1
|
Shoaib M, Gul S, Majeed S, He Z, Hao B, Tang M, Zhang X, Wu Z, Wang S, Pu W. Pathogenomic Characterization of Multidrug-Resistant Escherichia coli Strains Carrying Wide Efflux-Associated and Virulence Genes from the Dairy Farm Environment in Xinjiang, China. Antibiotics (Basel) 2025; 14:511. [PMID: 40426577 PMCID: PMC12108283 DOI: 10.3390/antibiotics14050511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Revised: 04/27/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background/Objectives: Livestock species, particularly dairy animals, can serve as important reservoirs of E. coli, carrying antibiotic resistance and virulence genes under constant selective pressure and their spread in the environment. In this study, we performed the pathogenomic analysis of seven multidrug resistant (MDR) E. coli strains carrying efflux-associated and virulence genes from the dairy farm environment in Xinjiang Province, China. Methods: First, we processed the samples using standard microbiological techniques followed by species identification with MALDI-TOF MS. Then, we performed whole genome sequencing (WGS) on the Illumina NovaSeq PE150 platform and conducted pathogenomic analysis using multiple bioinformatics tools. Results: WGS analysis revealed that the E. coli strains harbored diverse antibiotic efflux-associated genes, including conferring resistance to fluoroquinolones, aminoglycosides, aminocoumarins, macrolides, peptides, phosphonic acid, nitroimidazole, tetracyclines, disinfectants/antiseptics, and multidrug resistance. The phylogenetic analysis classified seven E. coli strains into B1 (n = 4), C (n = 2), and F (n = 1) phylogroups. PathogenFinder predicted all E. coli strains as potential human pathogens belonging to distinct serotypes and carrying broad virulence genes (ranging from 12 to 27), including the Shiga toxin-producing gene (stx1, n = 1). However, we found that a few of the virulence genes were associated with prophages and genomic islands in the E. coli strains. Moreover, all E. coli strains carried a diverse bacterial secretion systems and biofilm-associated genes. Conclusions: The present study highlights the need for large-scale genomic surveillance of antibiotic-resistant bacteria in dairy farm environments to identify AMR reservoir spillover and pathogenic risks to humans and design targeted interventions to further stop their spread under a One Health framework.
Collapse
Affiliation(s)
- Muhammad Shoaib
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
| | - Sehrish Gul
- Institute of Microbiology, University of Agriculture, Faisalabad 38000, Pakistan;
| | - Sana Majeed
- Laboratory of Aquatic Animal Medicine, College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea;
| | - Zhuolin He
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| | - Baocheng Hao
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| | - Minjia Tang
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| | - Xunjing Zhang
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| | - Zhongyong Wu
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| | - Shengyi Wang
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| | - Wanxia Pu
- Key Laboratory of New Animal Drug Project Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture and Rural Affairs, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of Chinese Academy of Agricultural Sciences, Lanzhou 730050, China (Z.H.); (B.H.); (M.T.); (X.Z.); (Z.W.); (S.W.)
| |
Collapse
|
2
|
Sakauchi VTS, Silva BCT, Haisi A, Júnior JPA, Ferreira Neto JS, Heinemann MB, Gaeta NC. Multidrug-Resistant Uropathogens in Companion Animals: A Comprehensive Study from Clinical Cases and a Genomic Analysis of a CTX-M-14-Producing Escherichia coli ST354, a Leading Cause of Urinary Tract Infections. Microb Drug Resist 2025; 31:123-131. [PMID: 40107766 DOI: 10.1089/mdr.2024.0208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
Urinary tract infections (UTIs) are common in small animals, posing significant clinical challenges due to their recurrence and discomfort. This study investigated the bacterial causes and antimicrobial resistance patterns of UTIs in dogs and cats presented to an important Veterinary Teaching Hospital in São Paulo, Brazil, the largest city in Latin America. Samples were collected from 31 dogs and 9 cats via ultrasound-guided cystocentesis. Bacterial cultures were performed, species identification was accomplished with matrix-assisted laser desorption ionization-time of flight mass spectrometry, and antimicrobial susceptibility testing was done using the Kirby-Bauer method. Escherichia coli was the most frequently isolated pathogen, accounting for 27.9% of cases, followed by Staphylococcus pseudintermedius, Proteus mirabilis, and Klebsiella pneumoniae. Ampicillin resistance was observed in 70.4% of enterobacteria, with many E. coli strains exhibiting multidrug resistance. Whole-genome sequencing of an extended-spectrum beta-lactamase-producing uropathogenic Escherichia coli strain from a feline patient was performed; it was identified as ST354, a leading cause of UTIs worldwide in humans and animals, carrying the blaCTX-M-14 gene and other resistance determinants. Phylogenetic analysis indicated genetic proximity between this strain and others from Brazilian poultry and environmental sources. These findings emphasize the need for antimicrobial resistance surveillance in veterinary UTIs and advocate for stricter antibiotic stewardship to inform diagnostic and therapeutic approaches within a One Health perspective.
Collapse
Affiliation(s)
- Victoria T S Sakauchi
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Bianca C T Silva
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Amanda Haisi
- Biotechnology Institute, Sao Paulo State University (UNESP), São Paulo, Brazil
| | | | - José S Ferreira Neto
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Marcos B Heinemann
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
| | - Natália C Gaeta
- Laboratory of Bacterial Zoonosis, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
- Santo Amaro University, São Paulo, Brazil
| |
Collapse
|
3
|
Aldaz N, Loaiza K, Larrea-Álvarez CM, Šefcová MA, Larrea-Álvarez M. In Silico Detection of Virulence Genes in Whole-Genome Sequences of Extra-Intestinal Pathogenic Escherichia coli (ExPEC) Documented in Countries of the Andean Community. Curr Issues Mol Biol 2025; 47:169. [PMID: 40136423 PMCID: PMC11941574 DOI: 10.3390/cimb47030169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/27/2025] Open
Abstract
E. coli pathotypes, which cause extra-intestinal infections, pose significant public health challenges, emphasizing the need for virulence gene surveillance to understand their dynamics. Key virulence genes have been identified in E. coli from Andean community countries, predominantly linked to human and animal sources. However, detailed data on virulence profiles from environmental and food sources remain limited. This study utilized an in silico approach to analyze 2402 whole-genome sequences from EnteroBase, known for associations with antimicrobial resistance genes. Of the isolates, 30% were classified as ExPEC, averaging 39 virulence genes per isolate, with adhesin-related genes being the most predominant. These findings were consistent across human, environmental, animal, and food samples. Human and animal isolates exhibited greater diversity in adhesin, secreted factors, and toxin genes compared to other sources, whereas food samples contained the fewest factors. ST449 isolates exhibited an average of 50 virulence genes per genome, with secreted factors and adhesins equally represented, while ST131, ST38, and ST10 carried around 40 genes, predominantly adhesins. Overall, the diversity and frequency of virulence genes exceeded prior reports in the region, highlighting the importance of monitoring these traits to identify emerging patterns in pathogenic E. coli strains frequently subjected to antibiotic exposure.
Collapse
Affiliation(s)
- Nabila Aldaz
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Karen Loaiza
- Unit of Foodborne Infections, Department of Bacteria, Parasites and Fungi, Statens Serum Institut, 2300 Copenhagen, Denmark
| | | | - Miroslava Anna Šefcová
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| | - Marco Larrea-Álvarez
- Facultad de Ciencias de la Salud, Carrera de Medicina, Universidad Espíritu Santo, Samborondón 092301, Ecuador
| |
Collapse
|
4
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
5
|
Aurich S, Wolf SA, Prenger-Berninghoff E, Thrukonda L, Semmler T, Ewers C. Genotypic Characterization of Uropathogenic Escherichia coli from Companion Animals: Predominance of ST372 in Dogs and Human-Related ST73 in Cats. Antibiotics (Basel) 2023; 13:38. [PMID: 38247597 PMCID: PMC10812829 DOI: 10.3390/antibiotics13010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) account for over 80% and 60% of bacterial urinary tract infections (UTIs) in humans and animals, respectively. As shared uropathogenic E. coli (UPEC) strains have been previously reported among humans and pets, our study aimed to characterize E. coli lineages among UTI isolates from dogs and cats and to assess their overlaps with human UPEC lineages. We analysed 315 non-duplicate E. coli isolates from the UT of dogs (198) and cats (117) collected in central Germany in 2019 and 2020 utilizing whole genome sequencing and in silico methods. Phylogroup B2 (77.8%), dog-associated sequence type (ST) 372 (18.1%), and human-associated ST73 (16.6%), were predominant. Other STs included ST12 (8.6%), ST141 (5.1%), ST127 (4.8%), and ST131 (3.5%). Among these, 58.4% were assigned to the ExPEC group and 51.1% to the UPEC group based on their virulence associated gene (VAG) profile (ExPEC, presence of ≥VAGs: papAH and/or papC, sfa/focG, afaD/draBC, kpsMTII, and iutA; UPEC, additionally cnf1 or hlyD). Extended-spectrum cephalosporin (ESC) resistance mediated by extended-spectrum β-lactamases (ESBL) and AmpC-β-lactamase was identified in 1.9% of the isolates, along with one carbapenemase-producing isolate and one isolate carrying a mcr gene. Low occurrence of ESC-resistant or multidrug-resistant (MDR) isolates (2.9%) in the two most frequently detected STs implies that E. coli isolated from UTIs of companion animals are to a lesser extent associated with resistance, but possess virulence-associated genes enabling efficient UT colonization and carriage. Detection of human-related pandemic lineages suggests interspecies transmission and underscores the importance of monitoring companion animals.
Collapse
Affiliation(s)
- Sophie Aurich
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| | - Silver Anthony Wolf
- Genome Competence Centre, Robert Koch Institute, 13353 Berlin, Germany (L.T.)
| | - Ellen Prenger-Berninghoff
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| | | | - Torsten Semmler
- Genome Competence Centre, Robert Koch Institute, 13353 Berlin, Germany (L.T.)
| | - Christa Ewers
- Institute of Hygiene and Infectious Diseases of Animals, Faculty of Veterinary Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany; (E.P.-B.); (C.E.)
| |
Collapse
|
6
|
Sapula SA, Amsalu A, Whittall JJ, Hart BJ, Siderius NL, Nguyen L, Gerber C, Turnidge J, Venter H. The scope of antimicrobial resistance in residential aged care facilities determined through analysis of Escherichia coli and the total wastewater resistome. Microbiol Spectr 2023; 11:e0073123. [PMID: 37787536 PMCID: PMC10715142 DOI: 10.1128/spectrum.00731-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/07/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Antimicrobial resistance (AMR) is a global threat that imposes a heavy burden on our health and economy. Residential aged care facilities (RACFs), where frequent inappropriate antibiotic use creates a selective environment that promotes the development of bacterial resistance, significantly contribute to this problem. We used wastewater-based epidemiology to provide a holistic whole-facility assessment and comparison of antimicrobial resistance in two RACFs and a retirement village. Resistant Escherichia coli, a common and oftentimes problematic pathogen within RACFs, was isolated from the wastewater, and the phenotypic and genotypic AMR was determined for all isolates. We observed a high prevalence of an international high-risk clone, carrying an extended-spectrum beta-lactamase in one facility. Analysis of the entire resistome also revealed a greater number of mobile resistance genes in this facility. Finally, both facilities displayed high fluoroquinolone resistance rates-a worrying trend seen globally despite measures in place aimed at limiting their use.
Collapse
Affiliation(s)
- Sylvia A. Sapula
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Anteneh Amsalu
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
- Department of Medical Microbiology, University of Gondar, Gondar, Ethiopia
| | - Jon J. Whittall
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Bradley J. Hart
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Naomi L. Siderius
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Lynn Nguyen
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Cobus Gerber
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - John Turnidge
- Adelaide Medical School, University of Adelaide, Adelaide, South Australia, Australia
| | - Henrietta Venter
- Health and Biomedical Innovation, UniSA Clinical and Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Ullah N, Assawakongkarat T, Akeda Y, Chaichanawongsaroj N. Detection of Extended-spectrum β-lactamase-producing Escherichia coli isolates by isothermal amplification and association of their virulence genes and phylogroups with extraintestinal infection. Sci Rep 2023; 13:12022. [PMID: 37491387 PMCID: PMC10368679 DOI: 10.1038/s41598-023-39228-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 07/21/2023] [Indexed: 07/27/2023] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) producing extended-spectrum β-lactamases (ESBL) cause serious human infections due to their virulence and multidrug resistance (MDR) profiles. We characterized 144 ExPEC strains (collected from a tertiary cancer institute) in terms of antimicrobial susceptibility spectrum, ESBL variants, virulence factors (VF) patterns, and Clermont's phylogroup classification. The developed multiplex recombinase polymerase amplification and thermophilic helicase-dependent amplification (tHDA) assays for blaCTX-M, blaOXA, blaSHV, and blaTEM detection, respectively, were validated using PCR-sequencing results. All ESBL-ExPEC isolates carried blaCTX-M genes with following prevalence frequency of variants: blaCTX-M-15 (50.5%) > blaCTX-M-55 (17.9%) > blaCTX-M-27 (16.8%) > blaCTX-M-14 (14.7%). The multiplex recombinase polymerase amplification assay had 100% sensitivity, and specificity for blaCTX-M, blaOXA, blaSHV, while tHDA had 86.89% sensitivity, and 100% specificity for blaTEM. The VF genes showed the following prevalence frequency: traT (67.4%) > ompT (52.6%) > iutA (50.5%) > fimH (47.4%) > iha (33.7%) > hlyA (26.3%) > papC (12.6%) > cvaC (3.2%), in ESBL-ExPEC isolates which belonged to phylogroups A (28.4%), B2 (28.4%), and F (22.1%). The distribution of traT, ompT, and hlyA and phylogroup B2 were significantly different (P < 0.05) between ESBL-ExPEC and non-ESBL-ExPEC isolates. Thus, these equipment-free isothermal resistance gene amplification assays contribute to effective treatment and control of virulent ExPEC, especially antimicrobial resistance strains.
