1
|
Chatrath A, Patel P, Dey P, Free SJ. Characterization of the Neurospora crassa GH72 family of Laminarin/Lichenin transferases and their roles in cell wall biogenesis. Cell Surf 2025; 13:100140. [PMID: 39866863 PMCID: PMC11758075 DOI: 10.1016/j.tcsw.2024.100140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/12/2024] [Accepted: 12/30/2024] [Indexed: 01/28/2025] Open
Abstract
In Neurospora crassa vegetative hyphae, chitin, β-1,3-glucan (laminarin), and a mixed β-1,3-/β-1,4-glucan (lichenin) are the major cell wall polysaccharides. GH72 enzymes have been shown to function as β-1,3-glucanases and glucanosyltransferases and can function in crosslinking β-1,3-glucans together. To characterize the enzymatic activities of the N. crassa enzymes, we expressed GEL-1 with a HIS6 tag in N. crassa. A chimeric maltose binding protein:GEL-2 was produced in E. coli. Purified GEL-1 and GEL-2 were used to characterize their enzymatic activities. We employed thin-layer chromatography (TLC) and polyacrylamide carbohydrate gel electrophoresis (PACE) assays to visualize GEL-1 and GEL-2 hydrolase and transferase activities on lichenin and laminarin substrates. We determined that GEL-1 functions as a laminarinase (β-1,3-glucanase) and as a laminarin transferase. We found that GEL-2 can function as a laminarinase and as a licheninase (β-1,3-/β-1,4-mixed-glucanase) and can crosslink β-1,3-glucans together. We demonstrated that GEL-2 can form enzyme:lichenin intermediates, providing evidence that GEL-2 functions as a lichenin transferase as well as a β-1,3-glucan transferase and crosslinks both types of polysaccharides into the N. crassa cell wall.
Collapse
Affiliation(s)
- Apurva Chatrath
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Pavan Patel
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Protyusha Dey
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| |
Collapse
|
2
|
Wen TT, Qian ZY, Sun L, Cui FJ, Zan XY, Meng LJ, Sun WJ. Fungal β-1, 3-glucanosyltransferases: A comprehensive review on classification, catalytic mechanism and functional role. Int J Biol Macromol 2025; 289:138651. [PMID: 39694372 DOI: 10.1016/j.ijbiomac.2024.138651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 11/24/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
β-1,3-Glucans form the major carbohydrate component of fungal cell walls, playing a vital role in cell viability, stress response, virulence, and even healthy functions such as immuno-enhancement. The elongation and branching of β-1,3-glucans is a mystery. More evidence proved the β-1, 3-glucantransferases belonging to GH72 or GH17 family to branch and remodel the synthesized linear β-1, 3-glucan chain by cleaving its internal β-1, 3-linkage and transfer the cleaved fragment to the nonreducing end of another β-1, 3-glucan acceptor. The present review summarized the comprehensive advances of β-1, 3-glucantransferases including their structures such as catalytic and non-catalytic protein domains, catalytic mechanisms and roles in cell wall formation, cell separation and cell viability to provide the references for understanding and guiding the biosynthesis and production regulation of functional β-1, 3-glucans with high-branched or elongated structures.
Collapse
Affiliation(s)
- Ting-Ting Wen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Zhuo-Yu Qian
- Guangdong HAID Research Institute, Guangzhou 511400, PR China
| | - Lei Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Feng-Jie Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| | - Xin-Yi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Li-Juan Meng
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Wen-Jing Sun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, PR China; Jiangxi Provincial Engineering and Technology Center for Food Additives Bio-production, Dexing 334221, PR China.
