1
|
Xiao J, Liu B, Yin Y, Zhang X. Immunization with recombinant Streptococcus pneumoniae PgdA protects mice against lung invasion. Exp Biol Med (Maywood) 2024; 249:10119. [PMID: 39469203 PMCID: PMC11513273 DOI: 10.3389/ebm.2024.10119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
Current pneumococcal vaccines, including the pneumococcal polysaccharide (PPV23) and conjugate (PCV13) vaccines, offer protection against specific serotypes but pose risks of serotype replacement that can alter the composition of the nasopharyngeal microbiota. To address this challenge, a novel strategy has been proposed to provide effective protection without disrupting the colonization of other bacterial populations. In our study, we found that subcutaneous immunization with recombinant peptidoglycan N-acetylglucosamine deacetylase A (rPgdA) elicited robust humoral and cellular immune responses, significantly reducing the invasion of Streptococcus pneumoniae in the lungs without affecting nasopharyngeal carriage. Furthermore, rPgdA antisera were shown to diminish bacterial invasion of lung epithelial cells in vitro. Notably, sera from patients with invasive pneumococcal infections exhibited higher levels of antibodies against the PgdA protein compared to sera from healthy adults, suggesting that a natural immune response to this protein occurs during infection. These results suggest a promising new target for the development of pneumococcal vaccines.
Collapse
Affiliation(s)
- Jiangming Xiao
- Department of Laboratory Medicine, Chongqing General Hospital, Chongqing University, Chongqing, China
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Bichen Liu
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Yibing Yin
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| | - Xuemei Zhang
- Department of Laboratory Medicine, Key Laboratory of Diagnostic Medicine (Ministry of Education), Chongqing Medical University, Chongqing, China
| |
Collapse
|
2
|
Juárez-Cortés MZ, Vázquez LEC, Díaz SFM, Cardona Félix CS. Streptococcus iniae in aquaculture: a review of pathogenesis, virulence, and antibiotic resistance. Int J Vet Sci Med 2024; 12:25-38. [PMID: 38751408 PMCID: PMC11095286 DOI: 10.1080/23144599.2024.2348408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
One of the main challenges in aquaculture is pathogenic bacterial control. Streptococcus iniae stands out for its ability to cause high mortality rates in populations of commercially important fish populations and its recent recognition as an emerging zoonotic pathogen. The rise in identifying over 80 strains some displaying antibiotic resistance coupled with the emerging occurrence of infections in marine mammal species and wild fish underscores the urgent need of understanding pathogenesis, virulence and drug resistance mechanisms of this bacterium. This understanding is crucial to ensure effective control strategies. In this context, the present review conducts a bibliometric analysis to examine research trends related to S. iniae, extending into the mechanisms of infection, virulence, drug resistance and control strategies, whose relevance is highlighted on vaccines and probiotics to strengthen the host immune system. Despite the advances in this field, the need for developing more efficient identification methods is evident, since they constitute the basis for accurate diagnosis and treatment.
Collapse
Affiliation(s)
| | - Luz Edith Casados Vázquez
- CONAHCYT- Universidad de Guanajuato. Food Department, Life Science Division, University of Guanajuato Campus Irapuato-Salamanca. Irapuato, Guanajuato, México
| | | | | |
Collapse
|
3
|
Breyer GM, Rocha Jacques da Silva ME, Slaviero M, Albuquerque de Almeida B, Machado Sousa da Silva E, de Queiroz Schmidt VR, Alievi M, Maboni G, Petinatti Pavarini S, Maboni Siqueira F. Genotypic characterization of Streptococcus didelphis causative of fatal infection in white-eared opossums. Lett Appl Microbiol 2023; 76:ovad131. [PMID: 37968138 DOI: 10.1093/lambio/ovad131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/25/2023] [Accepted: 11/14/2023] [Indexed: 11/17/2023]
Abstract
Streptococcus didelphis was once reported as related to severe infections in opossums. Thus, we present the first comprehensive whole-genome characterization of clinical S. didelphis strains isolated from white-eared opossums (Didelphis albiventris). Long-read whole-genome sequencing was performed using the MinION platform, which allowed the prediction of several genomic features. We observed that S. didelphis genomes harbor a cluster for streptolysin biosynthesis and a conserved genomic island with genes involved in transcriptional regulation (arlR) and transmembrane transport (bcrA). Antimicrobial resistance genes for several drug classes were found, including beta-lactam, which is the main antimicrobial class used in Streptococcus spp. infections; however, no phenotypical resistance was observed. In addition, we predicted the presence of 33 virulence factors in the analyzed genomes. High phylogenetic similarity was observed between clinical and reference strains, yet no clonality was suggested. We also proposed dnaN, gki, pros, and xpt as housekeeping candidates to be used in S. didelphis sequence typing. This is the first whole-genome characterization of S. didelphis, whose data provide important insights into its pathogenicity.
Collapse
Affiliation(s)
- Gabriela Merker Breyer
- Laboratório de Bacteriologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Maria Eduarda Rocha Jacques da Silva
- Laboratório de Bacteriologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Mônica Slaviero
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Laboratório de Patologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Bruno Albuquerque de Almeida
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Laboratório de Patologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Emanoelly Machado Sousa da Silva
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Laboratório de Patologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Victória Regina de Queiroz Schmidt
- Preservas-Núcleo de Conservação e Reabilitação de Animais Silvestres, Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Marcelo Alievi
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Preservas-Núcleo de Conservação e Reabilitação de Animais Silvestres, Hospital de Clínicas Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Grazieli Maboni
- Department of Pathobiology, University of Guelph, 50 Stone Road East, NIG 2W1 - Guelph/ON, Canada
| | - Saulo Petinatti Pavarini
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Laboratório de Patologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| | - Franciele Maboni Siqueira
- Laboratório de Bacteriologia Veterinária, Departamento de Patologia Veterinária, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Federal do Rio Grande do Sul, 9090 Bento Gonçalves Avenue, 91540-000 - Porto Alegre/RS, Brazil
| |
Collapse
|
4
|
The Cell Wall Deacetylases Spy1094 and Spy1370 Contribute to Streptococcus pyogenes Virulence. Microorganisms 2023; 11:microorganisms11020305. [PMID: 36838272 PMCID: PMC9966966 DOI: 10.3390/microorganisms11020305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/22/2023] [Indexed: 01/26/2023] Open
Abstract
Streptococcus pyogenes, or Group A Streptococcus (GAS), is a strictly human pathogen that causes a wide range of diseases, including skin and soft tissue infections, toxic shock syndrome and acute rheumatic fever. We have recently reported that Spy1094 and Spy1370 of S. pyogenes serotype M1 are N-acetylglucosamine (GlcNAc) deacetylases. We have generated spy1094 and spy1370 gene deletion mutants in S. pyogenes and gain-of-function mutants in Lactococcus lactis. Similar to other cell wall deacetylases, our results show that Spy1094 and Spy1370 confer lysozyme-resistance. Furthermore, deletion of the genes decreased S. pyogenes virulence in a human whole blood killing assay and a Galleria mellonella (Greater wax moth) larvae infection model. Expression of the two genes in L. lactis resulted in increased lysozyme resistance and survival in whole human blood, and reduced survival of infected G. mellonella larvae. Deletion of the spy1370, but not the spy1094 gene, decreased resistance to the cationic antimicrobial peptide cecropin B, whereas both enzymes increased biofilm formation, probably resulting from the increase in positive charges due to deacetylation of the cell wall. In conclusion, Spy1094 and Spy1370 are important S. pyogenes virulence factors and might represent attractive targets for the development of antibacterial agents.
