1
|
Maciel-Guerra A, Babaarslan K, Baker M, Rahman A, Hossain M, Sadique A, Alam J, Uzzaman S, Ferdous Rahman Sarker M, Sultana N, Islam Khan A, Ara Begum Y, Hassan Afrad M, Senin N, Hossain Habib Z, Shirin T, Qadri F, Dottorini T. Core and accessory genomic traits of Vibrio cholerae O1 drive lineage transmission and disease severity. Nat Commun 2024; 15:8231. [PMID: 39313510 PMCID: PMC11420230 DOI: 10.1038/s41467-024-52238-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 08/30/2024] [Indexed: 09/25/2024] Open
Abstract
In Bangladesh, Vibrio cholerae lineages are undergoing genomic evolution, with increased virulence and spreading ability. However, our understanding of the genomic determinants influencing lineage transmission and disease severity remains incomplete. Here, we developed a computational framework using machine-learning, genome scale metabolic modelling (GSSM) and 3D structural analysis, to identify V. cholerae genomic traits linked to lineage transmission and disease severity. We analysed in-patients isolates from six Bangladeshi regions (2015-2021), and uncovered accessory genes and core SNPs unique to the most recent dominant lineage, with virulence, motility and bacteriophage resistance functions. We also found a strong correlation between V. cholerae genomic traits and disease severity, with some traits overlapping those driving lineage transmission. GSMM and 3D structure analysis unveiled a complex interplay between transcription regulation, protein interaction and stability, and metabolic networks, associated to lifestyle adaptation, intestinal colonization, acid tolerance and symptom severity. Our findings support advancing therapeutics and targeted interventions to mitigate cholera spread.
Collapse
Affiliation(s)
- Alexandre Maciel-Guerra
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Kubra Babaarslan
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Michelle Baker
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
| | - Aura Rahman
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Maqsud Hossain
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Abdus Sadique
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Jahidul Alam
- NSU Genome Research Institute (NGRI), North South University, Baridhara, Bashundhara, Dhaka, 1229, Bangladesh
| | - Salim Uzzaman
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mohammad Ferdous Rahman Sarker
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nasrin Sultana
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Ashraful Islam Khan
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Yasmin Ara Begum
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Mokibul Hassan Afrad
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Nicola Senin
- Department of Engineering, University of Perugia, 06125, Perugia, Italy
| | - Zakir Hossain Habib
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tahmina Shirin
- Institute of Epidemiology, Disease Control and Research (IEDCR), 44, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Firdausi Qadri
- International Centre for Diarrhoeal Disease Research, Bangladesh (icddr, b), 68, Shaheed Tajuddin Ahmed Sarani Mohakhali, Dhaka, 1212, Bangladesh
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, College Road, Sutton Bonington, Loughborough, Leicestershire, LE12 5RD, UK.
- Centre for Smart Food Research, Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, 315100, P. R. China.
| |
Collapse
|
2
|
Lypaczewski P, Chac D, Dunmire CN, Tandoc KM, Chowdhury F, Khan AI, Bhuiyan TR, Harris JB, LaRocque RC, Calderwood SB, Ryan ET, Qadri F, Shapiro BJ, Weil AA. Vibrio cholerae O1 experiences mild bottlenecks through the gastrointestinal tract in some but not all cholera patients. Microbiol Spectr 2024; 12:e0078524. [PMID: 38916318 PMCID: PMC11302224 DOI: 10.1128/spectrum.00785-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 05/13/2024] [Indexed: 06/26/2024] Open
Abstract
Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from 10 cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than coinfection with divergent V. cholerae O1 lineages. The amount of single-nucleotide variation decreased from vomit to stool in four patients, increased in two, and remained unchanged in four. The variation in gene presence/absence decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract. IMPORTANCE Vibrio cholerae O1, the bacterium that causes cholera, is ingested in contaminated food or water and then colonizes the upper small intestine and is excreted in stool. Shed V. cholerae genomes from stool are usually studied, but V. cholerae isolated from vomit may be more representative of where V. cholerae colonizes in the upper intestinal epithelium. V. cholerae may experience bottlenecks, or large reductions in bacterial population sizes and genetic diversity, as it passes through the gut. Passage through the gut may select for distinct V. cholerae mutants that are adapted for survival and gut colonization. We did not find strong evidence for such adaptive mutations, and instead observed that passage through the gut results in modest reductions in V. cholerae genetic diversity, and only in some patients. These results fill a gap in our understanding of the V. cholerae life cycle, transmission, and evolution.
Collapse
Affiliation(s)
- Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Chelsea N. Dunmire
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Kristine M. Tandoc
- Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Fahima Chowdhury
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka
| | - Ashraful I. Khan
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka
| | - Taufiqur R. Bhuiyan
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka
| | - Jason B. Harris
- Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Division of Global Health, Massachusetts General Hospital for Children, Boston, Massachusetts, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, Massachusetts, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montreal, Quebec, Canada
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, Washington, USA
- Department of Global Health, University of Washington, Seattle, Washington, USA
| |
Collapse
|
3
|
Rahman MS, Shimul MEK, Parvez MAK. Comprehensive analysis of genomic variation, pan-genome and biosynthetic potential of Corynebacterium glutamicum strains. PLoS One 2024; 19:e0299588. [PMID: 38718091 PMCID: PMC11078359 DOI: 10.1371/journal.pone.0299588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 02/13/2024] [Indexed: 05/12/2024] Open
Abstract
Corynebacterium glutamicum is a non-pathogenic species of the Corynebacteriaceae family. It has been broadly used in industrial biotechnology for the production of valuable products. Though it is widely accepted at the industrial level, knowledge about the genomic diversity of the strains is limited. Here, we investigated the comparative genomic features of the strains and pan-genomic characteristics. We also observed phylogenetic relationships among the strains based on average nucleotide identity (ANI). We found diversity between strains at the genomic and pan-genomic levels. Less than one-third of the C. glutamicum pan-genome consists of core genes and soft-core genes. Whereas, a large number of strain-specific genes covered about half of the total pan-genome. Besides, C. glutamicum pan-genome is open and expanding, which indicates the possible addition of new gene families to the pan-genome. We also investigated the distribution of biosynthetic gene clusters (BGCs) among the strains. We discovered slight variations of BGCs at the strain level. Several BGCs with the potential to express novel bioactive secondary metabolites have been identified. Therefore, by utilizing the characteristic advantages of C. glutamicum, different strains can be potential applicants for natural drug discovery.
