1
|
Zheng X, Zhong T, Zhao H, Huang F, Huang W, Hu L, Xia D, Tian S, Shu D, He C. MnO 2-based capacitive system enhances ozone inactivation of bacteria by disrupting cell membrane. WATER RESEARCH 2024; 256:121608. [PMID: 38657310 DOI: 10.1016/j.watres.2024.121608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 04/26/2024]
Abstract
The application of ozone (O3) disinfection has been hindered by its low solubility in water and the formation of disinfection by-products (DBPs). In this study, capacitive disinfection is applied as a pre-treatment for O3 oxidation, in which manganese dioxide with a rambutan-like hollow spherical structure is used as the electrode to increase the charge density on the electrode surface. When a voltage is applied, the negative-charged microbes are attracted to the electrodes and killed by electrical interactions. The contact between microbes and capacitive electrodes leads to changes in cell permeability and burst of reactive oxygen species, thereby promoting the diffusion of O3 into the cells. After O3 penetrates the cell membrane, it can directly attack the cytoplasmic constituents, accelerating fatal and irreversible damage to pathogens. As a result, the performance of the capacitance-O3 process is proved better than the direct sum of the two individual process efficiencies. The design of capacitance-O3 system is beneficial to reduce the ozone dosage and DBPs with a broader inactivation spectrum, which is conducive to the application of ozone in primary water disinfection.
Collapse
Affiliation(s)
- Xiyuan Zheng
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Tao Zhong
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Huinan Zhao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| | - Fan Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Wenbin Huang
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Lingling Hu
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Dehua Xia
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Shuanghong Tian
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Dong Shu
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Chun He
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China.
| |
Collapse
|
2
|
Cao R, Wan Q, Xu X, Tian S, Wu G, Wang J, Huang T, Wen G. Differentiation of DNA or membrane damage of the cells in disinfection by flow cytometry. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128924. [PMID: 35483263 DOI: 10.1016/j.jhazmat.2022.128924] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/10/2022] [Accepted: 04/11/2022] [Indexed: 06/14/2023]
Abstract
Recently, the viabilities changes of fungal spores in the water supply system during different disinfection processes have been revealed. SYBR Green I (SG), a nucleic acid stain, its fluorescence intensity is correlated with the amount of double-stranded DNA. This study established a new method through successive SG-SG-PI staining (PI: Propidium Iodide) with flow cytometry (FCM). It could successfully distinguish DNA damage and membrane damage of fungal spores, clearly elucidating the intrinsic disinfection mechanism during the chemical disinfection. This method was briefly described as follows: firstly, (1) the fungal spores were stained with SG and washed by centrifugation; and then, (2) the washed spores were treated with disinfectants and terminated; after that, (3) the disinfected spores were re-stained with SG and analyzed by FCM; finally, (4) the SG re-stained spores were stained with PI and analyzed by FCM. The percentages of spores with DNA damage and membrane damage were determined by the fluorescence intensity obtained from steps (3) and (4), respectively. The repeatability and applicability of this developed method were confirmed. It was further applied to explore the inactivation mechanism during chlorine-based disinfection, and results demonstrated that chloramine attacked the DNA more seriously than the membrane, while chlorine and chlorine dioxide worked in a reverse way.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Shiqi Tian
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, PR China.
| |
Collapse
|
3
|
Yang M, Qiu S, Wang L, Chen Z, Hu Y, Guo J, Ge S. Effect of short-term light irradiation with varying energy densities on the activities of nitrifiers in wastewater. WATER RESEARCH 2022; 216:118291. [PMID: 35313179 DOI: 10.1016/j.watres.2022.118291] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Microalgal-bacterial consortium (MBC) process has been proposed as an alternative to conventional activated sludge process for nitrogen removal from wastewater. As one of the most influencing parameters, light irradiation effects on microalgae have been extensively investigated. However, light influence on the performance of nitrifiers in activated sludge and its mechanism remains unclear. In this study, the effects of three factors (light irradiation power, irradiation time and sludge concentration) on activities and physiological characteristics of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) were systematically studied through both the Design of Experiments driven response surface methodology (RSM) approach and light-nitrification kinetic modeling. Results indicated that light irradiation with the specific light energy density (Es) at 0.0203-0.1571 kJ·mg-1 VSS (80-160 W/400-1000 μmol·m-2·s-1, 2.0-5.0 h and 2750-4250 mg·L-1) stimulated the relative AOB activities (rAOB) by 120.0%. This was supported by the increased electron transport system activity, key enzyme activity (AMO) , gene expression (amoA) and energy generation (ATP consumption) in the light treatment. Moreover, further Es increasing up to 0.18 kJ·mg-1 VSS inhibited both AOB and NOB activities. The inhibition was ascribed to the joint light responses of metabolic disorders and lipid peroxidation. The findings enhance our understanding of nitrifiers' physiological responses to short-term light irradiation, and promote the development of MBC as a sustainable approach for wastewater treatment.
Collapse
Affiliation(s)
- Mingzhu Yang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Shuang Qiu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Lingfeng Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Zhipeng Chen
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Yanbing Hu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China
| | - Jianhua Guo
- Australian Center for Water and Environmental Biotechnology, The University of Queensland, St. Lucia, Brisbane, QLD 4072, Australia
| | - Shijian Ge
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Xiao Ling Wei 200, Nanjing, Jiangsu 210094, China.
| |
Collapse
|
4
|
Cao R, Wan Q, Tan L, Xu X, Wu G, Wang J, Xu H, Huang T, Wen G. Evaluation of the vital viability and their application in fungal spores' disinfection with flow cytometry. CHEMOSPHERE 2021; 269:128700. [PMID: 33127110 DOI: 10.1016/j.chemosphere.2020.128700] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 05/14/2023]
Abstract
More attention was focused on fungi contamination in drinking water. Most researches about the inactivation of fungal spores has been conducted on disinfection efficiency and the leakage of intracellular substances. However, the specific structural damage of fungal spores treated by different disinfectants is poorly studied. In this study, the viability assessment methods of esterase activities and intracellular reactive oxygen species (ROS) were optimized, and the effects of chlorine-based disinfectants on fungal spores were evaluated by flow cytometry (FCM) and plating. The optimal staining conditions for esterase activity detection were as follows: fungal spores (106 cells/mL) were stained with 10 μM carboxyfluorescein diacetate and 50 mM ethylene diamine tetraacetic acid at 33 °C for 10 min (in dark). The optimal staining conditions for intracellular ROS detection were as follows: dihydroethidium (the final concentration of 2 μg/mL) was added into fungal suspensions (106 cells/mL), and then samples were incubated at 35 °C for 20 min (in dark). The cell culturability, membrane integrity, esterase activities, and intracellular ROS were examined to reveal the structural damage of fungal spores and underlying inactivation mechanisms. Disinfectants would cause the loss of the cell viability via five main steps: altered the morphology of fungal spores; increased the intracellular ROS levels; decreased the culturability, esterase activities and membrane integrity, thus leading to the irreversible death. It is appropriate to assess the effects of disinfectants on fungal spores and investigate their inactivation mechanisms using FCM.
Collapse
Affiliation(s)
- Ruihua Cao
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Qiqi Wan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Lili Tan
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Xiangqian Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gehui Wu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Jingyi Wang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Huining Xu
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Tinglin Huang
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China
| | - Gang Wen
- Key Laboratory of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China; Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, PR China.
| |
Collapse
|
5
|
Hoenes K, Bauer R, Spellerberg B, Hessling M. Microbial Photoinactivation by Visible Light Results in Limited Loss of Membrane Integrity. Antibiotics (Basel) 2021; 10:341. [PMID: 33807025 PMCID: PMC8005082 DOI: 10.3390/antibiotics10030341] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 01/07/2023] Open
Abstract
Interest in visible light irradiation as a microbial inactivation method has widely increased due to multiple possible applications. Resistance development is considered unlikely, because of the multi-target mechanism, based on the induction of reactive oxygen species by wavelength specific photosensitizers. However, the affected targets are still not completely identified. We investigated membrane integrity with the fluorescence staining kit LIVE/DEAD® BacLight™ on a Gram positive and a Gram negative bacterial species, irradiating Staphylococcus carnosus and Pseudomonas fluorescens with 405 nm and 450 nm. To exclude the generation of viable but nonculturable (VBNC) bacterial cells, we applied an ATP test, measuring the loss of vitality. Pronounced uptake of propidium iodide was only observed in Pseudomonas fluorescens at 405 nm. Transmission electron micrographs revealed no obvious differences between irradiated samples and controls, especially no indication of an increased bacterial cell lysis could be observed. Based on our results and previous literature, we suggest that visible light photoinactivation does not lead to rapid bacterial cell lysis or disruption. However, functional loss of membrane integrity due to depolarization or inactivation of membrane proteins may occur. Decomposition of the bacterial envelope following cell death might be responsible for observations of intracellular component leakage.
