1
|
Gray HA, Biggs PJ, Midwinter AC, Rogers LE, Fayaz A, Akhter RN, Burgess SA. Genomic epidemiology of extended-spectrum beta-lactamase-producing Escherichia coli from humans and a river in Aotearoa New Zealand. Microb Genom 2025; 11:001341. [PMID: 39791259 PMCID: PMC11718517 DOI: 10.1099/mgen.0.001341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 12/03/2024] [Indexed: 01/12/2025] Open
Abstract
In Aotearoa New Zealand, urinary tract infections in humans are commonly caused by extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli. This group of antimicrobial-resistant bacteria are often multidrug resistant. However, there is limited information on ESBL-producing E. coli found in the environment and their link with human clinical isolates. In this study, we examined the genetic relationship between environmental and human clinical ESBL-producing E. coli and isolates collected in parallel within the same area over 14 months. Environmental samples were collected from treated effluent, stormwater and multiple locations along an Aotearoa New Zealand river. Treated effluent, stormwater and river water sourced downstream of the treated effluent outlet were the main samples that were positive for ESBL-producing E. coli (7/14 samples, 50.0%; 3/6 samples, 50%; and 15/28 samples, 54%, respectively). Whole-genome sequence comparison was carried out on 307 human clinical and 45 environmental ESBL-producing E. coli isolates. Sequence type 131 was dominant for both clinical (147/307, 47.9%) and environmental isolates (11/45, 24.4%). Only one ESBL gene was detected in each isolate. Among the clinical isolates, the most prevalent ESBL genes were bla CTX-M-27 (134/307, 43.6%) and bla CTX-M-15 (134/307, 43.6%). Among the environmental isolates, bla CTX-M-15 (28/45, 62.2%) was the most prevalent gene. A core SNP analysis of these isolates suggested that some strains were shared between humans and the local river. These results highlight the importance of understanding different transmission pathways for the spread of ESBL-producing E. coli.
Collapse
Affiliation(s)
- Holly A. Gray
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Patrick J. Biggs
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
- School of Food Technology and Natural Sciences, Massey University, Palmerston North, New Zealand
- New Zealand Food Safety Science and Research Centre, Massey University, Palmerston North, New Zealand
| | - Anne C. Midwinter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Lynn E. Rogers
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Ahmed Fayaz
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Rukhshana N. Akhter
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| | - Sara A. Burgess
- EpiLab, School of Veterinary Science, Massey University, Palmerston North, New Zealand
| |
Collapse
|
2
|
Sarawad A, Hosagoudar S, Parvatikar P. Pan-genomics: Insight into the Functional Genome, Applications, Advancements, and Challenges. Curr Genomics 2024; 26:2-14. [PMID: 39911277 PMCID: PMC11793047 DOI: 10.2174/0113892029311541240627111506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 02/07/2025] Open
Abstract
A pan-genome is a compilation of the common and unique genomes found in a given species. It incorporates the genetic information from all of the genomes sampled, producing a big and diverse set of genetic material. Pan-genomic analysis has various advantages over typical genomics research. It creates a vast and varied spectrum of genetic material by combining the genetic data from all the sampled genomes. Comparing pan-genomics analysis to conventional genomic research, there are a number of benefits. Although the most recent era of pan-genomic studies has used cutting-edge sequencing technology to shed fresh light on biological variety and improvement, the potential uses of pan-genomics in improvement have not yet been fully realized. Pan-genome research in various organisms has demonstrated that missing genetic components and the detection of significant Structural Variants (SVs) can be investigated using pan-genomic methods. Many individual-specific sequences have been linked to biological adaptability, phenotypic, and key economic attributes. This study aims to focus on how pangenome analysis uncovers genetic differences in various organisms, including human, and their effects on phenotypes, as well as how this might help us comprehend the diversity of species. The review also concentrated on potential problems and the prospects for future pangenome research.
Collapse
Affiliation(s)
- Akansha Sarawad
- Department of Biotechnology, Applied School of Science and Technology, BLDE (DU), Vijayapura, Karnataka, India
| | - Spoorti Hosagoudar
- Department of Biotechnology, Applied School of Science and Technology, BLDE (DU), Vijayapura, Karnataka, India
| | - Prachi Parvatikar
- Department of Biotechnology, Applied School of Science and Technology, BLDE (DU), Vijayapura, Karnataka, India
| |
Collapse
|
3
|
Choi DG, Baek JH, Han DM, Khan SA, Jeon CO. Comparative pangenome analysis of Enterococcus faecium and Enterococcus lactis provides new insights into the adaptive evolution by horizontal gene acquisitions. BMC Genomics 2024; 25:28. [PMID: 38172677 PMCID: PMC10765913 DOI: 10.1186/s12864-023-09945-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 12/26/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Enterococcus faecium and E. lactis are phylogenetically closely related lactic acid bacteria that are ubiquitous in nature and are known to be beneficial or pathogenic. Despite their considerable industrial and clinical importance, comprehensive studies on their evolutionary relationships and genomic, metabolic, and pathogenic traits are still lacking. Therefore, we conducted comparative pangenome analyses using all available dereplicated genomes of these species. RESULTS E. faecium was divided into two subclades: subclade I, comprising strains derived from humans, animals, and food, and the more recent phylogenetic subclade II, consisting exclusively of human-derived strains. In contrast, E. lactis strains, isolated from diverse sources including foods, humans, animals, and the environment, did not display distinct clustering based on their isolation sources. Despite having similar metabolic features, noticeable genomic differences were observed between E. faecium subclades I and II, as well as E. lactis. Notably, E. faecium subclade II strains exhibited significantly larger genome sizes and higher gene counts compared to both E. faecium subclade I and E. lactis strains. Furthermore, they carried a higher abundance of antibiotic resistance, virulence, bacteriocin, and mobile element genes. Phylogenetic analysis of antibiotic resistance and virulence genes suggests that E. faecium subclade II strains likely acquired these genes through horizontal gene transfer, facilitating their effective adaptation in response to antibiotic use in humans. CONCLUSIONS Our study offers valuable insights into the adaptive evolution of E. faecium strains, enabling their survival as pathogens in the human environment through horizontal gene acquisitions.
