1
|
Mishra M, Arya A, Malik MZ, Mishra A, Hasnain SE, Bhatnagar R, Ahmad S, Chaturvedi R. Differential genome organization revealed by comparative topological analysis of Mycobacterium tuberculosis strains H37Rv and H37Ra. mSystems 2025; 10:e0056224. [PMID: 40192326 PMCID: PMC12090813 DOI: 10.1128/msystems.00562-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 01/08/2025] [Indexed: 05/21/2025] Open
Abstract
Recent studies have shown that three-dimensional architecture of bacterial chromatin plays an important role in gene expression regulation. However, genome topological organization in Mycobacterium tuberculosis, the etiologic agent of tuberculosis, remains unknown. On the other hand, the exact mechanism of differential pathogenesis in the canonical strains of M. tuberculosis H37Rv and H37Ra remains poorly understood in terms of their raw sequences. In this context, a detailed contact map from a Hi-C experiment is a candidate for what bridges the gap. Here, we present the first comprehensive report on genome-wide contact maps between regions of H37Rv and H37Ra genomes. We tracked differences between the genome architectures of H37Rv and H37Ra, which could possibly explain the virulence attenuation in H37Ra. We confirm the existence of a differential organization between the two strains most significantly a higher chromosome interaction domain (CID) size in the attenuated H37Ra strain. CID boundaries are also found enriched with highly expressed genes and with higher operon density in H37Rv. Furthermore, most of the differentially expressed PE/PPE genes were present near the CID boundaries in H37Rv and not in H37Ra. We also found a systemic reorganization of CIDs in both virulent H37Rv and avirulent H37Ra strains after hypoxia induction. Collectively, our study proposes a differential genomic topological pattern between H37Rv and H37Ra, which could explain the virulence attenuation in H37Ra.IMPORTANCEGenome organization studies using chromosome conformation capture techniques have proved to be useful in establishing a three-dimensional (3D) landscape of bacterial chromatin. The sequence-based studies failed to unveil the exact mechanism for virulence attenuation in one of the Mycobacterium tuberculosis strains H37Ra. Moreover, as of today, no study investigated the 3D structure of the M. tuberculosis genome and how 3D genome organization affects transcription in M. tuberculosis. We investigated the genome topology in virulent and attenuated strains of M. tuberculosis using Hi-C. Our study demonstrated that virulent and attenuated M. tuberculosis strains exhibit distinct topological features that correlate with higher gene expression of virulence genes in the virulent H37Rv strain.
Collapse
Affiliation(s)
- Mohit Mishra
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Ajay Arya
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Md. Zubbair Malik
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Department of Genetics and Bioinformatics, Dasman Diabetes Institute, Dasman, Kuwait City, Kuwait
| | - Akanksha Mishra
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Seyed E. Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | | | - Shandar Ahmad
- School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rupesh Chaturvedi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
- Special Center for System Medicine, Jawaharlal Nehru University, New Delhi, India
- Nanofluidiks Pvt. Ltd, Jawaharlal Nehru University-Foundation for Innovation, New Delhi, India
| |
Collapse
|
2
|
Mercedes Bigi M, Imperiale B, Soria M, López B, Bigi F, de la Barrera S. Total free lipids from MDR strain of Mycobacterium tuberculosis "M" reduce T cell activation and CTL activity in healthy individuals. Mol Immunol 2025; 183:182-193. [PMID: 40382835 DOI: 10.1016/j.molimm.2025.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 03/02/2025] [Accepted: 05/09/2025] [Indexed: 05/20/2025]
Abstract
Increasing evidence highlights the role of cell wall components in the effectiveness of different Mycobacterium tuberculosis (Mtb) strains in modulating host immune response. We previously demonstrated that the outbreak multidrug-resistant strain M displays a distinctive lipid profile in its cell envelope compared to the closely related sporadic strain 410. Both strains markedly differ in their ability to induce fully functional CD8+ T cells because of low CD69 signaling and impaired CD4+ T cell help. In this study, we evaluated the impact of extractable lipids (LP) from M (LP-M) and 410 (LP-410) on the activation and functionality of T cells from healthy individuals. PBMCs were cultured alone or with Mtb in the presence or absence of LP-M, LP-410, or LP from CD1551 mutants in polymorphic genes between M and 410. Then, surface CD69 and intracytoplasmic IL-2 (after 3 days of culture), as well as surface CD107 expression (after 6 days of culture) were determined in T cells by flow cytometry. In contrast to LP-410, LP-M induced low expression of CD69 and IL-2 in CD4+/CD8+ cells and of CD107 in CD8+ cells. Besides, LP from Mtb strains mutated in Rv1861c and Rv3787c genes inhibited H37Rv-induced T cell response without causing cell death. Thus, our results suggest that LP-M likely through mutations in Rv1861 and Rv3787c, inhibits the activation and functionality of T cells from PPD+ healthy human donors and might partially contribute to the development of immune evasion mechanisms in the M strain.
Collapse
Affiliation(s)
- María Mercedes Bigi
- Biomedical Research Institute (UBA-CONICET), School of Medicine, University of Buenos Aires (UBA), Buenos Aires, Argentina.
| | - Belén Imperiale
- Laboratory of Immunology of Physiology of Inflammatory Processes, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina.
| | - Marcelo Soria
- School of Agronomy, Facultad de Agronomía, Universidad de Buenos Aires (UBA), Facultad de Agronomía, Buenos Aires, Argentina.
| | - Beatriz López
- Laboratory of Mycobacteria, National Institute of Infectious Diseases, ANLIS ''Dr. Carlos G. Malbrán'', Buenos Aires, Argentina.
| | - Fabiana Bigi
- Institute of Biotechnology, National Institute of Agricultural Technology, (INTA)/IABIMO-CONICET, Buenos Aires, Argentina.
| | - Silvia de la Barrera
- Laboratory of Immunology of Physiology of Inflammatory Processes, Institute of Experimental Medicine-CONICET, National Academy of Medicine, Buenos Aires, Argentina.
| |
Collapse
|
3
|
Gangwar A, Saini S, Sharma R. Galectins as Drivers of Host-Pathogen Dynamics in Mycobacterium tuberculosis Infection. ACS Infect Dis 2025. [PMID: 40340374 DOI: 10.1021/acsinfecdis.4c01056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
Galectins form a protein family with a conserved carbohydrate-binding domain that specifically interacts with β-galactoside-containing glycoconjugates, which are found abundantly on mammalian cell surfaces. These proteins play crucial roles in various physiological and pathological processes including immune responses, cell adhesion, inflammation, and apoptosis. During tuberculosis infection, galectins exert diverse impacts on pathogenesis. The interaction between host and pathogen during TB involves intricate mechanisms influencing disease outcomes, where the pathogen exploits host glycosylation patterns to evade immune detection, underscoring the significant role of galectins in regulating these crucial host-pathogen interactions. Galectins facilitate pathogen recognition, enhance the phagocytosis of mycobacteria, support the formation of granuloma, and carefully balance the protective immunity against potential tissue damage. Additionally, galectins have an impact on the cytokine milieu by regulating the levels of pro-inflammatory cytokines and chemokines, essential for orchestrating granuloma formation and maintaining tuberculosis-associated homeostasis. This review delves into the intricate connection between galectins and tuberculosis; uncovering essential molecular mechanisms that deepen our understanding of how these proteins contribute to combating this pervasive infectious disease. Here we discuss the multifaceted roles that galectins play to uniquely and critically influence the core dynamics of host-pathogen interactions in tuberculosis.
