1
|
Rhodes KA, Rendón MA, Ma MC, Agellon A, Johnson AC, So M. Type IV pilus retraction is required for Neisseria musculi colonization and persistence in a natural mouse model of infection. mBio 2024; 15:e0279223. [PMID: 38084997 PMCID: PMC10790696 DOI: 10.1128/mbio.02792-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 10/25/2023] [Indexed: 01/17/2024] Open
Abstract
IMPORTANCE We describe the importance of Type IV pilus retraction to colonization and persistence by a mouse commensal Neisseria, N. musculi, in its native host. Our findings have implications for the role of Tfp retraction in mediating interactions of human-adapted pathogenic and commensal Neisseria with their human host due to the relatedness of these species.
Collapse
Affiliation(s)
- Katherine A. Rhodes
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - María A. Rendón
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Man Cheong Ma
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| | - Al Agellon
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, Arizona, USA
| | - Andrew C.E. Johnson
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
| | - Magdalene So
- Immunobiology Department, University of Arizona College of Medicine, Tucson, Arizona, USA
- BIO5 Institute, University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
2
|
Yu Q, Wang LC, Di Benigno S, Stein DC, Song W. Gonococcal invasion into epithelial cells depends on both cell polarity and ezrin. PLoS Pathog 2021; 17:e1009592. [PMID: 34852011 PMCID: PMC8668114 DOI: 10.1371/journal.ppat.1009592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 12/13/2021] [Accepted: 11/15/2021] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection in women from the cervix, lined with heterogeneous epithelial cells from non-polarized stratified at the ectocervix to polarized columnar at the endocervix. We have previously shown that GC differentially colonize and transmigrate across the ecto and endocervical epithelia. However, whether and how GC invade into heterogeneous cervical epithelial cells is unknown. This study examined GC entry of epithelial cells with various properties, using human cervical tissue explant and non-polarized/polarized epithelial cell line models. While adhering to non-polarized and polarized epithelial cells at similar levels, GC invaded into non-polarized more efficiently than polarized epithelial cells. The enhanced GC invasion in non-polarized epithelial cells was associated with increased ezrin phosphorylation, F-actin and ezrin recruitment to GC adherent sites, and the elongation of GC-associated microvilli. Inhibition of ezrin phosphorylation inhibited F-actin and ezrin recruitment and microvilli elongation, leading to a reduction in GC invasion. The reduced GC invasion in polarized epithelial cells was associated with non-muscle myosin II-mediated F-actin disassembly and microvilli denudation at GC adherence sites. Surprisingly, intraepithelial GC were only detected inside epithelial cells shedding from the cervix by immunofluorescence microscopy, but not significantly in the ectocervical and the endocervical regions. We observed similar ezrin and F-actin recruitment in exfoliated cervical epithelial cells but not in those that remained in the ectocervical epithelium, as the luminal layer of ectocervical epithelial cells expressed ten-fold lower levels of ezrin than those beneath. However, GC inoculation induced F-actin reduction and myosin recruitment in the endocervix, similar to what was seen in polarized epithelial cells. Collectively, our results suggest that while GC invade non-polarized epithelial cells through ezrin-driven microvilli elongation, the apical polarization of ezrin and F-actin inhibits GC entry into polarized epithelial cells. Neisseria gonorrhoeae (GC) causes gonorrhea in women by infecting the female reproductive tract. GC entry of epithelial cells has long been observed in patients’ biopsies and studied in various types of epithelial cells. However, how GC invade into the heterogeneous epithelia of the human cervix is unknown. This study reveals that both the expression level of ezrin, an actin-membrane linker protein, and the polarization of ezrin-actin networks in epithelial cells regulate GC invasion. GC interactions with non-polarized squamous epithelial cells expressing ezrin induce ezrin activation, ezrin-actin accumulation, and microvilli elongation at GC adherent sites, leading to invasion. Low ezrin expression levels in the luminal ectocervical epithelial cells are associated with low levels of intraepithelial GC. In contrast, apical polarization of ezrin-actin networks in columnar endocervical epithelial cells reduces GC invasion. GC interactions induce myosin activation, which causes disassembly of ezrin-actin networks and microvilli modification at GC adherent sites, extending GC-epithelial contact. Expression of opacity-associated proteins on GC promotes GC invasion by enhancing ezrin-actin accumulation in squamous epithelial cells and inhibiting ezrin-actin disassembly in columnar endocervical epithelial cells. Thus, reduced ezrin expression and ezrin-actin polarization are potential ways for cervical epithelial cells to curtail GC invasion.
Collapse
Affiliation(s)
- Qian Yu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Marine & Pathogenic Microbiology Lab, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Sofia Di Benigno
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Daniel C Stein
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| |
Collapse
|
3
|
An In Vitro Model System to Test Mechano-Microbiological Interactions Between Bacteria and Host Cells. Methods Mol Biol 2021. [PMID: 34542856 DOI: 10.1007/978-1-0716-1661-1_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The aim of this chapter is to present an innovative technique to visualize changes of the F-actin cytoskeleton in response to locally applied force. We developed an in vitro system that combines micromanipulation of force by magnetic tweezers with simultaneous live cell fluorescence microscopy. We applied pulling forces to magnetic beads coated with the Neisseria gonorrhoeae Type IV pili in the same order of magnitude than the forces generated by live bacteria. We saw quick and robust F-actin accumulation in individual cells at the sites where pulling forces were applied. Using the magnetic tweezers, we were able to mimic the local response of the F-actin cytoskeleton to bacteria-generated forces. In this chapter, we describe our magnetic tweezers system and show how to control it in order to study cellular responses to force.