Collapse
Affiliation(s)
- Naeem Ullah
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thadchaporn Assawakongkarat
- Program of Molecular Sciences in Medical Microbiology and Immunology, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Yukihiro Akeda
- Department of Bacteriology I, National Institute of Infectious Diseases (NIID), Tokyo, Japan
| | - Nuntaree Chaichanawongsaroj
- Research Unit of Innovative Diagnosis of Antimicrobial Resistance, Department of Transfusion Medicine and Clinical Microbiology, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
8
|
Lagerstrom KM, Hadly EA. Under-Appreciated Phylogroup Diversity of Escherichia coli within and between Animals at the Urban-Wildland Interface. Appl Environ Microbiol 2023:e0014223. [PMID: 37191541 DOI: 10.1128/aem.00142-23] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023] Open
Abstract
Wild animals have been implicated as reservoirs and even "melting pots" of pathogenic and antimicrobial-resistant bacteria of concern to human health. Though Escherichia coli is common among vertebrate guts and plays a role in the propagation of such genetic information, few studies have explored its diversity beyond humans nor the ecological factors that influence its diversity and distribution in wild animals. We characterized an average of 20 E. coli isolates per scat sample (n = 84) from a community of 14 wild and 3 domestic species. The phylogeny of E. coli comprises 8 phylogroups that are differentially associated with pathogenicity and antibiotic resistance, and we uncovered all of them in one small biological preserve surrounded by intense human activity. Challenging previous assumptions that a single isolate is representative of within-host phylogroup diversity, 57% of individual animals sampled carried multiple phylogroups simultaneously. Host species' phylogroup richness saturated at different levels across species and encapsulated vast within-sample and within-species variation, indicating that distribution patterns are influenced both by isolation source and laboratory sampling depth. Using ecological methods that ensure statistical relevance, we identify trends in phylogroup prevalence associated with host and environmental factors. The vast genetic diversity and broad distribution of E. coli in wildlife populations has implications for biodiversity conservation, agriculture, and public health, as well as for gauging unknown risks at the urban-wildland interface. We propose critical directions for future studies of the "wild side" of E. coli that will expand our understanding of its ecology and evolution beyond the human environment. IMPORTANCE To our knowledge, neither the phylogroup diversity of E. coli within individual wild animals nor that within an interacting multispecies community have previously been assessed. In doing so, we uncovered the globally known phylogroup diversity from an animal community on a preserve imbedded in a human-dominated landscape. We revealed that the phylogroup composition in domestic animals differed greatly from that in their wild counterparts, implying potential human impacts on the domestic animal gut. Significantly, many wild individuals hosted multiple phylogroups simultaneously, indicating the potential for strain-mixing and zoonotic spillback, especially as human encroachment into wildlands increases in the Anthropocene. We reason that due to extensive anthropogenic environmental contamination, wildlife is increasingly exposed to our waste, including E. coli and antibiotics. The gaps in the ecological and evolutionary understanding of E. coli thus necessitate a significant uptick in research to better understand human impacts on wildlife and the risk for zoonotic pathogen emergence.
Collapse
Affiliation(s)
| | - Elizabeth A Hadly
- Department of Biology, Stanford University, Stanford, California, USA
- Jasper Ridge Biological Preserve, Stanford University, Stanford, California, USA
- Center for Innovation in Global Health, Stanford University, Stanford, California, USA
| |
Collapse
|
9
|
Pérez-Etayo L, González D, Vitas AI. Clonal Complexes 23, 10, 131 and 38 as Genetic Markers of the Environmental Spread of Extended-Spectrum β-Lactamase (ESBL)-Producing E. coli. Antibiotics (Basel) 2022; 11:1465. [PMID: 36358120 PMCID: PMC9686695 DOI: 10.3390/antibiotics11111465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
In accordance with the global action plan on antimicrobial resistance adopted by the World Health Assembly in 2015, there is a need to develop surveillance programs for antimicrobial resistant bacteria. In this context, we have analyzed the clonal diversity of Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (E. coli) isolated from aquatic environments and human and food samples in Spain, with the aim of determining possible clonal complexes (CCs) that act as markers of the potential risk of transmission of these resistant bacteria. The phylogenetic groups, sequence types (STs) and CCs were determined by different Polymerase Chain Reaction (PCR) and Multilocus Sequence Typing (MLST) techniques. Phylogroup A was prevalent and was mainly present in food and water strains, while human strains were mostly associated with phylogroup B2. According to the observed prevalence in the different niches, CC23 and CC10 are proposed as markers of phylogroups A and C, related with the spread of blaCTX-M1 and blaCTX-M15 genes. Similarly, CC131 and CC38 could be associated to the dissemination of pathogenic strains (phylogroups B2 and D) carrying mainly blaCTX-M14 and blaCTX-M15 genes. Some strains isolated from wastewater treatment plants (WWTPs) showed identical profiles to those isolated from other environments, highlighting the importance that water acquires in the dissemination of bacterial resistance. In conclusion, the detection of these genetic markers in different environments could be considered as an alert in the spread of ESBL.
Collapse
Affiliation(s)
- Lara Pérez-Etayo
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - David González
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| | - Ana Isabel Vitas
- Department of Microbiology and Parasitology, University of Navarra, 31008 Pamplona, Spain
- Navarra Institute for Health Research (IdiSNA), 31008 Pamplona, Spain
| |
Collapse
|
10
|
Naziri Z, Derakhshandeh A, Zare S, Akbarzadeh Niaki M, Motamedi Boroojeni A, Eraghi V, Shirmohamadi Sosfad A. Identification of faecal Escherichia coli isolates with similar patterns of virulence and antimicrobial resistance genes in dogs and their owners. Vet Med Sci 2022; 9:126-131. [PMID: 36224703 PMCID: PMC9857131 DOI: 10.1002/vms3.965] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
BACKGROUND The presence of antimicrobial resistance and virulence genes in Escherichia coli allows them to survive and cause infections. The close contact between humans and pets can reinforce the risk of transmitting resistant and virulent bacteria between them. OBJECTIVES This study aims to compare the patterns of the presence of tetracycline and streptomycin resistance genes, as well as important virulence genes in E. coli isolated from faeces of healthy dogs and their owners. METHODS Polymerase chain reactions were performed for detection of antimicrobial resistance (tetA, tetB, tetC, tetD, strA and strB) and virulence (fimH, iss, sitA and malX) genes in 144 faecal E. coli isolates from 28 dog-owner pairs and 16 humans who did not keep any pets as controls. RESULTS Among the investigated antimicrobial resistance and virulence genes, tetA (52.1%) and fimH (86.8%) genes had the highest prevalence. No statistically significant difference was found between the prevalence of antimicrobial resistance and virulence genes in isolates of dogs and their owners. In total, 46.4% of dog-owner pairs had the same patterns of presence or absence of six antimicrobial resistance genes, 50.0% had the same patterns of presence or absence of four virulence genes and 25.0% had the same patterns of presence or absence of all 10 tested genes. CONCLUSION The presence of antimicrobial-resistant virulent E. coli in humans and pets may predispose them to infections that are hard to cure with conventional antibiotics. Notable frequency of dogs' and their owners' E. coli isolates with similar patterns of antimicrobial resistance and virulence genes may indicate the possibility of sharing virulent antimicrobial resistant E. coli between them.
Collapse
Affiliation(s)
- Zahra Naziri
- Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | | | - Sahar Zare
- Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | | | | | - Vida Eraghi
- Department of Pathobiology, School of Veterinary MedicineShiraz UniversityShirazIran
| | | |
Collapse
|
11
|
Dias JB, Soncini JGM, Cerdeira L, Lincopan N, Vespero EC. MDR Escherichia coli carrying CTX-M-24 (IncF[F-:A1:B32]) and KPC-2 (IncX3/IncU) plasmids isolated from community-acquired urinary trainfection in Brazil. Braz J Infect Dis 2022; 26:102706. [PMID: 36228665 PMCID: PMC9646818 DOI: 10.1016/j.bjid.2022.102706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 08/28/2022] [Accepted: 09/17/2022] [Indexed: 11/05/2022] Open
Abstract
Acquired antibiotic resistance in bacteria has become an important worldwide challenge. Currently, several bacteria, including Escherichia coli, have multidrug resistance profiles. Genes such as bla CTX-M-24 and bla KPC-2 (carbapenemase) are widespread. This research letter reports about a genomic surveillance study where multidrug-resistant E. coli containing CTX-M-24(IncF [F-:A1:B32]) and KPC-2(IncX3/IncU) plasmids were obtained from community- acquired urinary tract infection in Brazil.
Collapse
Affiliation(s)
- Juliana Buck Dias
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de Patologia, Análises Clínicas e Toxicológicas, Laboratório de Microbiologia Clínica, Londrina, PR, Brazil
| | - João Gabriel Material Soncini
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de Patologia, Análises Clínicas e Toxicológicas, Laboratório de Microbiologia Clínica, Londrina, PR, Brazil,Corresponding author.
| | - Louise Cerdeira
- Liverpool School of Tropical Medicine, Department of Vector Biology, Liverpool, United Kingdom,Monash University, Central Clinical School, Department of Infectious Diseases, Melbourne, Australia
| | - Nilton Lincopan
- Universidade de São Paulo, Instituto de Ciências Biomédicas, Departamento de Microbiologia, São Paulo, SP, Brazil
| | - Eliana Carolina Vespero
- Universidade Estadual de Londrina, Centro de Ciências da Saúde, Departamento de Patologia, Análises Clínicas e Toxicológicas, Laboratório de Microbiologia Clínica, Londrina, PR, Brazil
| |
Collapse
|
12
|
Comparative Characteristics and Pathogenic Potential of Escherichia coli Isolates Originating from Poultry Farms, Retail Meat, and Human Urinary Tract Infection. Life (Basel) 2022; 12:life12060845. [PMID: 35743876 PMCID: PMC9225339 DOI: 10.3390/life12060845] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 06/02/2022] [Accepted: 06/05/2022] [Indexed: 11/17/2022] Open
Abstract
The pathogenicity of many bacterial strains is determined by the acquisition of virulence genes and depends on many factors. The aim of this study was to analyse the phylogenetic background, virulence patterns, and drug susceptibility of 132 E. coli isolates tested in the context of the ExPEC (Extraintestinal Pathogenic E. coli) pathotype and the correlation of these features with bacterial isolation source: food (retail meat), poultry farms (AFEC—Avian Faecal E. coli), and patients with UTI (urinary tract infection) symptoms. The drug-susceptibility results of tested E. coli isolates obtained indicate that the resistance profile—ampicillin/tetracycline/trimethoprim+sulfamethoxazole/ciprofloxacin (AMP/TE/SXT/CIP)—was most frequently observed. The multidrug resistance (MDR) phenotype was found in 31.8% of isolates from poultry farms, 36.8% of strains isolated from food, and 20% of clinical samples. The greatest similarity of virulence profiles applied to isolates derived from poultry farms and food. Most of the AFEC from poultry farms and food-derived isolates belonged to commensals from phylogroups A and B1, while among the isolates from patients with UTI symptoms, the most common was the B2 phylogroup. The collective analysis showed similarity of the three studied groups of E. coli isolates in terms of the presented patterns of antimicrobial resistance, while the virulence profiles of the isolates studied showed great diversity. The phylogroup analysis showed no similarity between the poultry/food isolates and the UTI isolates, which had significant pathogenic potential.
Collapse
|
13
|
Ferraresso J, Apostolakos I, Fasolato L, Piccirillo A. Third-generation cephalosporin (3GC) resistance and its association with Extra-intestinal pathogenic Escherichia coli (ExPEC). Focus on broiler carcasses. Food Microbiol 2022; 103:103936. [DOI: 10.1016/j.fm.2021.103936] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/26/2021] [Accepted: 11/04/2021] [Indexed: 11/04/2022]
|
14
|
Belas A, Marques C, Menezes J, da Gama LT, Cavaco-Silva P, Pomba C. ESBL/ pAmpC-Producing Escherichia coli Causing Urinary Tract Infections in Non-Related Companion Animals and Humans. Antibiotics (Basel) 2022; 11:antibiotics11050559. [PMID: 35625203 PMCID: PMC9137695 DOI: 10.3390/antibiotics11050559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/29/2022] Open
Abstract
Urinary tract infections (UTI) caused by Escherichia coli are frequently diagnosed in humans and companion animals. Extended-spectrum beta-lactamase (ESBL)- and cephalosporinase (pAmpC)-producing Escherichia coli are worldwide-disseminated and frequently multidrug-resistant, hence leading to treatment failure and public health concerns. This study aimed to characterize and compare ESBL/pAmpC-producing E. coli strains causing community-acquired UTI in companion animals and non-related humans. Third-generation cephalosporin (3GC)-resistant E. coli (companion animals n = 35; humans n = 85) isolated from patients with UTI were tested against 14 antimicrobials following CLSI guidelines. PCR-based assays were used to detect the major E. coli phylogenetic groups, pathogenicity associated-islands (PAIs), virulence genes, and ESBLs/pAmpC resistance genes. ESBL/pAmpC-producing E. coli isolates were typed by multi-locus sequence typing (MLST) and PCR. E. coli strains from companion animals and humans shared two MDR high-risk clonal lineages: ST131 and ST648. To the best of our knowledge, this study reports the first description of E. coli ST131 clade C1-M27 and the clonal lineage ST131 clade A in humans with community-acquired UTI in Portugal. Considering that companion animals with UTI are generally treated at home by the owners, measures should be implemented to avoid the spread of multidrug-resistant high-risk clones to humans and their household environment.