Collapse
Affiliation(s)
- Dae Gyu Choi
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Ju Hye Baek
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Dong Min Han
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea
| | - Shehzad Abid Khan
- Atta‑ur‑Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), 44000, Islamabad, Pakistan
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, 84, HeukSeok-Ro, Dongjak-Gu, 06974, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Raineri EJM, Maaß S, Wang M, Brushett S, Palma Medina LM, Sampol Escandell N, Altulea D, Raangs E, de Jong A, Vera Murguia E, Feil EJ, Friedrich AW, Buist G, Becher D, García-Cobos S, Couto N, van Dijl JM. Staphylococcus aureus populations from the gut and the blood are not distinguished by virulence traits-a critical role of host barrier integrity. MICROBIOME 2022; 10:239. [PMID: 36567349 PMCID: PMC9791742 DOI: 10.1186/s40168-022-01419-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The opportunistic pathogen Staphylococcus aureus is an asymptomatically carried member of the microbiome of about one third of the human population at any given point in time. Body sites known to harbor S. aureus are the skin, nasopharynx, and gut. In particular, the mechanisms allowing S. aureus to pass the gut epithelial barrier and to invade the bloodstream were so far poorly understood. Therefore, the objective of our present study was to investigate the extent to which genetic differences between enteric S. aureus isolates and isolates that caused serious bloodstream infections contribute to the likelihood of invasive disease. RESULTS Here, we present genome-wide association studies (GWAS) that compare the genome sequences of 69 S. aureus isolates from enteric carriage by healthy volunteers and 95 isolates from bloodstream infections. We complement our GWAS results with a detailed characterization of the cellular and extracellular proteomes of the representative gut and bloodstream isolates, and by assaying the virulence of these isolates with infection models based on human gut epithelial cells, human blood cells, and a small animal infection model. Intriguingly, our results show that enteric and bloodstream isolates with the same sequence type (ST1 or ST5) are very similar to each other at the genomic and proteomic levels. Nonetheless, bloodstream isolates are not necessarily associated with an invasive profile. Furthermore, we show that the main decisive factor preventing infection of gut epithelial cells in vitro is the presence of a tight barrier. CONCLUSIONS Our data show that virulence is a highly variable trait, even within a single clone. Importantly, however, there is no evidence that blood stream isolates possess a higher virulence potential than those from the enteric carriage. In fact, some gut isolates from healthy carriers were more virulent than bloodstream isolates. Based on our present observations, we propose that the integrity of the gut epithelial layer, rather than the pathogenic potential of the investigated enteric S. aureus isolates, determines whether staphylococci from the gut microbiome will become invasive pathogens. Video Abstract.
Collapse
Affiliation(s)
- Elisa J. M. Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Sandra Maaß
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Siobhan Brushett
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Laura M. Palma Medina
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Department of Medicine Huddinge, Present Address: Center for Infectious Medicine, Karolinska Institute, Huddinge, Sweden
| | - Neus Sampol Escandell
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dania Altulea
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Division of Nephrology, Department of Internal Medicine, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Erwin Raangs
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Anne de Jong
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, The Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Edward J. Feil
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Alex W. Friedrich
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Dörte Becher
- Department of Microbial Proteomics, Institute of Microbiology, University of Greifswald, Greifswald, Germany
| | - Silvia García-Cobos
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Present address: Reference and Research Laboratory On Antimicrobial Resistance and Healthcare Associated Infections, Centro Nacional de Microbiología, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Natacha Couto
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Biology and Biochemistry, The Milner Centre for Evolution, University of Bath, Bath, UK
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Zamudio R, Boerlin P, Beyrouthy R, Madec JY, Schwarz S, Mulvey MR, Zhanel GG, Cormier A, Chalmers G, Bonnet R, Haenni M, Eichhorn I, Kaspar H, Garcia-Fierro R, Wood JLN, Mather AE. Dynamics of extended-spectrum cephalosporin resistance genes in Escherichia coli from Europe and North America. Nat Commun 2022; 13:7490. [PMID: 36509735 PMCID: PMC9744880 DOI: 10.1038/s41467-022-34970-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 11/11/2022] [Indexed: 12/14/2022] Open
Abstract
Extended-spectrum cephalosporins (ESCs) are critically important antimicrobial agents for human and veterinary medicine. ESC resistance (ESC-R) genes have spread worldwide through plasmids and clonal expansion, yet the distribution and dynamics of ESC-R genes in different ecological compartments are poorly understood. Here we use whole genome sequence data of Enterobacterales isolates of human and animal origin from Europe and North America and identify contrasting temporal dynamics. AmpC β-lactamases were initially more dominant in North America in humans and farm animals, only later emerging in Europe. In contrast, specific extended-spectrum β-lactamases (ESBLs) were initially common in animals from Europe and later emerged in North America. This study identifies differences in the relative importance of plasmids and clonal expansion across different compartments for the spread of different ESC-R genes. Understanding the mechanisms of transmission will be critical in the design of interventions to reduce the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Roxana Zamudio
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK
| | - Patrick Boerlin
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Racha Beyrouthy
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Jean-Yves Madec
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Stefan Schwarz
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Michael R Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, R3E 3R2, Canada
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Ashley Cormier
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Gabhan Chalmers
- Department of Pathobiology, University of Guelph, Guelph, N1G 2W1, Canada
| | - Richard Bonnet
- Microbes Intestin Inflammation et Susceptibilité de l'Hôte (M2ISH), Faculté de Médecine, Université Clermont Auvergne, Clermont-Ferrand, 63001, France.,Centre National de Référence de la résistance aux antibiotiques, Centre Hospitalier Universitaire de Clermont-Ferrand, Clermont-Ferrand, 63000, France
| | - Marisa Haenni
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - Inga Eichhorn
- Institute of Microbiology and Epizootics, Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany.,Veterinary Centre for Resistance Research (TZR), Department of Veterinary Medicine, Freie Universität Berlin, Berlin, 14163, Germany
| | - Heike Kaspar
- Department Method Standardisation, Resistance to Antibiotics Unit Monitoring of Resistance to Antibiotics, Federal Office of Consumer Protection and Food Safety, Berlin, 12277, Germany
| | - Raquel Garcia-Fierro
- Unité Antibiorésistance et Virulence Bactériennes, Anses Laboratoire de Lyon, Université de Lyon, Lyon, 69007, France
| | - James L N Wood
- Department of Veterinary Medicine, University of Cambridge, Cambridge, CB3 0ES, UK
| | - Alison E Mather
- Quadram Institute Bioscience, Norwich Research Park, Norwich, NR4 7UQ, UK. .,University of East Anglia, Norwich, NR4 7TJ, UK.