Collapse
|
4
|
Kim WJ, Mai A, Weyand NJ, Rendón MA, Van Doorslaer K, So M. Neisseria gonorrhoeae evades autophagic killing by downregulating CD46-cyt1 and remodeling lysosomes. PLoS Pathog 2019; 15:e1007495. [PMID: 30753248 PMCID: PMC6388937 DOI: 10.1371/journal.ppat.1007495] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 02/25/2019] [Accepted: 12/01/2018] [Indexed: 12/20/2022] Open
Abstract
The Gram-negative human pathogen N. gonorrhoeae (Ngo) quickly attaches to epithelial cells, and large numbers of the bacteria remain on the cell surface for prolonged periods. Ngo invades cells but few viable intracellular bacteria are recovered until later stages of infection, leading to the assumption that Ngo is a weak invader. On the cell surface, Ngo quickly recruits CD46-cyt1 to the epithelial cell cortex directly beneath the bacteria and causes its cleavage by metalloproteinases and Presenilin/γSecretease; how these interactions affect the Ngo lifecycle is unknown. Here, we show Ngo induces an autophagic response in the epithelial cell through CD46-cyt1/GOPC, and this response kills early invaders. Throughout infection, the pathogen slowly downregulates CD46-cyt1 and remodeling of lysosomes, another key autophagy component, and these activities ultimately promote intracellular survival. We present a model on the dynamics of Ngo infection and describe how this dual interference with the autophagic pathway allows late invaders to survive within the cell.
Collapse
Affiliation(s)
- Won J. Kim
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- * E-mail:
| | - Annette Mai
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
| | - Nathan J. Weyand
- Department of Biological Sciences, Ohio University, Athens, OH, United States of America
| | - Maria A. Rendón
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| | - Koenraad Van Doorslaer
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
- School of Animal and Comparative Biomedical Sciences, University of Arizona, Tucson, AZ, United States of America
| | - Magdalene So
- BIO5 Institute, University of Arizona, Tucson, AZ, United States of America
- Department of Immunobiology, University of Arizona, Tucson, AZ, United States of America
| |
Collapse
|
5
|
Attenuation of the Type IV Pilus Retraction Motor Influences Neisseria gonorrhoeae Social and Infection Behavior. mBio 2016; 7:mBio.01994-16. [PMID: 27923924 PMCID: PMC5142622 DOI: 10.1128/mbio.01994-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Retraction of the type IV pilus (Tfp) mediates DNA uptake, motility, and social and infection behavior in a wide variety of prokaryotes. To date, investigations into Tfp retraction-dependent activities have used a mutant deleted of PilT, the ATPase motor protein that causes the pilus fiber to retract. ΔpilT cells are nontransformable, nonmotile, and cannot aggregate into microcolonies. We tested the hypothesis that these retraction-dependent activities are sensitive to the strength of PilT enzymatic activity by using the pathogen Neisseria gonorrhoeae as a model. We constructed an N. gonorrhoeae mutant with an amino acid substitution in the PilT Walker B box (a substitution of cysteine for leucine at position 201, encoded by pilTL201C). Purified PilTL201C forms a native hexamer, but mutant hexamers hydrolyze ATP at half the maximal rate. N. gonorrhoeae pilTL201C cells produce Tfp fibers, crawl at the same speed as the wild-type (wt) parent, and are equally transformable. However, the social behavior of pilTL201C cells is intermediate between the behaviors of wt and ΔpilT cells. The infection behavior of pilTL201C is also defective, due to its failure to activate the epidermal growth factor receptor (EGFR)-heparin-binding EGF-like growth factor (HB-EGF) pathway. Our study indicates that pilus retraction, per se, is not sufficient for N. gonorrhoeae microcolony formation or infectivity; rather, these activities are sensitive to the strength of PilT enzymatic activity. We discuss the implications of these findings for Neisseria pathogenesis in the context of mechanobiology. Type IV pili are fibers expressed on the surface of many bacteria. Neisseria gonorrhoeae cells crawl, take up DNA, and communicate with each other and with human cells by retracting these fibers. Here, we show that an N. gonorrhoeae mutant expressing an enzymatically weakened type IV pilus retraction motor still crawls and takes up DNA normally. However, mutant cells exhibit abnormal social behavior, and they are less infective because they fail to activate the epidermal growth factor receptor. Our study shows that N. gonorrhoeae social and infection behaviors are sensitive to the strength of the retraction motor enzyme.
Collapse
|
6
|
Seminal Plasma Promotes Neisseria gonorrhoeae Aggregation and Biofilm Formation. J Bacteriol 2016; 198:2228-35. [PMID: 27274027 DOI: 10.1128/jb.00165-16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 05/26/2016] [Indexed: 01/20/2023] Open
Abstract
UNLABELLED Neisseria gonorrhoeae causes the human-specific disease gonorrhea and is transmitted from person to person primarily via sexual contact. During transmission, N. gonorrhoeae is often exposed to seminal fluid and must adapt to this change in environment. Previous work demonstrated that seminal fluid facilitates N. gonorrhoeae motility and alters epithelial cell interactions. In this study, exposure to seminal fluid was found to decrease surface adherence of gonococci in a manner that was independent of Opa adhesin proteins or type IV pilus retraction. Semen was also shown to cause dispersal of bacteria that had previously established surface adherence. Although surface adherence decreased, interbacterial interactions were increased by seminal plasma both in long-term static culture and on a cell-to-cell basis over shorter time periods. The result of increased bacterium-bacterium interactions resulted in the formation of microcolonies, an important step in the N. gonorrhoeae infectious process. Seminal fluid also facilitated increased bacterial aggregation in the form of shear-resistant three-dimensional biofilms. These results emphasize the importance of the gonococcal response to the influx of seminal fluid within the genital niche. Further characterization of the N. gonorrhoeae response to semen will advance our understanding of the mechanisms behind the establishment of infection in naive hosts and the process of transmission. IMPORTANCE N. gonorrhoeae is the causative agent of the globally prevalent sexually transmitted infection gonorrhea. An understudied aspect of this human-adapted pathogen is the change in bacterial physiology that occurs during sexual transmission. N. gonorrhoeae encounters semen when transmitted from host to host, and it is known that, when N. gonorrhoeae is exposed to seminal fluid, alterations in bacterial motility and type IV pilus arrangement occur. This work extends our previous observations on this modulation of gonococcal physiology by seminal fluid and demonstrates that seminal plasma decreases surface adherence, promotes interbacterial interactions, and enhances biofilm formation.