Collapse
|
5
|
Functional Characterisation of Two Novel Deacetylases from Streptococcus pyogenes. MICROBIOLOGY RESEARCH 2022. [DOI: 10.3390/microbiolres13020025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Streptococcus pyogenes (Group A Streptococcus, GAS) is an exclusively human pathogen that causes a wide range of diseases. We have identified two novel proteins, Spy1094 and Spy1370, which show sequence similarity with peptidoglycan deacetylases (PGDAs) from other streptococcal species like S. pneumoniae and S. iniae, that represent important virulence factors. Recombinant Spy1094 and Spy1370 were active at a wide pH range (pH 4.0–9.0) and showed metal ion-dependence, with the highest activities observed in the presence of Mn2+, Mg2+and Zn2+. The enzymes showed typical Michaelis–Menten saturation kinetics with the pseudo-substrate GlcNAc3. Binding affinities for rSpy1094 and rSpy1370 were high (Km = 2.2 ± 0.9 μM and 3.1 ± 1.1 μM, respectively), but substrate turnover was low (Kcat = 0.0075/s and 0.0089/s, respectively) suggesting that peptidoglycan might not be the preferred target for deacetylation. Both enzymes were expressed during bacterial growth.
Collapse
|
6
|
Colussi S, Pastorino P, Mugetti D, Antuofermo E, Sciuto S, Esposito G, Polinas M, Tomasoni M, Burrai GP, Fernández-Garayzábal JF, Acutis PL, Pedron C, Prearo M. Isolation and Genetic Characterization of Streptococcus iniae Virulence Factors in Adriatic Sturgeon ( Acipenser naccarii). Microorganisms 2022; 10:883. [PMID: 35630328 PMCID: PMC9144172 DOI: 10.3390/microorganisms10050883] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/15/2022] [Accepted: 04/20/2022] [Indexed: 02/04/2023] Open
Abstract
The first case of infection of Streptococcus iniae in Adriatic sturgeon (Acipenser naccarii) was recently reported in a raceway system located in Northern Italy. A second episode of infection in sturgeons with absence of mortality and evident clinical signs, was registered in November 2020 in the same farm and is reported in this study. Histopathological changes observed in infected organs are described. The strains isolated in the two episodes were compared using molecular analysis based on PCR, phylogeny and virulence factors analysis. Not all the major virulence factors were detected for the two strains; in particular the strains 78697, isolated in November, lacks cpsD, compared to the strains 64844, isolated in September. Moreover, genetic variations were reported for lctO and pmg genes. These findings let us hypothesize a different virulence of the strains in accordance with clinical findings related to the sturgeons.
Collapse
Affiliation(s)
- Silvia Colussi
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | - Paolo Pastorino
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | - Davide Mugetti
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | - Elisabetta Antuofermo
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (E.A.); (M.P.); (G.P.B.)
| | - Simona Sciuto
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | - Giuseppe Esposito
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | - Marta Polinas
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (E.A.); (M.P.); (G.P.B.)
| | - Mattia Tomasoni
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | - Giovanni Pietro Burrai
- Department of Veterinary Medicine, University of Sassari, 07100 Sassari, Italy; (E.A.); (M.P.); (G.P.B.)
| | | | - Pier Luigi Acutis
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| | | | - Marino Prearo
- The Veterinary Medical Research Institute for Piemonte, Liguria and Valle d’Aosta, 10154 Turin, Italy; (S.C.); (S.S.); (G.E.); (M.T.); (P.L.A.); (M.P.)
| |
Collapse
|
7
|
PplD is a de-N-acetylase of the cell wall linkage unit of streptococcal rhamnopolysaccharides. Nat Commun 2022; 13:590. [PMID: 35105886 PMCID: PMC8807736 DOI: 10.1038/s41467-022-28257-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 01/07/2022] [Indexed: 02/06/2023] Open
Abstract
The cell wall of the human bacterial pathogen Group A Streptococcus (GAS) consists of peptidoglycan decorated with the Lancefield group A carbohydrate (GAC). GAC is a promising target for the development of GAS vaccines. In this study, employing chemical, compositional, and NMR methods, we show that GAC is attached to peptidoglycan via glucosamine 1-phosphate. This structural feature makes the GAC-peptidoglycan linkage highly sensitive to cleavage by nitrous acid and resistant to mild acid conditions. Using this characteristic of the GAS cell wall, we identify PplD as a protein required for deacetylation of linkage N-acetylglucosamine (GlcNAc). X-ray structural analysis indicates that PplD performs catalysis via a modified acid/base mechanism. Genetic surveys in silico together with functional analysis indicate that PplD homologs deacetylate the polysaccharide linkage in many streptococcal species. We further demonstrate that introduction of positive charges to the cell wall by GlcNAc deacetylation protects GAS against host cationic antimicrobial proteins.
Collapse
|
8
|
Planas A. Peptidoglycan Deacetylases in Bacterial Cell Wall Remodeling and Pathogenesis. Curr Med Chem 2021; 29:1293-1312. [PMID: 34525907 DOI: 10.2174/0929867328666210915113723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 11/22/2022]
Abstract
The bacterial cell wall peptidoglycan (PG) is a dynamic structure that is constantly synthesized, re-modeled and degraded during bacterial division and growth. Post-synthetic modifications modulate the action of endogenous autolysis during PG lysis and remodeling for growth and sporulation, but also they are a mechanism used by pathogenic bacteria to evade the host innate immune system. Modifica-tions of the glycan backbone are limited to the C-2 amine and the C-6 hydroxyl moieties of either Glc-NAc or MurNAc residues. This paper reviews the functional roles and properties of peptidoglycan de-N-acetylases (distinct PG GlcNAc and MurNAc deacetylases) and recent progress through genetic stud-ies and biochemical characterization to elucidate their mechanism of action, 3D structures, substrate specificities and biological functions. Since they are virulence factors in pathogenic bacteria, peptidogly-can deacetylases are potential targets for the design of novel antimicrobial agents.
Collapse
Affiliation(s)
- Antoni Planas
- Laboratory of Biochemistry, Institut Químic de Sarrià. University Ramon Llull, 08017 Barcelona. Spain
| |
Collapse
|
9
|
Streptococcal Infections in Marine Mammals. Microorganisms 2021; 9:microorganisms9020350. [PMID: 33578962 PMCID: PMC7916692 DOI: 10.3390/microorganisms9020350] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/29/2021] [Accepted: 02/07/2021] [Indexed: 01/28/2023] Open
Abstract
Marine mammals are sentinels for the marine ecosystem and threatened by numerous factors including infectious diseases. One of the most frequently isolated bacteria are beta-hemolytic streptococci. However, knowledge on ecology and epidemiology of streptococcal species in marine mammals is very limited. This review summarizes published reports on streptococcal species, which have been detected in marine mammals. Furthermore, we discuss streptococcal transmission between and adaptation to their marine mammalian hosts. We conclude that streptococci colonize and/or infect marine mammals very frequently, but in many cases, streptococci isolated from marine mammals have not been further identified. How these bacteria disseminate and adapt to their specific niches can only be speculated due to the lack of respective research. Considering the relevance of pathogenic streptococci for marine mammals as part of the marine ecosystem, it seems that they have been neglected and should receive scientific interest in the future.
Collapse
|
10
|
Heckman TI, Griffin MJ, Camus AC, LaFrentz BR, Morick D, Smirnov R, Ofek T, Soto E. Multilocus sequence analysis of diverse Streptococcus iniae isolates indicates an underlying genetic basis for phenotypic heterogeneity. DISEASES OF AQUATIC ORGANISMS 2020; 141:53-69. [PMID: 32940251 DOI: 10.3354/dao03521] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Streptococcus iniae is a Gram-positive, opportunistically zoonotic bacterium infective to a wide variety of farmed and wild fish species worldwide. Outbreaks in wild fish can have detrimental environmental and cultural impacts, and mortality events in aquaculture can result in significant economic losses. As an emerging or re-emerging pathogen of global significance, understanding the coalescing factors contributing to piscine streptococcosis is crucial for developing strategies to control infections. Intraspecific antigenic and genetic variability of S. iniae has made development of autogenous vaccines a challenge, particularly where the diversity of locally endemic S. iniae strains is unknown. This study genetically and phenotypically characterized 11 S. iniae isolates from diseased wild and farmed fish from North America, Central America, and the Caribbean. A multilocus sequence analysis (MLSA) scheme was developed to phylogenetically compare these isolates to 84 other strains of Streptococcus spp. relevant to aquaculture. MLSA generated phylogenies comparable to established genotyping methods, and isolates formed distinct clades related to phenotype and host species. The endothelial Oreochromis mossambicus bulbus arteriosus cell line and whole blood from rainbow trout Oncorhynchus mykiss, Nile tilapia Oreochromis niloticus, and white sturgeon Acipenser transmontanus were used to investigate the persistence and virulence of the 11 isolates using in vitro assays. In vivo challenges using an O. niloticus model were used to evaluate virulence by the intragastric route of infection. Isolates showed significant differences (p < 0.05) in virulence and persistence, with some correlation to genogroup, establishing a basis for further work uncovering genetic factors leading to increased pathogenicity.