Collapse
Affiliation(s)
- Anjali Gangwar
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sapna Saini
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rashmi Sharma
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
4
|
Sun MR, Xing JY, Li XT, Fang R, Zhang Y, Li ZL, Song NN. Recent advances in research on Mycobacterium tuberculosis virulence factors and their role in pathogenesis. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2025:S1684-1182(25)00079-9. [PMID: 40175253 DOI: 10.1016/j.jmii.2025.03.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/28/2025] [Accepted: 03/25/2025] [Indexed: 04/04/2025]
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of tuberculosis (TB) in humans and animals. Mtb invades the host's lungs via airborne transmission, infecting macrophages and causing TB. In some cases, the infection can spread to other tissues and organs. Despite the availability of several drugs for TB treatment, the emergence of multidrug-resistant TB has led to high morbidity and mortality rates worldwide. Therefore, it is urgent to discover new anti-tuberculosis drugs for more effective treatment. Recent studies have shown that Mtb virulence factors play a crucial role in its pathogenicity. By evading the host's immune surveillance through mechanisms such as anti-oxidative stress, nutrient synthesis and metabolism, and apoptosis in host cells, Mtb can achieve long-term survival in the host. Understanding the pathogenicity mechanisms of Mtb will aid the development of new vaccines and anti-tuberculosis drugs. In this review, we summarize the latest research progress on Mtb virulence factors to provide a reference for targeted TB treatment.
Collapse
Affiliation(s)
- Ming-Rui Sun
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Jia-Yin Xing
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Xiao-Tian Li
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Ren Fang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Yang Zhang
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China
| | - Zhao-Li Li
- SAFE Pharmaceutical Technology Co., Ltd., Beijing, 100000, China.
| | - Ning-Ning Song
- Key Laboratory of Respiratory Tract Pathogens and Drug Therapy, School of Life Science and Technology, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
5
|
Liu Q, Engelhart CA, Wallach JB, Tiwari D, Ge P, Manna A, Panda S, McCue WM, Wong TY, Sharma S, Jayasinghe YP, Fuller J, Ronning DR, Bockman MR, Cheung A, Dartois V, Zimmerman MD, Schnappinger D, Aldrich CC. Metabolically Stable Adenylation Inhibitors of Biotin Protein Ligase as Antibacterial Agents. J Med Chem 2025; 68:3065-3087. [PMID: 39823202 DOI: 10.1021/acs.jmedchem.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
The antibacterial agent Bio-AMS is metabolized in vivo through hydrolysis of the central acyl-sulfamide linker leading to high clearance and release of a moderately cytotoxic metabolite M1. Herein, we disclose analogues designed to prevent the metabolism of the central acyl-sulfamide moiety through steric hindrance or attenuation of the acyl-sulfamide electrophilicity. Bio-9 was identified as a metabolically stable analogue with a single-digit nanomolar dissociation constant for biotin protein ligase (BPL) and minimum inhibitory concentrations (MICs) against Mycobacterium tuberculosis and Staphylococcus aureus ranging from 0.2 to 20 μM. The antibacterial activity of Bio-9 was dependent on BPL expression level and was more than 70-fold better against a strain underexpressing BPL and, conversely, more than 5-fold less effective against a strain overexpressing BPL. Pharmacokinetic and metabolic studies demonstrated that Bio-9 was metabolically stable in vivo, showing negligible hydrolysis that translated to substantially reduced clearance and concomitantly boosted drug exposure and half-life compared to Bio-AMS.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Curtis A Engelhart
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Joshua B Wallach
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Divya Tiwari
- Centre for Immunobiology, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, United Kingdom
| | - Peng Ge
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Adhar Manna
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Subhankar Panda
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - William M McCue
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Tsung-Yun Wong
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Sachin Sharma
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Yahani P Jayasinghe
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Jessica Fuller
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Donald R Ronning
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, Nebraska 68198, United States
| | - Matthew R Bockman
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| | - Ambrose Cheung
- Department of Microbiology & Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire 03755, United States
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Matthew D Zimmerman
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey 07110, United States
| | - Dirk Schnappinger
- Department of Microbiology and Immunology, Weill Cornell Medical College, 1300 York Avenue, New York, New York 10021, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota, 308 Harvard Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
6
|
Doghish AS, Abulsoud AI, Nassar YA, Nasr SM, Mohammed OA, Abdel-Reheim MA, Rizk NI, Lutfy RH, Abdel Mageed SS, Ismail MA, Abd-Elhalim HM, Awad FA, Fayez SZ, Elimam H, Mansour RM. Harnessing miRNAs: A Novel Approach to Diagnosis and Treatment of Tuberculosis. J Biochem Mol Toxicol 2025; 39:e70119. [PMID: 39799557 DOI: 10.1002/jbt.70119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 12/09/2024] [Accepted: 12/21/2024] [Indexed: 01/15/2025]
Abstract
Mycobacterium tuberculosis (Mtb) complex, responsible for tuberculosis (TB) infection, continues to be a predominant global cause of mortality due to intricate host-pathogen interactions that affect disease progression. MicroRNAs (miRNAs), essential posttranscriptional regulators, have become pivotal modulators of these relationships. Recent findings indicate that miRNAs actively regulate immunological responses to Mtb complex by modulating autophagy, apoptosis, and immune cell activities. This has resulted in increased interest in miRNAs as prospective diagnostic indicators for TB, especially in differentiating active infection from latent or inactive stages. Variations in miRNA expression during Mtb infection indicate disease progression and offer insights into the immune response. Furthermore, miRNAs present potential as therapeutic targets in host-directed therapy (HDT) techniques for TB infection. This work examines the function of miRNAs in TB pathogenesis, with the objective of identifying particular miRNAs that regulate the immune response to the Mtb complex, evaluating their diagnostic value and exploring their therapeutic implications in host-directed therapy for TB infection. The objective is to enhance comprehension of how miRNAs can facilitate improved diagnosis and treatment of TB.