Collapse
Affiliation(s)
- Md. Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Bioinformatics and Microbial Biotechnology Laboratory, Jashore University of Science and Technology, Jashore, Bangladesh
| | - Md. Ebrahim Khalil Shimul
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, Bangladesh
- Department of Genetic Engineering and Biotechnology, Bioinformatics and Microbial Biotechnology Laboratory, Jashore University of Science and Technology, Jashore, Bangladesh
| | | |
Collapse
|
4
|
Madi N, Cato ET, Abu Sayeed M, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIU, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity, and pathogen genetic diversity in cholera patients. Science 2024; 384:eadj3166. [PMID: 38669570 DOI: 10.1126/science.adj3166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 03/12/2024] [Indexed: 04/28/2024]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of bacteriophage (phage)-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. In this work, we report a year-long, nationwide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative polymerase chain reaction while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of antiphage defenses, predation was "effective," with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of antiphage defenses, predation was "ineffective," with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Imam Ul Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md Taufiqur R Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
5
|
Madi N, Cato ET, Sayeed MA, Creasy-Marrazzo A, Cuénod A, Islam K, Khabir MIUL, Bhuiyan MTR, Begum YA, Freeman E, Vustepalli A, Brinkley L, Kamat M, Bailey LS, Basso KB, Qadri F, Khan AI, Shapiro BJ, Nelson EJ. Phage predation, disease severity and pathogen genetic diversity in cholera patients. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.14.544933. [PMID: 37398242 PMCID: PMC10312676 DOI: 10.1101/2023.06.14.544933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Despite an increasingly detailed picture of the molecular mechanisms of phage-bacterial interactions, we lack an understanding of how these interactions evolve and impact disease within patients. Here we report a year-long, nation-wide study of diarrheal disease patients in Bangladesh. Among cholera patients, we quantified Vibrio cholerae (prey) and its virulent phages (predators) using metagenomics and quantitative PCR, while accounting for antibiotic exposure using quantitative mass spectrometry. Virulent phage (ICP1) and antibiotics suppressed V. cholerae to varying degrees and were inversely associated with severe dehydration depending on resistance mechanisms. In the absence of anti-phage defenses, predation was 'effective,' with a high predator:prey ratio that correlated with increased genetic diversity among the prey. In the presence of anti-phage defenses, predation was 'ineffective,' with a lower predator:prey ratio that correlated with increased genetic diversity among the predators. Phage-bacteria coevolution within patients should therefore be considered in the deployment of phage-based therapies and diagnostics.
Collapse
Affiliation(s)
- Naïma Madi
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Emilee T. Cato
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Md. Abu Sayeed
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Ashton Creasy-Marrazzo
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Aline Cuénod
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
| | - Kamrul Islam
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Imam UL. Khabir
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Md. Taufiqur R. Bhuiyan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yasmin A. Begum
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Emma Freeman
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Anirudh Vustepalli
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Lindsey Brinkley
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| | - Manasi Kamat
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Laura S. Bailey
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Kari B. Basso
- Department of Chemistry, University of Florida, Gainesville, FL, USA
| | - Firdausi Qadri
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division (IDD) & Nutrition and Clinical Services Division (NCSD), International Centre for Diarrhoeal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology & Immunology, McGill University, Montréal, QC, Canada
- McGill Genome Centre, McGill University, Montréal, QC, Canada
- McGill Centre for Microbiome Research, McGill University, Montréal, QC, Canada
| | - Eric J. Nelson
- Departments of Pediatrics and Environmental and Global Health, University of Florida, Gainesville, FL, USA
| |
Collapse
|
6
|
Lypaczewski P, Chac D, Dunmire CN, Tandoc KM, Chowdhury F, Khan AI, Bhuiyan T, Harris JB, LaRocque RC, Calderwood SB, Ryan ET, Qadri F, Shapiro BJ, Weil AA. Diversity of Vibrio cholerae O1 through the human gastrointestinal tract during cholera. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.08.579476. [PMID: 38370713 PMCID: PMC10871328 DOI: 10.1101/2024.02.08.579476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Vibrio cholerae O1 causes the diarrheal disease cholera, and the small intestine is the site of active infection. During cholera, cholera toxin is secreted from V. cholerae and induces a massive fluid influx into the small intestine, which causes vomiting and diarrhea. Typically, V. cholerae genomes are sequenced from bacteria passed in stool, but rarely from vomit, a fluid that may more closely represents the site of active infection. We hypothesized that the V. cholerae O1 population bottlenecks along the gastrointestinal tract would result in reduced genetic variation in stool compared to vomit. To test this, we sequenced V. cholerae genomes from ten cholera patients with paired vomit and stool samples. Genetic diversity was low in both vomit and stool, consistent with a single infecting population rather than co-infection with divergent V. cholerae O1 lineages. The number of single nucleotide variants decreased between vomit and stool in four patients, increased in two, and remained unchanged in four. The number of genes encoded in the V. cholerae genome decreased between vomit and stool in eight patients and increased in two. Pangenome analysis of assembled short-read sequencing demonstrated that the toxin-coregulated pilus operon more frequently contained deletions in genomes from vomit compared to stool. However, these deletions were not detected by PCR or long-read sequencing, indicating that interpreting gene presence or absence patterns from short-read data alone may be incomplete. Overall, we found that V. cholerae O1 isolated from stool is genetically similar to V. cholerae recovered from the upper intestinal tract.
Collapse
Affiliation(s)
- Patrick Lypaczewski
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Denise Chac
- Department of Medicine, University of Washington, Seattle, WA, USA
| | | | | | - Fahima Chowdhury
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Ashraful I. Khan
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Taufiqur Bhuiyan
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - Jason B. Harris
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, US
- Division of Global Health, Massachusetts General Hospital for Children, Boston, MA, USA
| | - Regina C. LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, US
- Harvard Medical School, Boston, MA, USA
| | - Stephen B. Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, US
- Harvard Medical School, Boston, MA, USA
| | - Edward T. Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, US
- Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Bangladesh, Dhaka, Bangladesh
| | - B. Jesse Shapiro
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada
| | - Ana A. Weil
- Department of Medicine, University of Washington, Seattle, WA, USA
- Department of Global Health, University of Washington, Seattle, WA, USA
| |
Collapse
|
7
|
Dps-dependent in vivo mutation enhances long-term host adaptation in Vibrio cholerae. PLoS Pathog 2023; 19:e1011250. [PMID: 36928244 PMCID: PMC10104298 DOI: 10.1371/journal.ppat.1011250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 04/14/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
As one of the most successful pathogenic organisms, Vibrio cholerae (V. cholerae) has evolved sophisticated regulatory mechanisms to overcome host stress. During long-term colonization by V. cholerae in adult mice, many spontaneous nonmotile mutants (approximately 10% at the fifth day post-infection) were identified. These mutations occurred primarily in conserved regions of the flagellar regulator genes flrA, flrC, and rpoN, as shown by Sanger and next-generation sequencing, and significantly increased fitness during colonization in adult mice. Intriguingly, instead of key genes in DNA repair systems (mutS, nfo, xthA, uvrA) or ROS and RNS scavenging systems (katG, prxA, hmpA), which are generally thought to be associated with bacterial mutagenesis, we found that deletion of the cyclin gene dps significantly increased the mutation rate (up to 53% at the fifth day post-infection) in V. cholerae. We further determined that the dpsD65A and dpsF46E point mutants showed a similar mutagenesis profile as the Δdps mutant during long-term colonization in mice, which strongly indicated that the antioxidative function of Dps directly contributes to the development of V. cholerae nonmotile mutants. Methionine metabolism pathway may be one of the mechanism for ΔflrA, ΔflrC and ΔrpoN mutant increased colonization in adult mice. Our results revealed a new phenotype in which V. cholerae fitness increases in the host gut via spontaneous production nonmotile mutants regulated by cyclin Dps, which may represent a novel adaptation strategy for directed evolution of pathogens in the host.
