacteria, but the effects of exogenous SCFAs on FimA-dependent biofilm formation are poorly understood. We performed two types of biofilm formation assays using A. oris MG1 or MG1.ΔfimA to observe the effects of SCFAs on FimA-dependent biofilm formation in 96-well and six-well microtiter plates and a flow cell system. SCFAs did not induce six- and 16-hour biofilm formation of A. oris MG1 and MG1.ΔfimA in saliva-coated 96-well and six-well microtiter plates in which metabolites produced during growth were not excluded. However, 6.25 mM butyric acid and 3.125 mM propionic acid induced FimA-dependent biofilm formation and cell death in a flow cell system in which metabolites produced during growth were excluded. Metabolites produced during growth may lead to disturbing effects of SCFAs on the biofilm formation. The pure effects of SCFAs on biofilm formation were induction of FimA-dependent biofilm formation, but the stress responses from dead cells may regulate its effects. Therefore, SCFA may play a key role in A. oris biofilm formation.
Collapse
|
44
|
Gene expression and protein synthesis of esterase from Streptococcus mutans are affected by biodegradation by-product from methacrylate resin composites and adhesives. Acta Biomater 2018; 81:158-168. [PMID: 30268915 DOI: 10.1016/j.actbio.2018.09.050] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/14/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
An esterase from S. mutans UA159, SMU_118c, was shown to hydrolyze methacrylate resin-based dental monomers. OBJECTIVE To investigate the association of SMU_118c to the whole cellular hydrolytic activity of S. mutans toward polymerized resin composites, and to examine how the bacterium adapts its hydrolytic activity in response to environmental stresses triggered by the presence of a resin composites and adhesives biodegradation by-product (BBP). MATERIALS AND METHODS Biofilms of S. mutans UA159 parent wild strain, SMU_118c knockout strain (ΔSMU_118c), and SMU_118c complemented strain (ΔSMU_118cC) were incubated with photo-polymerized resin composite. High performance liquid chromatography was used to quantify the amount of a universal 2,2-Bis[4-(2-hydroxy-3-methacryloxypropoxy)phenyl]propane (bisGMA)-derived BBP, bishydroxy-propoxy-phenyl-propane (bisHPPP) in the media. Fluorescence in situ hybridization (FISH) and quantitative proteomic analysis were used to measure SMU_118c gene expression and production of SMU_118c protein, respectively, from biofilms of S. mutans UA159 wild strain that were cultured with bisHPPP. RESULTS The levels of bisHPPP released from composite were similar for ΔSMU_118c and media control, and these were significantly lower compared to the parent wild-strain UA159 and complemented strain (ΔSMU_118cC) (p < 0.05). Gene expression of SMU_118c and productions of SMU_118c protein were higher for bisHPPP incubated biofilms (p < 0.05). SIGNIFICANCE This study suggests that SMU_118c is a dominant esterase in S. mutans and capable of catalyzing the hydrolysis of the resinous matrix of polymerized composites and adhesives. In turn, the bacterial response to BBP was to increase the expression of the esterase gene and enhance esterase production, potentially accelerating the biodegradation of the restoration, adhesive and restoration-tooth interface, ultimately contributing to premature restoration failure. STATEMENT OF SIGNIFICANCE We recently reported (Huang et al., 2018) on the isolation and initial characterization of a specific esterase (SMU_118c) from S. mutans that show degradative activity toward the hydrolysis of dental monomers. The current study further characterize this enzyme and shows that SMU_118c is a dominant degradative esterase activity in the cariogenic bacterium S. mutans and is capable of catalyzing the hydrolysis of the resinous matrix of polymerized composites and adhesives. In turn, the bacterial response to biodegradation by-products from composites and adhesives was to increase the expression of the esterase gene and enhance esterase production, accelerating the biodegradation of the restoration, adhesive and the restoration-tooth interface, potentially contributing to the pathogenesis of recurrent caries around resin composite restorations.