| |
Collapse
|
6
|
Leigh RJ, McKenna C, McWade R, Lynch B, Walsh F. Comparative genomics and pangenomics of vancomycin-resistant and susceptible Enterococcus faecium from Irish hospitals. J Med Microbiol 2022; 71. [DOI: 10.1099/jmm.0.001590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction.
Enterococcus faecium
has emerged as an important nosocomial pathogen, which is increasingly difficult to treat due to the genetic acquisition of vancomycin resistance. Ireland has a recalcitrant vancomycin-resistant bloodstream infection rate compared to other developed countries.
Hypothesis/Gap statement. Vancomycin resistance rates persist amongst
E. faecium
isolates from Irish hospitals. The evolutionary genomics governing these trends have not been fully elucidated.
Methodology. A set of 28 vancomycin-resistant isolates was sequenced to construct a dataset alongside 61 other publicly available Irish genomes. This dataset was extensively analysed using in silico methodologies (comparative genomics, pangenomics, phylogenetics, genotypics and comparative functional analyses) to uncover distinct evolutionary, coevolutionary and clinically relevant population trends.
Results. These results suggest that a stable (in terms of genome size, GC% and number of genes), yet genetically diverse population (in terms of gene content) of
E. faecium
persists in Ireland with acquired resistance arising via plasmid acquisition (vanA) or, to a lesser extent, chromosomal recombination (vanB). Population analysis revealed five clusters with one cluster partitioned into four clades which transcend isolation dates. Pangenomic and recombination analyses revealed an open (whole genome and chromosomal specific) pangenome illustrating a rampant evolutionary pattern. Comparative resistomics and virulomics uncovered distinct chromosomal and mobilomal propensity for multidrug resistance, widespread chromosomal point-mutation-mediated resistance and chromosomally harboured arsenals of virulence factors. Interestingly, a potential difference in biofilm formation strategies was highlighted by coevolutionary analysis, suggesting differential biofilm genotypes between vanA and vanB isolates.
Conclusions. These results highlight the evolutionary history of Irish
E. faecium
isolates and may provide insight into underlying infection dynamics in a clinical setting. Due to the apparent ease of vancomycin resistance acquisition over time, susceptible
E. faecium
should be concurrently reduced in Irish hospitals to mitigate potential resistant infections.
Collapse
Affiliation(s)
- Robert J. Leigh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Chloe McKenna
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| | - Robert McWade
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Breda Lynch
- Department of Microbiology, Mater Misericordiae University Hospital, Eccles St., Dublin 7, D07 R2WY, Ireland
| | - Fiona Walsh
- Department of Biology, Maynooth University, Mariavilla, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
7
|
Murr L, Huber I, Pavlovic M, Guertler P, Messelhaeusser U, Weiss M, Ehrmann M, Tuschak C, Bauer H, Wenning M, Busch U, Bretschneider N. Whole-Genome Sequence Comparisons of Listeria monocytogenes Isolated from Meat and Fish Reveal High Inter- and Intra-Sample Diversity. Microorganisms 2022; 10:2120. [PMID: 36363712 PMCID: PMC9698462 DOI: 10.3390/microorganisms10112120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/15/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Interpretation of whole-genome sequencing (WGS) data for foodborne outbreak investigations is complex, as the genetic diversity within processing plants and transmission events need to be considered. In this study, we analyzed 92 food-associated Listeria monocytogenes isolates by WGS-based methods. We aimed to examine the genetic diversity within meat and fish production chains and to assess the applicability of suggested thresholds for clustering of potentially related isolates. Therefore, meat-associated isolates originating from the same samples or processing plants as well as fish-associated isolates were analyzed as distinct sets. In silico serogrouping, multilocus sequence typing (MLST), core genome MLST (cgMLST), and pangenome analysis were combined with screenings for prophages and genetic traits. Isolates of the same subtypes (cgMLST types (CTs) or MLST sequence types (STs)) were additionally compared by SNP calling. This revealed the occurrence of more than one CT within all three investigated plants and within two samples. Analysis of the fish set resulted in predominant assignment of isolates from pangasius catfish and salmon to ST2 and ST121, respectively, potentially indicating persistence within the respective production chains. The approach not only allowed the detection of distinct subtypes but also the determination of differences between closely related isolates, which need to be considered when interpreting WGS data for surveillance.