Collapse
Affiliation(s)
- Katharina Hoenes
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany;
| | - Richard Bauer
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (R.B.); (B.S.)
| | - Barbara Spellerberg
- Institute of Medical Microbiology and Hygiene, University Hospital Ulm, 89081 Ulm, Germany; (R.B.); (B.S.)
| | - Martin Hessling
- Institute of Medical Engineering and Mechatronics, Ulm University of Applied Sciences, 89081 Ulm, Germany;
| |
Collapse
|
6
|
Ssemakalu CC, Ulaszewska M, Elias S, Spencer AJ. Solar inactivated Salmonella Typhimurium induces an immune response in BALB/c mice. Heliyon 2021; 7:e05903. [PMID: 33553721 PMCID: PMC7855330 DOI: 10.1016/j.heliyon.2021.e05903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/16/2020] [Accepted: 12/31/2020] [Indexed: 12/20/2022] Open
Abstract
Salmonella is contracted through the consumption of untreated water and contaminated food. The contraction and spread of water-related Salmonella in resource-poor communities can be reduced by using solar disinfection (SODIS) to treat the water before its consumption. SODIS is a water sanitizing technique that relies on natural sunshine. It is a cost-effective, inexpensive, environmentally, and user-friendly means of treating microbiologically contaminated water. This water disinfection method has saved many lives in communities vulnerable to water-related infections worldwide. At present, the success of SODIS has mainly been attributed to permanent inactivation of water pathogens ability to grow. However, little to no information exists as to whether immune responses to the solar inactivated pathogens are induced in SODIS water consumers. This study assessed the potential for solar inactivated S. Typhimurium to induce an immune response in mice. Results show that solar inactivated S. Typhimurium can induce bactericidal antibodies against S. Typhimurium. Furthermore, an increase in the secretion of interferon-gamma (IFN-γ) was observed in mice given the solar inactivated S. Typhimurium. These findings suggest that solar inactivated S. Typhimurium induces a humoral and cellular immune response. However, the level of protection afforded by these responses requires further investigation.
Collapse
Affiliation(s)
- Cornelius C Ssemakalu
- Cell Biology Research Unit, Department of Biotechnology, Faculty of Applied and Computer Sciences, Vaal University of Technology, Vanderbijlpark, 1911, South Africa
| | - Marta Ulaszewska
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Sean Elias
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| | - Alexandra J Spencer
- The Jenner Institute, University of Oxford, Old Road Campus Research Building, Roosevelt Drive, Oxford, OX3 7DQ, United Kingdom
| |
Collapse
|
7
|
How to Evaluate Non-Growing Cells-Current Strategies for Determining Antimicrobial Resistance of VBNC Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10020115. [PMID: 33530321 PMCID: PMC7912045 DOI: 10.3390/antibiotics10020115] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/19/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Thanks to the achievements in sanitation, hygiene practices, and antibiotics, we have considerably improved in our ongoing battle against pathogenic bacteria. However, with our increasing knowledge about the complex bacterial lifestyles and cycles and their plethora of defense mechanisms, it is clear that the fight is far from over. One of these resistance mechanisms that has received increasing attention is the ability to enter a dormancy state termed viable but non-culturable (VBNC). Bacteria that enter the VBNC state, either through unfavorable environmental conditions or through potentially lethal stress, lose their ability to grow on standard enrichment media, but show a drastically increased tolerance against antimicrobials including antibiotics. The inability to utilize traditional culture-based methods represents a considerable experimental hurdle to investigate their increased antimicrobial resistance and impedes the development and evaluation of effective treatments or interventions against bacteria in the VBNC state. Although experimental approaches were developed to detect and quantify VBNCs, only a few have been utilized for antimicrobial resistance screening and this review aims to provide an overview of possible methodological approaches.
Collapse
|
8
|
Xiao K, Wang T, Sun M, Hanif A, Gu Q, Tian B, Jiang Z, Wang B, Sun H, Shang J, Wong PK. Photocatalytic Bacterial Inactivation by a Rape Pollen-MoS 2 Biohybrid Catalyst: Synergetic Effects and Inactivation Mechanisms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:537-549. [PMID: 31830789 DOI: 10.1021/acs.est.9b05627] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel and efficient 3D biohybrid photocatalyst, defective MoS2 nanosheets encapsulated carbonized rape pollen, was fabricated and applied to water disinfection. The rape pollen-MoS2 (PM) biohybrid showed excellent dispersibility, high stability, and efficient charge-carrier separation and migration ability, resulting in the highly enhanced photocatalytic inactivation performance toward various waterborne bacteria under different light sources. The inactivation mechanisms were systematically investigated. Reactive species (RSs), including electrons, holes, and reactive oxygen species (•O2- and •OH), played major roles in inactivating bacteria. The antioxidant system of bacteria exhibited a self-protection capacity by eliminating the photogenerated RSs from PM biohybrid at the early stage of inactivation. With the accumulation of RSs, the cell membrane and membrane-associated functions were destroyed, as suggested by the collapse of cell envelope and subsequent loss of cell respiration and ATP synthesis capacity. The microscopic images further confirmed the destruction of the bacterial membrane. After losing the membrane barrier, the oxidation of cytoplasmic proteins and lipids caused by invaded RSs occurred readily. Finally, the leakage of DNA and RNA announced the irreversible death of bacteria. These results indicated that the bacterial inactivation began with the membrane rupture, followed by the oxidation and leakage of intracellular substances. This work not only provided a new insight into the combination of semiconductors with earth-abundant biomaterials for fabricating high-performance photocatalysts, but also revealed the underlying mechanisms of photocatalytic bacterial inactivation in depth.
Collapse
Affiliation(s)
- Kemeng Xiao
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR 999077, China
| | - Tianqi Wang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Mingzhe Sun
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
| | - Aamir Hanif
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
| | - Qinfen Gu
- The Australian Synchrotron (ANSTO), 800 Blackburn Road, Clayton, VIC 3168, Australia
| | - Bingbing Tian
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| | - Zhifeng Jiang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR 999077, China
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- Institute for Energy Research, School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China
| | - Bo Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR 999077, China
| | - Hongli Sun
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR 999077, China
| | - Jin Shang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, 8 Yuexing first Road, Shenzhen Hi-Tech Industrial Park, Nanshan District, Shenzhen 518057, China
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR 999077, China
- Institute of Environmental Health and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, China
| |
Collapse
|
9
|
Olsen RO, Lindivat M, Larsen A, Thuestad G, Hoell IA. Incubation in light versus dark affects the vitality of UV-irradiated Tetraselmis suecica differently: A flow cytometric study. MARINE POLLUTION BULLETIN 2019; 149:110528. [PMID: 31470209 DOI: 10.1016/j.marpolbul.2019.110528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/14/2019] [Accepted: 08/17/2019] [Indexed: 06/10/2023]
Abstract
In this study, we used flow cytometry to examine how incubation in dark versus light affects the vitality and viability of UV-irradiated Tetraselmis suecica. High UV doses (300 and 400 mJ/cm2) affected the esterase activity, membrane permeability, and chlorophyll content more when the subsequent incubation took place in light. For non- or low UV dose (100 and 200 mJ/cm2)-treated cells, incubation in light resulted in cell regrowth as compared to incubation in dark. Damaged cells (enzymatically active but with permeable membranes) did not recover when incubated under light or dark conditions. Exposure to light reduces the evaluation time of any given ballast water treatment, as viable cells will be detected at an earlier stage and the vitality is more affected. When evaluating the performance of UV-based ballast water treatment systems (BWTS), these results can be useful for type approval using T. suecica as a test organism in the test regime.