Collapse
|
8
|
Molina-Quiroz RC, Camilli A, Silva-Valenzuela CA. Role of Bacteriophages in the Evolution of Pathogenic Vibrios and Lessons for Phage Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1404:149-173. [PMID: 36792875 PMCID: PMC10587905 DOI: 10.1007/978-3-031-22997-8_8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2023]
Abstract
Viruses of bacteria, i.e., bacteriophages (or phages for short), were discovered over a century ago and have played a major role as a model system for the establishment of the fields of microbial genetics and molecular biology. Despite the relative simplicity of phages, microbiologists are continually discovering new aspects of their biology including mechanisms for battling host defenses. In turn, novel mechanisms of host defense against phages are being discovered at a rapid clip. A deeper understanding of the arms race between bacteria and phages will continue to reveal novel molecular mechanisms and will be important for the rational design of phage-based prophylaxis and therapies to prevent and treat bacterial infections, respectively. Here we delve into the molecular interactions of Vibrio species and phages.
Collapse
Affiliation(s)
- Roberto C Molina-Quiroz
- Stuart B. Levy Center for Integrated Management of Antimicrobial Resistance (Levy CIMAR), Tufts Medical Center and Tufts University, Boston, MA, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University, School of Medicine, Boston, MA, USA
| | | |
Collapse
|
9
|
Genestet C, Refrégier G, Hodille E, Zein-Eddine R, Le Meur A, Hak F, Barbry A, Westeel E, Berland JL, Engelmann A, Verdier I, Lina G, Ader F, Dray S, Jacob L, Massol F, Venner S, Dumitrescu O. Mycobacterium tuberculosis genetic features associated with pulmonary tuberculosis severity. Int J Infect Dis 2022; 125:74-83. [PMID: 36273524 DOI: 10.1016/j.ijid.2022.10.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/13/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Mycobacterium tuberculosis (Mtb) infections result in a wide spectrum of clinical presentations but without proven Mtb genetic determinants. Herein, we hypothesized that the genetic features of Mtb clinical isolates, such as specific polymorphisms or microdiversity, may be linked to tuberculosis (TB) severity. METHODS A total of 234 patients with pulmonary TB (including 193 drug-susceptible and 14 monoresistant cases diagnosed between 2017 and 2020 and 27 multidrug-resistant cases diagnosed between 2010 and 2020) were stratified according to TB disease severity, and Mtb genetic features were explored using whole genome sequencing, including heterologous single-nucleotide polymorphism (SNP), calling to explore microdiversity. Finally, we performed a structural equation modeling analysis to relate TB severity to Mtb genetic features. RESULTS The clinical isolates from patients with mild TB carried mutations in genes associated with host-pathogen interaction, whereas those from patients with moderate/severe TB carried mutations associated with regulatory mechanisms. Genome-wide association study identified an SNP in the promoter of the gene coding for the virulence regulator espR, statistically associated with moderate/severe disease. Structural equation modeling and model comparisons indicated that TB severity was associated with the detection of Mtb microdiversity within clinical isolates and to the espR SNP. CONCLUSION Taken together, these results provide a new insight to better understand TB pathophysiology and could provide a new prognosis tool for pulmonary TB severity.
Collapse
Affiliation(s)
- Charlotte Genestet
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France.
| | - Guislaine Refrégier
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Elisabeth Hodille
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Rima Zein-Eddine
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France; Laboratory of Optics and Biosciences, CNRS-INSERM-Ecole Polytechnique, Île-de-France, Palaiseau, France
| | - Adrien Le Meur
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Fiona Hak
- Université Paris-Saclay, CNRS, AgroParisTech, Ecologie Systématique et Evolution, Île-de-France, Orsay, France.; Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris Sud, Université Paris-Saclay, Île-de-France, Gif-sur-Yvette, France
| | - Alexia Barbry
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France
| | - Emilie Westeel
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Jean-Luc Berland
- Fondation Mérieux, Emerging Pathogens Laboratory, Rhône-Alpes, Lyon, France
| | - Astrid Engelmann
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Isabelle Verdier
- Centre Hospitalier Fleyriat, Rhône-Alpes, Bourg-en-Bresse, France
| | - Gérard Lina
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | - Florence Ader
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Service des Maladies infectieuses et tropicales, Rhône-Alpes, Lyon, France
| | - Stéphane Dray
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Laurent Jacob
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - François Massol
- UMR 8198 Evo-Eco-Paleo, SPICI Group, University of Lille, Hauts-de-France, Lille, France; CNRS, CHU Lille, Institut Pasteur de Lille, U1019-UMR 9017-CIIL-Center for Infection and Immunity of Lille, University of Lille, Hauts-de-France, Lille, France
| | - Samuel Venner
- Biometrics and Evolutionary Biology Laboratory, CNRS UMR 5558, Université Lyon 1, Rhône-Alpes, Villeurbanne, France
| | - Oana Dumitrescu
- CIRI - Centre International de Recherche en Infectiologie, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon-1, Rhône-Alpes, Lyon, France; Hospices Civils de Lyon, Institut des Agents Infectieux, Laboratoire de bactériologie, Rhône-Alpes, Lyon, France; Université Lyon 1, Facultés de Médecine et de Pharmacie de Lyon, Rhône-Alpes, Lyon, France
| | | |
Collapse
|
10
|
Romero Picazo D, Werner A, Dagan T, Kupczok A. Pangenome Evolution in Environmentally Transmitted Symbionts of Deep-Sea Mussels Is Governed by Vertical Inheritance. Genome Biol Evol 2022; 14:evac098. [PMID: 35731940 PMCID: PMC9260185 DOI: 10.1093/gbe/evac098] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/18/2022] [Indexed: 11/13/2022] Open
Abstract
Microbial pangenomes vary across species; their size and structure are determined by genetic diversity within the population and by gene loss and horizontal gene transfer (HGT). Many bacteria are associated with eukaryotic hosts where the host colonization dynamics may impact bacterial genome evolution. Host-associated lifestyle has been recognized as a barrier to HGT in parentally transmitted bacteria. However, pangenome evolution of environmentally acquired symbionts remains understudied, often due to limitations in symbiont cultivation. Using high-resolution metagenomics, here we study pangenome evolution of two co-occurring endosymbionts inhabiting Bathymodiolus brooksi mussels from a single cold seep. The symbionts, sulfur-oxidizing (SOX) and methane-oxidizing (MOX) gamma-proteobacteria, are environmentally acquired at an early developmental stage and individual mussels may harbor multiple strains of each symbiont species. We found differences in the accessory gene content of both symbionts across individual mussels, which are reflected by differences in symbiont strain composition. Compared with core genes, accessory genes are enriched in genome plasticity functions. We found no evidence for recent HGT between both symbionts. A comparison between the symbiont pangenomes revealed that the MOX population is less diverged and contains fewer accessory genes, supporting that the MOX association with B. brooksi is more recent in comparison to that of SOX. Our results show that the pangenomes of both symbionts evolved mainly by vertical inheritance. We conclude that genome evolution of environmentally transmitted symbionts that associate with individual hosts over their lifetime is affected by a narrow symbiosis where the frequency of HGT is constrained.