Collapse
Affiliation(s)
- Larissa Murr
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Ingrid Huber
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Melanie Pavlovic
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Patrick Guertler
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Ute Messelhaeusser
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Manuela Weiss
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Matthias Ehrmann
- TUM School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | - Christian Tuschak
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Hans Bauer
- Bavarian Health and Food Safety Authority (LGL), 91058 Erlangen, Germany
| | - Mareike Wenning
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Ulrich Busch
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| | - Nancy Bretschneider
- Bavarian Health and Food Safety Authority (LGL), 85764 Oberschleissheim, Germany
| |
Collapse
|
8
|
Pangenomics in Microbial and Crop Research: Progress, Applications, and Perspectives. Genes (Basel) 2022; 13:genes13040598. [PMID: 35456404 PMCID: PMC9031676 DOI: 10.3390/genes13040598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 01/25/2023] Open
Abstract
Advances in sequencing technologies and bioinformatics tools have fueled a renewed interest in whole genome sequencing efforts in many organisms. The growing availability of multiple genome sequences has advanced our understanding of the within-species diversity, in the form of a pangenome. Pangenomics has opened new avenues for future research such as allowing dissection of complex molecular mechanisms and increased confidence in genome mapping. To comprehensively capture the genetic diversity for improving plant performance, the pangenome concept is further extended from species to genus level by the inclusion of wild species, constituting a super-pangenome. Characterization of pangenome has implications for both basic and applied research. The concept of pangenome has transformed the way biological questions are addressed. From understanding evolution and adaptation to elucidating host–pathogen interactions, finding novel genes or breeding targets to aid crop improvement to design effective vaccines for human prophylaxis, the increasing availability of the pangenome has revolutionized several aspects of biological research. The future availability of high-resolution pangenomes based on reference-level near-complete genome assemblies would greatly improve our ability to address complex biological problems.
Collapse
|
9
|
Gladstone RA, Siira L, Brynildsrud OB, Vestrheim DF, Turner P, Clarke SC, Srifuengfung S, Ford R, Lehmann D, Egorova E, Voropaeva E, Haraldsson G, Kristinsson KG, McGee L, Breiman RF, Bentley SD, Sheppard CL, Fry NK, Corander J, Toropainen M, Steens A. International links between Streptococcus pneumoniae vaccine serotype 4 sequence type (ST) 801 in Northern European shipyard outbreaks of invasive pneumococcal disease. Vaccine 2022; 40:1054-1060. [PMID: 34996643 PMCID: PMC8820377 DOI: 10.1016/j.vaccine.2021.10.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/01/2021] [Accepted: 10/20/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Pneumococcal disease outbreaks of vaccine preventable serotype 4 sequence type (ST)801 in shipyards have been reported in several countries. We aimed to use genomics to establish any international links between them. METHODS Sequence data from ST801-related outbreak isolates from Norway (n = 17), Finland (n = 11) and Northern Ireland (n = 2) were combined with invasive pneumococcal disease surveillance from the respective countries, and ST801-related genomes from an international collection (n = 41 of > 40,000), totalling 106 genomes. Raw data were mapped and recombination excluded before phylogenetic dating. RESULTS Outbreak isolates were relatively diverse, with up to 100 SNPs (single nucleotide polymorphisms) and a common ancestor estimated around the year 2000. However, 19 Norwegian and Finnish isolates were nearly indistinguishable (0-2 SNPs) with the common ancestor dated around 2017. CONCLUSION The total diversity of ST801 within the outbreaks could not be explained by recent transmission alone, suggesting that harsh environmental and associated living conditions reported in the shipyards may facilitate invasion of colonising pneumococci. However, near identical strains in the Norwegian and Finnish outbreaks does suggest that transmission between international shipyards also contributed to those outbreaks. This indicates the need for improved preventative measures in this working population including pneumococcal vaccination.
Collapse
Affiliation(s)
- R A Gladstone
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - L Siira
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - O B Brynildsrud
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - D F Vestrheim
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| | - P Turner
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; Cambodia Oxford Medical Research Unit, Angkor Hospital for Children, Siem Reap, Cambodia
| | - S C Clarke
- Faculty of Medicine and Institute of Life Sciences, University of Southampton, UK; NIHR Southampton Biomedical Research Centre, University Hospital Southampton NHS Trust, Southampton, United Kingdom; Global Health Research Institute, University of Southampton, Southampton, United Kingdom; School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia; Centre for Translational Research, IMU Institute for Research, Development and Innovation (IRDI), Kuala Lumpur, Malaysia
| | | | - R Ford
- Papua New Guinea Institute of Medical Research, PO Box 60, Goroka 441, Eastern Highlands Province, Papua New Guinea
| | - D Lehmann
- Telethon Kids Institute, the University of Western Australia, Perth, WA, Australia
| | - E Egorova
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - E Voropaeva
- G.N. Gabrichevsky Research Institute for Epidemiology and Microbiology, Moscow, Russia
| | - G Haraldsson
- Department of Clinical Microbiology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland and Faculty of Medicine, University of Iceland
| | - K G Kristinsson
- Department of Clinical Microbiology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland and Faculty of Medicine, University of Iceland
| | - L McGee
- Centers for Disease Control and Prevention, Atlanta, USA
| | - R F Breiman
- Emory Global Health Institute, Atlanta, USA; Rollins School Public Health, Emory University, USA