Collapse
Affiliation(s)
- Ranveig O Olsen
- Western Norway University of Applied Science, Bjoernsonsgt. 45, 5528 Haugesund, Norway.
| | - Mathilde Lindivat
- Western Norway University of Applied Science, Bjoernsonsgt. 45, 5528 Haugesund, Norway
| | - Aud Larsen
- Uni Research Environment and Hjort Centre for Marine Ecosystem Dynamics, 5006 Bergen, Norway
| | - Gunnar Thuestad
- Western Norway University of Applied Science, Bjoernsonsgt. 45, 5528 Haugesund, Norway
| | - Ingunn Alne Hoell
- Western Norway University of Applied Science, Bjoernsonsgt. 45, 5528 Haugesund, Norway
| |
Collapse
|
10
|
Safford HR, Bischel HN. Flow cytometry applications in water treatment, distribution, and reuse: A review. WATER RESEARCH 2019; 151:110-133. [PMID: 30594081 DOI: 10.1016/j.watres.2018.12.016] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/30/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
Ensuring safe and effective water treatment, distribution, and reuse requires robust methods for characterizing and monitoring waterborne microbes. Methods widely used today can be limited by low sensitivity, high labor and time requirements, susceptibility to interference from inhibitory compounds, and difficulties in distinguishing between viable and non-viable cells. Flow cytometry (FCM) has recently gained attention as an alternative approach that can overcome many of these challenges. This article critically and systematically reviews for the first time recent literature on applications of FCM in water treatment, distribution, and reuse. In the review, we identify and examine nearly 300 studies published from 2000 to 2018 that illustrate the benefits and challenges of using FCM for assessing source-water quality and impacts of treatment-plant discharge on receiving waters, wastewater treatment, drinking water treatment, and drinking water distribution. We then discuss options for combining FCM with other indicators of water quality and address several topics that cut across nearly all applications reviewed. Finally, we identify priority areas in which more work is needed to realize the full potential of this approach. These include optimizing protocols for FCM-based analysis of waterborne viruses, optimizing protocols for specifically detecting target pathogens, automating sample handling and preparation to enable real-time FCM, developing computational tools to assist data analysis, and improving standards for instrumentation, methods, and reporting requirements. We conclude that while more work is needed to realize the full potential of FCM in water treatment, distribution, and reuse, substantial progress has been made over the past two decades. There is now a sufficiently large body of research documenting successful applications of FCM that the approach could reasonably and realistically see widespread adoption as a routine method for water quality assessment.
Collapse
Affiliation(s)
- Hannah R Safford
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States
| | - Heather N Bischel
- Department of Civil and Environmental Engineering, University of California Davis, 2001 Ghausi Hall, 480 Bainer Hall Drive, 95616, Davis, CA, United States.
| |
Collapse
|
11
|
Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH, Parker KM, Rodriguez RA, Sassoubre LM, Silverman AI, Wigginton KR, Zepp RG. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1089-1122. [PMID: 30047962 PMCID: PMC7064263 DOI: 10.1039/c8em00047f] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.
Collapse
Affiliation(s)
- Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Amar A, Pezzoni M, Pizarro RA, Costa CS. New envelope stress factors involved in σ E activation and conditional lethality of rpoE mutations in Salmonella enterica. MICROBIOLOGY-SGM 2018; 164:1293-1307. [PMID: 30084765 DOI: 10.1099/mic.0.000701] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Salmonella enterica serovar Typhimurium (S. typhimurium) can cause food- and water-borne illness with diverse clinical manifestations. One key factor for S. typhimurium pathogenesis is the alternative sigma factor σE, which is encoded by the rpoE gene and controls the transcription of genes required for outer-membrane integrity in response to alterations in the bacterial envelope. The canonical pathway for σE activation involves proteolysis of the antisigma factor RseA, which is triggered by unfolded outer-membrane porins (OMPs) and lipopolysaccharides (LPS) that have accumulated in the periplasm. This study reports new stress factors that are able to activate σE expression. We demonstrate that UVA radiation induces σE activity in a pathway that is dependent on the stringent response regulator ppGpp. Survival assays revealed that rpoE has a role in the defence against lethal UVA doses that is mediated by functions that are dependent on and independent of the alternative sigma factor RpoS. We also report that the envelope stress generated by phage infection requires a functional rpoE gene for optimal bacterial tolerance and that it is able to induce σE activity in an RseA-dependent fashion. σE activity is also induced by hypo-osmotic shock in the absence of osmoregulated periplasmic glucans (OPGs). It is known that the rpoE gene is not essential in S. typhimurium. However, we report here two cases of the conditional lethality of rpoE mutations in this micro-organism. We demonstrate that rpoE mutations are not tolerated in the absence of OPGs (at low to moderate osmolarity) or LPS O-antigen. The latter case resembles that of the prototypic Escherichia coli strain K12, which neither synthesizes a complete LPS nor tolerates null rpoE mutations.
Collapse
Affiliation(s)
- Agustina Amar
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Magdalena Pezzoni
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Ramón A Pizarro
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| | - Cristina S Costa
- Dpto. de Radiobiología, Comisión Nacional de Energía Atómica, General San Martín, Argentina
| |
Collapse
|
13
|
Mao G, Song Y, Bartlam M, Wang Y. Long-Term Effects of Residual Chlorine on Pseudomonas aeruginosa in Simulated Drinking Water Fed With Low AOC Medium. Front Microbiol 2018; 9:879. [PMID: 29774019 PMCID: PMC5943633 DOI: 10.3389/fmicb.2018.00879] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 04/16/2018] [Indexed: 11/17/2022] Open
Abstract
Residual chlorine is often required to remain present in public drinking water supplies during distribution to ensure water quality. It is essential to understand how bacteria respond to long-term chlorine exposure, especially with the presence of assimilable organic carbon (AOC). This study aimed to investigate the effects of chlorination on Pseudomonas aeruginosa in low AOC medium by both conventional plating and culture-independent methods including flow cytometry (FCM) and quantitative PCR (qPCR). In a simulated chlorinated system using a bioreactor, membrane damage and DNA damage were measured by FCM fluorescence fingerprint. The results indicated membrane permeability occurred prior to DNA damage in response to chlorination. A regrowth of P. aeruginosa was observed when the free chlorine concentration was below 0.3 mg/L. The bacterial response to long-term exposure to a constant low level of free chlorine (0.3 mg/L) was subsequently studied in detail. Both FCM and qPCR data showed a substantial reduction during initial exposure (0–16 h), followed by a plateau where the cell concentration remained stable (16–76 h), until finally all bacteria were inactivated with subsequent continuous chlorine exposure (76–124 h). The results showed three-stage inactivation kinetics for P. aeruginosa at a low chlorine level with extended exposure time: an initial fast inactivation stage, a relatively stable middle stage, and a final stage with a slower rate than the initial stage. A series of antibiotic resistance tests suggested long-term exposure to low chlorine level led to the selection of antibiotic-resistant P. aeruginosa. The combined results suggest that depletion of residual chlorine in low AOC medium systems could reactivate P. aeruginosa, leading to a possible threat to drinking water safety.
Collapse
Affiliation(s)
- Guannan Mao
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Yuhao Song
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| | - Mark Bartlam
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,College of Life Sciences, Nankai University, Tianjin, China
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
14
|
Huai W, Deng Z, Lin W, Chen Q. Enhanced killing of Escherichia coli using a combination of polyhexamethylene biguanide hydrochloride and 1-bromo-3-chloro-5,5- dimethylimidazolidine-2,4-dione. FEMS Microbiol Lett 2017; 364:4329275. [PMID: 29029044 DOI: 10.1093/femsle/fnx210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Accepted: 09/29/2017] [Indexed: 11/15/2022] Open
Abstract
The bactericidal activities of polyhexamethylene biguanide hydrochloride (PHMB), 1-bromo-3-chloro-5,5-dimethylimidazolidine-2,4-dione (BCDMH) and the combination of the two (designated as PB) were compared using Escherichia coli as the test organism. PB exhibited strong bactericidal activity: 10 mg/L PHMB combined with 8 mg/L BCDMH resulted in approximately 5.74 log10 reduction (LR), whereas 320 mg/L PHMB or 20 mg/L BCDMH was about 5.53 and 6.56 LR, respectively. Analyses using scanning electron microscopy, flow cytometry and atomic absorption spectroscopy indicated that PB, PHMB and BCDMH disrupted cell membranes and changed membrane structure and permeability, resulting in the leakage of intracellular soluble proteins and ions. PB exerted stronger effects on potassium and magnesium leakage, membrane potential and permeability than BCDMH did. PB caused less protein leakage than PHMB did. These results suggest that at a relatively low concentration, PB exhibited good bactericidal activity and physiological effect on E. coli.