Collapse
Affiliation(s)
- Ahmed S Doghish
- Department of Biochemistry, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, Cairo, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo, Egypt
| | - Yara A Nassar
- Department of Botany, Biotechnology and Its Application Program, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Sami Mohamed Nasr
- Biochemistry and Molecular Biology, Theodor Bilharz Research Institute, Giza, Egypt
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha, Saudi Arabia
| | | | - Nehal I Rizk
- Department of Biochemistry, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University, Cairo, Egypt
| | - Radwa H Lutfy
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Menattallah A Ismail
- Applied Biotechnology Program, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Haytham M Abd-Elhalim
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
- Agricultural Research Center, Agricultural Genetic Engineering Research Institute, Giza, Egypt
| | - Farah A Awad
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Salma Zaki Fayez
- School of Biotechnology, Badr University in Cairo, Badr City, Cairo, Egypt
| | - Hanan Elimam
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Sadat City, Egypt
| | - Reda M Mansour
- Zoology and Entomology Department, Faculty of Science, Helwan University, Helwan, Egypt
- Molecular Biology and Biotechnology Department, School of Biotechnology, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| |
Collapse
|
7
|
Schami A, Islam MN, Wall M, Hicks A, Meredith R, Kreiswirth B, Mathema B, Belisle JT, Torrelles JB. Drug resistant Mycobacterium tuberculosis strains have altered cell envelope hydrophobicity that influences infection outcomes in human macrophages. Sci Rep 2024; 14:30840. [PMID: 39730579 PMCID: PMC11681083 DOI: 10.1038/s41598-024-81457-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024] Open
Abstract
In recent decades, drug resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the cause of tuberculosis (TB), have emerged that threaten public health. Although M.tb's complex and protective cell envelope has been widely studied, little is known about how levels of peripheral lipids change in relation to drug resistance. In this study, we examined levels of cell envelope lipids [phthiocerol dimycocerosates (PDIMs)], glycolipids [phosphatidyl-myo-inositol mannosides (PIMs)], and PIMs associated lipoglycans [lipomannan (LM); mannose-capped lipoarabinomannan (ManLAM)] of 22 M.tb strains that ranged in drug resistance profile. We show that the PDIMs:PIMs ratio increases as drug resistance increases, and provide evidence of PDIM isomers only present in the DR-M.tb strains studied. Overall, the LM and ManLAM levels did not differ between drug resistance categories, but ManLAM surface exposure increased with drug resistance. Infection of human macrophages revealed that DR-M.tb strains have decreased association compared to drug susceptible (DS) strains, and that the pre-XDR M.tb strain with the largest PDIMs:PIMs ratio had decreased uptake, but increased intracellular growth at early during infection compared to the DS-M.tb strain H37Rv. These findings suggest that PDIMs may play an important role in drug resistance and that an increase in hydrophobic cell envelope lipids may influence M.tb-host interactions.
Collapse
Affiliation(s)
- Alyssa Schami
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA.
| | - M Nurul Islam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
- Department of Chemistry, Biochemistry and Physics, South Dakota State University, Brookings, SD, 57007, USA.
| | - Matthew Wall
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Amberlee Hicks
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Reagan Meredith
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - John T Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA.
| | - Jordi B Torrelles
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA.
- International Center for the Advancement of Research & Education (I CARE), Texas Biomedical Research Institute, San Antonio, TX, USA.
| |
Collapse
|
8
|
Moolla N, Weaver H, Bailo R, Singh A, Bavro VN, Bhatt A. The role of ABC transporter DrrABC in the export of PDIM in Mycobacterium tuberculosis. Cell Surf 2024; 12:100132. [PMID: 39507394 PMCID: PMC11539658 DOI: 10.1016/j.tcsw.2024.100132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/11/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024] Open
Abstract
The Mycobacterium tuberculosis virulence lipid phthiocerol dimycocerosate (PDIM) is exported by a complex mechanism that involves multiple proteins including the Resistance-Nodulation-Division (RND) transporter MmpL7 and the lipoprotein LppX. Here, we probe the role of the putative heterooligomeric ATP-Binding Cassette (ABC) transporter complex composed of DrrA, DrrB and DrrC in PDIM transport by constructing a set of individual null mutants of drrA, drrB and drrC in the vaccine strain Mycobacterium bovis BCG. Loss of all three, or individual drr genes, all resulted in a complete loss of PDIM export to the outer envelope of the mycobacterial cell. Furthermore, guided by a bioinformatic analysis we interrogated specific signature residues within the DrrABC to demonstrate that it is indeed an ABC transporter, and our modelling, together with the mutagenesis identify it as a member of the Type V family of ABC exporters. We identify several unique structural elements of the transporter, including a non-canonical C-terminally inserted domain (CTD) structure within DrrA, which may account for its functional properties.
Collapse
Affiliation(s)
- Nabiela Moolla
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Helen Weaver
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Albel Singh
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
9
|
Larsen SE, Abdelaal HFM, Plumlee CR, Cohen SB, Kim HD, Barrett HW, Liu Q, Harband MH, Berube BJ, Baldwin SL, Fortune SM, Urdahl KB, Coler RN. The chosen few: Mycobacterium tuberculosis isolates for IMPAc-TB. Front Immunol 2024; 15:1427510. [PMID: 39530100 PMCID: PMC11551615 DOI: 10.3389/fimmu.2024.1427510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
The three programs that make up the Immune Mechanisms of Protection Against Mycobacterium tuberculosis Centers (IMPAc-TB) had to prioritize and select strains to be leveraged for this work. The CASCADE team based at Seattle Children's Research Institute are leveraging M.tb H37Rv, M.tb CDC1551, and M.tb SA161. The HI-IMPACT team based at Harvard T.H. Chan School of Public Health, Boston, have selected M.tb Erdman as well as a novel clinical isolate recently characterized during a longitudinal study in Peru. The PHOENIX team also based at Seattle Children's Research Institute have selected M.tb HN878 and M.tb Erdman as their isolates of choice. Here, we describe original source isolation, genomic references, key virulence characteristics, and relevant tools that make these isolates attractive for use. The global context for M.tb lineage 2 and 4 selection is reviewed including what is known about their relative abundance and acquisition of drug resistance. Host-pathogen interactions seem driven by genomic differences on each side, and these play an important role in pathogenesis and immunity. The few M.tb strains chosen for this work do not reflect the vast genomic diversity within this species. They do, however, provide specific virulence, pathology, and growth kinetics of interest to the consortium. The strains selected should not be considered as "representative" of the growing available array of M.tb isolates, but rather tools that are being used to address key outstanding questions in the field.