Collapse
Affiliation(s)
- Taylor I Heckman
- Aquatic Animal Health Laboratory, Department of Medicine & Epidemiology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Lu Q, Zhang W, Fang J, Zheng J, Dong C, Xiong S. Mycobacterium tuberculosis Rv1096, facilitates mycobacterial survival by modulating the NF-κB/MAPK pathway as peptidoglycan N-deacetylase. Mol Immunol 2020; 127:47-55. [PMID: 32927163 DOI: 10.1016/j.molimm.2020.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 07/15/2020] [Accepted: 08/13/2020] [Indexed: 01/06/2023]
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogen that can infect and replicate in macrophages. Peptidoglycan (PGN) is a major component of the mycobacterial cell wall and is recognized by host pattern recognition receptors (PRRs). Many bacteria modulate and evade the immune defenses of their hosts through PGN deacetylation. Rv1096 was previously characterized as a PGN N-deacetylase gene in Mtb. However, the underlying mechanism by which Rv1096 regulates host immune defenses during macrophage infection remains unclear. In the present study, we investigated the role of Rv1096 in evading host immunity using a recombinant M. smegmatis expressing exogenous Rv1096 and Rv1096-deleted Mtb strain H37Rv mutant. We found that Rv1096 promoted intracellular bacillary survival and inhibited the inflammatory response in M. smegmatis- or Mtb-infected macrophages. The inhibition of mycobacteria-induced inflammatory response in macrophages was at least partially due to NF-κB and MAPK activation downstream of TLR and NOD signaling pathways. Furthermore, we found that Rv1096 inhibitory effect on inflammatory response was associated with TLR2, TLR4 and NOD2. Finally, we demonstrated the PGN deacetylase activity of Rv1096 by Fourier transform IR and Rv1096 NODB deficient mutant. Our findings suggest that Rv1096 may deacetylate PGNs to evade PRRs recognition, thus protecting Mtb from host immune surveillance and clearance in macrophages.
Collapse
Affiliation(s)
- Qian Lu
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Wei Zhang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jun Fang
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Jianjian Zheng
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow University, Suzhou 215123, China.
| |
Collapse
|
12
|
Yadav AK, Espaillat A, Cava F. Bacterial Strategies to Preserve Cell Wall Integrity Against Environmental Threats. Front Microbiol 2018; 9:2064. [PMID: 30233540 PMCID: PMC6127315 DOI: 10.3389/fmicb.2018.02064] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 08/13/2018] [Indexed: 12/18/2022] Open
Abstract
Bacterial cells are surrounded by an exoskeleton-like structure, the cell wall, composed primarily of the peptidoglycan (PG) sacculus. This structure is made up of glycan strands cross-linked by short peptides generating a covalent mesh that shapes bacteria and prevents their lysis due to their high internal osmotic pressure. Even though the PG is virtually universal in bacteria, there is a notable degree of diversity in its chemical structure. Modifications in both the sugars and peptides are known to be instrumental for bacteria to cope with diverse environmental challenges. In this review, we summarize and discuss the cell wall strategies to withstand biotic and abiotic environmental insults such as the effect of antibiotics targeting cell wall enzymes, predatory PG hydrolytic proteins, and PG signaling systems. Finally we will discuss the opportunities that species-specific PG variability might open to develop antimicrobial therapies.
Collapse
Affiliation(s)
- Akhilesh K Yadav
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Akbar Espaillat
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| |
Collapse
|
13
|
Polysaccharide deacetylases serve as new targets for the design of inhibitors against Bacillus anthracis and Bacillus cereus. Bioorg Med Chem 2018; 26:3845-3851. [DOI: 10.1016/j.bmc.2018.06.045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/25/2018] [Accepted: 06/30/2018] [Indexed: 02/02/2023]
|
14
|
Favre L, Ortalo-Magné A, Pichereaux C, Gargaros A, Burlet-Schiltz O, Cotelle V, Culioli G. Metabolome and proteome changes between biofilm and planktonic phenotypes of the marine bacterium Pseudoalteromonas lipolytica TC8. BIOFOULING 2018; 34:132-148. [PMID: 29319346 DOI: 10.1080/08927014.2017.1413551] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 11/29/2017] [Indexed: 06/07/2023]
Abstract
A number of bacteria adopt various lifestyles such as planktonic free-living or sessile biofilm stages. This enables their survival and development in a wide range of contrasting environments. With the aim of highlighting specific metabolic shifts between these phenotypes and to improve the overall understanding of marine bacterial adhesion, a dual metabolomics/proteomics approach was applied to planktonic and biofilm cultures of the marine bacterium Pseudoalteromonas lipolytica TC8. The liquid chromatography mass spectrometry (LC-MS) based metabolomics study indicated that membrane lipid composition was highly affected by the culture mode: phosphatidylethanolamine (PEs) derivatives were over-produced in sessile cultures while ornithine lipids (OLs) were more specifically synthesized in planktonic samples. In parallel, differences between proteomes revealed that peptidases, oxidases, transcription factors, membrane proteins and the enzymes involved in histidine biosynthesis were over-expressed in biofilms while proteins involved in heme production, nutrient assimilation, cell division and arginine/ornithine biosynthesis were specifically up-regulated in free-living cells.
Collapse
Affiliation(s)
- Laurie Favre
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| | | | - Carole Pichereaux
- b Fédération de Recherche FR3450 , CNRS , Toulouse , France
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Audrey Gargaros
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Odile Burlet-Schiltz
- c Institut de Pharmacologie et de Biologie Structurale, IPBS , Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Valérie Cotelle
- d Laboratoire de Recherche en Sciences Végétales , Université de Toulouse, CNRS, UPS , Castanet-Tolosan , France
| | - Gérald Culioli
- a MAPIEM EA 4323 , Université de Toulon , Toulon , France
| |
Collapse
|
15
|
Abstract
Lysozyme is a cornerstone of innate immunity. The canonical mechanism for bacterial killing by lysozyme occurs through the hydrolysis of cell wall peptidoglycan (PG). Conventional type (c-type) lysozymes are also highly cationic and can kill certain bacteria independently of PG hydrolytic activity. Reflecting the ongoing arms race between host and invading microorganisms, both gram-positive and gram-negative bacteria have evolved mechanisms to thwart killing by lysozyme. In addition to its direct antimicrobial role, more recent evidence has shown that lysozyme modulates the host immune response to infection. The degradation and lysis of bacteria by lysozyme enhance the release of bacterial products, including PG, that activate pattern recognition receptors in host cells. Yet paradoxically, lysozyme is important for the resolution of inflammation at mucosal sites. This review will highlight recent advances in our understanding of the diverse mechanisms that bacteria use to protect themselves against lysozyme, the intriguing immunomodulatory function of lysozyme, and the relationship between these features in the context of infection.