| | - S D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - C L Sheppard
- Vaccine Preventable Bacteria Section, Public Health England - National Infection Service, London, United Kingdom
| | - N K Fry
- Vaccine Preventable Bacteria Section, Public Health England - National Infection Service, London, United Kingdom; Immunisation and Countermeasures Division, Public Health England - National Infection Service, London, United Kingdom
| | - J Corander
- Department of Biostatistics, Institute of Basic Medical Sciences, University of Oslo, Oslo, Norway; Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | - M Toropainen
- Department of Health Security, Finnish Institute for Health and Welfare (THL), Helsinki, Finland
| | - A Steens
- Division of Infection Control and Environmental Health, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
10
|
Abouelfetouh A, Mattock J, Turner D, Li E, Evans BA. Diversity of carbapenem-resistant Acinetobacter baumannii and bacteriophage-mediated spread of the Oxa23 carbapenemase. Microb Genom 2022; 8. [PMID: 35104206 PMCID: PMC8942029 DOI: 10.1099/mgen.0.000752] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Carbapenem-resistant Acinetobacter baumannii are prevalent in low- and middle-income countries such as Egypt, but little is known about the molecular epidemiology and mechanisms of resistance in these settings. Here, we characterize carbapenem-resistant A. baumannii from Alexandria, Egypt, and place it in a regional context. Fifty-four carbapenem-resistant isolates from Alexandria Main University Hospital (AMUH), Alexandria, Egypt, collected between 2010 and 2015 were genome sequenced using Illumina technology. Genomes were de novo assembled and annotated. Genomes for 36 isolates from the Middle East region were downloaded from GenBank. The core-gene compliment was determined using Roary, and analyses of recombination were performed in Gubbins. Multilocus sequence typing (MLST) sequence type (ST) and antibiotic-resistance genes were identified. The majority of Egyptian isolates belonged to one of three major clades, corresponding to Pasteur MLST clonal complex (CCPAS) 1, CCPAS2 and STPAS158. Strains belonging to STPAS158 have been reported almost exclusively from North Africa, the Middle East and Pakistan, and may represent a region-specific lineage. All isolates carried an oxa23 gene, six carried bla NDM-1 and one carried bla NDM-2. The oxa23 gene was located on a variety of different mobile elements, with Tn2006 predominant in CCPAS2 strains, and Tn2008 predominant in other lineages. Of particular concern, in 8 of the 13 CCPAS1 strains, the oxa23 gene was located in a temperate bacteriophage phiOXA, previously identified only once before in a CCPAS1 clone from the USA military. The carbapenem-resistant A. baumannii population in AMUH is very diverse, and indicates an endemic circulating population, including a region-specific lineage. A major mechanism for oxa23 dissemination in CCPAS1 isolates appears to be a bacteriophage, presenting new concerns about the ability of these carbapenemases to spread throughout the bacterial population.
Collapse
Affiliation(s)
- Alaa Abouelfetouh
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | | | - Dann Turner
- Department of Applied Sciences, University of the West of England, Bristol, UK
| | - Erica Li
- Norwich Medical School, University of East Anglia, Norwich, UK
| | | |
Collapse
|
11
|
AIM and Evolutionary Theory. Artif Intell Med 2022. [DOI: 10.1007/978-3-030-64573-1_41] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
12
|
Gomes-Neto JC, Pavlovikj N, Cano C, Abdalhamid B, Al-Ghalith GA, Loy JD, Knights D, Iwen PC, Chaves BD, Benson AK. Heuristic and Hierarchical-Based Population Mining of Salmonella enterica Lineage I Pan-Genomes as a Platform to Enhance Food Safety. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2021. [DOI: 10.3389/fsufs.2021.725791] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The recent incorporation of bacterial whole-genome sequencing (WGS) into Public Health laboratories has enhanced foodborne outbreak detection and source attribution. As a result, large volumes of publicly available datasets can be used to study the biology of foodborne pathogen populations at an unprecedented scale. To demonstrate the application of a heuristic and agnostic hierarchical population structure guided pan-genome enrichment analysis (PANGEA), we used populations of S. enterica lineage I to achieve two main objectives: (i) show how hierarchical population inquiry at different scales of resolution can enhance ecological and epidemiological inquiries; and (ii) identify population-specific inferable traits that could provide selective advantages in food production environments. Publicly available WGS data were obtained from NCBI database for three serovars of Salmonella enterica subsp. enterica lineage I (S. Typhimurium, S. Newport, and S. Infantis). Using the hierarchical genotypic classifications (Serovar, BAPS1, ST, cgMLST), datasets from each of the three serovars showed varying degrees of clonal structuring. When the accessory genome (PANGEA) was mapped onto these hierarchical structures, accessory loci could be linked with specific genotypes. A large heavy-metal resistance mobile element was found in the Monophasic ST34 lineage of S. Typhimurium, and laboratory testing showed that Monophasic isolates have on average a higher degree of copper resistance than the Biphasic ones. In S. Newport, an extra sugE gene copy was found among most isolates of the ST45 lineage, and laboratory testing of multiple isolates confirmed that isolates of S. Newport ST45 were on average less sensitive to the disinfectant cetylpyridimium chloride than non-ST45 isolates. Lastly, data-mining of the accessory genomic content of S. Infantis revealed two cryptic Ecotypes with distinct accessory genomic content and distinct ecological patterns. Poultry appears to be the major reservoir for Ecotype 1, and temporal analysis further suggested a recent ecological succession, with Ecotype 2 apparently being displaced by Ecotype 1. Altogether, the use of a heuristic hierarchical-based population structure analysis that includes bacterial pan-genomes (core and accessory genomes) can (1) improve genomic resolution for mapping populations and accessing epidemiological patterns; and (2) define lineage-specific informative loci that may be associated with survival in the food chain.