Collapse
Affiliation(s)
- Devani Romero Picazo
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Almut Werner
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Tal Dagan
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
| | - Anne Kupczok
- Genomic Microbiology Group, Institute of General Microbiology, Christian-Albrechts University, 24118 Kiel, Germany
- Max Planck Institute for Marine Microbiology, 28359 Bremen, Germany
- Bioinformatics Group, Wageningen University & Research, 6708PB Wageningen, The Netherlands
| |
Collapse
|
11
|
Bongrand C, Koch E, Mende D, Romano A, Lawhorn S, McFall-Ngai M, DeLong EF, Ruby EG. Evidence of Genomic Diversification in a Natural Symbiotic Population Within Its Host. Front Microbiol 2022; 13:854355. [PMID: 35300477 PMCID: PMC8922018 DOI: 10.3389/fmicb.2022.854355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
Planktonic cells of the luminous marine bacterium Vibrio fischeri establish themselves in the light-emitting organ of each generation of newly hatched Euprymna scolopes bobtail squid. A symbiont population is maintained within the 6 separated crypts of the organ for the ∼9-month life of the host. In the wild, the initial colonization step is typically accomplished by a handful of planktonic V. fischeri cells, leading to a species-specific, but often multi-strain, symbiont population. Within a few hours, the inoculating cells proliferate within the organ’s individual crypts, after which there is evidently no supernumerary colonization. Nevertheless, every day at dawn, the majority of the symbionts is expelled, and the regrowth of the remaining ∼5% of cells provides a daily opportunity for the population to evolve and diverge, thereby increasing its genomic diversity. To begin to understand the extent of this diversification, we characterized the light-organ population of an adult animal. First, we used 16S sequencing to determine that species in the V. fischeri clade were essentially the only ones detectable within a field-caught E. scolopes. Efforts to colonize the host with a minor species that appeared to be identified, V. litoralis, revealed that, although some cells could be imaged within the organ, they were <0.1% of the typical V. fischeri population, and did not persist. Next, we determined the genome sequences of seventy-two isolates from one side of the organ. While all these isolates were associated with one of three clusters of V. fischeri strains, there was considerable genomic diversity within this natural symbiotic population. Comparative analyses revealed a significant difference in both the number and the presence/absence of genes within each cluster; in contrast, there was little accumulation of single-nucleotide polymorphisms. These data suggest that, in nature, the light organ is colonized by a small number of V. fischeri strains that can undergo significant genetic diversification, including by horizontal-gene transfer, over the course of ∼1500 generations of growth in the organ. When the resulting population of symbionts is expelled into seawater, its genomic mix provides the genetic basis for selection during the subsequent environmental dispersal, and transmission to the next host.
Collapse
Affiliation(s)
- Clotilde Bongrand
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Eric Koch
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Daniel Mende
- Department of Oceanography, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Anna Romano
- Department of Oceanography, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Susannah Lawhorn
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Margaret McFall-Ngai
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Edward F DeLong
- Department of Oceanography, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| | - Edward G Ruby
- Kewalo Marine Laboratory, SOEST, University of Hawai'i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
12
|
Xiao Y, Yang C, Yu L, Tian F, Wu Y, Zhao J, Zhang H, Yang R, Chen W, Hill C, Cui Y, Zhai Q. Human gut-derived B. longum subsp. longum strains protect against aging in a D-galactose-induced aging mouse model. MICROBIOME 2021; 9:180. [PMID: 34470652 PMCID: PMC8411540 DOI: 10.1186/s40168-021-01108-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 06/02/2021] [Indexed: 05/02/2023]
Abstract
BACKGROUND Probiotics have been used to regulate the gut microbiota and physiology in various contexts, but their precise mechanisms of action remain unclear. RESULTS By population genomic analysis of 418 Bifidobacterium longum strains, including 143 newly sequenced in this study, three geographically distinct gene pools/populations, BLAsia1, BLAsia2, and BLothers, were identified. Genes involved in cell wall biosynthesis, particularly peptidoglycan biosynthesis, varied considerably among the core genomes of the different populations, but accessory genes that contributed to the carbohydrate metabolism were significantly distinct. Although active transmission was observed inter-host, inter-country, inter-city, intra-community, and intra-family, a single B. longum clone seemed to reside within each individual. A significant negative association was observed between host age and relative abundance of B. longum, while there was a strong positive association between host age and strain genotype [e.g., single nucleotide polymorphisms in the arginine biosynthesis pathway]. Further animal experiments performed with the B. longum isolates via using a D-galactose-induced aging mouse model supported these associations, in which B. longum strains with different genotypes in arginine biosynthesis pathway showed divergent abilities on protecting against host aging possibly via their different abilities to modify the metabolism of gut microbes. CONCLUSIONS This is the first known example of research on the evolutionary history and transmission of this probiotic species. Our results propose a new mechanistic insight for promoting host longevity via the informed use of specific probiotics or molecules. Video abstract.
Collapse
Affiliation(s)
- Yue Xiao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- International Joint Research Laboratory for Probiotics At Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, 225004 China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, 214122 Jiangsu China
- Beijing Innovation Centre of Food Nutrition and Human Health, Beijing Technology and Business University (BTBU), Beijing, 100048 People’s Republic of China
| | - Colin Hill
- School of Microbiology & APC Microbiome Institute, University College Cork, Cork, T12 YN60 Ireland
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, 100071 China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122 People’s Republic of China
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 Jiangsu China
- International Joint Research Laboratory for Probiotics At Jiangnan University, Wuxi, 214122 Jiangsu China
| |
Collapse
|
13
|
A Combination of Metagenomic and Cultivation Approaches Reveals Hypermutator Phenotypes within Vibrio cholerae-Infected Patients. mSystems 2021; 6:e0088921. [PMID: 34427503 PMCID: PMC8407408 DOI: 10.1128/msystems.00889-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae can cause a range of symptoms, from severe diarrhea to asymptomatic infection. Previous studies using whole-genome sequencing (WGS) of multiple bacterial isolates per patient showed that V. cholerae can evolve modest genetic diversity during symptomatic infection. To further explore the extent of V. cholerae within-host diversity, we applied culture-based WGS and metagenomics to a cohort of both symptomatic and asymptomatic cholera patients from Bangladesh. While metagenomics allowed us to detect more mutations in symptomatic patients, WGS of cultured isolates was necessary to detect V. cholerae diversity in asymptomatic carriers, likely due to their low V. cholerae load. Using both metagenomics and isolate WGS, we report three lines of evidence that V. cholerae hypermutators evolve within patients. First, we identified nonsynonymous mutations in V. cholerae DNA repair genes in 5 out of 11 patient metagenomes sequenced with sufficient coverage of the V. cholerae genome and in 1 of 3 patients with isolate genomes sequenced. Second, these mutations in DNA repair genes tended to be accompanied by an excess of intrahost single nucleotide variants (iSNVs). Third, these iSNVs were enriched in transversion mutations, a known hallmark of hypermutator phenotypes. While hypermutators appeared to generate mostly selectively neutral mutations, nonmutators showed signs of convergent mutation across multiple patients, suggesting V. cholerae adaptation within hosts. Our results highlight the power and limitations of metagenomics combined with isolate sequencing to characterize within-patient diversity in acute V. cholerae infections, while providing evidence for hypermutator phenotypes within cholera patients. IMPORTANCE Pathogen evolution within patients can impact phenotypes such as drug resistance and virulence, potentially affecting clinical outcomes. V. cholerae infection can result in life-threatening diarrheal disease or asymptomatic infection. Here, we describe whole-genome sequencing of V. cholerae isolates and culture-free metagenomic sequencing from stool of symptomatic cholera patients and asymptomatic carriers. Despite the typically short duration of cholera, we found evidence for adaptive mutations in the V. cholerae genome that occur independently and repeatedly within multiple symptomatic patients. We also identified V. cholerae hypermutator phenotypes within several patients, which appear to generate mainly neutral or deleterious mutations. Our work sets the stage for future studies of the role of hypermutators and within-patient evolution in explaining the variation from asymptomatic carriage to symptomatic cholera.