Collapse
Affiliation(s)
- Stephanie A. Ragland
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Alison K. Criss
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, Virginia, United States of America
- * E-mail:
| |
Collapse
|
16
|
Identification of some main Streptococcus iniae associated proteins: relationship. Vet Res Commun 2017; 41:85-95. [DOI: 10.1007/s11259-017-9675-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Accepted: 01/08/2017] [Indexed: 10/20/2022]
|
17
|
Proteomic analysis of extracellular vesicles derived fromPropionibacterium acnes. Proteomics Clin Appl 2016; 11. [DOI: 10.1002/prca.201600040] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/24/2016] [Accepted: 08/29/2016] [Indexed: 12/17/2022]
|
18
|
Staphylococcus epidermidis ΔSortase A strain elicits protective immunity against Staphylococcus aureus infection. Antonie van Leeuwenhoek 2016; 110:133-143. [PMID: 27757703 DOI: 10.1007/s10482-016-0784-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Accepted: 10/06/2016] [Indexed: 10/20/2022]
Abstract
Staphylococcus aureus and Staphylococcus epidermidis are two of the most significant opportunistic human pathogens, causing medical implant and nosocomial infections worldwide. These bacteria contain surface proteins that play crucial roles in multiple biological processes. It has become apparent that they have evolved a number of unique mechanisms by which they can immobilise proteins on their surface. Notably, a conserved cell membrane-anchored enzyme, sortase A (SrtA), can catalyse the covalent attachment of precursor bacterial cell wall-attached proteins to peptidoglycan. Considering its indispensable role in anchoring substrates to the cell wall and its effects on virulence, SrtA has attracted great attention. In this study, a 549-bp gene was cloned from a pathogenic S. epidermidis strain, YC-1, which shared high identity with srtA from other Staphylococcus spp. A mutant strain, YC-1ΔsrtA, was then constructed by allelic exchange mutagenesis. The direct survival rate assay suggested that YC-1ΔsrtA had a lower survival capacity in healthy mice blood compare with the wild-type strain, indicating that the deletion of srtA affects the virulence and infectious capacity of S. epidermidis YC-1. YC-1ΔsrtA was then administered via intraperitoneal injection and it provided a relative percent survival value of 72.7 % in mice against S. aureus TC-1 challenge. These findings demonstrate the possbility that YC-1ΔsrtA might be used as a live attenuated vaccine to produce cross-protection against S. aureus.
Collapse
|
19
|
Abstract
The mold Aspergillus fumigatus causes invasive infection in immunocompromised patients. Recently, galactosaminogalactan (GAG), an exopolysaccharide composed of galactose and N-acetylgalactosamine (GalNAc), was identified as a virulence factor required for biofilm formation. The molecular mechanisms underlying GAG biosynthesis and GAG-mediated biofilm formation were unknown. We identified a cluster of five coregulated genes that were dysregulated in GAG-deficient mutants and whose gene products share functional similarity with proteins that mediate the synthesis of the bacterial biofilm exopolysaccharide poly-(β1-6)-N-acetyl-d-glucosamine (PNAG). Bioinformatic analyses suggested that the GAG cluster gene agd3 encodes a protein containing a deacetylase domain. Because deacetylation of N-acetylglucosamine residues is critical for the function of PNAG, we investigated the role of GAG deacetylation in fungal biofilm formation. Agd3 was found to mediate deacetylation of GalNAc residues within GAG and render the polysaccharide polycationic. As with PNAG, deacetylation is required for the adherence of GAG to hyphae and for biofilm formation. Growth of the Δagd3 mutant in the presence of culture supernatants of the GAG-deficient Δuge3 mutant rescued the biofilm defect of the Δagd3 mutant and restored the adhesive properties of GAG, suggesting that deacetylation is an extracellular process. The GAG biosynthetic gene cluster is present in the genomes of members of the Pezizomycotina subphylum of the Ascomycota including a number of plant-pathogenic fungi and a single basidiomycete species, Trichosporon asahii, likely a result of recent horizontal gene transfer. The current study demonstrates that the production of cationic, deacetylated exopolysaccharides is a strategy used by both fungi and bacteria for biofilm formation. This study sheds light on the biosynthetic pathways governing the synthesis of galactosaminogalactan (GAG), which plays a key role in A. fumigatus virulence and biofilm formation. We find that bacteria and fungi use similar strategies to synthesize adhesive biofilm exopolysaccharides. The presence of orthologs of the GAG biosynthetic gene clusters in multiple fungi suggests that this exopolysaccharide may also be important in the virulence of other fungal pathogens. Further, these studies establish a molecular mechanism of adhesion in which GAG interacts via charge-charge interactions to bind to both fungal hyphae and other substrates. Finally, the importance of deacetylation in the synthesis of functional GAG and the extracellular localization of this process suggest that inhibition of deacetylation may be an attractive target for the development of novel antifungal therapies.
Collapse
|
20
|
Zeng Z, Chen C, Du H, Wang G, Li M. High quality draft genomic sequence of Flavobacterium enshiense DK69(T) and comparison among Flavobacterium genomes. Stand Genomic Sci 2015; 10:92. [PMID: 26561515 PMCID: PMC4641336 DOI: 10.1186/s40793-015-0084-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 10/19/2015] [Indexed: 11/10/2022] Open
Abstract
Flavobacterium enshiense DK69(T) is a Gram-negative, aerobic, rod-shaped, non-motile and non-flagellated bacterium that belongs to the family Flavobacteriaceae in the phylum Bacteroidetes. The high quality draft genome of strain DK69(T) was obtained and has a 3,375,260 bp genome size with a G + C content of 37.7 mol % and 2848 protein coding genes. In addition, we sequenced five more genomes of Flavobacterium type strains and performed a comparative genomic analysis among 12 Flavobacterium genomes. The results show some specific genes within the fish pathogenic Flavobacterium strains which provide information for further analysis the pathogenicity.
Collapse
Affiliation(s)
- Zhipeng Zeng
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Chong Chen
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Hailun Du
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| | - Mingshun Li
- State Key Laboratory of Agricultural Microbiology, College of Life Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070 P. R. China
| |
Collapse
|
21
|
Herath HMLPB, Elvitigala DAS, Godahewa GI, Umasuthan N, Whang I, Noh JK, Lee J. Molecular characterization and comparative expression analysis of two teleostean pro-inflammatory cytokines, IL-1β and IL-8, from Sebastes schlegeli. Gene 2015; 575:732-42. [PMID: 26449313 DOI: 10.1016/j.gene.2015.09.082] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 09/22/2015] [Accepted: 09/22/2015] [Indexed: 10/22/2022]
Abstract
Interleukin 1β (IL-1β) and interleukin 8 (IL-8) are two major pro-inflammatory cytokines which play a central role in initiation of inflammatory responses against bacterial- and viral-infections. IL-1β is a member of the interleukin 1 family proteins and IL-8 is classified as a CXC-chemokine. In the current study, putative IL-1β and IL-8 counterparts were identified from a black rockfish transcriptomic database and designated as RfIL-1β and RfIL-8. The RfIL-1β cDNA sequence consists of 1140 nucleotides with a 759bp open reading frame (ORF) which encodes a 252 amino acid (aa) protein, whereas the RfIL-8 cDNA sequence (898bp) harbors a 300bp ORF encoding a 99 aa protein. Furthermore, the RfIL-1β aa sequence contains an IL-1 super family-like domain and an N-terminal IL-1 super family propeptide, while the amino acid sequence of RfIL-8 consists of a typical chemokine-CXC domain. Analysis of sequenced BAC clones containing RfIL-1β and RfIL-8 showed each gene to contain 4 exons interrupted by 3 introns. Pairwise comparison and phylogeny analysis of these cytokine sequences clearly revealed their closer relationship with other corresponding members of teleosts compared to birds and mammals. Constitutive differences in RfIL-1β and RfIL-8 mRNA expression were detected in a tissue-specific manner with the highest expression of each mRNA in spleen tissue. Two immune challenge experiments were conducted with Streptococcus iniae and polyinosinic:polycytidylic acid (poly I:C; a viral double stranded RNA mimic), and transcripts were quantified in spleen and peripheral blood cells. Significantly increased RfIL-1β and RfIL8 transcript levels were detected with almost similar profile patterns, further suggesting a putative involvement of these pro-inflammatory cytokines in the rockfish immunity.