Collapse
|
13
|
Population Genomics of emm4 Group A Streptococcus Reveals Progressive Replacement with a Hypervirulent Clone in North America. mSystems 2021; 6:e0049521. [PMID: 34374563 PMCID: PMC8409732 DOI: 10.1128/msystems.00495-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Clonal replacement is a major driver for changes in bacterial disease epidemiology. Recently, it has been proposed that episodic emergence of novel, hypervirulent clones of group A Streptococcus (GAS) results from acquisition of a 36-kb DNA region leading to increased expression of the cytotoxins Nga (NADase) and SLO (streptolysin O). We previously described a gene fusion event involving the gene encoding the GAS M protein (emm) and an adjacent M-like protein (enn) in the emm4 GAS population, a GAS emm type that lacks the hyaluronic acid capsule. Using whole-genome sequencing of a temporally and geographically diverse set of 1,126 isolates, we discovered that the North American emm4 GAS population has undergone clonal replacement with emergent GAS strains completely replacing historical isolates by 2017. Emergent emm4 GAS strains contained a handful of small genetic variations, including the emm-enn gene fusion, and showed a marked in vitro growth defect compared to historical strains. In contrast to other previously described GAS clonal replacement events, emergent emm4 GAS strains were not defined by acquisition of exogenous DNA and had no significant increase in transcript levels of nga and slo toxin genes via RNA sequencing and quantitative real-time PCR analysis relative to historic strains. Despite the in vitro growth differences, emergent emm4 GAS strains were hypervirulent in mice and ex vivo growth in human blood compared to historical strains. Thus, these data detail the emergence and dissemination of a hypervirulent acapsular GAS clone defined by small, endogenous genetic variation, thereby defining a novel model for GAS strain replacement. IMPORTANCE Severe invasive infections caused by group A Streptococcus (GAS) result in substantial morbidity and mortality in children and adults worldwide. Previously, GAS clonal strain replacement has been attributed to acquisition of exogenous DNA leading to novel virulence gene acquisition or increased virulence gene expression. Our study of type emm4 GAS identified emergence of a hypervirulent GAS clade defined by variation in endogenous DNA content and lacking augmented toxin gene expression relative to replaced strains. These findings expand our understanding of the molecular mechanisms underlying bacterial clonal emergence.
Collapse
|
14
|
Senghore M, Tientcheu PE, Worwui AK, Jarju S, Okoi C, Suso SMS, Foster-Nyarko E, Ebruke C, Sonko M, Kourna MH, Agossou J, Tsolenyanu E, Renner LA, Ansong D, Sanneh B, Cisse CB, Boula A, Miwanda B, Lo SW, Gladstone RA, Schwartz S, Hawkins P, McGee L, Klugman KP, Breiman RF, Bentley SD, Mwenda JM, Kwambana-Adams BA, Antonio M. Phylogeography and resistome of pneumococcal meningitis in West Africa before and after vaccine introduction. Microb Genom 2021; 7. [PMID: 34328412 PMCID: PMC8477402 DOI: 10.1099/mgen.0.000506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 12/17/2020] [Indexed: 11/11/2022] Open
Abstract
Despite contributing to the large disease burden in West Africa, little is known about the genomic epidemiology of Streptococcus pneumoniae which cause meningitis among children under 5 years old in the region. We analysed whole-genome sequencing data from 185 S. pneumoniae isolates recovered from suspected paediatric meningitis cases as part of the World Health Organization (WHO) invasive bacterial diseases surveillance from 2010 to 2016. The phylogeny was reconstructed, accessory genome similarity was computed and antimicrobial-resistance patterns were inferred from the genome data and compared to phenotypic resistance from disc diffusion. We studied the changes in the distribution of serotypes pre- and post-pneumococcal conjugate vaccine (PCV) introduction in the Central and Western sub-regions separately. The overall distribution of non-vaccine, PCV7 (4, 6B, 9V, 14, 18C, 19F and 23F) and additional PCV13 serotypes (1, 3, 5, 6A, 19A and 7F) did not change significantly before and after PCV introduction in the Central region (Fisher's test P value 0.27) despite an increase in the proportion of non-vaccine serotypes to 40 % (n=6) in the post-PCV introduction period compared to 21.9 % (n=14). In the Western sub-region, PCV13 serotypes were more dominant among isolates from The Gambia following the introduction of PCV7, 81 % (n=17), compared to the pre-PCV period in neighbouring Senegal, 51 % (n=27). The phylogeny illustrated the diversity of strains associated with paediatric meningitis in West Africa and highlighted the existence of phylogeographical clustering, with isolates from the same sub-region clustering and sharing similar accessory genome content. Antibiotic-resistance genotypes known to confer resistance to penicillin, chloramphenicol, co-trimoxazole and tetracycline were detected across all sub-regions. However, there was no discernible trend linking the presence of resistance genotypes with the vaccine introduction period or whether the strain was a vaccine or non-vaccine serotype. Resistance genotypes appeared to be conserved within selected sub-clades of the phylogenetic tree, suggesting clonal inheritance. Our data underscore the need for continued surveillance on the emergence of non-vaccine serotypes as well as chloramphenicol and penicillin resistance, as these antibiotics are likely still being used for empirical treatment in low-resource settings. This article contains data hosted by Microreact.