Collapse
Affiliation(s)
- Adriana Belas
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal or (A.B.); or (C.M.); (J.M.); (L.T.d.G.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Cátia Marques
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal or (A.B.); or (C.M.); (J.M.); (L.T.d.G.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Faculty of Veterinary Medicine, Lusófona University, 1749-024 Lisbon, Portugal
| | - Juliana Menezes
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal or (A.B.); or (C.M.); (J.M.); (L.T.d.G.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Luís Telo da Gama
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal or (A.B.); or (C.M.); (J.M.); (L.T.d.G.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
| | - Patrícia Cavaco-Silva
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, 2829-511 Caparica, Portugal;
- Technophage, 1649-028 Lisboa, Portugal
| | - Constança Pomba
- Centre for Interdisciplinary Research in Animal Health (CIISA), Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisbon, Portugal or (A.B.); or (C.M.); (J.M.); (L.T.d.G.)
- Associate Laboratory for Animal and Veterinary Sciences (AL4AnimalS), 1300-477 Lisbon, Portugal
- Correspondence:
| |
Collapse
|
15
|
Awawdeh L, Turni C, Mollinger JL, Henning J, Cobbold RN, Trott DJ, Gibson JS. Antimicrobial susceptibility, plasmid replicon typing, phylogenetic grouping, and virulence potential of avian pathogenic and faecal Escherichia coli isolated from meat chickens in Australia. Avian Pathol 2022; 51:349-360. [PMID: 35417283 DOI: 10.1080/03079457.2022.2065969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Globally, avian colibacillosis is a leading cause of morbidity and mortality in poultry, associated with economic losses and welfare problems. Here, clinical avian pathogenic E. coli isolates (CEC; n=50) and faecal E. coli isolates from healthy (FEC; n=187) Australian meat chickens collected between 2006 and 2014 were subjected to antimicrobial susceptibility testing, phylogenetic grouping, plasmid replicon (PR) typing, multilocus sequence typing, and virulence gene (VG) profiling. Extended-spectrum cephalosporin (ESC)- and fluoroquinolone (FQ)-resistant E. coli isolates underwent further genetic characterisation. Significant proportions of CEC and FEC were respectively susceptible (13/50 [26%]; 48/187 [26%],) or MDR (9/50 [18%]; 26/187 [14%]) to 20 tested antimicrobials. Phylogenetic groups A and C, and PR types IncFIB and IncFrep were most commonly represented. Five tested CEC-associated VGs were more prevalent in CEC (≥90%) compared to FEC isolates (≤58%). Some isolates (CEC n=3; FEC n=7) were resistant to ESCs and/or FQs and possessed signature mutations in chromosomal FQ target genes and plasmid-mediated qnrS, blaCMY-2, and blaDHA-1 genes. Sequence type 354 (n=4), associated with extraintestinal infections in a broad range of hosts, was prevalent among the ESC- and/or FQ-resistant FEC.This study confirmed the existence of a small reservoir of ESC- and FQ-resistant E. coli in Australian commercial meat chickens despite the absence of use in the industry of these drug classes. Otherwise, a diversity of VGs and PR types in both faecal and clinical E. coli populations were identified. It's hypothesised that the source of ESC- and FQ-resistant E. coli may be external to poultry production facilities.Highlights1. Low-level resistance to older and newer generation antimicrobial drugs detected2. The most common sequence type (ST) associated with FQ resistance was ST354 (4/10)3. A small proportion of CEC (n=3) and FEC (n=7) were resistant to ESCs and/or FQs.
Collapse
Affiliation(s)
- L Awawdeh
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia.,Eastern Institute of Technology, Hawke's Bay, 501 Gloucester Street, Taradale, Napier 4112, New Zealand
| | - C Turni
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Dutton Park, Queensland 4102, Austalia
| | - J L Mollinger
- Department of Agriculture and Fisheries, Health & Food Science Precinct, Coopers Plains, Queensland 4108, Australia
| | - J Henning
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - R N Cobbold
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| | - D J Trott
- Australian Centre for Antimicrobial Resistance Ecology, The University of Adelaide, Roseworthy Campus, Mudla Wirra Rd, Roseworthy, 5371, Australia
| | - J S Gibson
- School of Veterinary Science, The University of Queensland, Gatton, Queensland 4343, Australia
| |
Collapse
|
16
|
Schuster CF, Weber RE, Weig M, Werner G, Pfeifer Y. Ultra-deep long-read sequencing detects IS-mediated gene duplications as a potential trigger to generate arrays of resistance genes and a mechanism to induce novel gene variants such as blaCTX-M-243. J Antimicrob Chemother 2022; 77:381-390. [PMID: 34865035 DOI: 10.1093/jac/dkab407] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/06/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Extended-spectrum β-lactamases (ESBLs) are enzymes that can render their hosts resistant to various β-lactam antibiotics. CTX-M-type enzymes are the most prevalent ESBLs and the main cause of resistance to third-generation cephalosporins in Enterobacteriaceae. The number of described CTX-M types is continuously rising, currently comprising over 240 variants. During routine screening we identified a novel blaCTX-M gene. OBJECTIVES To characterize a novel blaCTX-M variant harboured by a multidrug-resistant Escherichia coli isolate of sequence type ST354. METHODS Antibiotic susceptibilities were determined using broth microdilution. Genome and plasmid sequences were reconstructed using short- and long-read sequencing. The novel blaCTX-M locus was analysed using long-read and Sanger sequencing. Plasmid polymorphisms were determined in silico on a single plasmid molecule level. RESULTS The novel blaCTX-M-243 allele was discovered alongside a nearly identical blaCTX-M-104-containing gene array on a 219 kbp IncHI2A plasmid. CTX-M-243 differed from CTX-M-104 by only one amino acid substitution (N109S). Ultra-deep (2300-fold coverage) long-read sequencing revealed dynamic scaling of the blaCTX-M genetic contexts from one to five copies. Further antibiotic resistance genes such as blaTEM-1 also exhibited sequence heterogeneity but were stable in copy number. CONCLUSIONS We identified the novel ESBL gene blaCTX-M-243 and illustrate a dynamic system of varying blaCTX-M copy numbers. Our results highlight the constant emergence of new CTX-M family enzymes and demonstrate a potential evolutionary platform to generate novel ESBL variants and possibly other antibiotic resistance genes.
Collapse
Affiliation(s)
- Christopher F Schuster
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Robert E Weber
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Michael Weig
- Institute for Medical Microbiology and Virology, University Medical Center Göttingen, Göttingen, Germany
| | - Guido Werner
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| | - Yvonne Pfeifer
- Division of Nosocomial Pathogens and Antibiotic Resistance, Robert Koch Institute, Wernigerode, Germany
| |
Collapse
|
17
|
Clermont O, Condamine B, Dion S, Gordon DM, Denamur E. The E phylogroup of Escherichia coli is highly diverse and mimics the whole E. coli species population structure. Environ Microbiol 2021; 23:7139-7151. [PMID: 34431197 DOI: 10.1111/1462-2920.15742] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/16/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
To get a global picture of the population structure of the Escherichia coli phylogroup E, encompassing the O157:H7 EHEC lineage, we analysed the whole genome of 144 strains isolated from various continents, hosts and lifestyles and representative of the phylogroup diversity. The strains possess 4331 to 5440 genes with a core genome of 2771 genes and a pangenome of 33 722 genes. The distribution of these genes among the strains shows an asymmetric U-shaped distribution. E phylogenetic strains have the largest genomes of the species, partly explained by the presence of mobile genetic elements. Sixty-eight lineages were delineated, some of them exhibiting extra-intestinal virulence genes and being virulent in the mouse sepsis model. Except for the EHEC lineages and the reference EPEC, EIEC and ETEC strains, very few strains possess intestinal virulence genes. Most of the strains were devoid of acquired resistance genes, but eight strains possessed extended-spectrum beta-lactamase genes. Human strains belong to specific lineages, some of them being virulent and antibiotic-resistant [sequence type complexes (STcs) 350 and 2064]. The E phylogroup mimics all the features of the species as a whole, a phenomenon already observed at the STc level, arguing for a fractal population structure of E. coli.
Collapse
Affiliation(s)
- Olivier Clermont
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
| | | | - Sara Dion
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
| | - David M Gordon
- Division of Ecology and Evolution, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Erick Denamur
- Université de Paris, IAME, UMR 1137, INSERM, Paris, F-75018, France
- AP-HP, Laboratoire de Génétique Moléculaire, Hôpital Bichat-Claude Bernard, Paris, F-75018, France
| |
Collapse
|
18
|
Santos ACDM, Fuga B, Esposito F, Cardoso B, Santos FF, Valiatti TB, Santos-Neto JF, Gales AC, Lincopan N, Silva RM, Gomes TAT. Unveiling the Virulent Genotype and Unusual Biochemical Behavior of Escherichia coli ST59. Appl Environ Microbiol 2021; 87:e0074321. [PMID: 34085857 PMCID: PMC8315172 DOI: 10.1128/aem.00743-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 05/26/2021] [Indexed: 12/19/2022] Open
Abstract
Extraintestinal pathogenic Escherichia coli (ExPEC) is a leading cause of human and animal infections worldwide. The utilization of selective and differential media to facilitate the isolation and identification of E. coli from complex samples, such as water, food, sediment, and gut tissue, is common in epidemiological studies. During a surveillance study, we identified an E. coli strain isolated from human blood culture that displayed atypical light cream-colored colonies in chromogenic agar and was unable to produce β-glucuronidase and β-galactosidase in biochemical tests. Genomic analysis showed that the strain belongs to sequence type 59 (ST59) and phylogroup F. The evaluation in silico of 104 available sequenced lineages of ST59 complex showed that most of them belong to serotype O1:K1:H7, are β-glucuronidase negative, and harbor a virulent genotype associated with the presence of important virulence markers such as pap, kpsE, chuA, fyuA, and yfcV. Most of them were isolated from extraintestinal human infections in diverse countries worldwide and could be clustered/subgrouped based on papAF allele analysis. Considering that all analyzed strains harbor a virulent genotype and most do not exhibit biochemical behavior typical of E. coli, we report that they could be misclassified or underestimated, especially in epidemiological studies where the screening criteria rely only on typical biochemical phenotypes, as happens when chromogenic media are used. IMPORTANCE The use of selective and differential media guides presumptive bacterial identification based on specific metabolic traits that are specific to each bacterial species. When a bacterial specimen displays an unusual phenotype in these media, this characteristic may lead to bacterial misidentification or a significant delay in its identification, putting a patient at risk depending on the infection type. In the present work, we describe a virulent E. coli sequence type (ST59) that does not produce beta-glucuronidase (GUS negative), production of which is the metabolic trait widely used for E. coli presumptive identification in diverse differential media. The recognition of this unusual metabolic trait may help in the proper identification of ST59 isolates, the identification of their reservoir, and the evaluation of the frequency of these pathogens in places where automatic identification methods are not available.
Collapse
Affiliation(s)
- Ana Carolina de Mello Santos
- Disciplina de Microbiologia, Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Bruna Fuga
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Esposito
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Brenda Cardoso
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Fernandes Santos
- Laboratório ALERTA, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tiago Barcelos Valiatti
- Laboratório ALERTA, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - José Francisco Santos-Neto
- Disciplina de Microbiologia, Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Ana Cristina Gales
- Laboratório ALERTA, Disciplina de Infectologia, Departamento de Medicina, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Nilton Lincopan
- Departamento de Microbiologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
- Departamento de Análises Clínicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Rosa Maria Silva
- Disciplina de Microbiologia, Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Tânia Aparecida Tardelli Gomes
- Disciplina de Microbiologia, Departamento de Microbiologia Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Comparative Pathogenomics of Escherichia coli: Polyvalent Vaccine Target Identification through Virulome Analysis. Infect Immun 2021; 89:e0011521. [PMID: 33941580 PMCID: PMC8281228 DOI: 10.1128/iai.00115-21] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Comparative genomics of bacterial pathogens has been useful for revealing potential virulence factors. Escherichia coli is a significant cause of human morbidity and mortality worldwide but can also exist as a commensal in the human gastrointestinal tract. With many sequenced genomes, it has served as a model organism for comparative genomic studies to understand the link between genetic content and potential for virulence. To date, however, no comprehensive analysis of its complete “virulome” has been performed for the purpose of identifying universal or pathotype-specific targets for vaccine development. Here, we describe the construction of a pathotype database of 107 well-characterized completely sequenced pathogenic and nonpathogenic E. coli strains, which we annotated for major virulence factors (VFs). The data are cross referenced for patterns against pathotype, phylogroup, and sequence type, and the results were verified against all 1,348 complete E. coli chromosomes in the NCBI RefSeq database. Our results demonstrate that phylogroup drives many of the “pathotype-associated” VFs, and ExPEC-associated VFs are found predominantly within the B2/D/F/G phylogenetic clade, suggesting that these phylogroups are better adapted to infect human hosts. Finally, we used this information to propose polyvalent vaccine targets with specificity toward extraintestinal strains, targeting key invasive strategies, including immune evasion (group 2 capsule), iron acquisition (FyuA, IutA, and Sit), adherence (SinH, Afa, Pap, Sfa, and Iha), and toxins (Usp, Sat, Vat, Cdt, Cnf1, and HlyA). While many of these targets have been proposed before, this work is the first to examine their pathotype and phylogroup distribution and how they may be targeted together to prevent disease.