Collapse
Affiliation(s)
- H M L P B Herath
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Don Anushka Sandaruwan Elvitigala
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - G I Godahewa
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Navaneethaiyer Umasuthan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Jae Koo Noh
- Genetics & Breeding Research Center, National Fisheries Research & Development Institute, Geoje 656-842, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
22
|
El Aamri F, Remuzgo-Martínez S, Acosta F, Real F, Ramos-Vivas J, Icardo JM, Padilla D. Interactions of Streptococcus iniae with phagocytic cell line. Microbes Infect 2015; 17:258-65. [DOI: 10.1016/j.micinf.2014.06.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/20/2014] [Accepted: 06/06/2014] [Indexed: 10/25/2022]
|
23
|
Woo SH, Park SI. Effects of phosphoglucomutase gene (PGM) in Streptococcus parauberis on innate immune response and pathogenicity of olive flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2014; 41:317-325. [PMID: 25240979 DOI: 10.1016/j.fsi.2014.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 08/26/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
In recent years, Streptococcus parauberis infection has been an emerging problem in aquaculture in South Korea because of its more frequent isolation than other streptococcal bacteria including Streptococcus iniae. To develop effective treatment and prophylaxis methods against this emerging disease by S. parauberis, it is necessary to understand the underlying pathogenic mechanisms. To uncover the pathogenicity, the mutant strain of S. parauberis with a deleted phosphoglucomutase (PGM) gene which has been known to be an important virulence factor in bacterial pathogens was generated to investigate the relationship between virulence and gene function using an allelic exchange mutagenesis method. Allelic exchange mutagenesis of the phosphoglucomutase gene resulted in phenotype changes including decreased extracellular capsules, reduced buoyancy, increased hydrophobicity and reduced growth. Moreover, the S. parauberis mutant was more sensitive to innate immune clearance mechanisms including serum, mucus and phagocyte killing and could not induce mortality in olive flounder. These phenotype changes and the attenuated virulence of the pathogen to fish could be due to the reduction in capsule production by mutation of the PGM gene. The results provide evidences that phosphoglucomutase expression contributes to S. parauberis virulence in fish by affecting bacterial survival against the host's humoral and cellular defense mechanisms.
Collapse
Affiliation(s)
- Sung Ho Woo
- Institute of Fisheries Sciences, Pukyong National University, 474, Ilgwang-Ro, Ilgwang-myeon, Gijang-gun, Busan 619-911, South Korea; Department of Aquatic Life Medicine, Pukyong National University, 45, Yongso-ro, Namgu, Busan 608-737, South Korea.
| | - Soo Il Park
- Department of Aquatic Life Medicine, Pukyong National University, 45, Yongso-ro, Namgu, Busan 608-737, South Korea.
| |
Collapse
|
24
|
Wang J, Zou LL, Li AX. Construction of a Streptococcus iniae sortase A mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2014; 40:392-398. [PMID: 25090938 DOI: 10.1016/j.fsi.2014.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus iniae is a major Gram-positive aquatic pathogen, which causes invasive diseases in cultured fish worldwide. The identification of potential virulence determinants of streptococcal infections will help to understand and control this disease, but only a few have been confirmed in S. iniae. Sortase A (srtA) is the key enzyme that anchors pre-mature cell wall-attached proteins to peptidoglycan and it can affect the correct positioning of surface proteins, as well as the course of Gram-positive bacterial infection, thereby making it a potential target in the study of virulence factors and disease control. In this study, the 759 bp srtA gene was cloned from pathogenic S. iniae TBY-1 strain and the mutant strain TBY-1ΔsrtA was constructed via allelic exchange mutagenesis. We found that srtA shares high similarities with sortase A from other Streptococcus spp. Direct survival rate assay and challenge experiments were performed, which showed that the mutant strain TBY-1ΔsrtA had a lower survival capacity in healthy tilapia blood and it was less virulent than the wild type strain in tilapia, thereby indicating that the deletion of sortase A affects the virulence and infectious capacity of S. iniae. The mutant strain TBY-1ΔsrtA was used as a live vaccine, which was administered via intraperitoneal injection, and it provided the relative percent survival value of 95.5% in Nile tilapia, thereby demonstrating its high potential as an effective attenuated live vaccine candidate.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Bio-control, Key Laboratory for Aquatic Products Safety of Ministry of Education, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| | - L L Zou
- Hubei Province Key Laboratory of Pathogenic Microorganism, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang 443002, Hubei Province, PR China.
| | - A X Li
- State Key Laboratory of Bio-control, Key Laboratory for Aquatic Products Safety of Ministry of Education, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
25
|
Listeria monocytogenes is resistant to lysozyme through the regulation, not the acquisition, of cell wall-modifying enzymes. J Bacteriol 2014; 196:3756-67. [PMID: 25157076 DOI: 10.1128/jb.02053-14] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Listeria monocytogenes is a Gram-positive facultative intracellular pathogen that is highly resistant to lysozyme, a ubiquitous enzyme of the innate immune system that degrades cell wall peptidoglycan. Two peptidoglycan-modifying enzymes, PgdA and OatA, confer lysozyme resistance on L. monocytogenes; however, these enzymes are also conserved among lysozyme-sensitive nonpathogens. We sought to identify additional factors responsible for lysozyme resistance in L. monocytogenes. A forward genetic screen for lysozyme-sensitive mutants led to the identification of 174 transposon insertion mutations that mapped to 13 individual genes. Four mutants were killed exclusively by lysozyme and not other cell wall-targeting molecules, including the peptidoglycan deacetylase encoded by pgdA, the putative carboxypeptidase encoded by pbpX, the orphan response regulator encoded by degU, and the highly abundant noncoding RNA encoded by rli31. Both degU and rli31 mutants had reduced expression of pbpX and pgdA, yet DegU and Rli31 did not regulate each other. Since pbpX and pgdA are also present in lysozyme-sensitive bacteria, this suggested that the acquisition of novel enzymes was not responsible for lysozyme resistance, but rather, the regulation of conserved enzymes by DegU and Rli31 conferred high lysozyme resistance. Each lysozyme-sensitive mutant exhibited attenuated virulence in mice, and a time course of infection revealed that the most lysozyme-sensitive strain was killed within 30 min of intravenous infection, a phenotype that was recapitulated in purified blood. Collectively, these data indicate that the genes required for lysozyme resistance are highly upregulated determinants of L. monocytogenes pathogenesis that are required for avoiding the enzymatic activity of lysozyme in the blood.
Collapse
|
26
|
Yang S, Zhang F, Kang J, Zhang W, Deng G, Xin Y, Ma Y. Mycobacterium tuberculosis Rv1096 protein: gene cloning, protein expression, and peptidoglycan deacetylase activity. BMC Microbiol 2014; 14:174. [PMID: 24975018 PMCID: PMC4087242 DOI: 10.1186/1471-2180-14-174] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/25/2014] [Indexed: 01/26/2023] Open
Abstract
Background Many bacteria modulate and evade the immune defenses of their hosts through peptidoglycan (PG) deacetylation. The PG deacetylases from Streptococcus pneumonia, Listeria monocytogenes and Lactococcus lactis have been characterized. However, thus far, the PG deacetylase of Mycobacterium tuberculosis has not been identified. Results In this study, we cloned the Rv1096 gene from the M. tuberculosis H37Rv strain and expressed Rv1096 protein in both Escherichia coli and M. smegmatis. The results showed that the purified Rv1096 protein possessed metallo-dependent PG deacetylase activity, which increased in the presence of Co2+. The kinetic parameters of the PG deacetylase towards M. smegmatis PG as a substrate were as follows: Km, 0.910 ± 0.007 mM; Vmax, 0.514 ± 0.038 μMmin-1; and Kcat = 0.099 ± 0.007 (S-1). Additionally, the viability of M. smegmatis in the presence of over-expressed Rv1096 protein was 109-fold higher than that of wild-type M. smegmatis after lysozyme treatment. Additionally, light microscopy and scanning electron microscopy showed that in the presence of over-expressed Rv1096 protein, M. smegmatis kept its regular shape, with an undamaged cell wall and smooth surface. These results indicate that Rv1096 caused deacetylation of cell wall PG, leading to lysozyme resistance in M. smegmatis. Conclusion We have determined that M. tuberculosis Rv1096 is a PG deacetylase. The PG deacetylase activity of Rv1096 contributed to lysozyme resistance in M. smegmatis. Our findings suggest that deacetylation of cell wall PG may be involved in evasion of host immune defenses by M. tuberculosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, 9 W Lushun South Road, Dalian 116044, China.