Collapse
|
7
|
Qi W, Vaughan L, Katharios P, Schlapbach R, Seth-Smith HMB. Host-Associated Genomic Features of the Novel Uncultured Intracellular Pathogen Ca. Ichthyocystis Revealed by Direct Sequencing of Epitheliocysts. Genome Biol Evol 2016; 8:1672-89. [PMID: 27190004 PMCID: PMC4943182 DOI: 10.1093/gbe/evw111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/05/2016] [Indexed: 12/24/2022] Open
Abstract
Advances in single-cell and mini-metagenome sequencing have enabled important investigations into uncultured bacteria. In this study, we applied the mini-metagenome sequencing method to assemble genome drafts of the uncultured causative agents of epitheliocystis, an emerging infectious disease in the Mediterranean aquaculture species gilthead seabream. We sequenced multiple cyst samples and constructed 11 genome drafts from a novel beta-proteobacterial lineage, Candidatus Ichthyocystis. The draft genomes demonstrate features typical of pathogenic bacteria with an obligate intracellular lifestyle: a reduced genome of up to 2.6 Mb, reduced G + C content, and reduced metabolic capacity. Reconstruction of metabolic pathways reveals that Ca Ichthyocystis genomes lack all amino acid synthesis pathways, compelling them to scavenge from the fish host. All genomes encode type II, III, and IV secretion systems, a large repertoire of predicted effectors, and a type IV pilus. These are all considered to be virulence factors, required for adherence, invasion, and host manipulation. However, no evidence of lipopolysaccharide synthesis could be found. Beyond the core functions shared within the genus, alignments showed distinction into different species, characterized by alternative large gene families. These comprise up to a third of each genome, appear to have arisen through duplication and diversification, encode many effector proteins, and are seemingly critical for virulence. Thus, Ca Ichthyocystis represents a novel obligatory intracellular pathogenic beta-proteobacterial lineage. The methods used: mini-metagenome analysis and manual annotation, have generated important insights into the lifestyle and evolution of the novel, uncultured pathogens, elucidating many putative virulence factors including an unprecedented array of novel gene families.
Collapse
Affiliation(s)
- Weihong Qi
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Lloyd Vaughan
- Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| | - Pantelis Katharios
- Hellenic Center for Marine Research, Institute of Marine Biology, Biotechnology and Aquaculture, Heraklion, Greece
| | - Ralph Schlapbach
- Functional Genomics Center Zurich, University of Zurich, Switzerland
| | - Helena M B Seth-Smith
- Functional Genomics Center Zurich, University of Zurich, Switzerland Vetsuisse Faculty, Institute for Veterinary Pathology, University of Zurich, Switzerland
| |
Collapse
|
8
|
Heath-Heckman EAC, Foster J, Apicella MA, Goldman WE, McFall-Ngai M. Environmental cues and symbiont microbe-associated molecular patterns function in concert to drive the daily remodelling of the crypt-cell brush border of the Euprymna scolopes light organ. Cell Microbiol 2016; 18:1642-1652. [PMID: 27062511 DOI: 10.1111/cmi.12602] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 01/20/2023]
Abstract
Recent research has shown that the microbiota affects the biology of associated host epithelial tissues, including their circadian rhythms, although few data are available on how such influences shape the microarchitecture of the brush border. The squid-vibrio system exhibits two modifications of the brush border that supports the symbionts: effacement and repolarization. Together these occur on a daily rhythm in adult animals, at the dawn expulsion of symbionts into the environment, and symbiont colonization of the juvenile host induces an increase in microvillar density. Here we sought to define how these processes are related and the roles of both symbiont colonization and environmental cues. Ultrastructural analyses showed that the juvenile-organ brush borders also efface concomitantly with daily dawn-cued expulsion of symbionts. Manipulation of the environmental light cue and juvenile symbiotic state demonstrated that this behaviour requires the light cue, but not colonization. In contrast, symbionts were required for the observed increase in microvillar density that accompanies post dawn brush-border repolarization; this increase was induced solely by host exposure to phosphorylated lipid A of symbiont cells. These data demonstrate that a partnering of environmental and symbiont cues shapes the brush border and that microbe-associated molecular patterns play a role in the regulation of brush-border microarchitecture.
Collapse
Affiliation(s)
- Elizabeth A C Heath-Heckman
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, USA
| | - Jamie Foster
- Department of Microbiology and Cell Science, University of Florida, Space Life Science Laboratory, Merritt Island, FL, 32953, USA
| | - Michael A Apicella
- Department of Microbiology, University of Iowa, Iowa City, IA, 52246, USA
| | - William E Goldman
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Margaret McFall-Ngai
- Department of Medical Microbiology and Immunology, University of Wisconsin - Madison, Madison, WI, 53706, USA. .,PBRC, Kewalo Marine Laboratory, University of Hawaii, 41 Ahui Street, Honolulu, HI, 96813, USA.
| |
Collapse
|
9
|
Santos LC, Munteanu EL, Biais N. An In Vitro Model System to Test Mechano-microbiological Interactions Between Bacteria and Host Cells. Methods Mol Biol 2016; 1365:195-212. [PMID: 26498786 DOI: 10.1007/978-1-4939-3124-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The aim of this chapter is to present an innovative technique to visualize changes of the f-actin cytoskeleton in response to locally applied force. We developed an in vitro system that combines micromanipulation of force by magnetic tweezers with simultaneous live cell fluorescence microscopy. We applied pulling forces to magnetic beads coated with the Neisseria gonorrhoeae Type IV pili in the same order of magnitude than the forces generated by live bacteria. We saw quick and robust f-actin accumulation at the sites where pulling forces were applied. Using the magnetic tweezers we were able to mimic the local response of the f-actin cytoskeleton to bacteria-generated forces. In this chapter we describe our magnetic tweezers system and show how to control it in order to study cellular responses to force.
Collapse
Affiliation(s)
- Luís Carlos Santos
- Department of Biology, Brooklyn College of the City University of New York, 307 Ingersoll Hall Extension, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Emilia Laura Munteanu
- Department of Biology, Brooklyn College of the City University of New York, 307 Ingersoll Hall Extension, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Nicolas Biais
- Department of Biology, Brooklyn College of the City University of New York, 307 Ingersoll Hall Extension, 2900 Bedford Avenue, Brooklyn, NY, 11210, USA.