Collapse
Affiliation(s)
- Sasha E. Larsen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Hazem F. M. Abdelaal
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Courtney R. Plumlee
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Sara B. Cohen
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Ho D. Kim
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Holly W. Barrett
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
| | - Qingyun Liu
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Matthew H. Harband
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Bryan J. Berube
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Susan L. Baldwin
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
| | - Sarah M. Fortune
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, United States
- Broad Institute of Massachusetts Institute of Technology (MIT), and Harvard, Cambridge, MA, United States
| | - Kevin B. Urdahl
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Immunology, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| | - Rhea N. Coler
- Seattle Children’s Research Institute, Center for Global Infectious Disease Research, Seattle Children’s, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, United States
| |
Collapse
|
10
|
Hashimi A, Tocheva EI. Cell envelope diversity and evolution across the bacterial tree of life. Nat Microbiol 2024; 9:2475-2487. [PMID: 39294462 DOI: 10.1038/s41564-024-01812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 08/16/2024] [Indexed: 09/20/2024]
Abstract
The bacterial cell envelope is a complex multilayered structure conserved across all bacterial phyla. It is categorized into two main types based on the number of membranes surrounding the cell. Monoderm bacteria are enclosed by a single membrane, whereas diderm cells are distinguished by the presence of a second, outer membrane (OM). An ancient divide in the bacterial domain has resulted in two major clades: the Gracilicutes, consisting strictly of diderm phyla; and the Terrabacteria, encompassing monoderm and diderm species with diverse cell envelope architectures. Recent structural and phylogenetic advancements have improved our understanding of the diversity and evolution of the OM across the bacterial tree of life. Here we discuss cell envelope variability within major bacterial phyla and focus on conserved features found in diderm lineages. Characterizing the mechanisms of OM biogenesis and the evolutionary gains and losses of the OM provides insights into the primordial cell and the last universal common ancestor from which all living organisms subsequently evolved.
Collapse
Affiliation(s)
- Ameena Hashimi
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, Life Sciences Institute, The University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
11
|
Mulholland CV, Wiggins TJ, Cui J, Vilchèze C, Rajagopalan S, Shultis MW, Reyes-Fernández EZ, Jacobs WR, Berney M. Propionate prevents loss of the PDIM virulence lipid in Mycobacterium tuberculosis. Nat Microbiol 2024; 9:1607-1618. [PMID: 38740932 PMCID: PMC11253637 DOI: 10.1038/s41564-024-01697-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous PDIM-negative mutants that have attenuated virulence and increased cell wall permeability, thus impacting the relevance of experimental findings. PDIM loss can also reduce the efficacy of the BCG Pasteur vaccine. Here we show that vancomycin susceptibility can rapidly screen for M. tuberculosis PDIM production. We find that metabolic deficiency of methylmalonyl-CoA impedes the growth of PDIM-producing bacilli, selecting for PDIM-negative variants. Supplementation with odd-chain fatty acids, cholesterol or vitamin B12 restores PDIM-positive bacterial growth. Specifically, we show that propionate supplementation enhances PDIM-producing bacterial growth and selects against PDIM-negative mutants, analogous to in vivo conditions. Our study provides a simple approach to screen for and maintain PDIM production, and reveals how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.
Collapse
Affiliation(s)
- Claire V Mulholland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Thomas J Wiggins
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Jinhua Cui
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael W Shultis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | | | - William R Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, New York, NY, USA.
| |
Collapse
|
12
|
Neudecker D, Fritschi N, Sutter T, Lu LL, Lu P, Tebruegge M, Santiago-Garcia B, Ritz N. Evaluation of serological assays for the diagnosis of childhood tuberculosis disease: a study protocol. BMC Infect Dis 2024; 24:481. [PMID: 38730343 PMCID: PMC11084122 DOI: 10.1186/s12879-024-09359-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 04/27/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Tuberculosis (TB) poses a major public health challenge, particularly in children. A substantial proportion of children with TB disease remain undetected and unconfirmed. Therefore, there is an urgent need for a highly sensitive point-of-care test. This study aims to assess the performance of serological assays based on various antigen targets and antibody properties in distinguishing children (0-18 years) with TB disease (1) from healthy TB-exposed children, (2) children with non-TB lower respiratory tract infections, and (3) from children with TB infection. METHODS The study will use biobanked plasma samples collected from three prospective multicentric diagnostic observational studies: the Childhood TB in Switzerland (CITRUS) study, the Pediatric TB Research Network in Spain (pTBred), and the Procalcitonin guidance to reduce antibiotic treatment of lower respiratory tract infections in children and adolescents (ProPAED) study. Included are children diagnosed with TB disease or infection, healthy TB-exposed children, and sick children with non-TB lower respiratory tract infection. Serological multiplex assays will be performed to identify M. tuberculosis antigen-specific antibody features, including isotypes, subclasses, Fc receptor (FcR) binding, and IgG glycosylation. DISCUSSION The findings from this study will help to design serological assays for diagnosing TB disease in children. Importantly, those assays could easily be developed as low-cost point-of-care tests, thereby offering a potential solution for resource-constrained settings. CLINICALTRIALS GOV IDENTIFIER NCT03044509.
Collapse
Affiliation(s)
- Daniela Neudecker
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland
| | - Nora Fritschi
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland
- University of Basel Children's Hospital Basel, University of Basel, Basel, Switzerland
| | - Thomas Sutter
- Department of Computer Science, Medical Data Science, Eidgenössische Technische Hochschule (ETH) Zurich, Zurich, Switzerland
| | - Lenette L Lu
- Department of Immunology, UT Southwestern Medical Center, Dallas, TX, USA
- Parkland Health and Hospital System, Dallas, TX, USA
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Pei Lu
- Division of Geographic Medicine and Infectious Diseases, Department of Internal Medicine, UT Southwestern Medical Center, Dallas, TX, USA
| | - Marc Tebruegge
- Department of Paediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Parkville, Australia
- Department of Infection, Immunity and Inflammation, UCL Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Paediatrics & National Reference Centre for Paediatric TB, Klinik Ottakring, Vienna Healthcare Group, Vienna, Austria
| | - Begoña Santiago-Garcia
- Pediatric Infectious Diseases Department, Gregorio Marañón University Hospital, Madrid, Spain
- Gregorio Marañón Research Health Institute (IiSGM), Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBER INFEC), Instituto de Salud Carlos III, Madrid, Spain
- Translational Research Network in Pediatric Infectious Diseases (RITIP), Madrid, Spain
| | - Nicole Ritz
- Mycobacterial and Migrant Health Research Group, Department of Clinical Research, University of Basel Children's Hospital Basel, University of Basel, Spitalstrasse 33, Basel, CH-4031, Switzerland.