| |
Collapse
|
3
|
Pan Y, Shi Z, Wang Y, Chen F, Yang Y, Ma K, Li W. Baicalin promotes β-1,3-glucan exposure in Candida albicans and enhances macrophage response. Front Cell Infect Microbiol 2024; 14:1487173. [PMID: 39717547 PMCID: PMC11664218 DOI: 10.3389/fcimb.2024.1487173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/11/2024] [Indexed: 12/25/2024] Open
Abstract
Among the diverse fungal opportunistic pathogens, Candida albicans garners significant attention due to its wide range of infections and high frequency of occurrence. The emergence of resistance and the limited number of antifungals drives the need to develop novel antifungal drugs. Although the natural product baicalin has been shown to trigger apoptosis in C. albicans in previous experiments, its influence on cell wall (CW) structure along with immune recognition remains elusive. In this work, baicalin showed a significant killing effect against C. albicans SC5314. Moreover, CW destruction, characterized by β-1,3-glucan unmasking and chitin deposition, was observed as a consequence of the treatment with baicalin. The RNA sequencing analysis revealed that treatment with baicalin resulted in eight hundred forty-two differentially expressed genes (DEGs). Sixty-five genes, such as GSC1, ENG1, CHS3, GWT1, and MKC1, were associated with CW organization or biogenesis. Baicalin-pretreated C. albicans SC5314 was phagocytosed more efficiently by RAW264.7 macrophages, accompanied by increased TNF-α and IL-1β production. Accordingly, it is hypothesized that baicalin could stimulate β-1,3-glucan unmasking by governing CW-associated gene expression in C. albicans SC5314, which contributes to macrophage recognition and clearance.
Collapse
Affiliation(s)
- Yiyuan Pan
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Zhaoling Shi
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Yadong Wang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Feng Chen
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Yue Yang
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Kelong Ma
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| | - Wenqian Li
- College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
- Institute of Integrated Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei, China
- Anhui Provincial Key Laboratory of Chinese Medicinal Formula, Hefei, Anhui, China
| |
Collapse
|
4
|
Guan G, Li S, Bing J, Liu L, Tao L. The Rfg1 and Bcr1 transcription factors regulate acidic pH-induced filamentous growth in Candida albicans. Microbiol Spectr 2023; 11:e0178923. [PMID: 37933972 PMCID: PMC10715123 DOI: 10.1128/spectrum.01789-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 09/23/2023] [Indexed: 11/08/2023] Open
Abstract
IMPORTANCE Candida albicans is a human commensal and frequent pathogen that encounters a wide range of pH stresses. The ability of C. albicans to adapt to changes in extracellular pH is crucial for its success in colonization and pathogenesis. The Rim101 pH sensing pathway is well known to govern neutral-alkaline pH responses in this pathogen. Here, we report a novel Rfg1-Bcr1 regulatory pathway that governs acidic pH responses and regulates filamentous growth in C. albicans. In addition, the Rim101-Phr1 pathway, cAMP signaling pathway, transcription factors Efg1 and Flo8, and hyphal-specific G1 cyclin Hgc1 cooperate with this regulation. Our findings provide new insights into the regulatory mechanism of acidic pH response in C. albicans.
Collapse
Affiliation(s)
- Guobo Guan
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuaihu Li
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Jian Bing
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Ling Liu
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Li Tao
- Department of Infectious Diseases, Huashan Hospital, Shanghai Institute of Infectious Disease and Biosecurity and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
5
|
David H, Solomon AP. Molecular association of Candida albicans and vulvovaginal candidiasis: focusing on a solution. Front Cell Infect Microbiol 2023; 13:1245808. [PMID: 37900321 PMCID: PMC10611527 DOI: 10.3389/fcimb.2023.1245808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/21/2023] [Indexed: 10/31/2023] Open
Abstract
Candida albicans-mediated vulvovaginal candidiasis (VVC) is a significant challenge in clinical settings, owing to the inefficacy of current antifungals in modulating virulence, development of resistance, and poor penetration into the biofilm matrix. Various predisposition factors are molecular drivers that lead to the dysbiosis of normal microflora of the vagina, upregulation of central metabolic pathways, morphogenesis, hyphal extension, adhesion, invasion, and biofilm formation leading to chronic infection and recurrence. Hence, it is crucial to understand the molecular mechanism behind the virulence pathways driven by those drivers to decode the drug targets. Finding innovative solutions targeting fungal virulence/biofilm may potentiate the antifungals at low concentrations without affecting the recurrence of resistance. With this background, the present review details the critical molecular drivers and associated network of virulence pathways, possible drug targets, target-specific inhibitors, and probable mode of drug delivery to cross the preclinical phase by appropriate in vivo models.