Collapse
Affiliation(s)
- Madikay Senghore
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, 677 Huntington Avenue, Boston, MA, USA
| | - Peggy-Estelle Tientcheu
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Archibald Kwame Worwui
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Sheikh Jarju
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Catherine Okoi
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Sambou M S Suso
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Ebenezer Foster-Nyarko
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Chinelo Ebruke
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| | - Mohamadou Sonko
- Hopital d'Enfants Albert Royer, BP 5297, Fann, Dakar, Senegal
| | | | - Joseph Agossou
- Department of Mother and Child, Faculty of Medicine, University of Parakou, Parakou, Benin
- Borgou Regional University Teaching Hospital, Parakou, Benin
| | - Enyonam Tsolenyanu
- Laboratoire Microbiologie, Centre Hospitalier Universitaire de Tokoin Lomé, BP 57, Lomé, Togo
| | - Lorna Awo Renner
- Central Laboratory Services, Korle-Bu Teaching Hospital, P.O. Box 77, Accra, Ghana
| | - Daniel Ansong
- Komfo Anokye Teaching Hospital, P.O. Box 1934, Kumasi, Ghana
| | - Bakary Sanneh
- Edward Francis Small Teaching Hospital, Banjul, The Gambia
| | - Catherine Boni Cisse
- Laboratoire Central du CHU de Yopougon, Institut Pasteur de Cote d'Ivoire, Abidjan, Ivory Coast
| | - Angeline Boula
- Centre Mere et Enfant de la Fondation, Chantal Biya, Yaounde, Cameroon
| | - Berthe Miwanda
- Institut National de Recherche Biomedicale, Kinshasa, Democratic Republic of Congo
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Hinxton, UK
| | | | | | - Paulina Hawkins
- Centers for Disease Control and Prevention, Atlanta, GA, USA
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Lesley McGee
- Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Keith P Klugman
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Robert F Breiman
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
- Emory Global Health Institute, Atlanta, GA, USA
| | | | - Jason M Mwenda
- World Health Organization Regional Office for Africa, BP 6, Brazzaville, Republic of Congo
| | - Brenda Anna Kwambana-Adams
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
- NIHR Global Health Research Unit on Mucosal Pathogens, Division of Infection and Immunity, University College London, London, UK
| | - Martin Antonio
- WHO Collaborating Centre for New Vaccines Surveillance, Medical Research Council Unit The Gambia at London School of Hygiene and Tropical Medicine, P.O. Box 273, Banjul, The Gambia
| |
Collapse
|
15
|
Pöntinen AK, Top J, Arredondo-Alonso S, Tonkin-Hill G, Freitas AR, Novais C, Gladstone RA, Pesonen M, Meneses R, Pesonen H, Lees JA, Jamrozy D, Bentley SD, Lanza VF, Torres C, Peixe L, Coque TM, Parkhill J, Schürch AC, Willems RJL, Corander J. Apparent nosocomial adaptation of Enterococcus faecalis predates the modern hospital era. Nat Commun 2021; 12:1523. [PMID: 33750782 PMCID: PMC7943827 DOI: 10.1038/s41467-021-21749-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 02/05/2021] [Indexed: 12/20/2022] Open
Abstract
Enterococcus faecalis is a commensal and nosocomial pathogen, which is also ubiquitous in animals and insects, representing a classical generalist microorganism. Here, we study E. faecalis isolates ranging from the pre-antibiotic era in 1936 up to 2018, covering a large set of host species including wild birds, mammals, healthy humans, and hospitalised patients. We sequence the bacterial genomes using short- and long-read techniques, and identify multiple extant hospital-associated lineages, with last common ancestors dating back as far as the 19th century. We find a population cohesively connected through homologous recombination, a metabolic flexibility despite a small genome size, and a stable large core genome. Our findings indicate that the apparent hospital adaptations found in hospital-associated E. faecalis lineages likely predate the "modern hospital" era, suggesting selection in another niche, and underlining the generalist nature of this nosocomial pathogen.
Collapse
Affiliation(s)
- Anna K Pöntinen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway.
| | - Janetta Top
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Sergio Arredondo-Alonso
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | - Ana R Freitas
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Carla Novais
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Rebecca A Gladstone
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Maiju Pesonen
- Oslo Centre for Biostatistics and Epidemiology (OCBE), Oslo University Hospital Research Support Services, Oslo, Norway
| | - Rodrigo Meneses
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Henri Pesonen
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - John A Lees
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London, UK
| | - Dorota Jamrozy
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK
| | | | | | - Carmen Torres
- Department of Food and Agriculture, Area of Biochemistry and Molecular Biology, University of La Rioja, Logroño, Spain
| | - Luisa Peixe
- UCIBIO/REQUIMTE, Laboratory of Microbiology, Biological Sciences Department, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Teresa M Coque
- Department of Microbiology, Ramón y Cajal Institute for Health Research Ramón y Cajal University Hospital, Madrid, Spain
- CIBER in Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Julian Parkhill
- Wellcome Sanger Institute, Cambridge, UK
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Anita C Schürch
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Rob J L Willems
- Department of Medical Microbiology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jukka Corander
- Department of Biostatistics, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Parasites and Microbes, Wellcome Sanger Institute, Cambridge, UK.
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
16
|
Perrin A, Rocha EPC. PanACoTA: a modular tool for massive microbial comparative genomics. NAR Genom Bioinform 2021; 3:lqaa106. [PMID: 33575648 PMCID: PMC7803007 DOI: 10.1093/nargab/lqaa106] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 11/10/2020] [Accepted: 12/01/2020] [Indexed: 02/06/2023] Open
Abstract
The study of the gene repertoires of microbial species, their pangenomes, has become a key part of microbial evolution and functional genomics. Yet, the increasing number of genomes available complicates the establishment of the basic building blocks of comparative genomics. Here, we present PanACoTA (https://github.com/gem-pasteur/PanACoTA), a tool that allows to download all genomes of a species, build a database with those passing quality and redundancy controls, uniformly annotate and then build their pangenome, several variants of core genomes, their alignments and a rapid but accurate phylogenetic tree. While many programs building pangenomes have become available in the last few years, we have focused on a modular method, that tackles all the key steps of the process, from download to phylogenetic inference. While all steps are integrated, they can also be run separately and multiple times to allow rapid and extensive exploration of the parameters of interest. PanACoTA is built in Python3, includes a singularity container and features to facilitate its future development. We believe PanACoTa is an interesting addition to the current set of comparative genomics tools, since it will accelerate and standardize the more routine parts of the work, allowing microbial genomicists to more quickly tackle their specific questions.