Collapse
|
14
|
Islam MT, Nasreen T, Kirchberger PC, Liang KYH, Orata FD, Johura FT, Hussain NAS, Im MS, Tarr CL, Alam M, Boucher YF. Population Analysis of Vibrio cholerae in Aquatic Reservoirs Reveals a Novel Sister Species ( Vibrio paracholerae sp. nov.) with a History of Association with Humans. Appl Environ Microbiol 2021; 87:e0042221. [PMID: 34132593 PMCID: PMC8357300 DOI: 10.1128/aem.00422-21] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 06/04/2021] [Indexed: 12/12/2022] Open
Abstract
Most efforts to understand the biology of Vibrio cholerae have focused on a single group, the pandemic-generating lineage harboring the strains responsible for all known cholera pandemics. Consequently, little is known about the diversity of this species in its native aquatic environment. To understand the differences in the V. cholerae populations inhabiting regions with a history of cholera cases and those lacking such a history, a comparative analysis of population composition was performed. Little overlap was found in lineage compositions between those in Dhaka, Bangladesh (where cholera is endemic), located in the Ganges Delta, and those in Falmouth, MA (no known history of cholera), a small coastal town on the United States east coast. The most striking difference was the presence of a group of related lineages at high abundance in Dhaka, which was completely absent from Falmouth. Phylogenomic analysis revealed that these lineages form a cluster at the base of the phylogeny for the V. cholerae species and were sufficiently differentiated genetically and phenotypically to form a novel species. A retrospective search revealed that strains from this species have been anecdotally found from around the world and were isolated as early as 1916 from a British soldier in Egypt suffering from choleraic diarrhea. In 1935, Gardner and Venkatraman unofficially referred to a member of this group as Vibrio paracholerae. In recognition of this earlier designation, we propose the name Vibrio paracholerae sp. nov. for this bacterium. Genomic analysis suggests a link with human populations for this novel species and substantial interaction with its better-known sister species. IMPORTANCE Cholera continues to remain a major public health threat around the globe. Understanding the ecology, evolution, and environmental adaptation of the causative agent (Vibrio cholerae) and tracking the emergence of novel lineages with pathogenic potential are essential to combat the problem. In this study, we investigated the population dynamics of Vibrio cholerae in an inland locality, which is known as endemic for cholera, and compared them with those of a cholera-free coastal location. We found the consistent presence of the pandemic-generating lineage of V. cholerae in Dhaka, where cholera is endemic, and an exclusive presence of a lineage phylogenetically distinct from other V. cholerae lineages. Our study suggests that this lineage represents a novel species that has pathogenic potential and a human link to its environmental abundance. The possible association with human populations and coexistence and interaction with toxigenic V. cholerae in the natural environment make this potential human pathogen an important subject for future studies.
Collapse
Affiliation(s)
| | - Tania Nasreen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Paul C. Kirchberger
- Department of Integrative Biology, University of Texas at Austin, Austin, Texas, USA
| | - Kevin Y. H. Liang
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fabini D. Orata
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Fatema-Tuz Johura
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Nora A. S. Hussain
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Monica S. Im
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Cheryl L. Tarr
- National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Munirul Alam
- Infectious Diseases Division, International Centre for Diarrheal Disease Research, Bangladesh (icddr,b), Dhaka, Bangladesh
| | - Yann F. Boucher
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
- Saw Swee Hock School of Public Health, National University of Singapore, Singapore
| |
Collapse
|
15
|
Evolutionary Sweeps of Subviral Parasites and Their Phage Host Bring Unique Parasite Variants and Disappearance of a Phage CRISPR-Cas System. mBio 2021; 13:e0308821. [PMID: 35164562 PMCID: PMC8844924 DOI: 10.1128/mbio.03088-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae is a significant threat to global public health in part due to its propensity for large-scale evolutionary sweeps where lineages emerge and are replaced. These sweeps may originate from the Bay of Bengal, where bacteriophage predation and the evolution of antiphage counterdefenses is a recurring theme. The bacteriophage ICP1 is a key predator of epidemic V. cholerae and is notable for acquiring a CRISPR-Cas system to combat PLE, a defensive subviral parasite encoded by its V. cholerae host. Here, we describe the discovery of four previously unknown PLE variants through a retrospective analysis of >3,000 publicly available sequences as well as one additional variant (PLE10) from recent surveillance of cholera patients in Bangladesh. In recent sampling we also observed a lineage sweep of PLE-negative V. cholerae occurring within the patient population in under a year. This shift coincided with a loss of ICP1's CRISPR-Cas system in favor of a previously prevalent PLE-targeting endonuclease called Odn. Interestingly, PLE10 was resistant to ICP1-encoded Odn, yet it was not found in any recent V. cholerae strains. We also identified isolates from within individual patient samples that revealed both mixed PLE(+)/PLE(-) V. cholerae populations and ICP1 strains possessing CRISPR-Cas or Odn with evidence of in situ recombination. These findings reinforce our understanding of the successive nature of V. cholerae evolution and suggest that ongoing surveillance of V. cholerae, ICP1, and PLE in Bangladesh is important for tracking genetic developments relevant to pandemic cholera that can occur over relatively short timescales. IMPORTANCE With 1 to 4 million estimated cases annually, cholera is a disease of serious global concern in regions where access to safe drinking water is limited by inadequate infrastructure, inequity, or natural disaster. The Global Task Force on Cholera Control (GTFCC.org) considers outbreak surveillance to be a primary pillar in the strategy to reduce mortality from cholera worldwide. Therefore, developing a better understanding of temporal evolutionary changes in the causative agent of cholera, Vibrio cholerae, could help in those efforts. The significance of our research is in tracking the genomic shifts that distinguish V. cholerae outbreaks, with specific attention paid to current and historical trends in the arms race between V. cholerae and a cooccurring viral (bacteriophage) predator. Here, we discover additional diversity of a specific phage defense system in epidemic V. cholerae and document the loss of a phage-encoded CRISPR-Cas system, underscoring the dynamic nature of microbial populations across cholera outbreaks.