Collapse
Affiliation(s)
| | - Adline Princy Solomon
- Quorum Sensing Laboratory, Centre for Research in Infectious Diseases (CRID), School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| |
Collapse
|
6
|
Li R, Zhu L, Liu D, Wang W, Zhang C, Jiao S, Wei J, Ren L, Zhang Y, Gou X, Yuan X, Du Y, Wang ZA. High molecular weight chitosan oligosaccharide exhibited antifungal activity by misleading cell wall organization via targeting PHR transglucosidases. Carbohydr Polym 2022; 285:119253. [PMID: 35287867 DOI: 10.1016/j.carbpol.2022.119253] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 11/02/2022]
Abstract
The fungal cell wall is an ideal target for the design of antifungal drugs. In this study we used an analog of cell wall polymer, a highly deacetylated high molecular-weight chitosan oligosaccharide (HCOS), to test its effect against pathogenic Candida strains. Results showed that HCOS was successfully incorporated into the dynamic cell wall organization process and exhibited an apparent antifungal activity against both plankton and mature fungal biofilm, by impairing the cell wall integrity. Unexpectedly, mechanistic studies suggested that HCOS exerts its activity by interfering with family members of PHR β-(1,3)-glucanosyl transferases and affecting the connection and assembly of cell wall polysaccharides. Furthermore, HCOS showed great synergistic activity with different fungicides against Candida cells, especially those in biofilm. These findings indicated HCOS has a great potential as an antifungal drug or drug synergist and proposed a novel antifungal strategy with structure-specific oligosaccharides mimicking cell wall polysaccharide fragments.
Collapse
Affiliation(s)
- Ruilian Li
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Limeng Zhu
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Dongdong Liu
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjing Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Chen Zhang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Siming Jiao
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Jinhua Wei
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Lishi Ren
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yuchen Zhang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xun Gou
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Xianghua Yuan
- College of Life Science, Sichuan Normal University, Chengdu 610101, China
| | - Yuguang Du
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| | - Zhuo A Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
7
|
Ibe C, Munro CA. Fungal Cell Wall Proteins and Signaling Pathways Form a Cytoprotective Network to Combat Stresses. J Fungi (Basel) 2021; 7:jof7090739. [PMID: 34575777 PMCID: PMC8466366 DOI: 10.3390/jof7090739] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/01/2021] [Accepted: 09/04/2021] [Indexed: 12/13/2022] Open
Abstract
Candida species are part of the normal flora of humans, but once the immune system of the host is impaired and they escape from commensal niches, they shift from commensal to pathogen causing candidiasis. Candida albicans remains the primary cause of candidiasis, accounting for about 60% of the global candidiasis burden. The cell wall of C. albicans and related fungal pathogens forms the interface with the host, gives fungal cells their shape, and also provides protection against stresses. The cell wall is a dynamic organelle with great adaptive flexibility that allows remodeling, morphogenesis, and changes in its components in response to the environment. It is mainly composed of the inner polysaccharide rich layer (chitin, and β-glucan) and the outer protein coat (mannoproteins). The highly glycosylated protein coat mediates interactions between C. albicans cells and their environment, including reprograming of wall architecture in response to several conditions, such as carbon source, pH, high temperature, and morphogenesis. The mannoproteins are also associated with C. albicans adherence, drug resistance, and virulence. Vitally, the mannoproteins contribute to cell wall construction and especially cell wall remodeling when cells encounter physical and chemical stresses. This review describes the interconnected cell wall integrity (CWI) and stress-activated pathways (e.g., Hog1, Cek1, and Mkc1 mediated pathways) that regulates cell wall remodeling and the expression of some of the mannoproteins in C. albicans and other species. The mannoproteins of the surface coat is of great importance to pathogen survival, growth, and virulence, thus understanding their structure and function as well as regulatory mechanisms can pave the way for better management of candidiasis.