Collapse
Affiliation(s)
- Amandine Perrin
- Microbial Evolutionary Genomics, CNRS, UMR3525, Institut Pasteur, 28, rue Dr Roux, Paris 75015, France
| | - Eduardo P C Rocha
- Microbial Evolutionary Genomics, CNRS, UMR3525, Institut Pasteur, 28, rue Dr Roux, Paris 75015, France
| |
Collapse
|
17
|
AIM and Evolutionary Theory. Artif Intell Med 2021. [DOI: 10.1007/978-3-030-58080-3_41-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
18
|
Current status of pan-genome analysis for pathogenic bacteria. Curr Opin Biotechnol 2020; 63:54-62. [DOI: 10.1016/j.copbio.2019.12.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/16/2019] [Accepted: 12/02/2019] [Indexed: 02/07/2023]
|
19
|
McNally A, Kallonen T, Connor C, Abudahab K, Aanensen DM, Horner C, Peacock SJ, Parkhill J, Croucher NJ, Corander J. Diversification of Colonization Factors in a Multidrug-Resistant Escherichia coli Lineage Evolving under Negative Frequency-Dependent Selection. mBio 2019; 10:e00644-19. [PMID: 31015329 PMCID: PMC6479005 DOI: 10.1128/mbio.00644-19] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/21/2019] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli is a major cause of bloodstream and urinary tract infections globally. The wide dissemination of multidrug-resistant (MDR) strains of extraintestinal pathogenic E. coli (ExPEC) poses a rapidly increasing public health burden due to narrowed treatment options and increased risk of failure to clear an infection. Here, we present a detailed population genomic analysis of the ExPEC ST131 clone, in which we seek explanations for its success as an emerging pathogenic strain beyond the acquisition of antimicrobial resistance (AMR) genes. We show evidence for evolution toward separate ecological niches for the main clades of ST131 and differential evolution of anaerobic metabolism, key colonization, and virulence factors. We further demonstrate that negative frequency-dependent selection acting across accessory loci is a major mechanism that has shaped the population evolution of this pathogen.IMPORTANCE Infections with multidrug-resistant (MDR) strains of Escherichia coli are a significant global public health concern. To combat these pathogens, we need a deeper understanding of how they evolved from their background populations. By understanding the processes that underpin their emergence, we can design new strategies to limit evolution of new clones and combat existing clones. By combining population genomics with modelling approaches, we show that dominant MDR clones of E. coli are under the influence of negative frequency-dependent selection, preventing them from rising to fixation in a population. Furthermore, we show that this selection acts on genes involved in anaerobic metabolism, suggesting that this key trait, and the ability to colonize human intestinal tracts, is a key step in the evolution of MDR clones of E. coli.
Collapse
Affiliation(s)
- Alan McNally
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Teemu Kallonen
- Infection Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
| | - Christopher Connor
- Institute of Microbiology and Infection, University of Birmingham, Birmingham, United Kingdom
| | - Khalil Abudahab
- Infection Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - David M Aanensen
- Infection Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Carolyne Horner
- British Society of Antimicrobial Chemotherapy, Birmingham, United Kingdom
| | - Sharon J Peacock
- Infection Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Julian Parkhill
- Infection Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Nicholas J Croucher
- Faculty of Medicine, School of Public Health, Imperial College, London, United Kingdom
| | - Jukka Corander
- Infection Genomics, Wellcome Sanger Institute, Cambridge, United Kingdom
- Department of Biostatistics, University of Oslo, Oslo, Norway
- Department of Mathematics and Statistics, University of Helsinki, Helsinki, Finland
| |
Collapse
|
20
|
Lees JA, Harris SR, Tonkin-Hill G, Gladstone RA, Lo SW, Weiser JN, Corander J, Bentley SD, Croucher NJ. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res 2019; 29:304-316. [PMID: 30679308 PMCID: PMC6360808 DOI: 10.1101/gr.241455.118] [Citation(s) in RCA: 245] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/10/2018] [Indexed: 12/02/2022]
Abstract
The routine use of genomics for disease surveillance provides the opportunity for high-resolution bacterial epidemiology. Current whole-genome clustering and multilocus typing approaches do not fully exploit core and accessory genomic variation, and they cannot both automatically identify, and subsequently expand, clusters of significantly similar isolates in large data sets spanning entire species. Here, we describe PopPUNK (Population Partitioning Using Nucleotide K -mers), a software implementing scalable and expandable annotation- and alignment-free methods for population analysis and clustering. Variable-length k-mer comparisons are used to distinguish isolates' divergence in shared sequence and gene content, which we demonstrate to be accurate over multiple orders of magnitude using data from both simulations and genomic collections representing 10 taxonomically widespread species. Connections between closely related isolates of the same strain are robustly identified, despite interspecies variation in the pairwise distance distributions that reflects species' diverse evolutionary patterns. PopPUNK can process 103-104 genomes in a single batch, with minimal memory use and runtimes up to 200-fold faster than existing model-based methods. Clusters of strains remain consistent as new batches of genomes are added, which is achieved without needing to reanalyze all genomes de novo. This facilitates real-time surveillance with consistent cluster naming between studies and allows for outbreak detection using hundreds of genomes in minutes. Interactive visualization and online publication is streamlined through the automatic output of results to multiple platforms. PopPUNK has been designed as a flexible platform that addresses important issues with currently used whole-genome clustering and typing methods, and has potential uses across bacterial genetics and public health research.
Collapse
Affiliation(s)
- John A Lees
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Simon R Harris
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Gerry Tonkin-Hill
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Rebecca A Gladstone
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Stephanie W Lo
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
| | - Jeffrey N Weiser
- Department of Microbiology, New York University School of Medicine, New York, New York 10016, USA
| | - Jukka Corander
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Department of Biostatistics, University of Oslo, 0372 Oslo, Norway
- Helsinki Institute of Information Technology, Department of Mathematics and Statistics, University of Helsinki, 00014 Helsinki, Finland
| | - Stephen D Bentley
- Parasites and Microbes, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton CB10 1SA, United Kingdom
- Institute of Infection and Global Health, University of Liverpool, Liverpool L7 3EA, United Kingdom
- Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | - Nicholas J Croucher
- MRC Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College London, London W2 1PG, United Kingdom
| |
Collapse
|