Collapse
|
16
|
Molecular insights into the genome dynamics and interactions between core and acquired genomes of Vibrio cholerae. Proc Natl Acad Sci U S A 2020; 117:23762-23773. [PMID: 32873641 DOI: 10.1073/pnas.2006283117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial species are hosts to horizontally acquired mobile genetic elements (MGEs), which encode virulence, toxin, antimicrobial resistance, and other metabolic functions. The bipartite genome of Vibrio cholerae harbors sporadic and conserved MGEs that contribute in the disease development and survival of the pathogens. For a comprehensive understanding of dynamics of MGEs in the bacterial genome, we engineered the genome of V. cholerae and examined in vitro and in vivo stability of genomic islands (GIs), integrative conjugative elements (ICEs), and prophages. Recombinant vectors carrying the integration module of these GIs, ICE and CTXΦ, helped us to understand the efficiency of integrations of MGEs in the V. cholerae chromosome. We have deleted more than 250 acquired genes from 6 different loci in the V. cholerae chromosome and showed contribution of CTX prophage in the essentiality of SOS response master regulator LexA, which is otherwise not essential for viability in other bacteria, including Escherichia coli In addition, we observed that the core genome-encoded RecA helps CTXΦ to bypass V. cholerae immunity and allow it to replicate in the host bacterium in the presence of similar prophage in the chromosome. Finally, our proteomics analysis reveals the importance of MGEs in modulating the levels of cellular proteome. This study engineered the genome of V. cholerae to remove all of the GIs, ICEs, and prophages and revealed important interactions between core and acquired genomes.
Collapse
|
17
|
Toxigenic Vibrio cholerae evolution and establishment of reservoirs in aquatic ecosystems. Proc Natl Acad Sci U S A 2020; 117:7897-7904. [PMID: 32229557 PMCID: PMC7149412 DOI: 10.1073/pnas.1918763117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The spread of cholera in the midst of an epidemic is largely driven by direct transmission from person to person, although it is well-recognized that Vibrio cholerae is also capable of growth and long-term survival in aquatic ecosystems. While prior studies have shown that aquatic reservoirs are important in the persistence of the disease on the Indian subcontinent, an epidemiological view postulating that locally evolving environmental V. cholerae contributes to outbreaks outside Asia remains debated. The single-source introduction of toxigenic V. cholerae O1 in Haiti, one of the largest outbreaks occurring this century, with 812,586 suspected cases and 9,606 deaths reported through July 2018, provided a unique opportunity to evaluate the role of aquatic reservoirs and assess bacterial transmission dynamics across environmental boundaries. To this end, we investigated the phylogeography of both clinical and aquatic toxigenic V. cholerae O1 isolates and show robust evidence of the establishment of aquatic reservoirs as well as ongoing evolution of V. cholerae isolates from aquatic sites. Novel environmental lineages emerged from sequential population bottlenecks, carrying mutations potentially involved in adaptation to the aquatic ecosystem. Based on such empirical data, we developed a mixed-transmission dynamic model of V. cholerae, where aquatic reservoirs actively contribute to genetic diversification and epidemic emergence, which underscores the complexity of transmission pathways in epidemics and endemic settings and the need for long-term investments in cholera control at both human and environmental levels.
Collapse
|
18
|
Wang H, Yang C, Sun Z, Zheng W, Zhang W, Yu H, Wu Y, Didelot X, Yang R, Pan J, Cui Y. Genomic epidemiology of Vibrio cholerae reveals the regional and global spread of two epidemic non-toxigenic lineages. PLoS Negl Trop Dis 2020; 14:e0008046. [PMID: 32069325 PMCID: PMC7048298 DOI: 10.1371/journal.pntd.0008046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 02/28/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022] Open
Abstract
Non-toxigenic Vibrio cholerae isolates have been found associated with diarrheal disease globally, however, the global picture of non-toxigenic infections is largely unknown. Among non-toxigenic V. cholerae, ctxAB negative, tcpA positive (CNTP) isolates have the highest risk of disease. From 2001 to 2012, 71 infectious diarrhea cases were reported in Hangzhou, China, caused by CNTP serogroup O1 isolates. We sequenced 119 V. cholerae genomes isolated from patients, carriers and the environment in Hangzhou between 2001 and 2012, and compared them with 850 publicly available global isolates. We found that CNTP isolates from Hangzhou belonged to two distinctive lineages, named L3b and L9. Both lineages caused disease over a long time period with usually mild or moderate clinical symptoms. Within Hangzhou, the spread route of the L3b lineage was apparently from rural to urban areas, with aquatic food products being the most likely medium. Both lineages had been previously reported as causing local endemic disease in Latin America, but here we show that global spread of them has occurred, with the most likely origin of L3b lineage being in Central Asia. The L3b lineage has spread to China on at least three occasions. Other spread events, including from China to Thailand and to Latin America were also observed. We fill the missing links in the global spread of the two non-toxigenic serogroup O1 V. cholerae lineages that can cause human infection. The results are important for the design of future disease control strategies: surveillance of V. cholerae should not be limited to ctxAB positive strains.
Collapse
Affiliation(s)
- Haoqiu Wang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Chao Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zhou Sun
- Institution of Infectious Disease Control, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zheng
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Wei Zhang
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Hua Yu
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yarong Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Xavier Didelot
- School of Life Sciences, University of Warwick, Gibbet Hill Campus, Coventry, United Kingdom
- Department of Statistics, University of Warwick, Coventry, United Kingdom
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jingcao Pan
- Microbiology Laboratory, Hangzhou Center for Disease Control and Prevention, Hangzhou, Zhejiang Province, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
19
|
Abstract
Horizontal gene transfer is a rapid and efficient way to diversify bacterial gene pools. Currently, little is known about this gene flux within natural soil populations. Using comparative genomics of Streptomyces strains belonging to the same species and isolated at microscale, we reveal frequent transfer of a significant fraction of the pangenome. We show that it occurs at a time scale enabling the population to diversify and to cope with its changing environment, notably, through the production of public goods. In this work, by comparing genomes of closely related individuals of Streptomyces isolated at a spatial microscale (millimeters or centimeters), we investigated the extent and impact of horizontal gene transfer in the diversification of a natural Streptomyces population. We show that despite these conspecific strains sharing a recent common ancestor, all harbored significantly different gene contents, implying massive and rapid gene flux. The accessory genome of the strains was distributed across insertion/deletion events (indels) ranging from one to several hundreds of genes. Indels were preferentially located in the arms of the linear chromosomes (ca. 12 Mb) and appeared to form recombination hot spots. Some of them harbored biosynthetic gene clusters (BGCs) whose products confer an inhibitory capacity and may constitute public goods that can favor the cohesiveness of the bacterial population. Moreover, a significant proportion of these variable genes were either plasmid borne or harbored signatures of actinomycete integrative and conjugative elements (AICEs). We propose that conjugation is the main driver for the indel flux and diversity in Streptomyces populations.