- Department of Paediatrics, The Royal Children's Hospital Melbourne, The University of Melbourne, Parkville, Australia.
- Paediatric Infectious Diseases Unit, Children's Hospital, Lucerne Cantonal Hospital, Lucerne, Switzerland.
| |
Collapse
|
13
|
Schami A, Islam MN, Wall M, Hicks A, Meredith R, Kreiswirth B, Mathema B, Belisle JT, Torrelles JB. Drug resistant Mycobacterium tuberculosis strains have altered cell envelope hydrophobicity that influences infection outcomes in human macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.10.588986. [PMID: 38645029 PMCID: PMC11030328 DOI: 10.1101/2024.04.10.588986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), is considered one of the top infectious killers in the world. In recent decades, drug resistant (DR) strains of M.tb have emerged that make TB even more difficult to treat and pose a threat to public health. M.tb has a complex cell envelope that provides protection to the bacterium from chemotherapeutic agents. Although M.tb cell envelope lipids have been studied for decades, very little is known about how their levels change in relation to drug resistance. In this study, we examined changes in the cell envelope lipids [namely, phthiocerol dimycocerosates (PDIMs)], glycolipids [phosphatidyl-myo-inositol mannosides (PIMs)], and the PIM associated lipoglycans [lipomannan (LM); mannose-capped lipoarabinomannan (ManLAM)] of 11 M.tb strains that range from drug susceptible (DS) to multi-drug resistant (MDR) to pre-extensively drug resistant (pre-XDR). We show that there was an increase in the PDIMs:PIMs ratio as drug resistance increases, and provide evidence of PDIM species only present in the DR-M.tb strains studied. Overall, the LM and ManLAM cell envelope levels did not differ between DS- and DR-M.tb strains, but ManLAM surface exposure proportionally increased with drug resistance. Evaluation of host-pathogen interactions revealed that DR-M.tb strains have decreased association with human macrophages compared to DS strains. The pre-XDR M.tb strain with the largest PDIMs:PIMs ratio had decreased uptake, but increased intracellular growth rate at early time points post-infection when compared to the DS-M.tb strain H37Rv. These findings suggest that PDIMs may play an important role in drug resistance and that this observed increase in hydrophobic cell envelope lipids on the DR-M.tb strains studied may influence M.tb-host interactions.
Collapse
Affiliation(s)
- Alyssa Schami
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, TX, USA
| | - M. Nurul Islam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Matthew Wall
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, TX, USA
| | - Amberlee Hicks
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Reagan Meredith
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Barry Kreiswirth
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, NJ, USA
| | - Barun Mathema
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, USA
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Jordi B. Torrelles
- Population Health and Host Pathogen Interactions Programs, Texas Biomedical Research Institute, San Antonio, TX, USA
- International Center for the Advancement of Research & Education (I•CARE), Texas Biomedical Research Institute, San Antonio, TX, USA
| |
Collapse
|
14
|
Zhu X, Lu Q, Li Y, Long Q, Zhang X, Long X, Cao D. Contraction and expansion dynamics: deciphering genomic underpinnings of growth rate and pathogenicity in Mycobacterium. Front Microbiol 2023; 14:1292897. [PMID: 38075891 PMCID: PMC10701892 DOI: 10.3389/fmicb.2023.1292897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/01/2023] [Indexed: 10/16/2024] Open
Abstract
BACKGROUND Mycobacterium bacteria, encompassing both slow growth (SGM) and rapid growth mycobacteria (RGM), along with true pathogenic (TP), opportunistic pathogenic (OP), and non-pathogenic (NP) types, exhibit diverse phenotypes. Yet, the genetic underpinnings of these variations remain elusive. METHODS Here, We conducted a comprehensive comparative genomics study involving 53 Mycobacterium species to unveil the genomic drivers behind growth rate and pathogenicity disparities. RESULTS Our core/pan-genome analysis highlighted 1,307 shared gene families, revealing an open pan-genome structure. A phylogenetic tree highlighted clear boundaries between SGM and RGM, as well as TP and other species. Gene family contraction emerged as the primary alteration associated with growth and pathogenicity transitions. Specifically, ABC transporters for amino acids and inorganic ions, along with quorum sensing genes, exhibited significant contractions in SGM species, potentially influencing their distinct traits. Conversely, TP strains displayed contraction in lipid and secondary metabolite biosynthesis and metabolism-related genes. Across the 53 species, we identified 26 core and 64 accessory virulence factors. Remarkably, TP and OP strains stood out for their expanded mycobactin biosynthesis and type VII secretion system gene families, pivotal for their pathogenicity. CONCLUSION Our findings underscore the importance of gene family contraction in nucleic acids, ions, and substance metabolism for host adaptation, while emphasizing the significance of virulence gene family expansion, including type VII secretion systems and mycobactin biosynthesis, in driving mycobacterial pathogenicity.
Collapse
Affiliation(s)
- Xiaoying Zhu
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Qunfeng Lu
- Modern Industrial College of Biomedicine and Great Health, Youjiang Medical University for Nationalities, Baise, Guangxi, China
- School of Medical Laboratory Sciences, Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Yulei Li
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Qinqin Long
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xinyu Zhang
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Xidai Long
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
- Medical College, Guangxi University, Nanning, Guangxi, China
| | - Demin Cao
- Clinical Pathological Diagnosis & Research Center, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| |
Collapse
|
15
|
Schami A, Islam MN, Belisle JT, Torrelles JB. Drug-resistant strains of Mycobacterium tuberculosis: cell envelope profiles and interactions with the host. Front Cell Infect Microbiol 2023; 13:1274175. [PMID: 38029252 PMCID: PMC10664572 DOI: 10.3389/fcimb.2023.1274175] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/02/2023] [Indexed: 12/01/2023] Open
Abstract
In the past few decades, drug-resistant (DR) strains of Mycobacterium tuberculosis (M.tb), the causative agent of tuberculosis (TB), have become increasingly prevalent and pose a threat to worldwide public health. These strains range from multi (MDR) to extensively (XDR) drug-resistant, making them very difficult to treat. Further, the current and future impact of the Coronavirus Disease 2019 (COVID-19) pandemic on the development of DR-TB is still unknown. Although exhaustive studies have been conducted depicting the uniqueness of the M.tb cell envelope, little is known about how its composition changes in relation to drug resistance acquisition. This knowledge is critical to understanding the capacity of DR-M.tb strains to resist anti-TB drugs, and to inform us on the future design of anti-TB drugs to combat these difficult-to-treat strains. In this review, we discuss the complexities of the M.tb cell envelope along with recent studies investigating how M.tb structurally and biochemically changes in relation to drug resistance. Further, we will describe what is currently known about the influence of M.tb drug resistance on infection outcomes, focusing on its impact on fitness, persister-bacteria, and subclinical TB.