Collapse
|
20
|
Characterization of antimicrobial resistance in chicken-source phylogroup F Escherichia coli: similar populations and resistance spectrums between E. coli recovered from chicken colibacillosis tissues and retail raw meats in Eastern China. Poult Sci 2021; 100:101370. [PMID: 34332223 PMCID: PMC8339308 DOI: 10.1016/j.psj.2021.101370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 11/05/2022] Open
Abstract
The extended-spectrum cephalosporin resistant E. coli from food animals transferring to community settings of humans causes a serious threat to public health. Unlike phylogroup B2 E. coli strains, the clinical significance of isolates in phylogroup F is not well revealed. Here, we report on a collection (n = 563) of phylogroup F E. coli isolates recovered from chicken colibacillosis tissues and retail raw chicken meat samples in Eastern China. There was an overlapped distribution of MLST types between chicken colibacillosis-origin and meat-source phylogroup F E. coli, including dominant STs (ST648, ST405, ST457, ST393, ST1158, etc). This study further investigated the presence of extended-spectrum β-lactamase (ESBL/pAmpC) producers in these chicken-source phylogroup F E. coli strains. The prevalence of extended-spectrum cephalosporin resistant strains in phylogroup F E. coli from chicken colibacillosis and raw meat separately accounted for 66.1 and 71.2%. The resistance genotypes and plasmid replicon types of chicken-source phylogroup F E. coli isolates were characterized by multiplex PCR. Our results revealed β-lactamase CTX-M, OXA, CMY and TEM genes were widespread in chicken-source phylogroup F E. coli, and blaCTX-M was the most predominant ESBL gene. Moreover, there was a high prevalence of non-lactamase resistance genes in these β-lactam-resistant isolates. The replicons IncB/O/K/Z, IncI1, IncN, IncFIC, IncQ1, IncX4, IncY, and p0111, associated with antibiotic-resistant large plasmids, were widespread in chicken-source phylogroup F E. coli. There was no obvious difference for the populations, resistance spectrums, and resistance genotypes between phylogroup F E. coli from chicken colibacillosis tissues and retail meats. This detail assessment of the population and resistance genotype showed chicken-source phylogroup F E. coli might hold zoonotic risk and contribute the spread of multidrug-resistant E. coli to humans.
Collapse
|
21
|
Eger E, Heiden SE, Korolew K, Bayingana C, Ndoli JM, Sendegeya A, Gahutu JB, Kurz MSE, Mockenhaupt FP, Müller J, Simm S, Schaufler K. Circulation of Extended-Spectrum Beta-Lactamase-Producing Escherichia coli of Pandemic Sequence Types 131, 648, and 410 Among Hospitalized Patients, Caregivers, and the Community in Rwanda. Front Microbiol 2021; 12:662575. [PMID: 34054764 PMCID: PMC8160302 DOI: 10.3389/fmicb.2021.662575] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/20/2021] [Indexed: 11/13/2022] Open
Abstract
Multi-drug resistant (MDR), gram-negative Enterobacteriaceae, such as Escherichia coli (E. coli) limit therapeutic options and increase morbidity, mortality, and treatment costs worldwide. They pose a serious burden on healthcare systems, especially in developing countries like Rwanda. Several studies have shown the effects caused by the global spread of extended-spectrum beta-lactamase (ESBL)-producing E. coli. However, limited data is available on transmission dynamics of these pathogens and the mobile elements they carry in the context of clinical and community locations in Sub-Saharan Africa. Here, we examined 120 ESBL-producing E. coli strains from patients hospitalized in the University Teaching Hospital of Butare (Rwanda), their attending caregivers as well as associated community members and livestock. Based on whole-genome analysis, the genetic diversification and phylogenetics were assessed. Moreover, the content of carried plasmids was characterized and investigated for putative transmission among strains, and for their potential role as drivers for the spread of antibiotic resistance. We show that among the 30 different sequence types (ST) detected were the pandemic clonal lineages ST131, ST648 and ST410, which combine high-level antimicrobial resistance with virulence. In addition to the frequently found resistance genes blaCTX–M–15, tet(34), and aph(6)-Id, we identified csg genes, which are required for curli fiber synthesis and thus biofilm formation. Numerous strains harbored multiple virulence-associated genes (VAGs) including pap (P fimbriae adhesion cluster), fim (type I fimbriae) and chu (Chu heme uptake system). Furthermore, we found phylogenetic relationships among strains from patients and their caregivers or related community members and animals, which indicates transmission of pathogens. Also, we demonstrated the presence and potential transfer of identical/similar ESBL-plasmids in different strains from the Rwandan setting and when compared to an external plasmid. This study highlights the circulation of clinically relevant, pathogenic ESBL-producing E. coli among patients, caregivers and the community in Rwanda. Combining antimicrobial resistance with virulence in addition to the putative exchange of mobile genetic elements among bacterial pathogens poses a significant risk around the world.
Collapse
Affiliation(s)
- Elias Eger
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Stefan E Heiden
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Katja Korolew
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Claude Bayingana
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda
| | - Jules M Ndoli
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,University Teaching Hospital of Butare, Butare, Rwanda
| | - Augustin Sendegeya
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,University Teaching Hospital of Butare, Butare, Rwanda
| | - Jean Bosco Gahutu
- College of Medicine and Health Sciences, University of Rwanda, Kigali, Rwanda.,University Teaching Hospital of Butare, Butare, Rwanda
| | - Mathis S E Kurz
- Institute of Tropical Medicine and International Health, Charité Medical University of Berlin, Berlin, Germany
| | - Frank P Mockenhaupt
- Institute of Tropical Medicine and International Health, Charité Medical University of Berlin, Berlin, Germany
| | - Julia Müller
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| | - Stefan Simm
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Germany
| | - Katharina Schaufler
- Pharmaceutical Microbiology, Institute of Pharmacy, University of Greifswald, Greifswald, Germany
| |
Collapse
|
22
|
Díaz-Jiménez D, García-Meniño I, Herrera A, Lestón L, Mora A. Microbiological risk assessment of Turkey and chicken meat for consumer: Significant differences regarding multidrug resistance, mcr or presence of hybrid aEPEC/ExPEC pathotypes of E. coli. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107713] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
23
|
Genetic but No Phenotypic Associations between Biocide Tolerance and Antibiotic Resistance in Escherichia coli from German Broiler Fattening Farms. Microorganisms 2021; 9:microorganisms9030651. [PMID: 33801066 PMCID: PMC8003927 DOI: 10.3390/microorganisms9030651] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/18/2022] Open
Abstract
Biocides are frequently applied as disinfectants in animal husbandry to prevent the transmission of drug-resistant bacteria and to control zoonotic diseases. Concerns have been raised, that their use may contribute to the selection and persistence of antimicrobial-resistant bacteria. Especially, extended-spectrum β-lactamase- and AmpC β-lactamase-producing Escherichia coli have become a global health threat. In our study, 29 ESBL-/AmpC-producing and 64 NON-ESBL-/AmpC-producing E.coli isolates from three German broiler fattening farms collected in 2016 following regular cleaning and disinfection were phylogenetically characterized by whole genome sequencing, analyzed for phylogenetic distribution of virulence-associated genes, and screened for determinants of and associations between biocide tolerance and antibiotic resistance. Of the 30 known and two unknown sequence types detected, ST117 and ST297 were the most common genotypes. These STs are recognized worldwide as pandemic lineages causing disease in humans and poultry. Virulence determinants associated with extraintestinal pathogenic E.coli showed variable phylogenetic distribution patterns. Isolates with reduced biocide susceptibility were rarely found on the tested farms. Nine isolates displayed elevated MICs and/or MBCs of formaldehyde, chlorocresol, peroxyacetic acid, or benzalkonium chloride. Antibiotic resistance to ampicillin, trimethoprim, and sulfamethoxazole was most prevalent. The majority of ESBL-/AmpC-producing isolates carried blaCTX-M (55%) or blaCMY-2 (24%) genes. Phenotypic biocide tolerance and antibiotic resistance were not interlinked. However, biocide and metal resistance determinants were found on mobile genetic elements together with antibiotic resistance genes raising concerns that biocides used in the food industry may lead to selection pressure for strains carrying acquired resistance determinants to different antimicrobials.
Collapse
|
24
|
Abram K, Udaondo Z, Bleker C, Wanchai V, Wassenaar TM, Robeson MS, Ussery DW. Mash-based analyses of Escherichia coli genomes reveal 14 distinct phylogroups. Commun Biol 2021; 4:117. [PMID: 33500552 PMCID: PMC7838162 DOI: 10.1038/s42003-020-01626-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 12/21/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, more than one hundred thousand Escherichia coli and Shigella genomes were examined and classified. This is, to our knowledge, the largest E. coli genome dataset analyzed to date. A Mash-based analysis of a cleaned set of 10,667 E. coli genomes from GenBank revealed 14 distinct phylogroups. A representative genome or medoid identified for each phylogroup was used as a proxy to classify 95,525 unassembled genomes from the Sequence Read Archive (SRA). We find that most of the sequenced E. coli genomes belong to four phylogroups (A, C, B1 and E2(O157)). Authenticity of the 14 phylogroups is supported by several different lines of evidence: phylogroup-specific core genes, a phylogenetic tree constructed with 2613 single copy core genes, and differences in the rates of gene gain/loss/duplication. The methodology used in this work is able to reproduce known phylogroups, as well as to identify previously uncharacterized phylogroups in E. coli species.
Collapse
Affiliation(s)
- Kaleb Abram
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Zulema Udaondo
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Carissa Bleker
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee, 37996, USA
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, 37996, USA
| | - Visanu Wanchai
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - Trudy M Wassenaar
- Molecular Microbiology and Genomics Consultants, 55576, Zotzenheim, Germany
| | - Michael S Robeson
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA
| | - David W Ussery
- Department of Biomedical Informatics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, 72205, USA.
| |
Collapse
|
25
|
Escherichia coli Sequence Type 457 Is an Emerging Extended-Spectrum-β-Lactam-Resistant Lineage with Reservoirs in Wildlife and Food-Producing Animals. Antimicrob Agents Chemother 2020; 65:AAC.01118-20. [PMID: 33020161 DOI: 10.1128/aac.01118-20] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 09/18/2020] [Indexed: 01/16/2023] Open
Abstract
Silver gulls carry phylogenetically diverse Escherichia coli, including globally dominant extraintestinal pathogenic E. coli (ExPEC) sequence types and pandemic ExPEC-ST131 clades; however, our large-scale study (504 samples) on silver gulls nesting off the coast of New South Wales identified E. coli ST457 as the most prevalent. A phylogenetic analysis of whole-genome sequences (WGS) of 138 ST457 samples comprising 42 from gulls, 2 from humans (Australia), and 14 from poultry farmed in Paraguay were compared with 80 WGS deposited in public databases from diverse sources and countries. E. coli ST457 strains are phylogenetic group F, carry fimH145, and partition into five main clades in accordance to predominant flagella H-antigen carriage. Although we identified considerable phylogenetic diversity among the 138 ST457 strains, closely related subclades (<100 SNPs) suggested zoonotic or zooanthroponosis transmission between humans, wild birds, and food-producing animals. Australian human clinical and gull strains in two of the clades were closely related (≤80 SNPs). Regarding plasmid content, country, or country/source, specific connections were observed, including I1/ST23, I1/ST314, and I1/ST315 disseminating bla CMY-2 in Australia, I1/ST113 carrying bla CTX-M-8 and mcr-5 in Paraguayan poultry, and F2:A-:B1 plasmids of Dutch origin being detected across multiple ST457 clades. We identified a high prevalence of nearly identical I1/ST23 plasmids carrying bla CMY-2 among Australian gull and clinical human strains. In summary, ST457 is a broad host range, geographically diverse E. coli lineage that can cause human extraintestinal disease, including urinary tract infection, and displays a remarkable ability to capture mobile elements that carry and transmit genes encoding resistance to critically important antibiotics.
Collapse
|
26
|
Fox TC, Clabots C, Porter SB, Bender T, Thuras P, Colpan A, Boettcher J, Johnson JR. Bacterial "Virulence" Traits and Host Demographics Predict Escherichia coli Colonization Behaviors Within Households. Open Forum Infect Dis 2020; 7:ofaa495. [PMID: 33241068 PMCID: PMC7676507 DOI: 10.1093/ofid/ofaa495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022] Open
Abstract
Background Although intestinal colonization precedes most extraintestinal Escherichia coli infections, colonization-promoting factors are incompletely understood. We compared within-household E. coli colonization patterns with host and bacterial traits. Methods Twenty-two veterans with a clinical E. coli isolate and their 46 human and animal household members underwent longitudinal fecal sampling. Distinct E. coli strains were characterized for phylogenetic background, virulence genes, antibiotic resistance, and colonization behaviors. Host and bacterial traits were assessed statistically as predictors of colonization behaviors. Results Among the 139 unique-by-household fecal E. coli strains, univariable predictors of colonization behavior included (i) host demographics, (ii) matching the index clinical isolate, and (iii) bacterial characteristics (2 phylogroups, 5 clonal lineages, 18 virulence genes, and molecular extraintestinal pathogenic E. coli status). Multivariable predictors of colonization behavior included veteran host, spouse host, matching the index clinical isolate, phylogroup F, ST73, hlyD (alpha hemolysin), hlyF (variant hemolysin), H7 fliC (flagellar variant), vat (vacuolating toxin), and iha (adhesin-siderophore). Conclusions Host demographics, multiple bacterial “virulence” traits, and matching the index clinical isolate predicted E. coli fecal colonization behaviors. Thus, certain bacterial characteristics may promote both colonization and pathogenicity. Future interventions directed toward such traits might prevent E. coli infections both directly and by disrupting antecedent colonization.