Collapse
|
20
|
Park CJ, Andam CP. Within-Species Genomic Variation and Variable Patterns of Recombination in the Tetracycline Producer Streptomyces rimosus. Front Microbiol 2019; 10:552. [PMID: 30949149 PMCID: PMC6437091 DOI: 10.3389/fmicb.2019.00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/04/2019] [Indexed: 01/09/2023] Open
Abstract
Streptomyces rimosus is best known as the primary source of the tetracycline class of antibiotics, most notably oxytetracycline, which have been widely used against many gram-positive and gram-negative pathogens and protozoan parasites. However, despite the medical and agricultural importance of S. rimosus, little is known of its evolutionary history and genome dynamics. In this study, we aim to elucidate the pan-genome characteristics and phylogenetic relationships of 32 S. rimosus genomes. The S. rimosus pan-genome contains more than 22,000 orthologous gene clusters, and approximately 8.8% of these genes constitutes the core genome. A large part of the accessory genome is composed of 9,646 strain-specific genes. S. rimosus exhibits an open pan-genome (decay parameter α = 0.83) and high gene diversity between strains (genomic fluidity φ = 0.12). We also observed strain-level variation in the distribution and abundance of biosynthetic gene clusters (BGCs) and that each individual S. rimosus genome has a unique repertoire of BGCs. Lastly, we observed variation in recombination, with some strains donating or receiving DNA more often than others, strains that tend to frequently recombine with specific partners, genes that often experience recombination more than others, and variable sizes of recombined DNA sequences. We conclude that the high levels of inter-strain genomic variation in S. rimosus is partly explained by differences in recombination among strains. These results have important implications on current efforts for natural drug discovery, the ecological role of strain-level variation in microbial populations, and addressing the fundamental question of why microbes have pan-genomes.
Collapse
Affiliation(s)
- Cooper J Park
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| | - Cheryl P Andam
- Department of Molecular, Cellular, and Biomedical Sciences, University of New Hampshire, Durham, NH, United States
| |
Collapse
|
21
|
Pham TD, Nguyen TH, Iwashita H, Takemura T, Morita K, Yamashiro T. Comparative analyses of CTX prophage region of Vibrio cholerae seventh pandemic wave 1 strains isolated in Asia. Microbiol Immunol 2018; 62:635-650. [PMID: 30211956 PMCID: PMC6220881 DOI: 10.1111/1348-0421.12648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 09/02/2018] [Accepted: 09/04/2018] [Indexed: 11/28/2022]
Abstract
Vibrio cholerae O1 causes cholera, and cholera toxin, the principal mediator of massive diarrhea, is encoded by ctxAB in the cholera toxin (CTX) prophage. In this study, the structures of the CTX prophage region of V. cholerae strains isolated during the seventh pandemic wave 1 in Asian countries were determined and compared. Eighteen strains were categorized into eight groups by CTX prophage region‐specific restriction fragment length polymorphism and PCR profiles and the structure of the region of a representative strain from each group was determined by DNA sequencing. Eight representative strains revealed eight distinct CTX prophage regions with various combinations of CTX‐1, RS1 and a novel genomic island on chromosome I. CTX prophage regions carried by the wave 1 strains were diverse in structure. V. cholerae strains with an area specific CTX prophage region are believed to circulate in South‐East Asian countries; additionally, multiple strains with distinct types of CTX prophage region are co‐circulating in the area. Analysis of a phylogenetic tree generated by single nucleotide polymorphism differences across 2483 core genes revealed that V. cholerae strains categorized in the same group based on CTX prophage region structure were segregated in closer clusters. CTX prophage region‐specific recombination events or gain and loss of genomic elements within the region may have occurred at much higher frequencies and contributed to producing a panel of CTX prophage regions with distinct structures among V. cholerae pathogenic strains in lineages with close genetic backgrounds in the early wave 1 period of the seventh cholera pandemic.
Collapse
Affiliation(s)
- Tho Duc Pham
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Tuan Hai Nguyen
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Hanako Iwashita
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| | - Taichiro Takemura
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Vietnam Research Station, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Kouichi Morita
- Leading Program, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan.,Department of Virology, Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, Japan
| |
Collapse
|
22
|
Pandey A, Cleary DW, Laver JR, Gorringe A, Deasy AM, Dale AP, Morris PD, Didelot X, Maiden MCJ, Read RC. Microevolution of Neisseria lactamica during nasopharyngeal colonisation induced by controlled human infection. Nat Commun 2018; 9:4753. [PMID: 30420631 PMCID: PMC6232127 DOI: 10.1038/s41467-018-07235-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/17/2018] [Indexed: 12/31/2022] Open
Abstract
Neisseria lactamica is a harmless coloniser of the infant respiratory tract, and has a mutually-excluding relationship with the pathogen Neisseria meningitidis. Here we report controlled human infection with genomically-defined N. lactamica and subsequent bacterial microevolution during 26 weeks of colonisation. We find that most mutations that occur during nasopharyngeal carriage are transient indels within repetitive tracts of putative phase-variable loci associated with host-microbe interactions (pgl and lgt) and iron acquisition (fetA promotor and hpuA). Recurrent polymorphisms occurred in genes associated with energy metabolism (nuoN, rssA) and the CRISPR-associated cas1. A gene encoding a large hypothetical protein was often mutated in 27% of the subjects. In volunteers who were naturally co-colonised with meningococci, recombination altered allelic identity in N. lactamica to resemble meningococcal alleles, including loci associated with metabolism, outer membrane proteins and immune response activators. Our results suggest that phase variable genes are often mutated during carriage-associated microevolution.
Collapse
Affiliation(s)
- Anish Pandey
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK.
| | - David W Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK
- Institute for Life Sciences, University of Southampton, Southampton, SO166YD, UK
| | - Jay R Laver
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
| | | | - Alice M Deasy
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S103JF, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S103JF, UK
| | - Adam P Dale
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK
| | - Paul D Morris
- Department of Infection, Immunity and Cardiovascular Disease, University of Sheffield, Sheffield, S103JF, UK
- Department of Cardiology, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, S103JF, UK
| | - Xavier Didelot
- School of Public Health, Faculty of Medicine, Imperial College London, London, SW72AZ, UK
- Department of Statistics, School of Life Sciences, Gibbet Hill Campus, University of Warwick, Coventry, CV4 7AL, UK
| | - Martin C J Maiden
- Department of Zoology, Peter Medawar Building, University of Oxford, Oxford, OX13SY, UK
| | - Robert C Read
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO166YD, UK.
- Southampton NIHR Biomedical Research Centre, University Hospital Southampton, Southampton, SO166YD, UK.