Collapse
|
45
|
Anderson AC, Rothballer M, Altenburger MJ, Woelber JP, Karygianni L, Lagkouvardos I, Hellwig E, Al-Ahmad A. In-vivo shift of the microbiota in oral biofilm in response to frequent sucrose consumption. Sci Rep 2018; 8:14202. [PMID: 30242260 PMCID: PMC6155074 DOI: 10.1038/s41598-018-32544-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/10/2018] [Indexed: 01/29/2023] Open
Abstract
Caries is associated with shifts of microbiota in dental biofilms and primarily driven by frequent sucrose consumption. Data on environmentally induced in vivo microbiota shifts are scarce therefore we investigated the influence of frequent sucrose consumption on the oral biofilm. Splint systems containing enamel slabs were worn for 3 × 7 days with 7-day intervals to obtain oral biofilm samples. After a three-month dietary change of sucking 10 g of sucrose per day in addition to the regular diet, biofilm was obtained again at the end of the second phase. The microbiota was analysed using Illumina MiSeq amplicon sequencing (v1-v2 region). In addition, roughness of the enamel surface was measured with laser scanning microscopy. The sucrose phase resulted in significant differences in beta-diversity and significantly decreased species richness. It was marked by a significant increase in abundance of streptococci, specifically Streptococcus gordonii, Streptococcus parasanguinis and Streptococcus sanguinis. Enamel surface roughness began to increase, reflecting initial impairment of dental enamel surface. The results showed that frequent sucrose consumption provoked compositional changes in the microbiota, leading to an increase of non-mutans streptococci, hence supporting the extended ecological plaque hypothesis and emphasizing the synergy of multiple bacterial species in the development of caries.
Collapse
Affiliation(s)
- Annette Carola Anderson
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany.
| | - Michael Rothballer
- Institute of Network Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| | - Johan Peter Woelber
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| | - Lamprini Karygianni
- Clinic of Preventive Dentistry, Periodontology and Cariology, Center of Dental medicine, University of Zürich, Zürich, Switzerland
| | - Ilias Lagkouvardos
- ZIEL - Institute for Food and Health, Core Facility Microbiome/NGS, Technical University of Munich, Freising, Germany
| | - Elmar Hellwig
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| | - Ali Al-Ahmad
- Department of Operative Dentistry and Periodontology, Faculty of Medicine, Albert-Ludwigs- University, Freiburg, Germany
| |
Collapse
|
46
|
Kamaruzzaman NF, Tan LP, Mat Yazid KA, Saeed SI, Hamdan RH, Choong SS, Wong WK, Chivu A, Gibson AJ. Targeting the Bacterial Protective Armour; Challenges and Novel Strategies in the Treatment of Microbial Biofilm. MATERIALS (BASEL, SWITZERLAND) 2018; 11:E1705. [PMID: 30217006 PMCID: PMC6164881 DOI: 10.3390/ma11091705] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 09/07/2018] [Accepted: 09/09/2018] [Indexed: 02/07/2023]
Abstract
Infectious disease caused by pathogenic bacteria continues to be the primary challenge to humanity. Antimicrobial resistance and microbial biofilm formation in part, lead to treatment failures. The formation of biofilms by nosocomial pathogens such as Staphylococcus aureus (S. aureus), Pseudomonas aeruginosa (P. aeruginosa), and Klebsiella pneumoniae (K. pneumoniae) on medical devices and on the surfaces of infected sites bring additional hurdles to existing therapies. In this review, we discuss the challenges encountered by conventional treatment strategies in the clinic. We also provide updates on current on-going research related to the development of novel anti-biofilm technologies. We intend for this review to provide understanding to readers on the current problem in health-care settings and propose new ideas for new intervention strategies to reduce the burden related to microbial infections.
Collapse
Affiliation(s)
- Nor Fadhilah Kamaruzzaman
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Li Peng Tan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Khairun Anisa Mat Yazid
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Shamsaldeen Ibrahim Saeed
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Ruhil Hayati Hamdan
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Siew Shean Choong
- Faculty of Veterinary Medicine, Universiti Malaysia Kelantan, Pengkalan Chepa 16100, Kelantan, Malaysia.
| | - Weng Kin Wong
- School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian 16150, Kelantan, Malaysia.
| | - Alexandru Chivu
- UCL Centre for Nanotechnology and Regenerative Medicine, Division of Surgery & Interventional Science, University College London, London NW3 2PF, UK.
| | - Amanda Jane Gibson
- Royal Veterinary College, Pathobiology and Population Sciences, Hawkshead Lane, North Mymms, Hatfield AL9 7TA, UK.