| |
Collapse
|
27
|
Li MF, Zhang BC, Li J, Sun L. Sil: a Streptococcus iniae bacteriocin with dual role as an antimicrobial and an immunomodulator that inhibits innate immune response and promotes S. iniae infection. PLoS One 2014; 9:e96222. [PMID: 24781647 PMCID: PMC4004548 DOI: 10.1371/journal.pone.0096222] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 04/04/2014] [Indexed: 11/18/2022] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium and a severe pathogen to a wide range of economically important fish species. In addition, S. iniae is also a zoonotic pathogen and can cause serious infections in humans. In this study, we identified from a pathogenic S. iniae strain a putative bacteriocin, Sil, and examined its biological activity. Sil is composed of 101 amino acid residues and shares 35.6% overall sequence identity with the lactococcin 972 of Lactococcus lactis. Immunoblot analysis showed that Sil was secreted by S. iniae into the extracellular milieu. Purified recombinant Sil (rSil) exhibited a dose-dependent inhibitory effect on the growth of Bacillus subtilis but had no impact on the growths of other 16 Gram-positive bacteria and 10 Gram-negative bacteria representing 23 different bacterial species. Treatment of rSil by heating at 50°C abolished the activity of rSil. rSil bound to the surface of B. subtilis but induced no killing of the target cells. Cellular study revealed that rSil interacted with turbot (Scophthalmus maximus) head kidney monocytes and inhibited the innate immune response of the cells, which led to enhanced cellular infection of S. iniae. Antibody blocking of the extracellular Sil produced by S. iniae significantly attenuated the infectivity of S. iniae. Consistent with these in vitro observations, in vivo study showed that administration of turbot with rSil prior to S. iniae infection significantly increased bacterial dissemination and colonization in fish tissues. Taken together, these results indicate that Sil is a novel virulence-associated bacteriostatic and an immunoregulator that promotes S. iniae infection by impairing the immune defense of host fish.
Collapse
Affiliation(s)
- Mo-fei Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Li
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- School of Biological Sciences, Lake Superior State University, Sault Ste Marie, Michigan, United States of America
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
28
|
Clostridium difficile extracytoplasmic function σ factor σV regulates lysozyme resistance and is necessary for pathogenesis in the hamster model of infection. Infect Immun 2014; 82:2345-55. [PMID: 24664503 DOI: 10.1128/iai.01483-13] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Clostridium difficile is a clinically important pathogen and the most common cause of hospital-acquired infectious diarrhea. Expression of the C. difficile gene csfV, which encodes σ(V), an extracytoplasmic function σ factor, is induced by lysozyme, which damages the peptidoglycan of bacteria. Here we show that σ(V) is required for lysozyme resistance in C. difficile. Using microarray analysis, we identified the C. difficile genes whose expression is dependent upon σ(V) and is induced by lysozyme. Although the peptidoglycan of wild-type C. difficile is intrinsically highly deacetylated, we have found that exposure to lysozyme leads to additional peptidoglycan deacetylation. This lysozyme-induced deacetylation is dependent upon σ(V). Expression of pdaV, which encodes a putative peptidoglycan deacetylase, was able to increase lysozyme resistance of a csfV mutant. The csfV mutant strain is severely attenuated compared to wild-type C. difficile in a hamster model of C. difficile-associated disease. We conclude that the σ(V) signal transduction system, which senses the host innate immune defense enzyme lysozyme, is required for lysozyme resistance and is necessary during C. difficile infection.
Collapse
|
29
|
Zhang BC, Zhang J, Sun L. Streptococcus iniae SF1: complete genome sequence, proteomic profile, and immunoprotective antigens. PLoS One 2014; 9:e91324. [PMID: 24621602 PMCID: PMC3951389 DOI: 10.1371/journal.pone.0091324] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/10/2014] [Indexed: 01/06/2023] Open
Abstract
Streptococcus iniae is a Gram-positive bacterium that is reckoned one of the most severe aquaculture pathogens. It has a broad host range among farmed marine and freshwater fish and can also cause zoonotic infection in humans. Here we report for the first time the complete genome sequence as well as the host factor-induced proteomic profile of a pathogenic S. iniae strain, SF1, a serotype I isolate from diseased fish. SF1 possesses a single chromosome of 2,149,844 base pairs, which contains 2,125 predicted protein coding sequences (CDS), 12 rRNA genes, and 45 tRNA genes. Among the protein-encoding CDS are genes involved in resource acquisition and utilization, signal sensing and transduction, carbohydrate metabolism, and defense against host immune response. Potential virulence genes include those encoding adhesins, autolysins, toxins, exoenzymes, and proteases. In addition, two putative prophages and a CRISPR-Cas system were found in the genome, the latter containing a CRISPR locus and four cas genes. Proteomic analysis detected 21 secreted proteins whose expressions were induced by host serum. Five of the serum-responsive proteins were subjected to immunoprotective analysis, which revealed that two of the proteins were highly protective against lethal S. iniae challenge when used as purified recombinant subunit vaccines. Taken together, these results provide an important molecular basis for future study of S. iniae in various aspects, in particular those related to pathogenesis and disease control.
Collapse
Affiliation(s)
- Bao-cun Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jian Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Collaborative Innovation Center of Deep Sea Biology, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
30
|
Munan Shaik M, Bhattacharjee N, Bhattacharjee A, Field MJ, Zanotti G. Characterization of the divalent metal binding site of bacterial polysaccharide deacetylase using crystallography and quantum chemical calculations. Proteins 2014; 82:1311-8. [DOI: 10.1002/prot.24497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2013] [Revised: 11/18/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Md Munan Shaik
- PATBAC, Institut de Biologie Structurale-Jean-Pierre Ebel; Grenoble France
| | | | | | - Martin J. Field
- DYNAMOP, Institut de Biologie Structurale-Jean-Pierre Ebel; Grenoble France
| | - Giuseppe Zanotti
- Department of Biomedical Sciences; University of Padua; Padua Italy
| |
Collapse
|
31
|
Smith GT, Sweredoski MJ, Hess S. O-linked glycosylation sites profiling in Mycobacterium tuberculosis culture filtrate proteins. J Proteomics 2013; 97:296-306. [PMID: 23702328 DOI: 10.1016/j.jprot.2013.05.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 03/30/2013] [Accepted: 05/09/2013] [Indexed: 11/28/2022]
Abstract
UNLABELLED Mycobacterium tuberculosis (Mtb) causes tuberculosis, one of the leading causes of fatal infectious diseases worldwide. Cell-cell recognition between the pathogen Mtb and its host is mediated in part by glycosylated proteins. So far, glycoproteins in Mtb are understudied and for only very few glycoproteins glycosylation sites have been described, e.g., alanine and proline rich secreted protein apa, superoxide dismutase SODC, lipoprotein lpqH and MPB83/MPT83. In this study, glycosylated proteins in Mtb culture filtrate were investigated using liquid chromatography-mass spectrometry approaches and bioinformatic analyses. To validate the presence of glycoproteins, several strategies were pursued including collision induced dissociation, high energy collision dissociation and electron transfer dissociation techniques, and bioinformatics analyses involving a neutral loss search for glycosylated moieties. After extensive data curation, we report glycosylation sites for thirteen Mtb glycoproteins using a combination of mass spectrometry techniques on a dataset collected from culture filtrate proteins. This is the first glycoproteomics study identifying glycosylation sites on mycobacterial culture filtrate proteins (CFP) on a global scale. BIOLOGICAL SIGNIFICANCE In this study, glycosylation sites in Mtb were characterized by collision-induced dissociation, electron-transfer dissociation and high energy collision dissociation techniques. The identification of glycosylation sites is important for our understanding of the physiology and pathophysiology of Mtb. Glycoproteins are often responsible for protein-protein interactions between host and pathogen and thus represent interesting targets for vaccine development. In addition, our strategy is not limited to Mtb, but could be extended to other organisms. This article is part of a Special Issue entitled: Trends in Microbial Proteomics.