Collapse
Affiliation(s)
- Chibuike Ibe
- Department of Microbiology, Faculty of Biological Sciences, Abia State University, Uturu 441107, Nigeria
- Correspondence:
| | - Carol A. Munro
- Aberdeen Fungal Group, Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen AB24 3FX, UK;
| |
Collapse
|
8
|
Torres-Obreque KM, Meneguetti GP, Muso-Cachumba JJ, Feitosa VA, Santos JHPM, Ventura SPM, Rangel-Yagui CO. Building better biobetters: From fundamentals to industrial application. Drug Discov Today 2021; 27:65-81. [PMID: 34461236 DOI: 10.1016/j.drudis.2021.08.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/28/2021] [Accepted: 08/23/2021] [Indexed: 11/17/2022]
Abstract
Biological drugs or biopharmaceuticals off patent open a large market for biosimilars and biobetters, follow-on biologics. Biobetters, in particular, are new drugs designed from existing ones with improved properties such as higher selectivity, stability, half-life and/or lower toxicity/immunogenicity. Glycosylation is one of the most used strategies to improve biological drugs, nonetheless bioconjugation is an additional alternative and refers to the covalent attachment of polymers to biological drugs. Extensive research on novel polymers is underway, nonetheless PEGylation is still the best alternative with the longest clinical track record. Innovative trends based on genetic engineering techniques such as fusion proteins and PASylation are also promising. In this review, all these alternatives wereexplored as well as current market trends, legislation and future perspectives.
Collapse
Affiliation(s)
- Karin M Torres-Obreque
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanna P Meneguetti
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Bionanomanufacturing Center, Institute for Technological Research (IPT), São Paulo, Brazil
| | - Jorge J Muso-Cachumba
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
| | - Valker A Feitosa
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; Bionanomanufacturing Center, Institute for Technological Research (IPT), São Paulo, Brazil
| | - João H P M Santos
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil; CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Sónia P M Ventura
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Aveiro, Portugal
| | - Carlota O Rangel-Yagui
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Lok B, Adam MAA, Kamal LZM, Chukwudi NA, Sandai R, Sandai D. The assimilation of different carbon sources in Candida albicans: Fitness and pathogenicity. Med Mycol 2021; 59:115-125. [PMID: 32944760 DOI: 10.1093/mmy/myaa080] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/07/2020] [Accepted: 08/14/2020] [Indexed: 01/31/2023] Open
Abstract
Candida albicans is a commensal yeast commonly found on the skin and in the body. However, in immunocompromised individuals, the fungi could cause local and systemic infections. The carbon source available plays an important role in the establishment of C. albicans infections. The fungi's ability to assimilate a variety of carbon sources plays a vital role in its colonization, and by extension, its fitness and pathogenicity, as it often inhabits niches that are glucose-limited but rich in alternative carbon sources. A difference in carbon sources affect the growth and mating of C. albicans, which contributes to its pathogenicity as proliferation helps the fungi colonize its environment. The carbon source also affects its metabolism and signaling pathways, which are integral parts of the fungi's fitness and pathogenicity. As a big percentage of the carbon assimilated by C. albicans goes to cell wall biogenesis, the availability of different carbon sources will result in cell walls with variations in rigidity, adhesion, and surface hydrophobicity. In addition to the biofilm formation of the fungi, the carbon source also influences whether the fungi grow in yeast- or mycelial-form. Both forms play different roles in C. albicans's infection process. A better understanding of the role of the carbon sources in C. albicans's pathogenicity would contribute to more effective treatment solutions for fungal infections.