Collapse
Affiliation(s)
- Teresa C Fox
- Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| | - Connie Clabots
- Infectious Diseases, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
| | - Stephen B Porter
- Infectious Diseases, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
| | - Tricia Bender
- Infectious Diseases, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA
| | - Paul Thuras
- Mental Health Patient Service Line, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA.,Department of Psychiatry, University of Minnesota Minneapolis, Minnesota, USA
| | - Aylin Colpan
- Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jessica Boettcher
- Infectious Diseases, University of Minnesota, Minneapolis, Minnesota, USA
| | - James R Johnson
- Infectious Diseases, Veterans Affairs Medical Center, Minneapolis, Minnesota, USA.,Infectious Diseases, University of Minnesota Minneapolis, Minnesota, USA
| |
Collapse
|
27
|
Teelucksingh T, Thompson LK, Cox G. The Evolutionary Conservation of Escherichia coli Drug Efflux Pumps Supports Physiological Functions. J Bacteriol 2020; 202:e00367-20. [PMID: 32839176 PMCID: PMC7585057 DOI: 10.1128/jb.00367-20] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Bacteria harness an impressive repertoire of resistance mechanisms to evade the inhibitory action of antibiotics. One such mechanism involves efflux pump-mediated extrusion of drugs from the bacterial cell, which significantly contributes to multidrug resistance. Intriguingly, most drug efflux pumps are chromosomally encoded components of the intrinsic antibiotic resistome. In addition, in terms of xenobiotic detoxification, bacterial efflux systems often exhibit significant levels of functional redundancy. Efflux pumps are also considered to be highly conserved; however, the extent of conservation in many bacterial species has not been reported and the majority of genes that encode efflux pumps appear to be dispensable for growth. These observations, in combination with an increasing body of experimental evidence, imply alternative roles in bacterial physiology. Indeed, the ability of efflux pumps to facilitate antibiotic resistance could be a fortuitous by-product of ancient physiological functions. Using Escherichia coli as a model organism, we here evaluated the evolutionary conservation of drug efflux pumps and we provide phylogenetic analysis of the major efflux families. We show the E. coli drug efflux system has remained relatively stable and the majority (∼80%) of pumps are encoded in the core genome. This analysis further supports the importance of drug efflux pumps in E. coli physiology. In this review, we also provide an update on the roles of drug efflux pumps in the detoxification of endogenously synthesized substrates and pH homeostasis. Overall, gaining insight into drug efflux pump conservation, common evolutionary ancestors, and physiological functions could enable strategies to combat these intrinsic and ancient elements.
Collapse
Affiliation(s)
- Tanisha Teelucksingh
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Laura K Thompson
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| | - Georgina Cox
- College of Biological Sciences, Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
28
|
Implications of Foraging and Interspecies Interactions of Birds for Carriage of Escherichia coli Strains Resistant to Critically Important Antimicrobials. Appl Environ Microbiol 2020; 86:AEM.01610-20. [PMID: 32801178 DOI: 10.1128/aem.01610-20] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 12/17/2022] Open
Abstract
Globally, gulls have been associated with carriage of high levels of Escherichia coli strains resistant to critically important antimicrobials (CIAs), a major concern, as these antimicrobials are the sole alternative or one among only a few alternatives available to treat severe life-threatening infections in humans. Previous studies of Australian silver gulls demonstrated high levels of resistance to CIAs, particularly fluoroquinolone and extended-spectrum cephalosporins, among E. coli strains (carriage at 24% and 22%, respectively). This study aimed to identify and characterize strains from four distinct bird species inhabiting a common coastal environment, determine the frequency of carriage of CIA-resistant E. coli strains, and examine if these resistant clones and their resistance-encoding mobile genetic elements (MGEs) could be transmitted between species. CIA-resistant E. coli was detected in silver gulls (53%), little penguins (11%), and feral pigeons (10%), but not in bridled terns. In total, 37 different sequence types (STs) were identified, including clinically significant human-associated lineages, such as ST131, ST95, ST648, ST69, ST540, ST93, ST450, and ST10. Five main mobile genetic elements associated with bla CTX-M-positive E. coli strains isolated from three bird species were detected. Examination of clonal lineages and MGEs provided indirect evidence of transfer of resistance between bird species. The carriage of CIA-resistant E. coli by gulls and pigeons with proximity to humans, and in some instances food-producing animals, increases the likelihood of further bidirectional dissemination.IMPORTANCE It has been shown that 20% of Australian silver gulls carry drug-resistant Escherichia coli strains of anthropogenic origin associated with severe diseases, such as sepsis and urinary tract infections, in humans. To further characterize the dynamics of drug-resistant E. coli in wildlife populations, we investigated the carriage of critically important antimicrobial (CIA) drug-resistant E. coli in four bird species in a common environment. Our results indicated that gulls, pigeons, and penguins carried drug-resistant E. coli strains, and analysis of mobile genetic elements associated with resistance genes indicated interspecies resistance transfer. Terns, representing a bird species that forages on natural food sources at sea and distant from humans, did not test positive for drug-resistant E. coli This study demonstrates carriage of CIA-resistant bacteria in multiple bird species living in areas commonly inhabited by humans and provides further evidence for a leapfrog effect of resistance in wildlife, facilitated by feeding habits.
Collapse
|
29
|
Kidsley AK, White RT, Beatson SA, Saputra S, Schembri MA, Gordon D, Johnson JR, O'Dea M, Mollinger JL, Abraham S, Trott DJ. Companion Animals Are Spillover Hosts of the Multidrug-Resistant Human Extraintestinal Escherichia coli Pandemic Clones ST131 and ST1193. Front Microbiol 2020; 11:1968. [PMID: 32983008 PMCID: PMC7492567 DOI: 10.3389/fmicb.2020.01968] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/24/2020] [Indexed: 12/18/2022] Open
Abstract
Escherichia coli sequence types 131 (ST131) and 1193 are multidrug-resistant extraintestinal pathogens that have recently spread epidemically among humans and are occasionally isolated from companion animals. This study characterized a nationwide collection of fluoroquinolone-resistant (FQ R ) E. coli isolates from extraintestinal infections in Australian cats and dogs. For this, 59 cat and dog FQ R clinical E. coli isolates (representing 6.9% of an 855-isolate collection) underwent PCR-based phylotyping and whole-genome sequencing (WGS). Isolates from commensal-associated phylogenetic groups A (14/59, 24%) and B1 (18/59, 31%) were dominant, with ST224 (10/59, 17%), and ST744 (8/59, 14%) predominating. Less prevalent were phylogenetic groups D (12/59, 20%), with ST38 (8/59, 14%) predominating, and virulence-associated phylogenetic group B2 (7/59, 12%), with ST131 predominating (6/7, 86%) and no ST1193 isolates identified. In a WGS-based comparison of 20 cat and dog-source ST131 isolates with 188 reference human and animal ST131 isolates, the cat and dog-source isolates were phylogenetically diverse. Although cat and dog-source ST131 isolates exhibited some minor sub-clustering, most were closely related to human-source ST131 strains. Furthermore, the prevalence of ST131 as a cause of FQ R infections in Australian companion animals was relatively constant between this study and the 5-year-earlier study of Platell et al. (2010) (9/125 isolates, 7.2%). Thus, although the high degree of clonal commonality among FQ R clinical isolates from humans vs. companion animals suggests the possibility of bi-directional between-species transmission, the much higher reported prevalence of ST131 and ST1193 among FQ R clinical isolates from humans as compared to companion animals suggests that companion animals are spillover hosts rather than being a primary reservoir for these lineages.
Collapse
Affiliation(s)
- Amanda K Kidsley
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Rhys T White
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Scott A Beatson
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia.,Australian Centre for Ecogenomics, The University of Queensland, Brisbane, QLD, Australia
| | - Sugiyono Saputra
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| | - Mark A Schembri
- School of Chemistry and Molecular Biosciences, Australian Infectious Disease Research Centre, The University of Queensland, Brisbane, QLD, Australia
| | - David Gordon
- Minneapolis Veterans Affairs Health Care System and University of Minnesota, Minneapolis, MN, United States
| | - James R Johnson
- VA Medical Center, University of Minnesota, Minneapolis, MN, United States
| | - Mark O'Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Joanne L Mollinger
- Biosercurity Queensland, Department of Agriculture and Fisheries, Brisbane, QLD, Australia
| | - Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| | - Darren J Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, SA, Australia
| |
Collapse
|
30
|
Zhuge X, Zhou Z, Jiang M, Wang Z, Sun Y, Tang F, Xue F, Ren J, Dai J. Chicken-source Escherichia coli within phylogroup F shares virulence genotypes and is closely related to extraintestinal pathogenic E. coli causing human infections. Transbound Emerg Dis 2020; 68:880-895. [PMID: 32722875 DOI: 10.1111/tbed.13755] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/15/2020] [Accepted: 07/20/2020] [Indexed: 02/06/2023]
Abstract
ExPEC is an important pathogen that causes diverse infection in the human extraintestinal sites. Although avian-source phylogroup F Escherichia coli isolates hold a high level of virulence traits, few studies have systematically assessed the pathogenicity and zoonotic potential of E. coli isolates within phylogroup F. A total of 1,332 E. coli strains were recovered from chicken colibacillosis in China from 2012 to 2017. About 21.7% of chicken-source E. coli isolates were presented in phylogroup F. We characterized phylogroup F E. coli isolates both genotypically and phenotypically. There was a widespread prevalence of ExPEC virulence-related genes among chicken-source E. coli isolates within phylogroup F. ColV/BM plasmid-related genes (i.e. hlyF, mig-14p, ompTp, iutA and tsh) occurred in the nearly 65% of phylogroup F E. coli isolates. Population structure of chicken-source E. coli isolates within phylogroup F was revealed and contained several dominant STs (such as ST59, ST354, ST362, ST405, ST457 and ST648). Most chicken-source phylogroup F E. coli held the property to produce biofilm and exhibited strongly swimming and swarming motilities. Our result showed that the complement resistance of phylogroup F E. coli isolates was closely associated with its virulence genotype. Our research further demonstrated the zoonotic potential of chicken-source phylogroup F E. coli isolates. The phylogroup F E. coli isolates were able to cause multiple diseases in animal models of avian colibacillosis and human infections (sepsis, meningitis and UTI). The chicken-source phylogroup F isolates, especially dominant ST types, might be recognized as a high-risk food-borne pathogen. This was the first study to identify that chicken-source E. coli isolates within phylogroup F were associated with human ExPEC pathotypes and exhibited zoonotic potential.
Collapse
Affiliation(s)
- Xiangkai Zhuge
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,Department of Nutrition and Food Hygiene, School of Public Health, Nantong University, Nantong, P.R. China
| | - Zhou Zhou
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Min Jiang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zhongxing Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yu Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Fang Tang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Feng Xue
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianluan Ren
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Jianjun Dai
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.,China Pharmaceutical University, Nanjing, China
| |
Collapse
|
31
|
Rehman MU, Yang H, Zhang S, Huang Y, Zhou R, Gong S, Feng Q, Chen S, Yang J, Yang Z, Abbas M, Cui M, Wang M, Jia R, Chen S, Liu M, Zhu D, Zhao X, Wu Y, Yang Q, Huang J, Zhang L, Liu Y, Yu Y, Tian B, Cheng A. Emergence of Escherichia coli isolates producing NDM-1 carbapenemase from waterfowls in Hainan island, China. Acta Trop 2020; 207:105485. [PMID: 32277927 DOI: 10.1016/j.actatropica.2020.105485] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/01/2020] [Accepted: 04/01/2020] [Indexed: 11/16/2022]
Abstract
Carbapenems are traditionally recognized to be the last resort drugs to treat infections due to MDR organisms such as E. coli. As such, the emergence of New Delhi metallo-β-lactamase-producing E. coli strains have become a challenging threat to the public health. In this regard, we examined the molecular characteristics of carbapenem-resistant E. coli (CRE) isolated from waterfowls in China's tropical island, Hainan. A total of 311 single E. coli strains were obtained from 20 various farms of healthy ducks and geese in 2 districts of Hainan island. The CRE strains were initially identified via phenotypic resistance and modified Hodge test. PCR assay and subsequent nucleotide sequencing were used to detect different types of carbapenemase encoding genes (blaNDM, blaVIM, blaIMP, blaOXA and blaKPC). In addition, MLST and PFGE analyses were also performed. Among the 311 E. coli strains, 8 strains were detected to produce a single type of carbapenemase i.e. NDM-1 (2.6%). A total of 5 sequence types (STs) were observed, of which ST10 was the most prevalent accounting for 37.5% (3/8). Moreover, these 8 isolates yielded 6 different PFGE clusters but showed approximately related PFGE types, suggesting the propagation of similar clone between the farms. This is the first report on the identification of NDM-1-producing E. coli from waterfowls in Hainan island, China. Our results emphasize the need for better efforts to control the further spread of NDM-1-producing E. coli strains in this tropical island.