Collapse
Affiliation(s)
- Alyssa Schami
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- Integrated Biomedical Sciences Program, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - M. Nurul Islam
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - John T. Belisle
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Jordi B. Torrelles
- Population Health Program, Texas Biomedical Research Institute, San Antonio, TX, United States
- International Center for the Advancement of Research & Education, International Center for the Advancement of Research & Education, Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
16
|
Mulholland CV, Wiggins TJ, Cui J, Vilchèze C, Rajagopalan S, Shultis MW, Reyes-Fernández EZ, Jacobs WR, Berney M. The PDIM paradox of Mycobacterium tuberculosis: new solutions to a persistent problem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562559. [PMID: 37905120 PMCID: PMC10614861 DOI: 10.1101/2023.10.16.562559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Phthiocerol dimycocerosate (PDIM) is an essential virulence lipid of Mycobacterium tuberculosis. In vitro culturing rapidly selects for spontaneous mutations that cause PDIM loss leading to virulence attenuation and increased cell wall permeability. We discovered that PDIM loss is due to a metabolic deficiency of methylmalonyl-CoA that impedes the growth of PDIM-producing bacilli. This can be remedied by supplementation with odd-chain fatty acids, cholesterol, or vitamin B12. We developed a much-needed facile and scalable routine assay for PDIM production and show that propionate supplementation enhances the growth of PDIM-producing bacilli and selects against PDIM-negative mutants, analogous to in vivo conditions. Our results solve a major issue in tuberculosis research and exemplify how discrepancies between the host and in vitro nutrient environments can attenuate bacterial pathogenicity.
Collapse
Affiliation(s)
- Claire V. Mulholland
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | | | | | - Catherine Vilchèze
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | - Saranathan Rajagopalan
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | - Michael W. Shultis
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | | | - William R. Jacobs
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| | - Michael Berney
- Department of Microbiology and Immunology, Albert Einstein College of Medicine,
Bronx, New York, USA
| |
Collapse
|
17
|
Wood PL, Erol E. Construction of a Bacterial Lipidomics Analytical Platform: Pilot Validation with Bovine Paratuberculosis Serum. Metabolites 2023; 13:809. [PMID: 37512516 PMCID: PMC10383236 DOI: 10.3390/metabo13070809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Lipidomics analyses of bacteria offer the potential to detect and monitor infections in a host since many bacterial lipids are not present in mammals. To evaluate this omics approach, we first built a database of bacterial lipids for representative Gram-positive and Gram-negative bacteria. Our lipidomics analysis of the reference bacteria involved high-resolution mass spectrometry and electrospray ionization with less than a 1.0 ppm mass error. The lipidomics profiles of bacterial cultures clearly distinguished between Gram-positive and Gram-negative bacteria. In the case of bovine paratuberculosis (PTB) serum, we monitored two unique bacterial lipids that we also monitored in Mycobacterium avian subspecies PTB. These were PDIM-B C82, a phthiodiolone dimycocerosate, and the trehalose monomycolate hTMM 28:1, constituents of the bacterial cell envelope in mycolic-containing bacteria. The next step will be to determine if lipidomics can detect subclinical PTB infections which can last 2-to-4 years in bovine PTB. Our data further suggest that it will be worthwhile to continue building our bacterial lipidomics database and investigate the further utility of this approach in other infections of veterinary and human clinical interest.
Collapse
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, 6965 Cumberland Gap Pkwy, Harrogate, TN 37752, USA
| | - Erdal Erol
- Department of Veterinary Science, Veterinary Diagnostic Laboratory, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
18
|
Ramon-Luing LA, Palacios Y, Ruiz A, Téllez-Navarrete NA, Chavez-Galan L. Virulence Factors of Mycobacterium tuberculosis as Modulators of Cell Death Mechanisms. Pathogens 2023; 12:839. [PMID: 37375529 PMCID: PMC10304248 DOI: 10.3390/pathogens12060839] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/29/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) modulates diverse cell death pathways to escape the host immune responses and favor its dissemination, a complex process of interest in pathogenesis-related studies. The main virulence factors of Mtb that alter cell death pathways are classified according to their origin as either non-protein (for instance, lipomannan) or protein (such as the PE family and ESX secretion system). The 38 kDa lipoprotein, ESAT-6 (early antigen-secreted protein 6 kDa), and another secreted protein, tuberculosis necrotizing toxin (TNT), induces necroptosis, thereby allowing mycobacteria to survive inside the cell. The inhibition of pyroptosis by blocking inflammasome activation by Zmp1 and PknF is another pathway that aids the intracellular replication of Mtb. Autophagy inhibition is another mechanism that allows Mtb to escape the immune response. The enhanced intracellular survival (Eis) protein, other proteins, such as ESX-1, SecA2, SapM, PE6, and certain microRNAs, also facilitate Mtb host immune escape process. In summary, Mtb affects the microenvironment of cell death to avoid an effective immune response and facilitate its spread. A thorough study of these pathways would help identify therapeutic targets to prevent the survival of mycobacteria in the host.
Collapse
Affiliation(s)
- Lucero A. Ramon-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| | - Yadira Palacios
- Escuela Militar de Graduados de Sanidad, Secretaría de la Defensa Nacional, Mexico City 11200, Mexico;
- Department of Biological Systems, Universidad Autónoma Metropolitana, Campus Xochimilco, Mexico City 04960, Mexico
| | - Andy Ruiz
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| | - Norma A. Téllez-Navarrete
- Department of Healthcare Coordination, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico;
| | - Leslie Chavez-Galan
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas”, Mexico City 14080, Mexico; (L.A.R.-L.); (A.R.)
| |
Collapse
|
19
|
Parmar S, Tocheva EI. The cell envelope of Mycobacterium abscessus and its role in pathogenesis. PLoS Pathog 2023; 19:e1011318. [PMID: 37200238 DOI: 10.1371/journal.ppat.1011318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023] Open
Abstract
Mycobacterium abscessus is a nontuberculosis mycobacterium (NTM) that has shown an exponential rise in its ability to cause disease. Due to its ubiquitous presence in the environment, M. abscessus is widely implicated in secondary exacerbations of many nosocomial infections and genetic respiratory disorders, such as cystic fibrosis (CF). Contrary to other rapidly growing NTMs, the cell envelope of M. abscessus harbors several prominent features and undergoes modifications that are responsible for its pathogenesis. Compositional changes of the mycobacterial outer membrane (MOM) significantly decrease the presence of glycopeptidolipids (GPLs) and enable the transition from a colonizing, smooth morphotype into a virulent, rough morphotype. The GPLs are transported to the MOM by the Mycobacterial membrane proteins Large (MmpL), which further act as drug efflux pumps and confer antibiotic resistance. Lastly, M. abscessus possesses 2 type VII secretion systems (T7SS): ESX-3 and ESX-4, both of which have recently been implicated in host-pathogen interactions and virulence. This review summarizes the current knowledge of M. abscessus pathogenesis and highlights the clinically relevant association between the structure and functions of its cell envelope.