Collapse
Affiliation(s)
- Wan Huai
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Zhirui Deng
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Wenshu Lin
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| | - Qin Chen
- School of Life Sciences, Shanghai University, No. 333, Nanchen Road, Shanghai 200444, PR China
| |
Collapse
|
15
|
Emerson JB, Adams RI, Román CMB, Brooks B, Coil DA, Dahlhausen K, Ganz HH, Hartmann EM, Hsu T, Justice NB, Paulino-Lima IG, Luongo JC, Lymperopoulou DS, Gomez-Silvan C, Rothschild-Mancinelli B, Balk M, Huttenhower C, Nocker A, Vaishampayan P, Rothschild LJ. Schrödinger's microbes: Tools for distinguishing the living from the dead in microbial ecosystems. MICROBIOME 2017; 5:86. [PMID: 28810907 PMCID: PMC5558654 DOI: 10.1186/s40168-017-0285-3] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 06/05/2017] [Indexed: 05/16/2023]
Abstract
While often obvious for macroscopic organisms, determining whether a microbe is dead or alive is fraught with complications. Fields such as microbial ecology, environmental health, and medical microbiology each determine how best to assess which members of the microbial community are alive, according to their respective scientific and/or regulatory needs. Many of these fields have gone from studying communities on a bulk level to the fine-scale resolution of microbial populations within consortia. For example, advances in nucleic acid sequencing technologies and downstream bioinformatic analyses have allowed for high-resolution insight into microbial community composition and metabolic potential, yet we know very little about whether such community DNA sequences represent viable microorganisms. In this review, we describe a number of techniques, from microscopy- to molecular-based, that have been used to test for viability (live/dead determination) and/or activity in various contexts, including newer techniques that are compatible with or complementary to downstream nucleic acid sequencing. We describe the compatibility of these viability assessments with high-throughput quantification techniques, including flow cytometry and quantitative PCR (qPCR). Although bacterial viability-linked community characterizations are now feasible in many environments and thus are the focus of this critical review, further methods development is needed for complex environmental samples and to more fully capture the diversity of microbes (e.g., eukaryotic microbes and viruses) and metabolic states (e.g., spores) of microbes in natural environments.
Collapse
Affiliation(s)
- Joanne B. Emerson
- Department of Microbiology, The Ohio State University, 484 West 12th Avenue, Columbus, OH 43210 USA
- Current Address: Department of Plant Pathology, University of California, Davis, CA USA
| | - Rachel I. Adams
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Clarisse M. Betancourt Román
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
| | - Brandon Brooks
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
- Department of Earth and Planetary Sciences, University of California, Berkeley, Berkeley, CA 94720 USA
| | - David A. Coil
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Katherine Dahlhausen
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Holly H. Ganz
- Genome Center, University of California Davis, 451 Health Sciences Drive, Davis, CA 95616 USA
| | - Erica M. Hartmann
- Biology and the Built Environment Center, Institute of Ecology and Evolution, University of Oregon, Eugene, OR 97403 USA
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208 USA
| | - Tiffany Hsu
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Nicholas B. Justice
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
| | - Ivan G. Paulino-Lima
- Universities Space Research Association, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 377, Moffett Field, CA 94035-1000 USA
| | - Julia C. Luongo
- Department of Mechanical Engineering, University of Colorado at Boulder, 1111 Engineering Drive, 427 UCB, Boulder, CO 80309 USA
| | - Despoina S. Lymperopoulou
- Department of Plant & Microbial Biology, University of California, Berkeley, 111 Koshland Hall, Berkeley, CA 94720 USA
| | - Cinta Gomez-Silvan
- Lawrence Berkeley National Lab, 1 Cyclotron Road, 955-512L, Berkeley, CA 94720 USA
- Department of Environmental Science, Policy, and Management, University of California, Berkeley, CA 94702 USA
| | | | - Melike Balk
- Department of Earth Sciences – Petrology, Faculty of Geosciences, Utrecht University, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, 665 Huntington Avenue, Boston, MA 02115 USA
- The Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA
| | - Andreas Nocker
- IWW Water Centre, Moritzstrasse 26, 45476 Mülheim an der Ruhr, Germany
| | - Parag Vaishampayan
- Biotechnology and Planetary Protection Group, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA USA
| | - Lynn J. Rothschild
- Planetary Sciences and Astrobiology, NASA Ames Research Center, Mail Stop 239-20, Building 239, room 361, Moffett Field, CA 94035-1000 USA
| |
Collapse
|
16
|
Kramer B, Wunderlich J, Muranyi P. Impact of treatment parameters on pulsed light inactivation of microorganisms on a food simulant surface. INNOV FOOD SCI EMERG 2017. [DOI: 10.1016/j.ifset.2017.05.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
17
|
Kramer B, Wunderlich J, Muranyi P. ATP-synthesis capacity of pulsed light-exposed bacteria. Syst Appl Microbiol 2017. [PMID: 28629639 DOI: 10.1016/j.syapm.2017.04.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The ability of four different bacteria to synthesize new ATP upon exposure to different doses of pulsed-light (PL) irradiation was investigated. The bacterial cells were PL treated on a gel surface, resuspended in phosphate buffered saline (PBS) and subsequently incubated in Tryptic Soy Broth (TSB) at 37°C. Cellular ATP levels were monitored during a 2h incubation period and compared to the respective colony count data. Although PL affected ATP production in a dose dependent manner, the results showed that bacteria, which had rendered unculturable after PL exposure, are still capable of generating significant quantities of ATP. Escherichia coli and Listeria innocua proved to be more resistant to PL than Salmonella enterica and Staphylococcus aureus, which was supported by the colony count data and the ATP synthesis capacity. These findings underline that bacteria undetectable by culture-based methods may still show cellular activity and synthesize new ATP.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354, Freising, Germany.
| | - J Wunderlich
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354, Freising, Germany
| | - P Muranyi
- Fraunhofer Institute for Process Engineering and Packaging, Giggenhauser Straße 35, 85354, Freising, Germany
| |
Collapse
|
18
|
Molecular Viability Testing of UV-Inactivated Bacteria. Appl Environ Microbiol 2017; 83:AEM.00331-17. [PMID: 28283525 DOI: 10.1128/aem.00331-17] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 03/08/2017] [Indexed: 01/01/2023] Open
Abstract
PCR is effective in detecting bacterial DNA in samples, but it is unable to differentiate viable bacteria from inactivated cells or free DNA fragments. New PCR-based analytical strategies have been developed to address this limitation. Molecular viability testing (MVT) correlates bacterial viability with the ability to rapidly synthesize species-specific rRNA precursors (pre-rRNA) in response to brief nutritional stimulation. Previous studies demonstrated that MVT can assess bacterial inactivation by chlorine, serum, and low-temperature pasteurization. Here, we demonstrate that MVT can detect inactivation of Escherichia coli, Aeromonas hydrophila, and Enterococcus faecalis cells by UV irradiation. Some UV-inactivated E. coli cells transiently retained the ability to synthesize pre-rRNA postirradiation (generating false-positive MVT results), but this activity ceased within 1 h following UV exposure. Viable but transiently undetectable (by culture) E. coli cells were consistently detected by MVT. An alternative viability testing method, viability PCR (vPCR), correlates viability with cell envelope integrity. This method did not distinguish viable bacteria from UV-inactivated bacteria under some conditions, indicating that the inactivated cells retained intact cell envelopes. MVT holds promise as a means to rapidly assess microbial inactivation by UV treatment.IMPORTANCE UV irradiation is increasingly being used to disinfect water, food, and other materials for human use. Confirming the effectiveness of UV disinfection remains a challenging task. In particular, microbiological methods that rely on rapid detection of microbial DNA can yield misleading results, due to the detection of remnant DNA associated with dead microbial cells. This report describes a novel method that rapidly distinguishes living microbial cells from dead microbial cells after UV disinfection.