Collapse
Affiliation(s)
- Geoffrey T Smith
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Michael J Sweredoski
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA
| | - Sonja Hess
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, USA.
| |
Collapse
|
32
|
Balomenou S, Fouet A, Tzanodaskalaki M, Couture-Tosi E, Bouriotis V, Boneca IG. Distinct functions of polysaccharide deacetylases in cell shape, neutral polysaccharide synthesis and virulence ofBacillus anthracis. Mol Microbiol 2013; 87:867-83. [DOI: 10.1111/mmi.12137] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | | | - Mary Tzanodaskalaki
- Institute of Molecular Biology and Biotechnology; 70013; Heraklion; Crete; Greece
| | | | | | | |
Collapse
|
33
|
Baums CG, Hermeyer K, Leimbach S, Adamek M, Czerny CP, Hörstgen-Schwark G, Valentin-Weigand P, Baumgärtner W, Steinhagen D. Establishment of a model of Streptococcus iniae meningoencephalitis in Nile tilapia (Oreochromis niloticus). J Comp Pathol 2012; 149:94-102. [PMID: 23218409 DOI: 10.1016/j.jcpa.2012.10.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Revised: 08/23/2012] [Accepted: 10/15/2012] [Indexed: 11/17/2022]
Abstract
Streptococcus iniae is an invasive pathogen causing meningitis and other lesions in various fish species. Furthermore, S. iniae is an emerging zoonotic agent that causes cellulitis in man. The aims of this study were to establish an intraperitoneal infection model for S. iniae in Nile tilapia (Oreochromis niloticus) and to develop a new histopathological scoring system to reflect the degree and extent of inflammation as well as the presence of necrosis in the brain and eye. Intraperitoneal administration of 10(6) colony-forming units (CFU) led to 80% mortality and numerous fish developing clinical signs of central nervous system dysfunction. Microscopical examination of four regions of the brain (olfactory bulb, cerebellum, cerebrum and optical lobe) and the eye revealed the presence of lymphohistiocytic leptomeningitis, meningoencephalitis and endophthalmitis. Lesions were dominated by macrophages that often contained intracellular bacteria. Necrosis was recorded in some cases. Bacteriological screening revealed that multiple organs, including brain and eye, were infected with S. iniae and S. iniae colonized the scales and gills in high number. S. iniae was detected in tank water during the first week post infection, suggesting that infected tilapia might shed up to 3 × 10(7) CFU of S. iniae within 24 h. A multiplex polymerase chain reaction allowed confirmation of the challenge strain by detection of the virulence factors simA, scpI, cpsD, pgi, pgm and sagA.
Collapse
Affiliation(s)
- C G Baums
- Institute for Microbiology, Centre for Infection Medicine, University of Veterinary Medicine, D-30173 Hannover, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Streptococcus iniae causes systemic infection characterized by meningitis and sepsis. Here, we report a larval zebrafish model of S. iniae infection. Injection of wild-type S. iniae into the otic vesicle induced a lethal infection by 24 h postinfection. In contrast, an S. iniae mutant deficient in polysaccharide capsule (cpsA mutant) was not lethal, with greater than 90% survival at 24 h postinfection. Live imaging demonstrated that both neutrophils and macrophages were recruited to localized otic infection with mutant and wild-type S. iniae and were able to phagocytose bacteria. Depletion of neutrophils and macrophages impaired host survival following infection with wild-type S. iniae and the cpsA mutant, suggesting that leukocytes are critical for host survival in the presence of both the wild-type and mutant bacteria. However, zebrafish larvae with impaired neutrophil function but normal macrophage function had increased susceptibility to wild-type bacteria but not the cpsA mutant. Taking these findings together, we have developed a larval zebrafish model of S. iniae infection and have found that although neutrophils are important for controlling infection with wild-type S. iniae, neutrophils are not necessary for host defense against the cpsA mutant.
Collapse
|
35
|
Li M, Wang QL, Lu Y, Chen SL, Li Q, Sha ZX. Expression profiles of NODs in channel catfish (Ictalurus punctatus) after infection with Edwardsiella tarda, Aeromonas hydrophila, Streptococcus iniae and channel catfish hemorrhage reovirus. FISH & SHELLFISH IMMUNOLOGY 2012; 33:1033-1041. [PMID: 22796486 DOI: 10.1016/j.fsi.2012.06.033] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 06/16/2012] [Accepted: 06/29/2012] [Indexed: 06/01/2023]
Abstract
NLRs are a large family of intracellular pathogen recognition receptors (PRRs) that recognize pathogen associated molecular patterns (PAMPs). In the previous study, the identification of NLRs subfamily A (NODs) and gene expression was carried out in channel catfish (Ictalurus punctatus). However, the gene expression profiles of channel catfish NODs (NOD1, NOD2, NLRC3, NLRC5 and NLRX1) after infection with various bacteria and virus are still unclear. In this study, expression of five NODs genes was analyzed by quantitative real-time PCR method. In healthy catfish tissues, all tested NODs genes were found to be ubiquitously expressed. After infection with Edwardsiella tarda, Aeromonas hydrophila, Streptococcus iniae, or channel catfish hemorrhage reovirus (CCRV), expression of NOD1, NOD2, NLRC3, NLRC5 showed a significant up-regulation in the intestine, liver and head kidney, whereas down-regulation was observed in the spleen after infection with A. hydrophila and CCRV. Expression of NLRX1 gene was up-regulated in the intestine, liver and head kidney, while obviously decreased in the spleen after infection with four pathogens. Among four different pathogens, S. iniae largely up-regulated NODs mRNAs, while CCRV only slightly enhanced NODs gene expression. Among four immune-related tissues, the order for NODs up-regulation was liver, head kidney, intestine, and spleen after infection with various pathogens. All data suggest NODs are involved in the immune responses of channel catfish against the intracellular bacterial and virus pathogens in tissue-specific and pathogen-specific manners, and provide the evidence for exploring the precise immune-related molecular mechanism of NODs in channel catfish.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory for Sustainable Utilization of Marine Fisheries Resources, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 106 Nanjing Road, Qingdao 266071, China
| | | | | | | | | | | |
Collapse
|
36
|
Li M, Liu Y, Wang QL, Chen SL, Sha ZX. BIRC7 gene in channel catfish (Ictalurus punctatus): identification and expression analysis in response to Edwardsiella tarda, Streptococcus iniae and Channel catfish Hemorrhage Reovirus. FISH & SHELLFISH IMMUNOLOGY 2012; 33:146-153. [PMID: 22510211 DOI: 10.1016/j.fsi.2012.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/07/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
A family member of inhibitor of apoptosis protein (IAP) termed baculoviral IAP repeat-containing 7 (BIRC7) from channel catfish (Ictalurus punctatus) was identified, the full length cDNA sequence of channel catfish BIRC7 (CcBIRC7) was 1686 bp, containing a 5'UTR of 93 bp, a 3'UTR of 399 bp with a poly (A) tail and an ORF of 1194 bp encoding a putative protein of 398 amino acids. The putative CcBIRC7 protein contains two BIR super-family conservative domains and a C-terminal RING finger motif. Phylogenetic analysis showed that catfish CcBIRC7 was moderately conserved with other BIRC7. Quantitative real-time PCR was conducted to examine the expression profiles of CcBIRC7 in healthy tissues and responding to different pathogens (Edwardsiella tarda, Streptococcus iniae and Channel catfish Hemorrhage Reovirus (CCRV)). CcBIRC7 was widely expressed in healthy tissues of channel catfish and with the highest 37.28-fold expression in blood. E. tarda and S. iniae could induce CcBIRC7 gene expression drastically in head kidney, liver and spleen, which the peak value reached 31.6-fold, 613.9-fold and 34.4-fold increase by E. tarda infection, and 248.3-fold, 1540.3-fold and 120.4-fold increase post S. iniae challenge, respectively. While, CCRV virus could slightly induce CcBIRC7 expression in head kidney and liver but reduce it in spleen. The result suggested BIRC7 may play a potential role in channel catfish innate immune system against bacterial and virus infections, especially as the anti-bacteria immune gene. This is the first report of BIRC7 gene identification and its expression in fish.