| |
Collapse
|
47
|
Johnson L, Almeida-da-Silva CLC, Takiya CM, Figliuolo V, Rocha GM, Weissmüller G, Scharfstein J, Coutinho-Silva R, Ojcius DM. Oral infection of mice with Fusobacterium nucleatum results in macrophage recruitment to the dental pulp and bone resorption. Biomed J 2018; 41:184-193. [PMID: 30080658 PMCID: PMC6138822 DOI: 10.1016/j.bj.2018.05.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Revised: 04/01/2018] [Accepted: 05/08/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Fusobacterium nucleatum is a Gram-negative anaerobic bacterium associated with periodontal disease. Some oral bacteria, like Porphyromonas gingivalis, evade the host immune response by inhibiting inflammation. On the other hand, F. nucleatum triggers inflammasome activation and release of danger-associated molecular patterns (DAMPs) in infected gingival epithelial cells. METHODS In this study, we characterized the pro-inflammatory response to F. nucleatum oral infection in BALB/c mice. Western blots and ELISA were used to measure cytokine and DAMP (HMGB1) levels in the oral cavity after infection. Histology and flow cytometry were used to observe recruitment of immune cells to infected tissue and pathology. RESULTS Our results show increased expression and production of pro-inflammatory cytokines during infection. Furthermore, we observe that F. nucleatum infection leads to recruitment of macrophages in different tissues of the oral cavity. Infection also contributes to osteoclast recruitment, which could be involved in the observed bone resorption. CONCLUSIONS Overall, our findings suggest that F. nucleatum infection rapidly induces inflammation, release of DAMPs, and macrophage infiltration in gingival tissues and suggest that osteoclasts may drive bone resorption at early stages of the inflammatory process.
Collapse
Affiliation(s)
- Larry Johnson
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cássio Luiz Coutinho Almeida-da-Silva
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Christina Maeda Takiya
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vanessa Figliuolo
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gustavo Miranda Rocha
- Molecular and Structural Biology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Gilberto Weissmüller
- Molecular and Structural Biology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Scharfstein
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Robson Coutinho-Silva
- Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - David M Ojcius
- Department of Biomedical Sciences, University of the Pacific, Arthur Dugoni School of Dentistry, San Francisco, CA, USA; Immunobiology Program, Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
48
|
Quintas V, Prada-López I, Carreira MJ, Suárez-Quintanilla D, Balsa-Castro C, Tomás I. In Situ Antibacterial Activity of Essential Oils with and without Alcohol on Oral Biofilm: A Randomized Clinical Trial. Front Microbiol 2017; 8:2162. [PMID: 29218030 PMCID: PMC5703870 DOI: 10.3389/fmicb.2017.02162] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 10/20/2017] [Indexed: 12/04/2022] Open
Abstract
Currently, there is little evidence on the in situ antibacterial activity of essential oils (EO) without alcohol. This study aimed to evaluate in situ the substantivity and antiplaque effect on the plaque-like biofilm (PL-biofilm) of two solutions, a traditional formulation that contains EO with alcohol (T-EO) and an alcohol-free formulation of EO (Af-EO). Eighteen healthy adults performed a single mouthwash of: T-EO, Af-EO, and sterile water (WATER) after wearing an individualized disk-holding splint for 2 days. The bacterial viability (BV) and thickness of the PL-biofilm were quantified at baseline, 30 s, and 1, 3, 5, and 7 h post-rinsing (Test 1). Subsequently, each volunteer wore the splint for 4 days, applying two daily mouthwashes of: T-EO, Af-EO, and WATER. The BV, thickness, and covering grade (CG) of the PL-biofilm were quantified (Test 2). Samples were analyzed by confocal laser scanning microscopy after staining with the LIVE/DEAD® BacLight™ solution. To conduct the computations of the BV automatically, a Matlab toolbox called Dentius Biofilm was developed. In test 1, both EO antiseptics had a similar antibacterial effect, reducing BV after a single rinse compared to the WATER, and keeping it below baseline levels up to 7 h post-rinse (P < 0.001). The mean thickness of the PL-biofilm after rinsing was not affected by any of the EO formulations and ranged from 18.58 to 20.19 μm. After 4 days, the T-EO and Af-EO solutions were significantly more effective than the WATER, reducing the BV, thickness, and CG of the PL-biofilm (P < 0.001). Although, both EO antiseptics presented a similar bactericidal activity, the Af-EO rinses led to more significant reductions in the thickness and CG of the PL-biofilm than the T-EO rinses (thickness = 7.90 vs. 9.92 μm, P = 0.012; CG = 33.36 vs. 46.61%, P = 0.001). In conclusion, both essential oils antiseptics had very high immediate antibacterial activity and substantivity in situ on the 2-day PL-biofilm after a single mouthwash. In the 4-day PL-biofilm, both essential oils formulations demonstrated a very good antiplaque effect in situ, although the alcohol-free formula performed better at reducing the biofilm thickness and covering grade.