Collapse
|
19
|
Bacterial Oxidative Stress Responses and Cellular Damage Caused by Photocatalytic and Photoelectrocatalytic Inactivation. GREEN CHEMISTRY AND SUSTAINABLE TECHNOLOGY 2017. [DOI: 10.1007/978-3-662-53496-0_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
20
|
Kramer B, Wunderlich J, Muranyi P. Impact of pulsed light on cellular activity of Salmonella enterica. J Appl Microbiol 2016; 121:988-97. [PMID: 27409040 DOI: 10.1111/jam.13231] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 06/20/2016] [Accepted: 07/05/2016] [Indexed: 11/28/2022]
Abstract
AIMS The objective of this study was a comprehensive characterization of physiological changes of Salmonella enterica induced by intense broad spectrum pulsed light (PL). After exposing the bacteria to this nonthermal decontamination technology on a gel surface, multiple viability parameters beyond culturability were assessed. METHODS AND RESULTS By applying flow cytometry, a luciferin-luciferase bioluminescence assay and a microplate assay to measure the current redox activity, the impact of pulsed light on the membrane potential, membrane integrity, esterase activity, efflux pump activity, expression of the green fluorescent protein (GFP), respiration activity and ATP-content of Salm. enterica ATCC BAA-1045 was determined. These culture-independent methods for assessing the bacterial activity were compared to the ability to grow on tryptic soy agar. It is shown that this strain is rather sensitive to PL considering colony count reductions, while on the other hand unculturable bacteria still exhibit significant cellular energetic functions. However, this residual activity after PL exposure significantly decreases during sample storage in buffer for 24 h. This study also shows that the GFP expression of PL-treated cells which have rendered unculturable is severely reduced. CONCLUSIONS This study reveals that although not all cellular functions of Salm. enterica are immediately shut down after PL exposure, the synthesis of new GFP is strongly reduced and affected to a similar extent as the culturability. SIGNIFICANCE AND IMPACT OF THE STUDY It is shown for the first time, that even there is significant bacterial activity measurable after PL exposure, it is likely that nongrowing pathogenic bacteria like Salm. enterica are unable to express proteins, which is of great importance regarding their pathogenicity.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany.
| | - J Wunderlich
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | - P Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| |
Collapse
|
21
|
Probst-Rüd S, McNeill K, Ackermann M. Thiouridine residues in tRNAs are responsible for a synergistic effect of UVA and UVB light in photoinactivation of Escherichia coli. Environ Microbiol 2016; 19:434-442. [PMID: 27059439 DOI: 10.1111/1462-2920.13319] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/28/2016] [Indexed: 01/12/2023]
Abstract
Since different wavelengths of light impact different cellular targets, microorganisms exposed to natural sunlight experience a combination of multiple stressors. In order to better understand the effects of sunlight on microorganisms we, therefore, need to understand how different wavelength act alone and in combination. Here, we describe a synergistic effect between UVA and UVB irradiation on viability of Escherichia coli bacteria. To investigate the basis of this synergistic effect we analysed mutant strains that were obtained through selection for increased resistance to combined UVA and UVB. By identifying and reconstructing genetic changes in the resistant strains we provide evidence that UVA-absorbing thiouridine residues in tRNAs are the key to the synergistic effect. Our study provides insights into how naturally occurring combinations of stressors can interact, and points to new ways for controlling microbial populations.
Collapse
Affiliation(s)
- Sandra Probst-Rüd
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| | - Kristopher McNeill
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland
| | - Martin Ackermann
- Department of Environmental Systems Science, Institute of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zurich, Zurich, Switzerland.,Department of Environmental Microbiology, Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland
| |
Collapse
|
22
|
Maraccini PA, Wenk J, Boehm AB. Photoinactivation of Eight Health-Relevant Bacterial Species: Determining the Importance of the Exogenous Indirect Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:5050-9. [PMID: 27121126 DOI: 10.1021/acs.est.6b00074] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
It is presently unknown to what extent the endogenous direct, endogenous indirect, and exogenous indirect mechanisms contribute to bacterial photoinactivation in natural surface waters. In this study, we investigated the importance of the exogenous indirect mechanism by conducting photoinactivation experiments with eight health-relevant bacterial species (Bacteroides thetaiotaomicron, Campylobacter jejuni, Enterococcus faecalis, Escherichia coli K12, E. coli O157:H7, Salmonella enterica serovar Typhimurium LT2, Staphylococcus aureus, and Streptococcus bovis). We used three synthetic photosensitizers (methylene blue, rose bengal, and nitrite) and two model natural photosensitizers (Suwannee River natural organic matter and dissolved organic matter isolated from a wastewater treatment wetland) that generated singlet oxygen and hydroxyl radical. B. thetaiotaomicron had larger first order rate constants than all other organisms under all conditions tested. The presence of the synthetic photosensitizers generally enhanced photoinactivation of Gram-positive facultative anaerobes (Ent. faecalis, Staph. aureus, and Strep. bovis). Among Gram-negative bacteria, only methylene blue with E. coli K12 and rose bengal with C. jejuni showed an enhancing effect. The presence of model natural photosensitizers either reduced or did not affect photoinactivation rate constants. Our findings highlight the importance of the cellular membrane and photosensitizer properties in modulating the contribution of the exogenous indirect mechanism to the overall bacterial photoinactivation.
Collapse
Affiliation(s)
- Peter A Maraccini
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, California 94305, United States
| | - Jannis Wenk
- Department of Civil & Environmental Engineering, University of California , Berkeley, California 94720-1710, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, California 94305, United States
| | - Alexandria B Boehm
- Department of Civil and Environmental Engineering, Stanford University , Stanford, California 94305, United States
- Engineering Research Center (ERC) for Re-inventing the Nation's Urban Water Infrastructure (ReNUWIt), Stanford, California 94305, United States
| |
Collapse
|
23
|
|
24
|
Kramer B, Wunderlich J, Muranyi P. Pulsed light induced damages in Listeria innocua
and Escherichia coli. J Appl Microbiol 2015. [DOI: 10.1111/jam.12912] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- B. Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV; Freising Germany
| | - J. Wunderlich
- Fraunhofer Institute for Process Engineering and Packaging IVV; Freising Germany
| | - P. Muranyi
- Fraunhofer Institute for Process Engineering and Packaging IVV; Freising Germany
| |
Collapse
|
25
|
Xia D, Shen Z, Huang G, Wang W, Yu JC, Wong PK. Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for "Green" Bacterial Inactivation under Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6264-73. [PMID: 25894494 DOI: 10.1021/acs.est.5b00531] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Earth-abundant red phosphorus was found to exhibit remarkable efficiency to inactivate Escherichia coli K-12 under the full spectrum of visible light and even sunlight. The reactive oxygen species (•OH, •O2(-), H2O2), which were measured and identified to derive mainly from photogenerated electrons in the conduction band using fluorescent probes and scavengers, collectively contributed to the good performance of red phosphorus. Especially, the inactivated-membrane function enzymes were found to be associated with great loss of respiratory and ATP synthesis activity, the kinetics of which paralleled cell death and occurred much earlier than those of cytoplasmic proteins and chromosomal DNA. This indicated that the cell membrane was a vital first target for reactive oxygen species oxidation. The increased permeability of the cell membrane consequently accelerated intracellular protein carboxylation and DNA degradation to cause definite bacterial death. Microscopic analyses further confirmed the cell destruction process starting with the cell envelope and extending to the intracellular components. The red phosphorus still maintained good performance even after recycling through five reaction cycles. This work offers new insight into the exploration and use of an elemental photocatalyst for "green" environmental applications.