Collapse
Affiliation(s)
- Mujeeb Ur Rehman
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Hong Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Shaqiu Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China.
| | - Yahui Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Rui Zhou
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Siyue Gong
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Qi Feng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Shuling Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Jing Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Zhishuang Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Muhammad Abbas
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Min Cui
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Mingshu Wang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Renyong Jia
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Shun Chen
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Mafeng Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Dekang Zhu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Xinxin Zhao
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Ying Wu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Qiao Yang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Juan Huang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Ling Zhang
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Yunya Liu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Yanling Yu
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Bin Tian
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China
| | - Anchun Cheng
- Avian Disease Research Center, College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Institute of Preventive Veterinary Medicine, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China; Key Laboratory of Animal Disease and Human Health of Sichuan Province, Sichuan Agricultural University, Wenjiang, 611130, Chengdu, P. R. China.
| |
Collapse
|
32
|
Papouskova A, Masarikova M, Valcek A, Senk D, Cejkova D, Jahodarova E, Cizek A. Genomic analysis of Escherichia coli strains isolated from diseased chicken in the Czech Republic. BMC Vet Res 2020; 16:189. [PMID: 32522212 PMCID: PMC7286222 DOI: 10.1186/s12917-020-02407-2] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 06/02/2020] [Indexed: 01/01/2023] Open
Abstract
Background Avian pathogenic Escherichia coli (APEC) can cause various extraintestinal infections in poultry, resulting in massive economic losses in poultry industry. In addition, some avian E. coli strains may have zoonotic potential, making poultry a possible source of infection for humans. Due to its extreme genetic diversity, this pathotype remains poorly defined. This study aimed to investigate the diversity of colibacillosis-associated E. coli isolates from Central European countries with a focus on the Czech Republic. Results Of 95 clinical isolates subjected to preliminary characterization, 32 were selected for whole-genome sequencing. A multi resistant phenotype was detected in a majority of the sequenced strains with the predominant resistance to β-lactams and quinolones being associated with TEM-type beta-lactamase genes and chromosomal gyrA mutations respectively. The phylogenetic analysis confirmed a great diversity of isolates, that were derived from nearly all phylogenetic groups, with predominace of B2, B1 and C phylogroups. Clusters of closely related isolates within ST23 (phylogroup C) and ST429 (phylogroup B2) indicated a possible local spread of these clones. Besides, the ST429 cluster carried blaCMY-2, − 59 genes for AmpC beta-lactamase and isolates of both clusters were generally well-equipped with virulence-associated genes, with considerable differences in distribution of certain virulence-associated genes between phylogenetically distant lineages. Other important and potentially zoonotic APEC STs were detected, incl. ST117, ST354 and ST95, showing several molecular features typical for human ExPEC. Conclusions The results support the concept of local spread of virulent APEC clones, as well as of zoonotic potential of specific poultry-associated lineages, and highlight the need to investigate the possible source of these pathogenic strains.
Collapse
Affiliation(s)
- Aneta Papouskova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic. .,Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.
| | - Martina Masarikova
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Adam Valcek
- Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Department of Biology and Wildlife Diseases, Faculty of Veterinary Hygiene and Ecology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - David Senk
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| | - Darina Cejkova
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Eva Jahodarova
- Department of Immunology, Veterinary Research Institute, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic.,Central European Institute of Technology, University of Veterinary and Pharmaceutical Sciences Brno, Brno, Czech Republic
| |
Collapse
|
33
|
Furlan JPR, Savazzi EA, Stehling EG. Widespread high-risk clones of multidrug-resistant extended-spectrum β-lactamase-producing Escherichia coli B2-ST131 and F-ST648 in public aquatic environments. Int J Antimicrob Agents 2020; 56:106040. [PMID: 32479889 DOI: 10.1016/j.ijantimicag.2020.106040] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 03/19/2020] [Accepted: 05/21/2020] [Indexed: 01/18/2023]
Abstract
Aquatic environments are considered a reservoir for the dissemination of multidrug-resistant (MDR) bacteria, principally Escherichia coli, with the consequent spread of acquired antimicrobial resistance genes (ARGs). Widespread high-risk clones of MDR E. coli are responsible for human infections worldwide. This study aimed to characterise, through whole-genome sequencing (WGS), isolates of MDR E. coli harbouring ARGs obtained from public aquatic environments in Brazil. MDR E. coli isolates were obtained from rivers, streams and lakes that presented different Water Quality Index records and were submitted to WGS. The resistome, mobilome and virulome showed a great diversity of ARGs, plasmids and virulence genes, respectively. In addition, mutations in the quinolone resistance-determining regions of GyrA, ParC and ParE as well as several metal resistance genes (MRGs) and antibacterial biocide resistance genes (ABGs) were detected. Typing and subtyping of MDR E. coli revealed different lineages, with two belonging to widespread high-risk clones (i.e. B2-ST131-fimH30 and F-ST648-fimH27), which are grouped by core genome multilocus sequence typing (cgMLST) in clusters with E. coli lineages obtained from different sources distributed worldwide. MDR bacteria carrying MRGs and ABGs have emerged as a global human and environmental health problem. Detection of widespread high-risk clones calls for attention to the dissemination of fluoroquinolone-resistant QnrS1- and CTX-M-producing E. coli lineages associated with human infections in public aquatic environments.
Collapse
Affiliation(s)
- João Pedro Rueda Furlan
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café s/n, Monte Alegre, Ribeirão Preto - SP, 14040-903, Brazil
| | | | - Eliana Guedes Stehling
- Departamento de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo (USP), Av. do Café s/n, Monte Alegre, Ribeirão Preto - SP, 14040-903, Brazil.
| |
Collapse
|
34
|
Hastak P, Cummins ML, Gottlieb T, Cheong E, Merlino J, Myers GSA, Djordjevic SP, Roy Chowdhury P. Genomic profiling of Escherichia coli isolates from bacteraemia patients: a 3-year cohort study of isolates collected at a Sydney teaching hospital. Microb Genom 2020; 6:e000371. [PMID: 32374251 PMCID: PMC7371115 DOI: 10.1099/mgen.0.000371] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 04/03/2020] [Indexed: 11/29/2022] Open
Abstract
This study sought to assess the genetic variability of Escherichia coli isolated from bloodstream infections (BSIs) presenting at Concord Hospital, Sydney during 2013-2016. Whole-genome sequencing was used to characterize 81 E. coli isolates sourced from community-onset (CO) and hospital-onset (HO) BSIs. The cohort comprised 64 CO and 17 HO isolates, including 35 multidrug-resistant (MDR) isolates exhibiting phenotypic resistance to three or more antibiotic classes. Phylogenetic analysis identified two major ancestral clades. One was genetically diverse with 25 isolates distributed in 16 different sequence types (STs) representing phylogroups A, B1, B2, C and F, while the other comprised phylogroup B2 isolates in subclades representing the ST131, ST73 and ST95 lineages. Forty-seven isolates contained a class 1 integron, of which 14 carried blaCTX -M-gene. Isolates with a class 1 integron carried more antibiotic resistance genes than isolates without an integron and, in most instances, resistance genes were localized within complex resistance loci (CRL). Resistance to fluoroquinolones could be attributed to point mutations in chromosomal parC and gyrB genes and, in addition, two isolates carried a plasmid-associated qnrB4 gene. Co-resistance to fluoroquinolone and broad-spectrum beta-lactam antibiotics was associated with ST131 (HO and CO), ST38 (HO), ST393 (CO), ST2003 (CO) and ST8196 (CO and HO), a novel ST identified in this study. Notably, 10/81 (12.3 %) isolates with ST95 (5 isolates), ST131 (2 isolates), ST88 (2 isolates) and a ST540 likely carry IncFII-IncFIB plasmid replicons with a full spectrum of virulence genes consistent with the carriage of ColV-like plasmids. Our data indicate that IncF plasmids play an important role in shaping virulence and resistance gene carriage in BSI E. coli in Australia.
Collapse
Affiliation(s)
- Priyanka Hastak
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Max L. Cummins
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
| | - Thomas Gottlieb
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord 2139, NSW, Australia
- Faculty of Medicine, University of Sydney, NSW Australia
| | - Elaine Cheong
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord 2139, NSW, Australia
| | - John Merlino
- Department of Microbiology and Infectious Diseases, Concord Hospital and NSW Health Pathology, Hospital Road, Concord 2139, NSW, Australia
- Faculty of Medicine, University of Sydney, NSW Australia
| | - Garry S. A. Myers
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
| | - Steven P. Djordjevic
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| | - Piklu Roy Chowdhury
- The ithree institute, University of Technology Sydney, City Campus, Ultimo, NSW 2007, Australia
- Australian Centre for Genomic Epidemiological Microbiology, University of Technology Sydney, PO Box 123, Broadway, NSW 2007, Australia
| |
Collapse
|
35
|
Savin M, Bierbaum G, Hammerl JA, Heinemann C, Parcina M, Sib E, Voigt A, Kreyenschmidt J. ESKAPE Bacteria and Extended-Spectrum-β-Lactamase-Producing Escherichia coli Isolated from Wastewater and Process Water from German Poultry Slaughterhouses. Appl Environ Microbiol 2020; 86:e02748-19. [PMID: 32033950 PMCID: PMC7117925 DOI: 10.1128/aem.02748-19] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/31/2020] [Indexed: 02/07/2023] Open
Abstract
The wastewater of livestock slaughterhouses is considered a source of antimicrobial-resistant bacteria with clinical relevance and may thus be important for their dissemination into the environment. To get an overview of their occurrence and characteristics, we investigated process water (n = 50) from delivery and unclean areas as well as wastewater (n = 32) from the in-house wastewater treatment plants (WWTPs) of two German poultry slaughterhouses (slaughterhouses S1 and S2). The samples were screened for ESKAPE bacteria (Enterococcus spp., Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp.) and Escherichia coli Their antimicrobial resistance phenotypes and the presence of extended-spectrum-β-lactamase (ESBL), carbapenemase, and mobilizable colistin resistance genes were determined. Selected ESKAPE bacteria were epidemiologically classified using different molecular typing techniques. At least one of the target species was detected in 87.5% (n = 28/32) of the wastewater samples and 86.0% (n = 43/50) of the process water samples. The vast majority of the recovered isolates (94.9%, n = 448/472) was represented by E. coli (39.4%), the A. calcoaceticus-A. baumannii (ACB) complex (32.4%), S. aureus (12.3%), and K. pneumoniae (10.8%), which were widely distributed in the delivery and unclean areas of the individual slaughterhouses, including their wastewater effluents. Enterobacter spp., Enterococcus spp., and P. aeruginosa were less abundant and made up 5.1% of the isolates. Phenotypic and genotypic analyses revealed that the recovered isolates exhibited diverse resistance phenotypes and β-lactamase genes. In conclusion, wastewater effluents from the investigated poultry slaughterhouses exhibited clinically relevant bacteria (E. coli, methicillin-resistant S. aureus, K. pneumoniae, and species of the ACB and Enterobacter cloacae complexes) that contribute to the dissemination of clinically relevant resistances (i.e., blaCTX-M or blaSHV and mcr-1) in the environment.IMPORTANCE Bacteria from livestock may be opportunistic pathogens and carriers of clinically relevant resistance genes, as many antimicrobials are used in both veterinary and human medicine. They may be released into the environment from wastewater treatment plants (WWTPs), which are influenced by wastewater from slaughterhouses, thereby endangering public health. Moreover, process water that accumulates during the slaughtering of poultry is an important reservoir for livestock-associated multidrug-resistant bacteria and may serve as a vector of transmission to occupationally exposed slaughterhouse employees. Mitigation solutions aimed at the reduction of the bacterial discharge into the production water circuit as well as interventions against their further transmission and dissemination need to be elaborated. Furthermore, the efficacy of in-house WWTPs needs to be questioned. Reliable data on the occurrence and diversity of clinically relevant bacteria within the slaughtering production chain and in the WWTP effluents in Germany will help to assess their impact on public and environmental health.
Collapse
Affiliation(s)
- Mykhailo Savin
- Institute of Animal Sciences, University of Bonn, Bonn, Germany
| | - Gabriele Bierbaum
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Jens Andre Hammerl
- Department for Biological Safety, German Federal Institute for Risk Assessment, Berlin, Germany
| | | | - Marijo Parcina
- Institute for Medical Microbiology, Immunology and Parasitology, University Hospital Bonn, Bonn, Germany
| | - Esther Sib
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Alexander Voigt
- Institute for Hygiene and Public Health, University Hospital Bonn, Bonn, Germany
| | - Judith Kreyenschmidt
- Institute of Animal Sciences, University of Bonn, Bonn, Germany
- Hochschule Geisenheim University, Department of Fresh Produce Logistics, Geisenheim, Germany
| |
Collapse
|
36
|
Abraham S, O’Dea M, Sahibzada S, Hewson K, Pavic A, Veltman T, Abraham R, Harris T, Trott DJ, Jordan D. Escherichia coli and Salmonella spp. isolated from Australian meat chickens remain susceptible to critically important antimicrobial agents. PLoS One 2019; 14:e0224281. [PMID: 31644602 PMCID: PMC6808415 DOI: 10.1371/journal.pone.0224281] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/09/2019] [Indexed: 12/16/2022] Open
Abstract
The World Health Organisation has defined "highest priority critically important antimicrobials" (CIAs) as those requiring the greatest control during food production. Evidence demonstrating that restricted antimicrobial usage prevents the emergence of resistance to CIA's amongst pathogenic and commensal organisms on a production system-wide scale would strengthen international efforts to control antimicrobial resistance (AMR). Therefore, in a designed survey of all major chicken-meat producers in Australia, we investigated the phenotypic AMR of E. coli (n = 206) and Salmonella (n = 53) from caecal samples of chickens at slaughter (n = 200). A large proportion of E. coli isolates (63.1%) were susceptible to all tested antimicrobials. With regards to CIA resistance, only two E.coli isolates demonstrated resistance to fluoroquinolones, attributed to mutations in the quinolone resistance-determining regions of gyrA. Antimicrobial resistance was observed for trimethoprim/sulfamethoxazole (8.7%), streptomycin (9.7%), ampicillin (14.1%), tetracycline (19.4%) and cefoxitin (0.5%). All Salmonella isolates were susceptible to ceftiofur, chloramphenicol, ciprofloxacin, colistin, florfenicol, gentamicin and tetracycline. A low frequency of Salmonella isolates exhibited resistance to streptomycin (1.9%), ampicillin (3.8%), and cefoxitin (11.3%). AMR was only observed among Salmonella Sofia serovars. None of the Salmonella isolates exhibited a multi-class-resistant phenotype. Whole genome sequencing did not identify any known resistance mechanisms for the Salmonella isolates demonstrating resistance to cefoxitin. The results provide strong evidence that resistance to highest priority CIA's is absent in commensal E. coli and Salmonella isolated from Australian meat chickens, and demonstrates low levels of resistance to compounds with less critical ratings such as cefoxitin, trimethoprim/sulfamethoxazole, and tetracycline. Apart from regulated exclusion of CIAs from most aspects of livestock production, vaccination against key bacterial pathogens and stringent biosecurity are likely to have contributed to the favorable AMR status of the Australian chicken meat industry. Nevertheless, industry and government need to proactively monitor AMR and antimicrobial stewardship practices to ensure the long-term protection of both animal and human health.