Collapse
Affiliation(s)
- Shweta Parmar
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| | - Elitza I Tocheva
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, Canada
| |
Collapse
|
20
|
Ragavendran PV, Tripathi V, Gandotra S. Structure prediction-based insights into the patatin family of Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 36748562 DOI: 10.1099/mic.0.001270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Despite its genome sequencing more than two decades ago, the majority of the genes of Mycobacterium tuberculosis remain functionally uncharacterized. Patatins are one such class of proteins that, despite undergoing an expansion in this pathogenic species compared to their non-pathogenic cousins, remain largely unstudied. Recent advances in protein structure prediction using machine learning tools such as AlphaFold2 have provided high-confidence predicted structures for all M. tuberculosis proteins. Here we present detailed analyses of the patatin family of M. tuberculosis using AlphaFold-predicted structures, providing insights into likely modes of regulation, membrane interaction and substrate binding. Regulatory domains within this family of proteins include cyclic nucleotide binding, lid-like domains and other helical domains. Using structural homologues, we identified the likely membrane localization mechanisms and substrate-binding sites. These analyses reveal diversity in their regulatory capacity, mechanisms of membrane binding and likely length of fatty acid substrates. Together, this analysis suggests unique roles for the eight predicted patatins of M. tuberculosis.
Collapse
Affiliation(s)
- P V Ragavendran
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Vaishnavi Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| | - Sheetal Gandotra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh- 201 002, India.,Immunology and Infectious Disease, CSIR-Institute of Genomics and Integrative Biology, New Delhi, India, New Delhi, India
| |
Collapse
|
21
|
Poulton NC, Rock JM. Unraveling the mechanisms of intrinsic drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:997283. [PMID: 36325467 PMCID: PMC9618640 DOI: 10.3389/fcimb.2022.997283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 09/30/2022] [Indexed: 02/03/2023] Open
Abstract
Tuberculosis (TB) is among the most difficult infections to treat, requiring several months of multidrug therapy to produce a durable cure. The reasons necessitating long treatment times are complex and multifactorial. However, one major difficulty of treating TB is the resistance of the infecting bacterium, Mycobacterium tuberculosis (Mtb), to many distinct classes of antimicrobials. This review will focus on the major gaps in our understanding of intrinsic drug resistance in Mtb and how functional and chemical-genetics can help close those gaps. A better understanding of intrinsic drug resistance will help lay the foundation for strategies to disarm and circumvent these mechanisms to develop more potent antitubercular therapies.
Collapse
|
22
|
Alebouyeh S, Cárdenas-Pestana JA, Vazquez L, Prados-Rosales R, Del Portillo P, Sanz J, Menéndez MC, García MJ. Iron deprivation enhances transcriptional responses to in vitro growth arrest of Mycobacterium tuberculosis. Front Microbiol 2022; 13:956602. [PMID: 36267176 PMCID: PMC9577196 DOI: 10.3389/fmicb.2022.956602] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Accepted: 09/07/2022] [Indexed: 11/18/2022] Open
Abstract
The establishment of Mycobacterium tuberculosis (Mtb) long-term infection in vivo depends on several factors, one of which is the availability of key nutrients such as iron (Fe). The relation between Fe deprivation inside and outside the granuloma, and the capacity of Mtb to accumulate lipids and persist in the absence of growth is not well understood. In this context, current knowledge of how Mtb modifies its lipid composition in response to growth arrest, depending on iron availability, is scarce. To shed light on these matters, in this work we compare genome-wide transcriptomic and lipidomic profiles of Mtb at exponential and stationary growth phases using cultures with glycerol as a carbon source, in the presence or absence of iron. As a result, we found that transcriptomic responses to growth arrest, considered as the transition from exponential to stationary phase, are iron dependent for as many as 714 genes (iron-growth interaction contrast, FDR <0.05), and that, in a majority of these genes, iron deprivation enhances the magnitude of the transcriptional responses to growth arrest in either direction. On the one hand, genes whose upregulation upon growth arrest is enhanced by iron deprivation were enriched in functional terms related to homeostasis of ion metals, and responses to several stressful cues considered cardinal features of the intracellular environment. On the other hand, genes showing negative responses to growth arrest that are stronger in iron-poor medium were enriched in energy production processes (TCA cycle, NADH dehydrogenation and cellular respiration), and key controllers of ribosomal activity shut-down, such as the T/A system mazE6/F6. Despite of these findings, a main component of the cell envelope, lipid phthiocerol dimycocerosate (PDIM), was not detected in the stationary phase regardless of iron availability, suggesting that lipid changes during Mtb adaptation to non-dividing phenotypes appear to be iron-independent. Taken together, our results indicate that environmental iron levels act as a key modulator of the intensity of the transcriptional adaptations that take place in the bacterium upon its transition between dividing and dormant-like phenotypes in vitro.
Collapse
Affiliation(s)
- Sogol Alebouyeh
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Jorge A. Cárdenas-Pestana
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
| | - Lucia Vazquez
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | - Rafael Prados-Rosales
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
| | | | - Joaquín Sanz
- Department of Theoretical Physics, University of Zaragoza, Zaragoza, Spain
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- *Correspondence: Maria J. García,
| | - Maria Carmen Menéndez
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Maria Carmen Menéndez,
| | - Maria J. García
- Department of Preventive Medicine and Public Health and Microbiology, School of Medicine, Autonomous University of Madrid, Madrid, Spain
- Joaquín Sanz,
| |
Collapse
|
23
|
Singh N, Sharma N, Singh P, Pandey M, Ilyas M, Sisodiya L, Choudhury T, Gosain TP, Singh R, Atmakuri K. HupB, a nucleoid-associated protein, is critical for survival of Mycobacterium tuberculosis under host-mediated stresses and for enhanced tolerance to key first-line antibiotics. Front Microbiol 2022; 13:937970. [PMID: 36071978 PMCID: PMC9441915 DOI: 10.3389/fmicb.2022.937970] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 11/30/2022] Open
Abstract
To survive and establish its niche, Mycobacterium tuberculosis (Mtb) engages in a steady battle against an array of host defenses and a barrage of antibiotics. Here, we demonstrate that Mtb employs HupB, a nucleoid-associated protein (NAP) as its key player to simultaneously battle and survive in these two stress-inducing fronts. Typically, NAPs are key to bacterial survival under a wide array of environmental or host-mediated stresses. Here, we report that for Mtb to survive under different macrophage-induced assaults including acidic pH, nutrient depletion, oxidative and nitrosative stresses, HupB presence is critical. As expected, the hupB knockout mutant is highly sensitive to these host-mediated stresses. Furthermore, Mtb aptly modulates HupB protein levels to overcome these stresses. We also report that HupB aids Mtb to gain tolerance to high levels of rifampicin (RIF) and isoniazid (INH) exposure. Loss of hupB makes Mtb highly susceptible to even short exposures to reduced amounts of RIF and INH. Overexpressing hupB in Mtb or complementing hupB in the hupB knockout mutant triggers enhanced survival of Mtb under these stresses. We also find that upon loss of hupB, Mtb significantly enhances the permeability of its cell wall by modulating the levels of several surface lipids including phthiocerol dimycocerosates (PDIMs), thus possibly influencing overall susceptibility to host-mediated stresses. Loss of hupB also downregulates efflux pump expression possibly influencing increased susceptibility to INH and RIF. Finally, we find that therapeutic targeting of HupB with SD1, a known small molecule inhibitor, significantly enhances Mtb susceptibility to INH and THP-1 macrophages and significantly reduces MIC to INH. Thus, our data strongly indicate that HupB is a highly promising therapeutic target especially for potential combinatorial shortened therapy with reduced INH and RIF doses.