Collapse
Affiliation(s)
- Dehua Xia
- †School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zhurui Shen
- ‡Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- §Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- ∥Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guocheng Huang
- †School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wanjun Wang
- ‡Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jimmy C Yu
- ‡Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- §Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Po Keung Wong
- †School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
26
|
Giannakis S, Darakas E, Escalas-Cañellas A, Pulgarin C. Temperature-dependent change of light dose effects on E. coli inactivation during simulated solar treatment of secondary effluent. Chem Eng Sci 2015. [DOI: 10.1016/j.ces.2014.12.045] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
27
|
Farooq S, Wahab AT, Fozing CDA, Rahman AU, Choudhary MI. Artonin I inhibits multidrug resistance in Staphylococcus aureus and potentiates the action of inactive antibiotics in vitro. J Appl Microbiol 2014; 117:996-1011. [PMID: 24996035 DOI: 10.1111/jam.12595] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/26/2014] [Accepted: 06/27/2014] [Indexed: 11/27/2022]
Abstract
AIMS The emergence of multidrug-resistant (MDR) Staphylococcus aureus is a challenge for the treatment of infections. We report here the antimicrobial activity of artonin I against MDR Staph. aureus, its mechanism of reversal of resistance and synergistic effects by combinational therapy. METHODS AND RESULTS Artonin I, a flavonoid obtained from Morus mesozygia Stapf., inhibited the bacterial efflux pump and induced depolarization of the cell membrane. To study the dose-dependent production of reactive oxygen species in MDR cells by artonin I, lucigenin chemiluminescence assay was employed. Reversal of multidrug resistance by artonin I, in combination with antibiotics, was measured by a fractional inhibitory concentration index assay. The effect of artonin I on ultrastructural features was studied by microscopy. Artonin I increased the penetration of ethidium bromide by blocking the efflux mechanism. It also helped anionic probe DiBAC4 (3) to bind with the lipid-rich cellular components by causing depolarization of the cell membrane. Artonin I reversed multidrug resistance and increased the susceptibility of existing antibiotics by lowering their minimum inhibitory concentrations (MICs). CONCLUSIONS Artonin I was identified both as a new antibacterial agent and a helper molecule to potentiate the action of otherwise inactive antibiotics. SIGNIFICANCE AND IMPACT OF THE STUDY Artonin I can be developed as potential antimicrobial and resistance reversal agent.
Collapse
Affiliation(s)
- S Farooq
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | | | | | | | | |
Collapse
|
28
|
Abstract
Nucleic acid-based analytical methods, ranging from species-targeted PCRs to metagenomics, have greatly expanded our understanding of microbiological diversity in natural samples. However, these methods provide only limited information on the activities and physiological states of microorganisms in samples. Even the most fundamental physiological state, viability, cannot be assessed cross-sectionally by standard DNA-targeted methods such as PCR. New PCR-based strategies, collectively called molecular viability analyses, have been developed that differentiate nucleic acids associated with viable cells from those associated with inactivated cells. In order to maximize the utility of these methods and to correctly interpret results, it is necessary to consider the physiological diversity of life and death in the microbial world. This article reviews molecular viability analysis in that context and discusses future opportunities for these strategies in genetic, metagenomic, and single-cell microbiology.
Collapse
|
29
|
Protective role of extracellular catalase (KatA) against UVA radiation in Pseudomonas aeruginosa biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2014; 131:53-64. [DOI: 10.1016/j.jphotobiol.2014.01.005] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Revised: 11/28/2013] [Accepted: 01/07/2014] [Indexed: 11/16/2022]
|
30
|
Kramer B, Muranyi P. Effect of pulsed light on structural and physiological properties of Listeria innocua and Escherichia coli. J Appl Microbiol 2013; 116:596-611. [PMID: 24238364 DOI: 10.1111/jam.12394] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 11/05/2013] [Accepted: 11/10/2013] [Indexed: 01/05/2023]
Abstract
AIMS The application of broad-spectrum intense light pulses is an innovative nonthermal technology for the decontamination of packaging materials, liquids or foodstuffs. The objective of this study was the fundamental investigation of the cellular impact of a pulsed light treatment on Listeria innocua and Escherichia coli. METHODS AND RESULTS Flow cytometry in combination with different fluorescent stains, conventional plate count technique and a viability assay were applied to investigate the effects of a pulsed light treatment on the physiological properties of L. innocua and E. coli. The results showed that loss of cultivability occurred at considerably lower fluences than the shutdown of cellular functions such as the depolarization of cell membranes, the loss of metabolic, esterase and pump activities or the occurrence of membrane damage. Therefore, a considerable proportion of cells appeared to have entered the viable but nonculturable (VBNC) state after the pulsed light treatment. A high percentage of L. innocua was able to maintain certain cellular vitality functions after storage overnight, whereas a further decrease in vitality was observed in case of E. coli. The loss of culturability was on the other hand directly accompanied by the formation of reactive oxygen species (ROS) and DNA damages, which were assessed by the ROS-sensitive probe DCFH-DA and RAPD-PCR, respectively. CONCLUSIONS A significant discrepancy between conventional plate counts and different viability staining parameters was observed, which shows that a pulsed light treatment does not cause an immediate shutdown of vitality functions even when the number of colony-forming units already decreased for more than 6 log10 sample(-1) . Oxidative stress with concomitant damage to the DNA molecule showed to be directly responsible for the loss of cultivability due to pulsed light rather than a direct rupture of cell membranes or inactivation of intracellular enzymes. SIGNIFICANCE AND IMPACT OF THE STUDY The presented results suggest an UV light-induced photochemical rather than a photothermal or photophysical inactivation of bacterial cells by pulsed light under the applied experimental conditions. Flow cytometry in combination with different viability stains proved to be a suitable technique to gain deeper insight into the cellular response of bacteria to inactivation processes like a pulsed light treatment.
Collapse
Affiliation(s)
- B Kramer
- Fraunhofer Institute for Process Engineering and Packaging IVV, Freising, Germany
| | | |
Collapse
|
31
|
Rubio D, Nebot E, Casanueva JF, Pulgarin C. Comparative effect of simulated solar light, UV, UV/H2O2 and photo-Fenton treatment (UV-Vis/H2O2/Fe2+,3+) in the Escherichia coli inactivation in artificial seawater. WATER RESEARCH 2013; 47:6367-6379. [PMID: 24035676 DOI: 10.1016/j.watres.2013.08.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 07/23/2013] [Accepted: 08/06/2013] [Indexed: 05/29/2023]
Abstract
Innovative disinfection technologies are being studied for seawater, seeking a viable alternative to chlorination. This study proposes the use of H2O2/UV254 and photo-Fenton as disinfection treatment in seawater. The irradiations were carried out using a sunlight simulator (Suntest) and a cylindrical UV reactor. The efficiency of the treatment was compared for Milli-Q water, Leman Lake water and artificial seawater. The presence of bicarbonates and organic matter was investigated in order to evaluate possible effects on the photo-Fenton disinfection treatment. The photo-Fenton treatment, employing 1 mg L(-1) Fe(2+) and 10 mg L(-1) of H2O2, led to the fastest bacterial inactivation kinetics. Using H2O2/UV254 high disinfection rates were obtained similar to those obtained with photo-Fenton under UV254 light. In Milli-Q water, the rate of inactivation for Escherichia coli was higher than in Leman Lake water and seawater due to the lack of inorganic ions affecting negatively bacteria inactivation. The presence of bicarbonate showed scavenging of the OH(•) radicals generated in the treatment of photo-Fenton and H2O2/UV254. Despite the negative effect of inorganic ions, especially HCO3(-), the disinfection treatments with AOPs in lake water and seawater improved significantly the disinfection compared to light alone (simulated sunlight and UV254). In the treatment of photo-Fenton with simulated sunlight, dissolved organic matter had a beneficial effect by increasing the rate of inactivation. This is associated with the formation of Fe(3+)-organo photosensitive complexes leading to the formation of ROS able to inactivate bacteria. This effect was not observed in the photo-Fenton with UV254. Growth of E. coli surviving in seawater was observed 24 and 48 h after treatment with UV light. However, growth of surviving bacteria was not detected after photo-Fenton with UV254 and H2O2/UV254 treatments. This study suggests H2O2/UV254 and photo-Fenton treatments for the disinfection of seawater, in spite its high concentration of salts.