Collapse
Affiliation(s)
- Sam Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Mark O’Dea
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Shafi Sahibzada
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Kylie Hewson
- Australian Chicken Meat Federation, Sydney, New South Wales, Australia
| | - Anthony Pavic
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Tania Veltman
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - Rebecca Abraham
- Antimicrobial Resistance and Infectious Disease Laboratory, Murdoch University, Murdoch, Western Australia, Australia
| | - Taha Harris
- Birling Avian Laboratories, Bringelly, New South Wales, Australia
| | - Darren J. Trott
- Australian Centre for Antimicrobial Resistance Ecology, School of Animal and Veterinary Sciences, The University of Adelaide, Roseworthy, South Australia, Australia
| | - David Jordan
- New South Wales Department of Primary Industries, Wollongbar, New South Wales, Australia
| |
Collapse
|
37
|
Clermont O, Dixit OVA, Vangchhia B, Condamine B, Dion S, Bridier-Nahmias A, Denamur E, Gordon D. Characterization and rapid identification of phylogroup G in Escherichia coli, a lineage with high virulence and antibiotic resistance potential. Environ Microbiol 2019; 21:3107-3117. [PMID: 31188527 DOI: 10.1111/1462-2920.14713] [Citation(s) in RCA: 159] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/31/2019] [Accepted: 06/09/2019] [Indexed: 12/22/2022]
Abstract
The phylogeny of the Escherichia coli species, with the identification of seven phylogroups (A, B1, B2, C, D, E and F), is linked to the lifestyle of the strains. With the accumulation of whole genome sequence data, it became clear that some strains belong to a group intermediate between the F and B2 phylogroups, designated as phylogroup G. Here, we studied the complete sequences of 112 strains representative of the G phylogroup diversity and showed that it is composed of one main sequence type complex (STc)117 and four other STcs (STc657, STc454, STc738 and STc174). STc117, which phylogeny is characterized by very short internal branches, exhibits extensive O diversity, but little H-type and fimH allele diversity, whereas the other STcs are characterized by a main O, H and fimH type. STc117 strains possess many traits associated with extra-intestinal virulence, are virulent in a mouse sepsis model and exhibit multi-drug resistance such as CTX-M production. Epidemiologic data on 4,524 Australian and French strains suggest that STc117 is a poultry-associated lineage that can also establish in humans and cause extra-intestinal diseases. We propose an easy identification method that will help to trace this potentially virulent and resistant phylogroup in epidemiologic studies.
Collapse
Affiliation(s)
- Olivier Clermont
- IAME, UMR 1137, INSERM, Université de Paris, Paris, 75018, France
| | - Ojas V A Dixit
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| | - Belinda Vangchhia
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia.,Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Aizawl, 796014, India
| | | | - Sara Dion
- IAME, UMR 1137, INSERM, Université de Paris, Paris, 75018, France
| | | | - Erick Denamur
- IAME, UMR 1137, INSERM, Université de Paris, Paris, 75018, France.,Laboratoire de Génétique Moléculaire, Hôpital Bichat, Paris, 75018, France
| | - David Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
38
|
Genomic and Functional Analysis of Emerging Virulent and Multidrug-Resistant Escherichia coli Lineage Sequence Type 648. Antimicrob Agents Chemother 2019; 63:AAC.00243-19. [PMID: 30885899 DOI: 10.1128/aac.00243-19] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Abstract
The pathogenic extended-spectrum-beta-lactamase (ESBL)-producing Escherichia coli lineage ST648 is increasingly reported from multiple origins. Our study of a large and global ST648 collection from various hosts (87 whole-genome sequences) combining core and accessory genomics with functional analyses and in vivo experiments suggests that ST648 is a nascent and generalist lineage, lacking clear phylogeographic and host association signals. By including large numbers of ST131 (n = 107) and ST10 (n = 96) strains for comparative genomics and phenotypic analysis, we demonstrate that the combination of multidrug resistance and high-level virulence are the hallmarks of ST648, similar to international high-risk clonal lineage ST131. Specifically, our in silico, in vitro, and in vivo results demonstrate that ST648 is well equipped with biofilm-associated features, while ST131 shows sophisticated signatures indicative of adaption to urinary tract infection, potentially conveying individual ecological niche adaptation. In addition, we used a recently developed NFDS (negative frequency-dependent selection) population model suggesting that ST648 will increase significantly in frequency as a cause of bacteremia within the next few years. Also, ESBL plasmids impacting biofilm formation aided in shaping and maintaining ST648 strains to successfully emerge worldwide across different ecologies. Our study contributes to understanding what factors drive the evolution and spread of emerging international high-risk clonal lineages.
Collapse
|
39
|
Zurfluh K, Albini S, Mattmann P, Kindle P, Nüesch-Inderbinen M, Stephan R, Vogler BR. Antimicrobial resistant and extended-spectrum β-lactamase producing Escherichia coli in common wild bird species in Switzerland. Microbiologyopen 2019; 8:e845. [PMID: 31006991 PMCID: PMC6855137 DOI: 10.1002/mbo3.845] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 03/16/2019] [Accepted: 03/18/2019] [Indexed: 11/08/2022] Open
Abstract
A total of 294 fecal swabs from 294 wild birds in Switzerland were cultivated for antimicrobial resistant (AMR) Escherichia coli. Samples were also subcultivated to detect E. coli with extended-spectrum β-lactamases (ESBL), carbapenemases, and plasmid-mediated aminoglycoside or colistin resistance, respectively. Samples from 17 (5.8%) of the birds contained 19 AMR E. coli, whereof 26.3% were multidrug resistant. Five (1.7%) ESBL-producing E. coli were detected. The isolates harbored blaCTX-M-1 (two isolated from carrion crows and from one great spotted woodpecker, respectively), blaCTX-M-15 (originating from a grey heron), blaCTX-M-55 (from a carrion crow), and blaCTX-M-65 (from a common blackbird). Phylogenetic analysis assigned three isolates to commensal phylogroups A and B1, one to extraintestinal pathogenic group B2, and one to phylogroup F. Multilocus sequence typing identified sequence types (STs) that have been found previously in ESBL E. coli in wild birds (ST58, ST205, ST540). One isolate harboring blaCTX-M-55 was assigned to the recently emerged fluoroquinolone-resistant, extraintestinal pathogenic E. coli clone ST1193. Wild birds have the potential to disperse AMR, including clinically important resistance genes, from anthropogenic-influenced habitats to diverse areas, including vulnerable natural environments such as surface waters or mountain regions.
Collapse
Affiliation(s)
- Katrin Zurfluh
- Vetsuisse Faculty, National Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Sarah Albini
- Vetsuisse Faculty, National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Prisca Mattmann
- Vetsuisse Faculty, National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland.,Swiss Ornithological Institute, Sempach, Switzerland
| | - Patrick Kindle
- Vetsuisse Faculty, National Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- Vetsuisse Faculty, National Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Roger Stephan
- Vetsuisse Faculty, National Centre for Enteropathogenic Bacteria and Listeria (NENT), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| | - Barbara R Vogler
- Vetsuisse Faculty, National Reference Centre for Poultry and Rabbit Diseases (NRGK), Institute for Food Safety and Hygiene, University of Zurich, Zurich, Switzerland
| |
Collapse
|
40
|
Vounba P, Arsenault J, Bada-Alambédji R, Fairbrother JM. Pathogenic potential and the role of clones and plasmids in beta-lactamase-producing E. coli from chicken faeces in Vietnam. BMC Vet Res 2019; 15:106. [PMID: 30947723 PMCID: PMC6449924 DOI: 10.1186/s12917-019-1849-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Accepted: 03/26/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) in food-producing animals is a global public health issue. This study investigated AMR and virulence profiles of E. coli isolated from healthy chickens in Vietnam. E. coli were isolated from fecal samples collected in five chicken farms located in the provinces of Hoa Binh, Thai Nguyen and Bac Giang in the North of Vietnam. These isolates were examined by disk diffusion for their AMR, PCR for virulence and AMR genes, pulsed-field gel electrophoresis for relatedness between blaCMY-2/blaCTX-M-positive isolates, electroporation for transferability of blaCMY-2 or blaCTX-M genes and sequencing for mutations responsible for ciprofloxacin resistance. RESULTS Up to 99% of indicator isolates were multidrug resistant. Resistance to third-generation cephalosporins (3GC) was encoded by both blaCTX-M and blaCMY-2 genes; blaCTX-M genes being of genotypes blaCTX-M-1, - 14, - 15, - 17, - 57 and - 87, whereas ciprofloxacin resistance was due to mutations in the gyrA and parC genes. Some isolates originating from farms located in different provinces of Vietnam were found to be closely related, suggesting they may have been disseminated from a same source of contamination. Plasmids may also have played a role in the diffusion of 3GC-resistance as the blaCMY-2 gene was located on plasmids A/C and I1, and the blaCTX-M gene variants were carried by I1, FIB, R and HI1. Plasmids carrying the blaCMY-2/blaCTX-M genes also co-transferred resistance to other antimicrobials. In addition, isolates potentially capable of infecting humans, of which some produced blaCMY-2/blaCTX-M, were identified in this study. CONCLUSIONS Both clones and plasmids could be involved in the dissemination of 3GC-resistant E. coli within and between chicken farms in Vietnam. These results demonstrate the necessity to monitor AMR and control antimicrobial use in poultry in Vietnam.
Collapse
Affiliation(s)
- Passoret Vounba
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, the Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), St-Hyacinthe, Quebec Canada
| | - Julie Arsenault
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, the Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), St-Hyacinthe, Quebec Canada
| | - Rianatou Bada-Alambédji
- Department of Public Health and Environment, Ecole Inter-Etats des Sciences et Médecine Vétérinaires (EISMV), de Dakar, Senegal
| | - John Morris Fairbrother
- Department of Pathology and Microbiology, Faculty of Veterinary Medicine, Université de Montréal, the Swine and Poultry Infectious Diseases Research Centre (CRIPA) and the Research Group on Zoonoses and Public Health (GREZOSP), St-Hyacinthe, Quebec Canada
- OIE Reference Laboratory for Escherichia coli (EcL), Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, QC J2S 2M2 Canada
| |
Collapse
|
41
|
Nanayakkara BS, O'Brien CL, Gordon DM. Diversity and distribution of Klebsiella capsules in Escherichia coli. ENVIRONMENTAL MICROBIOLOGY REPORTS 2019; 11:107-117. [PMID: 30411512 DOI: 10.1111/1758-2229.12710] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 10/31/2018] [Accepted: 11/03/2018] [Indexed: 06/08/2023]
Abstract
E. coli strains responsible for elevated counts (blooms) in freshwater reservoirs in Australia carry a capsule originating from Klebsiella. The occurrence of Klebsiella capsules in E. coli was about 7% overall and 23 different capsule types were detected. Capsules were observed in strains from phylogroups A, B1 and C, but were absent from phylogroup B2, D, E and F strains. In general, few A, B1 or C lineages were capsule-positive, but when a lineage was encapsulated multiple different capsule types were present. All Klebsiella capsule-positive strains were of serogroups O8, O9 and O89. Regardless of the phylogroup, O9 strains were more likely to be capsule-positive than O8 strains. Given the sequence similarity, it appears that both the capsule region and the O-antigen gene region are transferred to E. coli from Klebsiella as a single block via horizontal gene transfer events. Pan genome analysis indicated that there were only modest differences between encapsulated and non-encapsulated strains belonging to phylogroup A. The possession of a Klebsiella capsule, but not the type of capsule, is likely a key determinant of the bloom status of a strain.
Collapse
Affiliation(s)
- Buddhie S Nanayakkara
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Claire L O'Brien
- Medical School, The Australian National University, Canberra, ACT 2601, Australia
- Gastroenterology and Hepatology Unit, Canberra Hospital, Canberra, ACT, Australia
| | - David M Gordon
- Division of Ecology and Evolution, Research School of Biology, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
42
|
Sary K, Fairbrother JM, Arsenault J, de Lagarde M, Boulianne M. Antimicrobial Resistance and Virulence Gene Profiles Among Escherichia coli Isolates from Retail Chicken Carcasses in Vietnam. Foodborne Pathog Dis 2019; 16:298-306. [PMID: 30767657 DOI: 10.1089/fpd.2018.2555] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
This study evaluated virulence and resistance profiles of Escherichia coli in chicken carcasses from three retail systems in Vietnam. Fresh chicken carcasses from traditional markets and fresh and frozen chicken carcasses from supermarkets were sampled in Vietnam. E. coli isolates from carcass rinses were characterized for extraintestinal pathogenic E. coli (ExPEC) virulence factors (iucD, cnf, papC, tsh, KpsMT II, afa, and sfa) and for phenotypical antimicrobial resistance by Sensititre ARIS® as well as genotypically by polymerase chain reaction. An elevated proportion (30% to 70%) of samples resistant to antimicrobials critically important for human medicine was observed in routine isolates, with no significant differences between the three retail systems. Multidrug-resistant (MDR) ExPEC isolates of phylogroup B1 and, of greater concern, of phylogroup F were detected. Extended-spectrum β-lactamase (ESBL)- and AmpC β-lactamase-producing E. coli possessing blaCTX-M or blaCMY-2 resistance genes, respectively, were found. The presence of ExPEC with a high level of antimicrobial resistance (more than 50% of isolates) and MDR (91% of isolates) and detection of ESBL-producing E. coli underline the potential health threat for humans associated with mishandled chicken carcasses or consumption of undercooked chicken meat in Vietnam.