- The Graduate Center of the City University of New York, New York, NY, USA.
| |
Collapse
|
10
|
Maier B, Wong GCL. How Bacteria Use Type IV Pili Machinery on Surfaces. Trends Microbiol 2015; 23:775-788. [PMID: 26497940 DOI: 10.1016/j.tim.2015.09.002] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 08/24/2015] [Accepted: 09/10/2015] [Indexed: 01/05/2023]
Abstract
The bacterial type IV pilus (T4P) is a versatile molecular machine with a broad range of functions. Recent advances revealed that the molecular components and the biophysical properties of the machine are well conserved among phylogenetically distant bacterial species. However, its functions are diverse, and include adhesion, motility, and horizontal gene transfer. This review focusses on the role of T4P in surface motility and bacterial interactions. Different species have evolved distinct mechanisms for intracellular coordination of multiple pili and of pili with other motility machines, ranging from physical coordination to biochemical clocks. Coordinated behavior between multiple bacteria on a surface is achieved by active manipulation of surfaces and modulation of pilus-pilus interactions. An emerging picture is that the T4P actively senses and responds to environmental conditions.
Collapse
Affiliation(s)
- Berenike Maier
- Department of Physics, University of Cologne, Zülpicher Str. 77, 50937 Köln, Germany.
| | - Gerard C L Wong
- Department of Bioengineering, Department of Chemistry & Biochemistry, California Nano Systems Institute, University of California, Los Angeles, CA 90095-1600, USA
| |
Collapse
|
11
|
Oldewurtel ER, Kouzel N, Dewenter L, Henseler K, Maier B. Differential interaction forces govern bacterial sorting in early biofilms. eLife 2015; 4. [PMID: 26402455 PMCID: PMC4625442 DOI: 10.7554/elife.10811] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/23/2015] [Indexed: 12/30/2022] Open
Abstract
Bacterial biofilms can generate micro-heterogeneity in terms of surface structures. However, little is known about the associated changes in the physics of cell–cell interaction and its impact on the architecture of biofilms. In this study, we used the type IV pilus of Neisseria gonorrhoeae to test whether variation of surface structures induces cell-sorting. We show that the rupture forces between pili are fine-tuned by post-translational modification. Bacterial sorting was dependent on pilus post-translational modification and pilus density. Active force generation was necessary for defined morphologies of mixed microcolonies. The observed morphotypes were in remarkable agreement with the differential strength of adhesion hypothesis proposing that a tug-of-war among surface structures of different cells governs cell sorting. We conclude that in early biofilms the density and rupture force of bacterial surface structures can trigger cell sorting based on similar physical principles as in developing embryos. DOI:http://dx.doi.org/10.7554/eLife.10811.001 Communities of bacterial cells can live together embedded within a slime-like molecular matrix as a biofilm. This allows the bacteria to hide from external stresses. A single bacterium can replicate itself and develop into a biofilm, and over time the bacterial cells in specific regions of the biofilm will start to interact with their neighbors in different ways. These interactions occur via structures on the surface of the bacterial cells, and the differences in these interactions resemble those that occur as cells specialize during the development of animal embryos. Previous research into embryonic development has shown how differences in the physical interactions between embryonic cells are essential for sorting the cells into their correct locations and shaping the embryo. However, little is known about which processes govern the development of biofilms. Now, Oldewurtel et al. have asked whether differences in the physical interactions between bacteria trigger cell sorting during the early stages of biofilm development. The experiments involved measuring the force required to break the cell–cell connections (called the ‘rupture force’) in biofilms of a bacterium called Neisseria gonorrhoeae. Oldewurtel et al. found that, in agreement with previous predictions, physical interactions were important for sorting bacterial cells into clusters based on the structures on their surfaces. Bacterial cells actively pull on the surface structures of their neighbors, which allows the cells to sort themselves in a tug-of-war fashion. This means that a cell will move in the direction where it can pull the strongest (i.e., in the direction where the rupture force is highest). While bacteria and embryos use different molecules to generate these pulling forces, these findings indicate that the basic physical principles are similar in both systems. One of the next challenges will be to evaluate how biofilms might benefit from the structures that develop due to cell sorting. DOI:http://dx.doi.org/10.7554/eLife.10811.002
Collapse
Affiliation(s)
| | - Nadzeya Kouzel
- Department of Physics, University of Cologne, Cologne, Germany
| | - Lena Dewenter
- Department of Physics, University of Cologne, Cologne, Germany
| | - Katja Henseler
- Department of Physics, University of Cologne, Cologne, Germany
| | - Berenike Maier
- Department of Physics, University of Cologne, Cologne, Germany
| |
Collapse
|
12
|
Taktikos J, Lin YT, Stark H, Biais N, Zaburdaev V. Pili-Induced Clustering of N. gonorrhoeae Bacteria. PLoS One 2015; 10:e0137661. [PMID: 26355966 PMCID: PMC4565587 DOI: 10.1371/journal.pone.0137661] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 08/19/2015] [Indexed: 11/18/2022] Open
Abstract
Type IV pili (Tfp) are prokaryotic retractable appendages known to mediate surface attachment, motility, and subsequent clustering of cells. Tfp are the main means of motility for Neisseria gonorrhoeae, the causative agent of gonorrhea. Tfp are also involved in formation of the microcolonies, which play a crucial role in the progression of the disease. While motility of individual cells is relatively well understood, little is known about the dynamics of N. gonorrhoeae aggregation. We investigate how individual N. gonorrhoeae cells, initially uniformly dispersed on flat plastic or glass surfaces, agglomerate into spherical microcolonies within hours. We quantify the clustering process by measuring the area fraction covered by the cells, number of cell aggregates, and their average size as a function of time. We observe that the microcolonies are also able to move but their mobility rapidly vanishes as the size of the colony increases. After a certain critical size they become immobile. We propose a simple theoretical model which assumes a pili-pili interaction of cells as the main clustering mechanism. Numerical simulations of the model quantitatively reproduce the experimental data on clustering and thus suggest that the agglomeration process can be entirely explained by the Tfp-mediated interactions. In agreement with this hypothesis mutants lacking pili are not able to form colonies. Moreover, cells with deficient quorum sensing mechanism show similar aggregation as the wild-type bacteria. Therefore, our results demonstrate that pili provide an essential mechanism for colony formation, while additional chemical cues, for example quorum sensing, might be of secondary importance.