Collapse
Affiliation(s)
- Min Li
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | | | | | | | | |
Collapse
|
37
|
Pamp SJ, Harrington ED, Quake SR, Relman DA, Blainey PC. Single-cell sequencing provides clues about the host interactions of segmented filamentous bacteria (SFB). Genome Res 2012; 22:1107-19. [PMID: 22434425 PMCID: PMC3371716 DOI: 10.1101/gr.131482.111] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Segmented filamentous bacteria (SFB) are host-specific intestinal symbionts that comprise a distinct clade within the Clostridiaceae, designated Candidatus Arthromitus. SFB display a unique life cycle within the host, involving differentiation into multiple cell types. The latter include filaments that attach intimately to intestinal epithelial cells, and from which "holdfasts" and spores develop. SFB induce a multifaceted immune response, leading to host protection from intestinal pathogens. Cultivation resistance has hindered characterization of these enigmatic bacteria. In the present study, we isolated five SFB filaments from a mouse using a microfluidic device equipped with laser tweezers, generated genome sequences from each, and compared these sequences with each other, as well as to recently published SFB genome sequences. Based on the resulting analyses, SFB appear to be dependent on the host for a variety of essential nutrients. SFB have a relatively high abundance of predicted proteins devoted to cell cycle control and to envelope biogenesis, and have a group of SFB-specific autolysins and a dynamin-like protein. Among the five filament genomes, an average of 8.6% of predicted proteins were novel, including a family of secreted SFB-specific proteins. Four ADP-ribosyltransferase (ADPRT) sequence types, and a myosin-cross-reactive antigen (MCRA) protein were discovered; we hypothesize that they are involved in modulation of host responses. The presence of polymorphisms among mouse SFB genomes suggests the evolution of distinct SFB lineages. Overall, our results reveal several aspects of SFB adaptation to the mammalian intestinal tract.
Collapse
Affiliation(s)
- Sünje J Pamp
- Department of Microbiology and Immunology, The Howard Hughes Medical Institute
| | | | | | | | | |
Collapse
|
38
|
The Streptococcus iniae transcriptional regulator CpsY is required for protection from neutrophil-mediated killing and proper growth in vitro. Infect Immun 2011; 79:4638-48. [PMID: 21911465 DOI: 10.1128/iai.05567-11] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The ability of a pathogen to metabolically adapt to the local environment for optimal expression of virulence determinants is a continued area of research. Orthologs of the Streptococcus iniae LysR family regulator CpsY have been shown to regulate methionine biosynthesis and uptake pathways but appear to influence expression of several virulence genes as well. An S. iniae mutant with an in-frame deletion of cpsY (ΔcpsY mutant) is highly attenuated in a zebrafish infection model. The ΔcpsY mutant displays a methionine-independent growth defect in serum, which differs from the methionine-dependent defect observed for orthologous mutants of Streptococcus mutans and Streptococcus agalactiae. On the contrary, the ΔcpsY mutant can grow in excess of the wild type (WT) when supplemented with proteose peptone, suggesting an inability to properly regulate growth. CpsY is critical for protection of S. iniae from clearance by neutrophils in whole blood but is dispensable for intracellular survival in macrophages. Susceptibility of the ΔcpsY mutant to killing in whole blood is not due to a growth defect, because inhibition of neutrophil phagocytosis rescues the mutant to WT levels. Thus, CpsY appears to have a pleiotropic regulatory role for S. iniae, integrating metabolism and virulence. Furthermore, S. iniae provides a unique model to investigate the paradigm of CpsY-dependent regulation during systemic streptococcal infection.
Collapse
|
39
|
The Bacillus subtilis extracytoplasmic function σ factor σ(V) is induced by lysozyme and provides resistance to lysozyme. J Bacteriol 2011; 193:6215-22. [PMID: 21856855 DOI: 10.1128/jb.05467-11] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Bacteria encounter numerous environmental stresses which can delay or inhibit their growth. Many bacteria utilize alternative σ factors to regulate subsets of genes required to overcome different extracellular assaults. The largest group of these alternative σ factors are the extracytoplasmic function (ECF) σ factors. In this paper, we demonstrate that the expression of the ECF σ factor σ(V) in Bacillus subtilis is induced specifically by lysozyme but not other cell wall-damaging agents. A mutation in sigV results in increased sensitivity to lysozyme killing, suggesting that σ(V) is required for lysozyme resistance. Using reverse transcription (RT)-PCR, we show that the previously uncharacterized gene yrhL (here referred to as oatA for O-acetyltransferase) is in a four-gene operon which includes sigV and rsiV. In quantitative RT-PCR experiments, the expression of oatA is induced by lysozyme stress. Lysozyme induction of oatA is dependent upon σ(V). Overexpression of oatA in a sigV mutant restores lysozyme resistance to wild-type levels. This suggests that OatA is required for σ(V)-dependent resistance to lysozyme. We also tested the ability of lysozyme to induce the other ECF σ factors and found that only the expression of sigV is lysozyme inducible. However, we found that the other ECF σ factors contributed to lysozyme resistance. We found that sigX and sigM mutations alone had very little effect on lysozyme resistance but when combined with a sigV mutation resulted in significantly greater lysozyme sensitivity than the sigV mutation alone. This suggests that sigV, sigX, and sigM may act synergistically to control lysozyme resistance. In addition, we show that two ECF σ factor-regulated genes, dltA and pbpX, are required for lysozyme resistance. Thus, we have identified three independent mechanisms which B. subtilis utilizes to avoid killing by lysozyme.
Collapse
|
40
|
Bui NK, Turk S, Buckenmaier S, Stevenson-Jones F, Zeuch B, Gobec S, Vollmer W. Development of screening assays and discovery of initial inhibitors of pneumococcal peptidoglycan deacetylase PgdA. Biochem Pharmacol 2011; 82:43-52. [DOI: 10.1016/j.bcp.2011.03.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Revised: 03/30/2011] [Accepted: 03/31/2011] [Indexed: 11/28/2022]
|
41
|
Aziz RK. In silico analysis of a family of extracellular polysaccharide deacetylases involved in virulence of pathogenic gram-positive cocci. BMC Bioinformatics 2010. [PMCID: PMC3290091 DOI: 10.1186/1471-2105-11-s4-p8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
42
|
Abstract
Streptococcus iniae is an emerging zoonotic pathogen; such infections generally occur through injuries associated with preparing whole fresh fish for cooking. Those infected to date have been of Asian descent, are usually elderly (average age 68 years), and have had >/=1 underlying conditions that may predispose them to infection. Studies of the foundations of growth characteristics of S. iniae and its interactions with piscine host cells have recently been complemented by molecular studies. Advances in molecular biology have allowed research groups to identify numerous virulence factors and to explore their roles in the progression of S. iniae infection. Many of these virulence factors are homologous to those found in the major human pathogen S. pyogenes. An increased understanding of the properties of these factors and their effect on the success of infection is leading to novel approaches to control S. iniae infection; in particular, vaccination programs at fish farms have reduced the reservoir of infection for additional clinical cases.
Collapse
Affiliation(s)
- Justice C F Baiano
- The University of Queensland, Aquatic Animal Health Laboratory, Centre for Marine Studies, St. Lucia, Queensland 4072, Australia.
| | | |
Collapse
|