Collapse
Affiliation(s)
- Victor Quintas
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Prada-López
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María J Carreira
- Centro Singular de Investigación en Tecnoloxías da Información, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - David Suárez-Quintanilla
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Carlos Balsa-Castro
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Inmaculada Tomás
- Oral Sciences Research Group, Department of Surgery and Medical Surgical Specialties, School of Medicine and Dentistry, Health Research Institute of Santiago (IDIS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
49
|
Henkel K, Altenburger MJ, Auwärter V, Neukamm MA. Full validation of a method for the determination of drugs of abuse in non-mineralized dental biofilm using liquid chromatography-tandem mass spectrometry and application to postmortem samples. Talanta 2017; 176:360-366. [PMID: 28917762 DOI: 10.1016/j.talanta.2017.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 08/09/2017] [Accepted: 08/12/2017] [Indexed: 10/19/2022]
Abstract
Alternative matrices play a major role in postmortem forensic toxicology, especially if common matrices (like body fluids or hair) are not available. Incorporation of illicit and medicinal drugs into non-mineralized dental biofilm (plaque) seems likely but has not been investigated so far. Analysis of plaque could therefore extend the spectrum of potentially used matrices in postmortem toxicology. For this reason, a rapid, simple and sensitive method for the extraction, determination and quantification of ten drugs of abuse from plaque using liquid chromatography-tandem mass spectrometry (LC-MS/MS) was developed and fully validated. Amphetamine, methamphetamine, 3,4-methylenedioxymethamphetamine (MDMA), 3,4-methylenedioxy-N-ethylamphetamine (MDEA), 3,4-methylenedioxyamphetamine (MDA), cocaine, benzoylecgonine, morphine, codeine and 6-acetylmorphine were extracted from 2mg of dried and powdered plaque via ultrasonication with acetonitrile. The extracts were analyzed on a triple-quadrupole linear ion trap mass spectrometer in scheduled multiple reaction monitoring mode (sMRM). The method was fully validated and proved accurate, precise, selective and specific with satisfactory linearity within the calibrated ranges. The lower limit of quantification was 10-15pgmg-1 for all compounds except for MDA (100pgmg-1) and amphetamine (200pgmg-1). The method has been successfully applied to three authentic postmortem samples with known drug history. Amphetamine, MDMA, cocaine, benzoylecgonine, morphine and codeine could be detected in these cases in concentrations ranging from 18pgmg-1 for cocaine to 1400pgmg-1 for amphetamine.
Collapse
Affiliation(s)
- Kerstin Henkel
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany; Hermann Staudinger Graduate School, University of Freiburg, Hebelstr. 27, 79104 Freiburg, Germany
| | - Markus J Altenburger
- Center for Dental Medicine, Department of Operative Dentistry and Periodontology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Hugstetter Str. 55, 79106 Freiburg, Germany
| | - Volker Auwärter
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany
| | - Merja A Neukamm
- Institute of Forensic Medicine, Forensic Toxicology, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Albertstr. 9, 79104 Freiburg, Germany.
| |
Collapse
|
50
|
Liu W, Russel J, Røder HL, Madsen JS, Burmølle M, Sørensen SJ. Low-abundant species facilitates specific spatial organization that promotes multispecies biofilm formation. Environ Microbiol 2017; 19:2893-2905. [PMID: 28618083 DOI: 10.1111/1462-2920.13816] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/24/2017] [Accepted: 05/31/2017] [Indexed: 01/27/2023]
Abstract
Microorganisms frequently co-exist in matrix-embedded multispecies biofilms. Within biofilms, interspecies interactions influence the spatial organization of member species, which likely play an important role in shaping the development, structure and function of these communities. Here, a reproducible four-species biofilm, composed of Stenotrophomonas rhizophila, Xanthomonas retroflexus, Microbacterium oxydans and Paenibacillus amylolyticus, was established to study the importance of individual species spatial organization during multispecies biofilm development. We found that the growth of species that are poor biofilm formers, M. oxydans and P. amylolyticus, were highly enhanced when residing in the four-species biofilm. Interestingly, the presence of the low-abundant M. oxydans (0.5% of biomass volume) was observed to trigger changes in the composition of the four-species community. The other three species were crucially needed for the successful inclusion of M. oxydans in the four-species biofilm, where X. retroflexus was consistently positioned in the top layer of the mature four-species biofilm. These findings suggest that low abundance key species can significantly impact the spatial organization and hereby stabilize the function and composition of complex microbiomes.
Collapse
Affiliation(s)
- Wenzheng Liu
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jakob Russel
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Henriette L Røder
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Jonas S Madsen
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Mette Burmølle
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| | - Søren J Sørensen
- Department of Biology, University of Copenhagen, 2100 Copenhagen Ø, Denmark
| |
Collapse
|