Collapse
Affiliation(s)
- Johannes Taktikos
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Technische Universität Berlin, Institut für Theoretische Physik, Berlin, Germany
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - Yen Ting Lin
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
| | - Holger Stark
- Technische Universität Berlin, Institut für Theoretische Physik, Berlin, Germany
| | - Nicolas Biais
- Brooklyn College of City University of New York, Department of Biology, Brooklyn, NY, United States of America
- * E-mail: (NB); (VZ)
| | - Vasily Zaburdaev
- Harvard University, School of Engineering and Applied Sciences, Cambridge, MA, United States of America
- Max-Planck-Institute for the Physics of Complex Systems, Dresden, Germany
- * E-mail: (NB); (VZ)
| |
Collapse
|
13
|
Stein DC, LeVan A, Hardy B, Wang LC, Zimmerman L, Song W. Expression of Opacity Proteins Interferes with the Transmigration of Neisseria gonorrhoeae across Polarized Epithelial Cells. PLoS One 2015; 10:e0134342. [PMID: 26244560 PMCID: PMC4526573 DOI: 10.1371/journal.pone.0134342] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Accepted: 07/08/2015] [Indexed: 11/18/2022] Open
Abstract
Neisseria gonorrhoeae (GC) establishes infection at the mucosal surface of the human genital tract, most of which is lined with polarized epithelial cells. GC can cause localized as well as disseminated infections, leading to various complications. GC constantly change their surface structures via phase and antigenic variation, which has been implicated as a means for GC to establish infection at various anatomic locations of male and female genital tracks. However, the exact contribution of each surface molecule to bacterial infectivity remains elusive due to their phase variation. Using a GC derivative that is genetically devoid of all opa genes (MS11∆Opa), this study shows that Opa expression interferes with GC transmigration across polarized human epithelial cells. MS11∆Opa transmigrates across polarized epithelial cells much faster and to a greater extent than MS11Opa+, while adhering at a similar level as MS11Opa+. When MS11Opa+, able to phase vary Opa expression, was inoculated, only those bacteria that turn off Opa expression transmigrate across the polarized epithelial monolayer. Similar to bacteria alone or co-cultured with non-polarized epithelial cells, MS11∆Opa fails to form large microcolonies at the apical surface of polarized epithelial cells. Apical inoculation of MS11Opa+, but not MS11∆Opa, induces the recruitment of the Opa host-cell receptor carcinoembryonic antigen–related cell adhesion molecules (CEACAMs) to the apical junction and the vicinity of bacterial adherent sites. Our results suggest that Opa expression limits gonococcal ability to invade into subepithelial tissues by forming tight interactions with neighboring bacteria and by inducing CEACAM redistribution to cell junctions.
Collapse
Affiliation(s)
- Daniel C. Stein
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| | - Adriana LeVan
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Britney Hardy
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Liang-Chun Wang
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Lindsey Zimmerman
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Wenxia Song
- Department of Cell Biology & Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
- * E-mail: (DCS); (WS)
| |
Collapse
|
14
|
Dewenter L, Volkmann TE, Maier B. Oxygen governs gonococcal microcolony stability by enhancing the interaction force between type IV pili. Integr Biol (Camb) 2015; 7:1161-70. [PMID: 25892255 DOI: 10.1039/c5ib00018a] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of small bacterial clusters, called microcolonies, is the first step towards the formation of bacterial biofilms. The human pathogen Neisseria gonorrhoeae requires type IV pili (T4P) for microcolony formation and for surface motility. Here, we investigated the effect of oxygen on the dynamics of microcolony formation. We found that an oxygen concentration exceeding 3 μM is required for formation and maintenance of microcolonies. Depletion of proton motive force triggers microcolony disassembly. Disassembly of microcolonies is actively driven by T4P retraction. Using laser tweezers we showed that under aerobic conditions T4P-T4P interaction forces exceed 50 pN. Under anaerobic conditions T4P-T4P interaction is severely inhibited. We conclude that oxygen is required for gonococcal microcolony formation by enhancing pilus-pilus interaction.
Collapse
Affiliation(s)
- Lena Dewenter
- Department of Physics, Universität zu Köln, Köln, Germany.
| | | | | |
Collapse
|
15
|
Analyzing bacterial movements on surfaces. Methods Cell Biol 2015. [PMID: 25640444 DOI: 10.1016/bs.mcb.2014.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Bacteria have long been ideal model systems for studying many biological phenomena. But when it comes to motility, we are quite often just figuring out the mechanisms underlying their ability to move in liquid or on surfaces. In the last few decades, research has emphasized the importance for bacteria to be able to adhere to and move on surfaces in order to form complex bacterial communities called biofilms. To better understand the multiple chemical and biophysical mechanisms responsible for the initial interactions of bacteria on surfaces that develop into biofilms, we present here low-cost and easy-to-implement protocols to quantitatively analyze the movement of single bacteria on surfaces by microscopy. These protocols are presented in the case of the human pathogen Neisseria gonorrhoeae that moves on surfaces solely powered by Type IV pili, motility referred to as twitching motility. These methods, however, are applicable for any motile bacteria interacting with surfaces. The precise quantification of motility coupled with genetic tools will enable us to precisely dissect the mechanisms and dynamics of bacterial surface motility which are still poorly understood.