Collapse
Affiliation(s)
- Niti Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Manipal University, Manipal, Karnataka, India
| | - Nishant Sharma
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Padam Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Manitosh Pandey
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- Department of Life Sciences, ITM University, Gwalior, Madhya Pradesh, India
| | - Mohd Ilyas
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Lovely Sisodiya
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Tejaswini Choudhury
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Tannu Priya Gosain
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Ramandeep Singh
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
| | - Krishnamohan Atmakuri
- Infection and Immunology Group, Translational Health Science and Technology Institute, Faridabad, Haryana, India
- *Correspondence: Krishnamohan Atmakuri
| |
Collapse
|
24
|
Ahmad F, Rani A, Alam A, Zarin S, Pandey S, Singh H, Hasnain SE, Ehtesham NZ. Macrophage: A Cell With Many Faces and Functions in Tuberculosis. Front Immunol 2022; 13:747799. [PMID: 35603185 PMCID: PMC9122124 DOI: 10.3389/fimmu.2022.747799] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 03/30/2022] [Indexed: 01/16/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is the causative agent of human tuberculosis (TB) which primarily infects the macrophages. Nearly a quarter of the world's population is infected latently by Mtb. Only around 5%-10% of those infected develop active TB disease, particularly during suppressed host immune conditions or comorbidity such as HIV, hinting toward the heterogeneity of Mtb infection. The aerosolized Mtb first reaches the lungs, and the resident alveolar macrophages (AMs) are among the first cells to encounter the Mtb infection. Evidence suggests that early clearance of Mtb infection is associated with robust innate immune responses in resident macrophages. In addition to lung-resident macrophage subsets, the recruited monocytes and monocyte-derived macrophages (MDMs) have been suggested to have a protective role during Mtb infection. Mtb, by virtue of its unique cell surface lipids and secreted protein effectors, can evade killing by the innate immune cells and preferentially establish a niche within the AMs. Continuous efforts to delineate the determinants of host defense mechanisms have brought to the center stage the crucial role of macrophage phenotypical variations for functional adaptations in TB. The morphological and functional heterogeneity and plasticity of the macrophages aid in confining the dissemination of Mtb. However, during a suppressed or hyperactivated immune state, the Mtb virulence factors can affect macrophage homeostasis which may skew to favor pathogen growth, causing active TB. This mini-review is aimed at summarizing the interplay of Mtb pathomechanisms in the macrophages and the implications of macrophage heterogeneity and plasticity during Mtb infection.
Collapse
Affiliation(s)
- Faraz Ahmad
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Anshu Rani
- Kusuma School of Biological Sciences, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Anwar Alam
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Sheeba Zarin
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| | - Saurabh Pandey
- Department of Biochemistry, Jamia Hamdard, New Delhi, India
| | - Hina Singh
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
| | - Seyed Ehtesham Hasnain
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology, Delhi (IIT-D), New Delhi, India
- Department of Life Science, School of Basic Sciences and Research, Sharda University, Greater Noida, India
| | - Nasreen Zafar Ehtesham
- Laboratory of Infection Biology and Cell Signaling, Indian Council of Medical Research (ICMR)-National Institute of Pathology, New Delhi, India
| |
Collapse
|
25
|
Beste DJV. New perspectives on an ancient pathogen: thoughts for World Tuberculosis Day 2022. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35357305 PMCID: PMC9558351 DOI: 10.1099/mic.0.001178] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dany J V Beste
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK
| |
Collapse
|
26
|
Moolla N, Bailo R, Marshall R, Bavro VN, Bhatt A. Structure-function analysis of MmpL7-mediated lipid transport in mycobacteria. Cell Surf 2021; 7:100062. [PMID: 34522829 PMCID: PMC8427324 DOI: 10.1016/j.tcsw.2021.100062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/27/2021] [Accepted: 08/27/2021] [Indexed: 11/30/2022] Open
Abstract
Mycobacterial membrane protein Large (MmpL7) is a Resistance-Nodulation-Division (RND) family transporter required for the export of the virulence lipid, phthiocerol dimycocerosate (PDIM), in Mycobacterium tuberculosis. Using a null mutant of the related, vaccine strain Mycobacterium bovis BCG, we show that MmpL7 is also involved in the transport of the structurally related phenolic glycolipid (PGL), which is also produced by the hypervirulent M. tuberculosis strain HN878, but absent in M. tuberculosis H37Rv. Furthermore, we generated an in silico model of M. tuberculosis MmpL7 that revealed MmpL7 as a functional outlier within the MmpL-family, missing a canonical proton-relay signature sequence, suggesting that it employs a yet-unidentified mechanism for energy coupling for transport. In addition, our analysis demonstrates that the periplasmic porter domain 2 insert (PD2-insert), which doesn't share any recognisable homology, is highly alpha-helical in nature, suggesting an organisation similar to that seen in the hopanoid PD3/4 domains. Using the M. bovis BCG mmpL7 mutant for functional complementation with mutated alleles of mmpL7, we were able to identify residues present in the transmembrane domains TM4 and TM10, and the PD2 domain insert that play a crucial role in PDIM transport, and in certain cases, biosynthesis of PDIM.
Collapse
Affiliation(s)
- Nabiela Moolla
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Rebeca Bailo
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Robert Marshall
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Vassiliy N. Bavro
- School of Life Sciences, University of Essex, Colchester CO4 3SQ, UK
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|