Collapse
Affiliation(s)
- D Rubio
- Institute of Chemical Science and Engineering, Advanced Oxidation Processes Group (GPAO), Swiss Federal Institute of Technology (EPFL), Station 6, CH-1015 Lausanne, Switzerland; Department of Environmental Technologies, Faculty of Sea and Environmental Sciences, University of Cádiz, Av. Republica Saharaui s/n, 11510 Puerto Real, Spain
| | | | | | | |
Collapse
|
32
|
Mechanisms of human adenovirus inactivation by sunlight and UVC light as examined by quantitative PCR and quantitative proteomics. Appl Environ Microbiol 2012; 79:1325-32. [PMID: 23241978 DOI: 10.1128/aem.03457-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Human adenoviruses (HAdV) are important pathogens in both industrialized and developing nations. HAdV has been shown to be relatively resistant to monochromatic UVC light. Polychromatic UVC light, in contrast, is a more effective means of disinfection, presumably due to the involvement of viral proteins in the inactivation mechanism. Solar disinfection of HAdV, finally, is only poorly understood. In this paper, the kinetics and mechanism of HAdV inactivation by UVC light and direct and indirect solar disinfection are elucidated. PCR and mass spectrometry were employed to quantify the extent of genome and protein degradation and to localize the affected regions in the HAdV proteins. For this purpose, we used for the first time an approach involving stable isotope labeling by amino acids in cell culture (SILAC) of a human virus. Inactivation by UVC light and the full sunlight spectrum were found to efficiently inactivate HAdV, whereas UVA-visible light only caused inactivation in the presence of external sensitizers (indirect solar disinfection). Genome damage was significant for UVC but was less important for solar disinfection. In contrast, indirect solar disinfection exhibited extensive protein degradation. In particular, the fiber protein and the amino acids responsible for host binding within the fiber protein were shown to degrade. In addition, the central domain of the penton protein was damaged, which may inhibit interactions with the fiber protein and lead to a disruption of the initial stages of infection. Damage to the hexon protein, however, appeared to affect only regions not directly involved in the infectious cycle.
Collapse
|
33
|
Bichai F, Polo-López MI, Fernández Ibañez P. Solar disinfection of wastewater to reduce contamination of lettuce crops by Escherichia coli in reclaimed water irrigation. WATER RESEARCH 2012; 46:6040-50. [PMID: 22981489 DOI: 10.1016/j.watres.2012.08.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Revised: 08/16/2012] [Accepted: 08/17/2012] [Indexed: 06/01/2023]
Abstract
Low-cost disinfection methods to allow safe use of recycled wastewater for irrigation can have important beneficial implications in the developing world. This study aims to assess the efficiency of solar disinfection to reduce microbial contamination of lettuce crops when solar-treated wastewater effluents are used for irrigation. The irrigation study was designed as a complete experimental loop, including (i) the production of irrigation water through solar disinfection of real municipal wastewater treatment plant effluents (WWTPE), (ii) the watering of cultivated lettuce crops at the end of solar treatment, and (iii) the detection of microbial contamination on the irrigated crops 24 h after irrigation. Solar disinfection was performed using two types of reactors: (i) 20-L batch borosilicate glass reactors equipped with CPC to optimize solar irradiation, and (ii) 1.5-L PET bottles, i.e. the traditional SODIS recipients commonly used for disinfection of drinking water in developing communities. Both solar and H(2)O(2)-aided solar disinfection processes were tested during ≤5 h exposure of WWTPE, and Escherichia coli inactivation was analysed. A presence/absence detection method was developed to analyse lettuce leaves sampled 24 h after watering for the detection of E. coli. Results of inactivation assays show that solar disinfection processes can bring down bacterial concentrations of >10(3)-10(4)E. coli CFU mL(-1) in real WWTPE to <2 CFU/mL (detection limit). The absence of E. coli on most lettuce samples after irrigation with solar-disinfected effluents (26 negative samples/28) confirmed an improved safety of irrigation practices due to solar treatment, while crops irrigated with raw WWTPE showed contamination.
Collapse
Affiliation(s)
- Françoise Bichai
- Plataforma Solar de Almería-CIEMAT, Carretera Senés km 4, 04200 Tabernas (Almería), Spain.
| | | | | |
Collapse
|
34
|
McGuigan KG, Conroy RM, Mosler HJ, du Preez M, Ubomba-Jaswa E, Fernandez-Ibañez P. Solar water disinfection (SODIS): a review from bench-top to roof-top. JOURNAL OF HAZARDOUS MATERIALS 2012; 235-236:29-46. [PMID: 22906844 DOI: 10.1016/j.jhazmat.2012.07.053] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 05/12/2023]
Abstract
Solar water disinfection (SODIS) has been known for more than 30 years. The technique consists of placing water into transparent plastic or glass containers (normally 2L PET beverage bottles) which are then exposed to the sun. Exposure times vary from 6 to depending on the intensity of sunlight and sensitivity of the pathogens. Its germicidal effect is based on the combined effect of thermal heating of solar light and UV radiation. It has been repeatedly shown to be effective for eliminating microbial pathogens and reduce diarrhoeal morbidity including cholera. Since 1980 much research has been carried out to investigate the mechanisms of solar radiation induced cell death in water and possible enhancement technologies to make it faster and safer. Since SODIS is simple to use and inexpensive, the method has spread throughout the developing world and is in daily use in more than 50 countries in Asia, Latin America, and Africa. More than 5 million people disinfect their drinking water with the solar disinfection (SODIS) technique. This review attempts to revise all relevant knowledge about solar disinfection from microbiological issues, laboratory research, solar testing, up to and including real application studies, limitations, factors influencing adoption of the technique and health impact.
Collapse
|
35
|
Conversion of solar energy into electricity by using duckweed in Direct Photosynthetic Plant Fuel Cell. Bioelectrochemistry 2012; 87:185-91. [DOI: 10.1016/j.bioelechem.2012.02.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 11/15/2022]
|
36
|
Mechanisms for photoinactivation of Enterococcus faecalis in seawater. Appl Environ Microbiol 2012; 78:7776-85. [PMID: 22941072 DOI: 10.1128/aem.02375-12] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Field studies in fresh and marine waters consistently show diel fluctuations in concentrations of enterococci, indicators of water quality. We investigated sunlight inactivation of Enterococcus faecalis to gain insight into photoinactivation mechanisms and cellular responses to photostress. E. faecalis bacteria were exposed to natural sunlight in clear, filtered seawater under both oxic and anoxic conditions to test the relative importance of oxygen-mediated and non-oxygen-mediated photoinactivation mechanisms. Multiple methods were used to assess changes in bacterial concentration, including cultivation, quantitative PCR (qPCR), propidium monoazide (PMA)-qPCR, LIVE/DEAD staining using propidium iodide (PI), and cellular activity, including ATP concentrations and expression of the superoxide dismutase-encoding gene, sodA. Photoinactivation, based on numbers of cultivable cells, was faster in oxic than in anoxic microcosms exposed to sunlight, suggesting that oxygen-mediated photoinactivation dominated. There was little change in qPCR signal over the course of the experiment, demonstrating that the nucleic acid targets were not damaged to a significant extent. The PMA-qPCR signal was also fairly stable, consistent with the observation that the fraction of PI-permeable cells was constant. Thus, damage to the membrane was minimal. Microbial ATP concentrations decreased in all microcosms, particularly the sunlit oxic microcosms. The increase in relative expression of the sodA gene in the sunlit oxic microcosms suggests that cells were actively responding to oxidative stress. Dark repair was not observed. This research furthers our understanding of photoinactivation mechanisms and the conditions under which diel fluctuations in enterococci can be expected in natural and engineered systems.
Collapse
|
37
|
Czechowska K, van der Meer JR. Reversible and irreversible pollutant-induced bacterial cellular stress effects measured by ethidium bromide uptake and efflux. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:1201-1208. [PMID: 22175440 DOI: 10.1021/es203352y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chemical pollution is known to affect microbial community composition but it is poorly understood how toxic compounds influence physiology of single cells that may lay at the basis of loss of reproductive fitness. Here we analyze physiological disturbances of a variety of chemical pollutants at single cell level using the bacterium Pseudomonas fluorescens in an oligotrophic growth assay. As a proxy for physiological disturbance we measured changes in geometric mean ethidium bromide (EB) fluorescence intensities in subpopulations of live and dividing cells exposed or not exposed to different dosages of tetradecane, 4-chlorophenol, 2-chlorobiphenyl, naphthalene, benzene, mercury chloride, or water-dissolved oil fractions. Because ethidium bromide efflux is an energy-dependent process any disturbance in cellular energy generation is visible as an increased cytoplasmic fluorescence. Interestingly, all pollutants even at the lowest dosage of 1 nmol/mL culture produced significantly increased ethidium bromide fluorescence compared to nonexposed controls. Ethidium bromide fluorescence intensities increased upon pollutant exposure dosage up to a saturation level, and were weakly (r(2) = 0.3905) inversely correlated to the proportion of live cells at that time point in culture. Temporal increase in EB fluorescence of growing cells is indicative for toxic but reversible effects. Cells displaying high continued EB fluorescence levels experience constant and permanent damage, and no longer contribute to population growth. The procedure developed here using bacterial ethidium bromide efflux pump activity may be a useful complement to screen sublethal toxicity effects of chemicals.