Collapse
|
16
|
Shifrin DA, Crawley SW, Grega-Larson NE, Tyska MJ. Dynamics of brush border remodeling induced by enteropathogenic E. coli. Gut Microbes 2014; 5:504-16. [PMID: 25076126 PMCID: PMC5642117 DOI: 10.4161/gmic.32084] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Enteropathogenic Escherichia coli (EPEC) induces dramatic remodeling of enterocyte brush borders, a process that includes microvillar effacement and actin pedestal formation. Although the Arp2/3 complex is involved in formation of a branched actin network within pedestals, the fate of parallel actin bundles in microvilli during infection remains unclear. Here, we find that in polarized intestinal epithelial cells, EPEC stimulates long-range microvillar dynamics, pulling protrusions toward sites of bacterial attachment in a process mediated by the adhesion molecule protocadherin-24. Additionally, retraction of the EPEC bundle forming pilus stimulates directed elongation of nearby microvilli. These processes lead to coalescence of microvilli and incorporation of the underlying parallel actin bundles into pedestals. Furthermore, stabilization of microvillar actin bundles delays pedestal formation. Together, these results suggest a model where EPEC takes advantage of pre-existing actin filaments in microvillar core bundles to facilitate pedestal formation.
Collapse
Affiliation(s)
| | | | | | - Matthew J Tyska
- Correspondence to: Matthew J Tyska; matthew.tyska@vanderbilt
| |
Collapse
|
17
|
Soyer M, Charles-Orszag A, Lagache T, Machata S, Imhaus AF, Dumont A, Millien C, Olivo-Marin JC, Duménil G. Early sequence of events triggered by the interaction ofNeisseria meningitidiswith endothelial cells. Cell Microbiol 2013; 16:878-95. [DOI: 10.1111/cmi.12248] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 11/12/2013] [Accepted: 12/03/2013] [Indexed: 01/26/2023]
Affiliation(s)
- Magali Soyer
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Arthur Charles-Orszag
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Thibault Lagache
- Institut Pasteur; Unité d'Analyse d'Images Quantitative; Centre National de la Recherche Scientifique; Unité de Recherche Associée 2582; Paris France
| | - Silke Machata
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Anne-Flore Imhaus
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Audrey Dumont
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Corinne Millien
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| | - Jean-Christophe Olivo-Marin
- Institut Pasteur; Unité d'Analyse d'Images Quantitative; Centre National de la Recherche Scientifique; Unité de Recherche Associée 2582; Paris France
| | - Guillaume Duménil
- Université Paris Descartes; Faculté de Médecine Paris Descartes; Paris F-75006 France
- INSERM; U970; Paris Cardiovascular Research Center; Paris F-75015 France
| |
Collapse
|
18
|
Baker JL, Biais N, Tama F. Steered molecular dynamics simulations of a type IV pilus probe initial stages of a force-induced conformational transition. PLoS Comput Biol 2013; 9:e1003032. [PMID: 23592974 PMCID: PMC3623709 DOI: 10.1371/journal.pcbi.1003032] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 02/28/2013] [Indexed: 02/03/2023] Open
Abstract
Type IV pili are long, protein filaments built from a repeating subunit that protrudes from the surface of a wide variety of infectious bacteria. They are implicated in a vast array of functions, ranging from bacterial motility to microcolony formation to infection. One of the most well-studied type IV filaments is the gonococcal type IV pilus (GC-T4P) from Neisseria gonorrhoeae, the causative agent of gonorrhea. Cryo-electron microscopy has been used to construct a model of this filament, offering insights into the structure of type IV pili. In addition, experiments have demonstrated that GC-T4P can withstand very large tension forces, and transition to a force-induced conformation. However, the details of force-generation, and the atomic-level characteristics of the force-induced conformation, are unknown. Here, steered molecular dynamics (SMD) simulation was used to exert a force in silico on an 18 subunit segment of GC-T4P to address questions regarding the nature of the interactions that lead to the extraordinary strength of bacterial pili. SMD simulations revealed that the buried pilin α1 domains maintain hydrophobic contacts with one another within the core of the filament, leading to GC-T4P's structural stability. At the filament surface, gaps between pilin globular head domains in both the native and pulled states provide water accessible routes between the external environment and the interior of the filament, allowing water to access the pilin α1 domains as reported for VC-T4P in deuterium exchange experiments. Results were also compared to the experimentally observed force-induced conformation. In particular, an exposed amino acid sequence in the experimentally stretched filament was also found to become exposed during the SMD simulations, suggesting that initial stages of the force induced transition are well captured. Furthermore, a second sequence was shown to be initially hidden in the native filament and became exposed upon stretching. There are a large number of infectious bacteria that can be harmful to humans. Some bacterial infections are facilitated by long, tether-like filaments called type IV pili which extend from the surface of bacterial cells and attach to the surface of host cells. Type IV pilus filaments can grow to be many micrometers in length (bacterial cells themselves, on average, are only a couple of micrometers in length and half a micrometer in diameter), and can exert very large forces (up to 100,000 times the bodyweight of the bacteria). Because they extend from the surface of the cell, type IV pili are very good candidates for drug targeting. Computer simulation was used to exert forces on a segment of one of these filaments, in an effort to mimic the effects of tension that would be experienced by the pilus upon binding during infection. Regions of the filament that become exposed to the external environment in the pulled state were determined, in an attempt to identify amino acid sequences that could act as targets for drug design.
Collapse
Affiliation(s)
- Joseph L. Baker
- Department of Physics, University of Arizona, Tucson, Arizona, United States of America
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Florence Tama
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
19
|
Kurre R, Höne A, Clausen M, Meel C, Maier B. PilT2 enhances the speed of gonococcal type IV pilus retraction and of twitching motility. Mol Microbiol 2012; 86:857-65. [PMID: 23035839 DOI: 10.1111/mmi.12022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2012] [Indexed: 11/28/2022]
Abstract
Type IV pilus (T4P) dynamics is important for various bacterial functions including host cell interaction, surface motility, and horizontal gene transfer. T4P retract rapidly by depolymerization, generating large mechanical force. The gene that encodes the pilus retraction ATPase PilT has multiple paralogues, whose number varies between different bacterial species, but their role in regulating physical parameters of T4P dynamics remains unclear. Here, we address this question in the human pathogen Neisseria gonorrhoeae, which possesses two pilT paralogues, namely pilT2 and pilU. We show that the speed of twitching motility is strongly reduced in a pilT2 deletion mutant, while directional persistence time and sensitivity of speed to oxygen are unaffected. Using laser tweezers, we found that the speed of single T4P retraction was reduced by a factor of ≈ 2 in a pilT2 deletion strain, whereas pilU deletion showed a minor effect. The maximum force and the probability for switching from retraction to elongation under application of high force were not significantly affected. We conclude that the physical parameters of T4P are fine-tuned through PilT2.