- Institute for Life Sciences, University of Southampton, Southampton, SO166YD, UK.
| |
Collapse
|
23
|
Domman D, Chowdhury F, Khan AI, Dorman MJ, Mutreja A, Uddin MI, Paul A, Begum YA, Charles RC, Calderwood SB, Bhuiyan TR, Harris JB, LaRocque RC, Ryan ET, Qadri F, Thomson NR. Defining endemic cholera at three levels of spatiotemporal resolution within Bangladesh. Nat Genet 2018; 50:951-955. [PMID: 29942084 PMCID: PMC6283067 DOI: 10.1038/s41588-018-0150-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 05/02/2018] [Indexed: 11/08/2022]
Abstract
Although much focus is placed on cholera epidemics, the greatest burden occurs in settings in which cholera is endemic, including areas of South Asia, Africa and now Haiti1,2. Dhaka, Bangladesh is a megacity that is hyper-endemic for cholera, and experiences two regular seasonal outbreaks of cholera each year3. Despite this, a detailed understanding of the diversity of Vibrio cholerae strains circulating in this setting, and their relationships to annual outbreaks, has not yet been obtained. Here we performed whole-genome sequencing of V. cholerae across several levels of focus and scale, at the maximum possible resolution. We analyzed bacterial isolates to define cholera dynamics at multiple levels, ranging from infection within individuals, to disease dynamics at the household level, to regional and intercontinental cholera transmission. Our analyses provide a genomic framework for understanding cholera diversity and transmission in an endemic setting.
Collapse
Affiliation(s)
- Daryl Domman
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
| | - Fahima Chowdhury
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Ashraful I Khan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Matthew J Dorman
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
| | - Ankur Mutreja
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Muhammad Ikhtear Uddin
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Anik Paul
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Yasmin A Begum
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Richelle C Charles
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stephen B Calderwood
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Taufiqur R Bhuiyan
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Jason B Harris
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Regina C LaRocque
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Edward T Ryan
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
- Department of Medicine, Harvard Medical School, Boston, MA, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, USA
| | - Firdausi Qadri
- Infectious Diseases Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Nicholas R Thomson
- Infection Genomics Programme, Wellcome Sanger Institute, Hinxton, UK.
- London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
24
|
Sakib SN, Reddi G, Almagro-Moreno S. Environmental role of pathogenic traits in Vibrio cholerae. J Bacteriol 2018; 200:e00795-17. [PMID: 29581410 PMCID: PMC6040180 DOI: 10.1128/jb.00795-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Vibrio cholerae is a natural inhabitant of aquatic ecosystems. Some strains of V. cholerae can colonize the human host and cause cholera, a profuse watery diarrhea. The major pathogenicity factors and virulence regulators of V. cholerae are either encoded in mobile genetic elements acquired in the environment (e.g. pathogenicity islands or lysogenic phages) or in the core genome. Several lines of evidence indicate that the emergence of numerous virulence traits of V. cholerae occurred in its natural environment due to biotic and abiotic pressures. Here, we discuss the connection between the human host and the potential ecological role of these virulent traits. Unraveling these connections will help us understand the emergence of this organism and other facultative bacterial pathogens.
Collapse
Affiliation(s)
- S Nazmus Sakib
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Geethika Reddi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA
| | - Salvador Almagro-Moreno
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, Florida 32816, USA.
- National Center for Integrated Coastal Research, University of Central Florida, Orlando, Florida 32816, USA
| |
Collapse
|
25
|
Feglo PK, Sewurah M. Characterization of highly virulent multidrug resistant Vibrio cholerae isolated from a large cholera outbreak in Ghana. BMC Res Notes 2018; 11:45. [PMID: 29347965 PMCID: PMC5774149 DOI: 10.1186/s13104-017-2923-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/09/2017] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The purpose of this study was to investigate the virulent factors of Vibrio cholerae which caused an unprecedented large cholera outbreak in Ghana in 2014 and progressed into 2015, affected 28,975 people with 243 deaths. RESULTS The V. cholerae isolates were identified to be the classical V. cholerae 01 biotype El Tor, serotype Ogawa, responsible for the large cholera outbreak in Ghana. These El Tor strains bear CtxAB and Tcp virulent genes, making the strains highly virulent. The strains also bear SXT transmissible element coding their resistance to antibiotics, causing high proportions of the strains to be multidrug resistant, with resistant proportions of 95, 90 and 75% to trimethoprim/sulfamethoxazole, ampicillin and ceftriaxone respectively. PFGE patterns indicated that the isolates clustered together with the same pattern and showed clusters similar to strains circulating in DR Congo, Cameroun, Ivory Coast and Togo. The strains carried virulence genes which facilitated the disease causation and spread. This is the first time these virulent genes were determined on the Ghanaian Vibrio strains.
Collapse
Affiliation(s)
- Patrick Kwame Feglo
- Department of Clinical Microbiology, School of Medical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana.
| | - Miriam Sewurah
- Department of Clinical Microbiology, School of Medical Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| |
Collapse
|
26
|
Graña-Miraglia L, Lozano LF, Velázquez C, Volkow-Fernández P, Pérez-Oseguera Á, Cevallos MA, Castillo-Ramírez S. Rapid Gene Turnover as a Significant Source of Genetic Variation in a Recently Seeded Population of a Healthcare-Associated Pathogen. Front Microbiol 2017; 8:1817. [PMID: 28979253 PMCID: PMC5611417 DOI: 10.3389/fmicb.2017.01817] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 09/06/2017] [Indexed: 12/11/2022] Open
Abstract
Genome sequencing has been useful to gain an understanding of bacterial evolution. It has been used for studying the phylogeography and/or the impact of mutation and recombination on bacterial populations. However, it has rarely been used to study gene turnover at microevolutionary scales. Here, we sequenced Mexican strains of the human pathogen Acinetobacter baumannii sampled from the same locale over a 3 year period to obtain insights into the microevolutionary dynamics of gene content variability. We found that the Mexican A. baumannii population was recently founded and has been emerging due to a rapid clonal expansion. Furthermore, we noticed that on average the Mexican strains differed from each other by over 300 genes and, notably, this gene content variation has accrued more frequently and faster than the accumulation of mutations. Moreover, due to its rapid pace, gene content variation reflects the phylogeny only at very short periods of time. Additionally, we found that the external branches of the phylogeny had almost 100 more genes than the internal branches. All in all, these results show that rapid gene turnover has been of paramount importance in producing genetic variation within this population and demonstrate the utility of genome sequencing to study alternative forms of genetic variation.
Collapse
Affiliation(s)
- Lucía Graña-Miraglia
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Luis F Lozano
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Consuelo Velázquez
- Departamento de Enfermedades Infecciosas, Instituto Nacional de CancerologíaMexico, Mexico
| | | | - Ángeles Pérez-Oseguera
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| | - Santiago Castillo-Ramírez
- Programa de Genómica Evolutiva, Centro de Ciencias Génomicas, Universidad Nacional Autónoma de MéxicoCuernavaca, Mexico
| |
Collapse
|