Collapse
Affiliation(s)
- Kathleen Sary
- 1 Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| | - John Morris Fairbrother
- 2 OIE Reference Laboratory for Escherichia coli (EcL), Université de Montréal, Saint-Hyacinthe, Canada
| | - Julie Arsenault
- 3 Swine and Poultry Infectious Diseases Research Center (CRIPA), Université de Montréal, Saint-Hyacinthe, Canada
| | - Maud de Lagarde
- 2 OIE Reference Laboratory for Escherichia coli (EcL), Université de Montréal, Saint-Hyacinthe, Canada
| | - Martine Boulianne
- 1 Faculté de Médecine Vétérinaire, Université de Montréal, Saint-Hyacinthe, Canada
| |
Collapse
|
43
|
Simjee S, McDermott P, Trott DJ, Chuanchuen R. Present and Future Surveillance of Antimicrobial Resistance in Animals: Principles and Practices. Microbiol Spectr 2018; 6:10.1128/microbiolspec.arba-0028-2017. [PMID: 30003869 PMCID: PMC11633600 DOI: 10.1128/microbiolspec.arba-0028-2017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Indexed: 11/20/2022] Open
Abstract
There is broad consensus internationally that surveillance of the levels of antimicrobial resistance (AMR) occurring in various systems underpins strategies to address the issue. The key reasons for surveillance of resistance are to determine (i) the size of the problem, (ii) whether resistance is increasing, (iii) whether previously unknown types of resistance are emerging, (iv) whether a particular type of resistance is spreading, and (v) whether a particular type of resistance is associated with a particular outbreak. The implications of acquiring and utilizing this information need to be considered in the design of a surveillance system. AMR surveillance provides a foundation for assessing the burden of AMR and for providing the necessary evidence for developing efficient and effective control and prevention strategies. The codevelopment of AMR surveillance programs in humans and animals is essential, but there remain several key elements that make data comparisons between AMR monitoring programs, and between regions, difficult. Currently, AMR surveillance relies on uncomplicated in vitro antimicrobial susceptibility methods. However, the lack of harmonization across programs and the limitation of genetic information of AMR remain the major drawbacks of these phenotypic methods. The future of AMR surveillance is moving toward genotypic detection, and molecular analysis methods are expected to yield a wealth of information. However, the expectation that these molecular techniques will surpass phenotypic susceptibility testing in routine diagnosis and monitoring of AMR remains a distant reality, and phenotypic testing remains necessary in the detection of emerging resistant bacteria, new resistance mechanisms, and trends of AMR.
Collapse
Affiliation(s)
- S Simjee
- Elanco Animal Health, Basingstoke, UK
| | - P McDermott
- Food and Drug Administration, Center for Veterinary Medicine, Rockville MD
| | - D J Trott
- University of Adelaide, Roseworthy, Australia
| | | |
Collapse
|
44
|
Zogg AL, Simmen S, Zurfluh K, Stephan R, Schmitt SN, Nüesch-Inderbinen M. High Prevalence of Extended-Spectrum β-Lactamase Producing Enterobacteriaceae Among Clinical Isolates From Cats and Dogs Admitted to a Veterinary Hospital in Switzerland. Front Vet Sci 2018; 5:62. [PMID: 29662886 PMCID: PMC5890143 DOI: 10.3389/fvets.2018.00062] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 03/12/2018] [Indexed: 11/13/2022] Open
Abstract
Objectives This study aimed to identify and characterize extended-spectrum β-lactamase (ESBL) producing Enterobacteriaceae among clinical samples of companion animals. Methods A total of 346 non-duplicate Enterobacteriaceae isolates were collected between 2012 and 2016 from diseased cats (n = 115) and dogs (n = 231). The presence of blaESBL, PMQR genes, and the azithromycin resistance gene mph(A) was confirmed by PCR and sequencing of bla genes. Isolates were further characterized by antimicrobial resistance profiling, multilocus sequence typing, phylogenetic grouping, identification of mutations in the QRDR of gyrA and parC, and screening for virulence-associated genes. Results Among the 346 isolates, 72 (20.8%) were confirmed ESBL producers [58 Escherichia coli (E. coli), 11 Klebsiella pneumoniae (K. pneumoniae), and 3 Enterobacter cloacae]. The strains were cultured from urine (n = 45), skin and skin wounds (n = 8), abscesses (n = 6), surgical sites (n = 6), bile (n = 4), and other sites (n = 3). ESBL genes included blaCTX-M-1, 14, 15, 27, 55, and blaSHV-12, predominantly blaCTX-M-15 (54.8%, 40/73), and blaCTX-M-1 (24.7%, 18/73). Further genes included qnrB (4.2%, 3/72), qnrS (9.7%, 7/72), aac(6')-Ib-cr (47.2%, 34/72), and mph(A) (38.9%, 28/72). Seventeen (23.6%) isolates belonged to the major lineages of human pathogenic K. pneumoniae ST11, ST15, and ST147 and E. coli ST131. The most prevalent ST was E. coli ST410 belonging to phylogenetic group C. Conclusion The high prevalence of ESBL producing clinical Enterobacteriaceae from cats and dogs in Switzerland and the presence of highly virulent human-related K. pneumoniae and E. coli clones raises concern about transmission prevention as well as infection management and prevention in veterinary medicine.
Collapse
Affiliation(s)
- Anna Lena Zogg
- National Centre for Enteropathogenic Bacteria and Listeria, Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zürich, Zürich, Switzerland
| | - Sabrina Simmen
- National Centre for Enteropathogenic Bacteria and Listeria, Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zürich, Zürich, Switzerland
| | - Katrin Zurfluh
- National Centre for Enteropathogenic Bacteria and Listeria, Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zürich, Zürich, Switzerland
| | - Roger Stephan
- National Centre for Enteropathogenic Bacteria and Listeria, Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zürich, Zürich, Switzerland
| | - Sarah N Schmitt
- Vetsuisse Faculty, Institute of Veterinary Bacteriology, University of Zürich, Zürich, Switzerland
| | - Magdalena Nüesch-Inderbinen
- National Centre for Enteropathogenic Bacteria and Listeria, Vetsuisse Faculty, Institute for Food Safety and Hygiene, University of Zürich, Zürich, Switzerland
| |
Collapse
|
45
|
Vangchhia B, Blyton MDJ, Collignon P, Kennedy K, Gordon DM. Factors affecting the presence, genetic diversity and antimicrobial sensitivity of Escherichia coli in poultry meat samples collected from Canberra, Australia. Environ Microbiol 2017; 20:1350-1361. [PMID: 29266683 DOI: 10.1111/1462-2920.14030] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Accepted: 12/12/2017] [Indexed: 11/30/2022]
Abstract
To investigate the factors determining the clonal composition of Escherichia coli in poultry meat samples, 306 samples were collected from 16 shops, representing three supermarket chains and an independent butchery located in each of the four town centers of Canberra, Australia, during the summer, autumn and winter. A total of 3415 E. coli isolates were recovered and assigned to a phylogenetic group using the Clermont quadruplex PCR method, fingerprinted using repetitive element palindromic (REP) PCR and screened for their antimicrobial susceptibility profiles. The probability of detecting E. coli and the number of fingerprint types detected per sample, as well as the phylogroup membership of the isolates and their antimicrobial sensitivity profiles varied, with one or more of retailer, store, meat type, season and husbandry. The results of this study demonstrate that poultry meat products are likely to be contaminated with a genetically diverse community of E. coli and suggest that factors relating to the nature of the meat product and distribution chain are determinants of the observed diversity.
Collapse
Affiliation(s)
- Belinda Vangchhia
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia.,Department of Veterinary Microbiology, College of Veterinary Sciences & Animal Husbandry, Central Agricultural University, Selesih, Aizawl, Mizoram, 796014, India
| | - Michaela D J Blyton
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia.,Hawkesbury Institute for the Environment, Western Sydney University, Hawkesbury Campus, Science Rd, Richmond, NSW 2753, Australia
| | - Peter Collignon
- Infectious Disease and Microbiology, Canberra Hospital, Woden, ACT, Australia.,Medical School, Australian National University, Canberra, ACT, Australia.,ACT Pathology, Canberra, ACT, Australia
| | - Karina Kennedy
- Infectious Disease and Microbiology, Canberra Hospital, Woden, ACT, Australia.,Medical School, Australian National University, Canberra, ACT, Australia
| | - David M Gordon
- Ecology and Evolution, Research School of Biology, The Australian National University, 116 Daley Road, Acton, ACT, 2601, Australia
| |
Collapse
|
46
|
Zhu Y, Dong W, Ma J, Yuan L, Hejair HMA, Pan Z, Liu G, Yao H. Characterization and virulence clustering analysis of extraintestinal pathogenic Escherichia coli isolated from swine in China. BMC Vet Res 2017; 13:94. [PMID: 28388949 PMCID: PMC5385051 DOI: 10.1186/s12917-017-0975-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 02/15/2017] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Swine extraintestinal pathogenic Escherichia coli (ExPEC) is an important pathogen that leads to economic and welfare costs in the swine industry worldwide, and is occurring with increasing frequency in China. By far, various virulence factors have been recognized in ExPEC. Here, we investigated the virulence genotypes and clonal structure of collected strains to improve the knowledge of phylogenetic traits of porcine ExPECs in China. RESULTS We isolated 64 Chinese porcine ExPEC strains from 2013 to 14 in China. By multiplex PCR, the distribution of isolates belonging to phylogenetic groups B1, B2, A and D was 9.4%, 10.9%, 57.8% and 21.9%, respectively. Nineteen virulence-related genes were detected by PCR assay; ompA, fimH, vat, traT and iutA were highly prevalent. Virulence-related genes were remarkably more prevalent in group B2 than in groups A, B1 and D; notably, usp, cnf1, hlyD, papA and ibeA were only found in group B2 strains. Genotyping analysis was performed and four clusters of strains (named I to IV) were identified. Cluster IV contained all isolates from group B2 and Cluster IV isolates had the strongest pathogenicity in a mouse infection model. As phylogenetic group B2 and D ExPEC isolates are generally considered virulent, multilocus sequence typing (MLST) analysis was performed for these isolates to further investigate genetic relationships. Two novel sequence types, ST5170 and ST5171, were discovered. Among the nine clonal complexes identified among our group B2 and D isolates, CC12 and CC95 have been indicated to have high zoonotic pathogenicity. The distinction between group B2 and non-B2 isolates in virulence and genotype accorded with MLST analysis. CONCLUSION This study reveals significant genetic diversity among ExPEC isolates and helps us to better understand their pathogenesis. Importantly, our data suggest group B2 (Cluster IV) strains have the highest risk of causing animal disease and illustrate the correlation between genotype and virulence.
Collapse
Affiliation(s)
- Yinchu Zhu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenyang Dong
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jiale Ma
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lvfeng Yuan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hassan M A Hejair
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zihao Pan
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guangjin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huochun Yao
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Key Lab of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
47
|
Development and transmission of antimicrobial resistance among Gram-negative bacteria in animals and their public health impact. Essays Biochem 2017; 61:23-35. [PMID: 28258227 DOI: 10.1042/ebc20160055] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 01/26/2017] [Accepted: 01/27/2017] [Indexed: 11/17/2022]
Abstract
Gram-negative bacteria are known to cause severe infections in both humans and animals. Antimicrobial resistance (AMR) in Gram-negative bacteria is a major challenge in the treatment of clinical infections globally due to the propensity of these organisms to rapidly develop resistance against antimicrobials in use. In addition, Gram-negative bacteria possess highly efficient mechanisms through which the AMR can be disseminated between pathogenic and commensal bacteria of the same or different species. These unique traits of Gram-negative bacteria have resulted in evolution of Gram-negative bacterial strains demonstrating resistance to multiple classes of antimicrobials. The evergrowing resistance issue has not only resulted in limitation of treatment options but also led to increased treatment costs and mortality rates in humans and animals. With few or no new antimicrobials in production to combat severe life-threatening infections, AMR has been described as the one of the most severe, long-term threats to human health. Aside from overuse and misuse of antimicrobials in humans, another factor that has exacerbated the emergence of AMR in Gram-negative bacteria is the veterinary use of antimicrobials that belong to the same classes considered to be critically important for treating serious life-threatening infections in humans. Despite the fact that development of AMR dates back to before the introduction of antimicrobials, the recent surge in the resistance towards all available critically important antimicrobials has emerged as a major public health issue. This review thus focuses on discussing the development, transmission and public health impact of AMR in Gram-negative bacteria in animals.
Collapse
|
48
|
Rapid and Specific Detection of the Escherichia coli Sequence Type 648 Complex within Phylogroup F. J Clin Microbiol 2017; 55:1116-1121. [PMID: 28100599 DOI: 10.1128/jcm.01949-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 01/13/2017] [Indexed: 12/11/2022] Open
Abstract
The Escherichia coli sequence type 648 complex (STc648) is an emerging lineage within phylogroup F-formerly included within phylogroup D-that is associated with multidrug resistance. Here, we designed and validated a novel multiplex PCR-based assay for STc648 that took advantage of (i) four distinctive single-nucleotide polymorphisms in icd allele 96 and gyrB allele 87, two of the multilocus sequence typing alleles that define ST648; and (ii) the typical absence within STc648 of uidA, an E. coli-specific gene encoding β-glucuronidase. Within a diverse 212-strain validation set that included 109 STs other than STc648, from phylogroups A, B1, B2, C, D, E, and F, the assay exhibited 100% sensitivity (95% confidence interval [CI], 82% to 100%) and specificity (95% CI, 98% to 100%). It functioned similarly well in two distant laboratories that used boiled lysates or DNAzol-purified DNA as the template DNA. Thus, this novel multiplex PCR-based assay should enable any laboratory equipped for diagnostic PCR to rapidly, accurately, and economically screen E. coli isolates for membership in STc648.
Collapse
|