Collapse
Affiliation(s)
- Rainer Kurre
- Department of Physics and Biocenter, University of Cologne, Zülpicher Str. 77, 50937, Köln, Germany
| | | | | | | | | |
Collapse
|
20
|
Construction and characterization of a derivative of Neisseria gonorrhoeae strain MS11 devoid of all opa genes. J Bacteriol 2012; 194:6468-78. [PMID: 23002223 DOI: 10.1128/jb.00969-12] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To better understand the role of Opa in gonococcal infections, we created and characterized a derivative of MS11 (MS11Δopa) that had the coding sequence for all 11 Opa proteins deleted. The MS11Δopa bacterium lost the ability to bind to purified lipooligosaccharide (LOS). While nonpiliated MS11Δopa and nonpiliated Opa-expressing MS11 cells grew at the same rate, nonpiliated MS11Δopa cells rarely formed clumps of more than four bacteria when grown in broth with vigorous shaking. Using flow cytometry analysis, we demonstrated that MS11Δopa produced a homogeneous population of bacteria that failed to bind monoclonal antibody (MAb) 4B12, a MAb specific for Opa. Opa-expressing MS11 cells consisted of two predominant populations, where ∼85% bound MAb 4B12 to a significant level and the other population bound little if any MAb. Approximately 90% of bacteria isolated from a phenotypically Opa-negative colony (a colony that does not refract light) failed to bind MAb 4B12; the remaining 10% bound MAb to various degrees. Piliated MS11Δopa cells formed dispersed microcolonies on ME180 cells which were visually distinct from those of piliated Opa-expressing MS11 cells. When Opa expression was reintroduced into MS11Δopa, the adherence ability of the strain recovered to wild-type levels. These data indicate that Opa contributes to both bacterium-bacterium and bacterium-host cell interactions.
Collapse
|
21
|
Li J, Egelman EH, Craig L. Structure of the Vibrio cholerae Type IVb Pilus and stability comparison with the Neisseria gonorrhoeae type IVa pilus. J Mol Biol 2012; 418:47-64. [PMID: 22361030 DOI: 10.1016/j.jmb.2012.02.017] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Revised: 02/10/2012] [Accepted: 02/14/2012] [Indexed: 01/08/2023]
Abstract
Type IV pili are multifunctional filaments displayed on many bacterial pathogens. Members of the Type IVa pilus subclass are found on a diverse group of human pathogens, whereas Type IVb pili are found almost exclusively on enteric bacteria. The Type IVa and IVb subclasses are distinguished by differences in the pilin subunits, including the fold of the globular domain. To understand the implications of the distinct pilin folds, we compared the stabilities of pilin subunits and pilus filaments for the Type IVa GC pilus from Neisseria gonorrhoeae and the Type IVb toxin-coregulated pilus (TCP) from Vibrio cholerae. We show that while recombinant TCP pilin is more stable than GC pilin, the GC pili are more resistant to proteolysis, heat and chemical denaturation than TCP, remaining intact in 8 M urea. To understand these differences, we determined the TCP structure by electron microscopy and three-dimensional image reconstruction. TCP have an architecture similar to that of GC pili, with subunits arranged in a right-handed 1-start helix and related by an 8.4-Å axial rise and a 96.8° azimuthal rotation. However, the TCP subunits are not as tightly packed as GC pilins, and the distinct Type IVb pilin fold exposes a segment of the α-helical core of TCP. Hydrophobic interactions dominate for both pilus subtypes, but base stacking by aromatic residues conserved among the Type IVa pilins may contribute to GC pilus stability. The extraordinary stability of GC pili may represent an adaptation of the Type IVa pili to harsh environments and the need to retract against external forces.
Collapse
Affiliation(s)
- Juliana Li
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada
| | | | | |
Collapse
|
22
|
Meel C, Kouzel N, Oldewurtel ER, Maier B. Three-dimensional obstacles for bacterial surface motility. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2012; 8:530-534. [PMID: 22183854 DOI: 10.1002/smll.201101362] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 09/12/2011] [Indexed: 05/31/2023]
Abstract
Twitching motility enables bacteria to move over surfaces using type IV pili as grappling hooks. Here it is shown that the motility of the round Neisseria gonorrhoeae as well as of rod-shaped Myxococcus xanthus is guided by elevations with dimension and depth corresponding to the size of the bacteria.
Collapse
Affiliation(s)
- Claudia Meel
- Institute for Molecular Cell Biology, Westfälische Wilhelms Universität Münster, 48149 Münster, Germany
| | | | | | | |
Collapse
|
23
|
Abstract
The importance of physical forces in biology is becoming more appreciated. Neisseria gonorrhoeaehas become a paradigm for the study of physical forces in the bacterial world. Cycles of elongations and retractions of Type IV pili enables N. gonorrhoeaebacteria to exert forces on its environment, forces that play major roles in the life cycle of this pathogen. In order to better understand the role of these forces, there is a need to fully characterize them. Here, we present two different techniques, optical tweezers and Polyacrylamide MicroPillars (PoMPs), for measuring pilus retraction forces. Initially designed for N. gonorrhoeae, these assays can be readily modified to study other pilus-bearing bacteria including Neisseria meningitidis.