Collapse
Affiliation(s)
- Kamila Czechowska
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | |
Collapse
|
38
|
Czechowska K, van der Meer JR. A flow cytometry based oligotrophic pollutant exposure test to detect bacterial growth inhibition and cell injury. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5820-5827. [PMID: 21657560 DOI: 10.1021/es200591v] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Toxicity of chemical pollutants in aquatic environments is often addressed by assays that inquire reproductive inhibition of test microorganisms, such as algae or bacteria. Those tests, however, assess growth of populations as a whole via macroscopic methods such as culture turbidity or colony-forming units. Here we use flow cytometry to interrogate the fate of individual cells in low-density populations of the bacterium Pseudomonas fluorescens SV3 exposed or not under oligotrophic conditions to a number of common pollutants, some of which derive from oil contamination. Cells were stained at regular time intervals during the exposure assay with fluorescent dyes that detect membrane injury (i.e., live-dead assay). Reduction of population growth rates was observed upon toxicant insult and depended on the type of toxicant. Modeling and cell staining indicate that population growth rate decrease is a combined effect of an increased number of injured cells that may or may not multiply, and live cells dividing at normal growth rates. The oligotrophic assay concept presented here could be a useful complement for existing biomarker assays in compliance with new regulations on chemical effect studies or, more specifically, for judging recovery after exposure to fluctuating toxicant conditions.
Collapse
Affiliation(s)
- Kamila Czechowska
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge, 1015 Lausanne, Switzerland
| | | |
Collapse
|
39
|
Influence of rpoS mutations on the response of Salmonella enterica serovar Typhimurium to solar radiation. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2011; 102:20-5. [DOI: 10.1016/j.jphotobiol.2010.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Revised: 08/03/2010] [Accepted: 08/30/2010] [Indexed: 11/20/2022]
|
40
|
Bosshard F, Riedel K, Schneider T, Geiser C, Bucheli M, Egli T. Protein oxidation and aggregation in UVA-irradiated Escherichia coli cells as signs of accelerated cellular senescence. Environ Microbiol 2010; 12:2931-45. [DOI: 10.1111/j.1462-2920.2010.02268.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
41
|
Egli T. How to live at very low substrate concentration. WATER RESEARCH 2010; 44:4826-37. [PMID: 20688348 DOI: 10.1016/j.watres.2010.07.023] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/28/2010] [Accepted: 07/08/2010] [Indexed: 05/06/2023]
Abstract
Availability of carbon/energy sources and temperature are the two environmental factors that severely restrict heterotrophic growth in most ecosystems. DOC concentrations in ground, drinking and surface waters are typically in the range of 0.5-5 mg/L, but most of this is present in a polymeric, inaccessible form for microbes. Concentrations of microbiologically available carbon compounds (so-called assimilable organic carbon, AOC) are usually in the range of 10-100 μg/L, those of individual sugars or amino acids are not higher than a few μg/L. Until recently microbiologists assumed that such nutrient-poor (oligotrophic) environments are "deserts" for life, and that the majority of bacterial cells seen in the microscope are dead, dormant or at least severely starved. Nevertheless, despite the low concentrations of available carbon compounds, bacterial cell numbers recorded in these environments typically are in the range of 10(5)-10(6) per mL. Over the last years, we have learnt that most of these microbes are perfectly alive, metabolizing and ready to grow when given the chance. Hence, microbes have adapted and developed strategies to cope with this situation. Laboratory studies with pure cultures suggest that bacterial cells have developed two strategies to live under such conditions. The first strategy is to perform a "multivorous" way of life by taking up and metabolizing dozens of different carbon substrates simultaneously (i.e., they are NOT specializing on a particular substrate, which they can take up with very high affinity). This "mixed substrate growth" equips the cell with a kinetic advantage and metabolic flexibility. Simultaneous utilization of a multitude of carbon substrates allows fast growth at minute concentrations of individual substrates. The second strategy is to minimize maintenance requirements (unfortunately we still know little about how this is achieved). Recently, flow cytometry has been employed to study microbial growth in very dilute, nutrient-poor environments. The technique allows fast and easy quantification of microbial growth of natural bacterial communities, including "uncultivable" members, under environmental conditions. When combined with strain-specific fluorescent immunoprobes, this technique allows investigation of the growth and competition of pathogens with the indigenous microbial flora. This method is particularly suited for studying questions concerning microbial growth and survival in drinking water systems.
Collapse
Affiliation(s)
- Thomas Egli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, Environmental Microbiology, P.O. Box 611, Überlandstrasse 133, CH-8600 Dübendorf, Switzerland.
| |
Collapse
|
42
|
Wang Y, Hammes F, De Roy K, Verstraete W, Boon N. Past, present and future applications of flow cytometry in aquatic microbiology. Trends Biotechnol 2010; 28:416-24. [DOI: 10.1016/j.tibtech.2010.04.006] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2010] [Revised: 04/26/2010] [Accepted: 04/29/2010] [Indexed: 10/19/2022]
|
43
|
Bosshard F, Bucheli M, Meur Y, Egli T. The respiratory chain is the cell's Achilles' heel during UVA inactivation in Escherichia coli. Microbiology (Reading) 2010; 156:2006-2015. [DOI: 10.1099/mic.0.038471-0] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Solar disinfection (SODIS) is used as an effective and inexpensive tool to improve the microbiological quality of drinking water in developing countries where no other means are available. Solar UVA light is the agent that inactivates bacteria during the treatment. Damage to bacterial membranes plays a crucial role in the inactivation process. This study showed that even slightly irradiated cells (after less than 1 h of simulated sunlight) were strongly affected in their ability to maintain essential parts of their energy metabolism, in particular of the respiratory chain (activities of NADH oxidase, succinate oxidase and lactate oxidase were measured). The cells' potential to generate ATP was also strongly inhibited. Many essential enzymes of carbon metabolism (glucose-6-phosphate dehydrogenase, glyceraldehyde-3-phosphate dehydrogenase, lactate dehydrogenase and malate dehydrogenase) and defence against oxidative stress (catalases and glutathione-disulfide reductase) were reduced in their activity during SODIS. The work suggests that damage to membrane enzymes is a likely cause of membrane dysfunction (loss of membrane potential and increased membrane permeability) during UVA irradiation. In this study, the first targets on the way to cell death were found to be the respiratory chain and F1F0 ATPase.
Collapse
Affiliation(s)
- Franziska Bosshard
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| | - Margarete Bucheli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| | - Yves Meur
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| | - Thomas Egli
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, CH-8092 Zürich, Switzerland
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, PO Box 611, CH-8600 Dübendorf, Switzerland
| |
Collapse
|
44
|
Hammes F, Egli T. Cytometric methods for measuring bacteria in water: advantages, pitfalls and applications. Anal Bioanal Chem 2010; 397:1083-95. [DOI: 10.1007/s00216-010-3646-3] [Citation(s) in RCA: 128] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2010] [Revised: 03/05/2010] [Accepted: 03/08/2010] [Indexed: 11/30/2022]
|
45
|
Wang Y, Claeys L, van der Ha D, Verstraete W, Boon N. Effects of chemically and electrochemically dosed chlorine on Escherichia coli and Legionella beliardensis assessed by flow cytometry. Appl Microbiol Biotechnol 2010; 87:331-41. [DOI: 10.1007/s00253-010-2526-2] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Revised: 02/25/2010] [Accepted: 02/25/2010] [Indexed: 11/29/2022]
|
46
|
Cultivation-independent Assessment of Bacterial Viability. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2010; 124:123-50. [DOI: 10.1007/10_2010_95] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|