Collapse
Affiliation(s)
- Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, NY, USA.
| | | | | | | |
Collapse
|
24
|
Higashi DL, Biais N, Weyand NJ, Agellon A, Sisko JL, Brown LM, So M. N. elongata produces type IV pili that mediate interspecies gene transfer with N. gonorrhoeae. PLoS One 2011; 6:e21373. [PMID: 21731720 PMCID: PMC3120873 DOI: 10.1371/journal.pone.0021373] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 05/26/2011] [Indexed: 02/01/2023] Open
Abstract
The genus Neisseria contains at least eight commensal and two pathogenic species. According to the Neisseria phylogenetic tree, commensals are basal to the pathogens. N. elongata, which is at the opposite end of the tree from N. gonorrhoeae, has been observed to be fimbriated, and these fimbriae are correlated with genetic competence in this organism. We tested the hypothesis that the fimbriae of N. elongata are Type IV pili (Tfp), and that Tfp functions in genetic competence. We provide evidence that the N. elongata fimbriae are indeed Tfp. Tfp, as well as the DNA Uptake Sequence (DUS), greatly enhance N. elongata DNA transformation. Tfp allows N. elongata to make intimate contact with N. gonorrhoeae and to mediate the transfer of antibiotic resistance markers between these two species. We conclude that Tfp functional for genetic competence is a trait of a commensal member of the Neisseria genus. Our findings provide a mechanism for the horizontal gene transfer that has been observed among Neisseria species.
Collapse
MESH Headings
- Base Sequence
- DNA, Bacterial/metabolism
- Drug Resistance, Bacterial/drug effects
- Epithelial Cells/drug effects
- Epithelial Cells/microbiology
- Epithelial Cells/ultrastructure
- Fimbriae, Bacterial/drug effects
- Fimbriae, Bacterial/genetics
- Fimbriae, Bacterial/metabolism
- Fimbriae, Bacterial/ultrastructure
- Gene Transfer, Horizontal/genetics
- Genes, Bacterial/genetics
- Humans
- Mutation/genetics
- Neisseria elongata/drug effects
- Neisseria elongata/genetics
- Neisseria elongata/metabolism
- Neisseria elongata/ultrastructure
- Neisseria gonorrhoeae/drug effects
- Neisseria gonorrhoeae/genetics
- Neisseria gonorrhoeae/ultrastructure
- Rifampin/pharmacology
- Species Specificity
- Surface Properties/drug effects
- Transcription, Genetic/drug effects
- Transformation, Bacterial/drug effects
- Transformation, Bacterial/genetics
Collapse
Affiliation(s)
- Dustin L. Higashi
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Nicolas Biais
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Nathan J. Weyand
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Al Agellon
- University Spectroscopy and Imaging Facilities, University of Arizona, Tucson, Arizona, United States of America
| | - Jennifer L. Sisko
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
| | - Lewis M. Brown
- Department of Biological Sciences, Columbia University, New York, New York, United States of America
| | - Magdalene So
- Department of Immunobiology and the BIO5 Institute, University of Arizona, Tucson, Arizona, United States of America
- * E-mail:
| |
Collapse
|
25
|
|
26
|
Opitz D, Maier B. Rapid cytoskeletal response of epithelial cells to force generation by type IV pili. PLoS One 2011; 6:e17088. [PMID: 21340023 PMCID: PMC3038865 DOI: 10.1371/journal.pone.0017088] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Accepted: 01/14/2011] [Indexed: 11/19/2022] Open
Abstract
Many bacterial pathogens interfere with cellular functions including phagocytosis and barrier integrity. The human pathogen Neissieria gonorrhoeae generates grappling hooks for adhesion, spreading, and induction of signal cascades that lead to formation cortical plaques containing f-actin and ezrin. It is unclear whether high mechanical forces generated by type IV pili (T4P) are a direct signal that leads to cytoskeletal rearrangements and at which time scale the cytoskeletal response occurs. Here we used laser tweezers to mimic type IV pilus mediated force generation by T4P-coated beads on the order of 100 pN. We found that actin-EGFP and ezrin-EGFP accumulated below pilus-coated beads when force was applied. Within 2 min, accumulation significantly exceeded controls without force or without pili, demonstrating that T4P-generated force rapidly induces accumulation of plaque proteins. This finding adds mechanical force to the many strategies by which bacteria modulate the host cell cytoskeleton.
Collapse
Affiliation(s)
- Dirk Opitz
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms Universität, Münster, Germany
| | - Berenike Maier
- Institut für Molekulare Zellbiologie, Westfälische Wilhelms Universität, Münster, Germany
| |
Collapse
|
27
|
Lim MS, Ng D, Zong S, Arvai AS, Taylor RK, Tainer JA, Craig L. Vibrio cholerae El Tor TcpA crystal structure and mechanism for pilus-mediated microcolony formation. Mol Microbiol 2010; 77:755-70. [PMID: 20545841 PMCID: PMC2939829 DOI: 10.1111/j.1365-2958.2010.07244.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Type IV pili (T4P) are critical to virulence for Vibrio cholerae and other bacterial pathogens. Among their diverse functions, T4P mediate microcolony formation, which protects the bacteria from host defences and concentrates secreted toxins. The T4P of the two V. cholerae O1 disease biotypes, classical and El Tor, share 81% identity in their TcpA subunits, yet these filaments differ in their interaction patterns as assessed by electron microscopy. To understand the molecular basis for pilus-mediated microcolony formation, we solved a 1.5 A resolution crystal structure of N-terminally truncated El Tor TcpA and compared it with that of classical TcpA. Residues that differ between the two pilins are located on surface-exposed regions of the TcpA subunits. By iteratively changing these non-conserved amino acids in classical TcpA to their respective residues in El Tor TcpA, we identified residues that profoundly affect pilus:pilus interaction patterns and bacterial aggregation. These residues lie on either the protruding d-region of the TcpA subunit or in a cavity between pilin subunits in the pilus filament. Our results support a model whereby pili interact via intercalation of surface protrusions on one filament into depressions between subunits on adjacent filaments as a means to hold V. cholerae cells together in microcolonies.
Collapse
Affiliation(s)
- Mindy S. Lim
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC Canada V5A 1S6
| | - Dixon Ng
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC Canada V5A 1S6
| | - Stuart Zong
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC Canada V5A 1S6
| | - Andrew S. Arvai
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ronald K. Taylor
- Department of Microbiology and Immunology, Dartmouth Medical School, Hanover NH 03755, USA
| | - John A. Tainer
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Lisa Craig
- Molecular Biology and Biochemistry Department, Simon Fraser University, Burnaby, BC Canada V5A 1S6
| |
Collapse
|