Collapse
Affiliation(s)
- Bronwyn Lok
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Mowaffaq Adam Ahmad Adam
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Laina Zarisa Mohd Kamal
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Nwakpa Anthony Chukwudi
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| | - Rosline Sandai
- Faculty of Languages and Communication, Universiti Pendidikan Sultan Idris, Perak Darul Ridzuan, Malaysia
| | - Doblin Sandai
- Infectomics Cluster, Advance Medical and Dental Institute, Universiti Sains Malaysia, Penang, Malaysia
| |
Collapse
|
10
|
The pH-Responsive Transcription Factors YlRim101 and Mhy1 Regulate Alkaline pH-Induced Filamentation in the Dimorphic Yeast Yarrowia lipolytica. mSphere 2021; 6:6/3/e00179-21. [PMID: 34011684 PMCID: PMC8265631 DOI: 10.1128/msphere.00179-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Environmental pH influences cell growth and differentiation. In the dimorphic yeast Yarrowia lipolytica, neutral-alkaline pH strongly induces the yeast-to-filament transition. However, the regulatory mechanism that governs alkaline pH-induced filamentation has been unclear. Here, we show that the pH-responsive transcription factor Y. lipolytica Rim101 (YlRim101) is a major regulator of alkaline-induced filamentation, since the deletion of YlRIM101 severely impaired filamentation at alkaline pH, whereas the constitutively active YlRIM1011-330 mutant mildly induced filamentation at acidic pH. YlRim101 controls the expression of the majority of alkaline-regulated cell wall protein genes. One of these, the cell surface glycosidase gene YlPHR1, plays a critical role in growth, cell wall function, and filamentation at alkaline pH. This finding suggests that YlRim101 promotes filamentation at alkaline pH via controlling the expression of these genes. We also show that, in addition to YlRim101, the Msn2/Msn4-like transcription factor Mhy1 is highly upregulated at alkaline pH and is essential for filamentation. However, unlike YlRim101, which specifically regulates alkaline-induced filamentation, Mhy1 regulates both alkaline- and glucose-induced filamentation, since the deletion of MHY1 abolished them both, whereas the overexpression of MHY1 induced strong filamentation irrespective of the pH or the presence of glucose. Finally, we show that YlRim101 and Mhy1 positively coregulate seven cell wall protein genes at alkaline pH, including YlPHR1 and five cell surface adhesin-like genes, three of which appear to promote filamentation. Together, these results reveal a conserved role of YlRim101 and a novel role of Mhy1 in the regulation of alkaline-induced filamentation in Y. lipolytica IMPORTANCE The regulatory mechanism that governs pH-regulated filamentation is not clear in dimorphic fungi except in Candida albicans Here, we investigated the regulation of alkaline pH-induced filamentation in Yarrowia lipolytica, a dimorphic yeast distantly related to C. albicans Our results show that the transcription factor YlRim101 and the Msn2/Msn4-like transcription factor Mhy1 are the major regulators that promote filamentation at alkaline pH. They control the expression of a number of cell wall protein genes important for cell wall organization and filamentation. Our results suggest that the Rim101/PacC homologs play a conserved role in pH-regulated filamentation in dimorphic fungi.
Collapse
|
11
|
Pradhan A, Ma Q, de Assis LJ, Leaves I, Larcombe DE, Rodriguez Rondon AV, Nev OA, Brown AJP. Anticipatory Stress Responses and Immune Evasion in Fungal Pathogens. Trends Microbiol 2021; 29:416-427. [PMID: 33059975 DOI: 10.1016/j.tim.2020.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 09/10/2020] [Accepted: 09/22/2020] [Indexed: 12/17/2022]
Abstract
In certain niches, microbes encounter environmental challenges that are temporally linked. In such cases, microbial fitness is enhanced by the evolution of anticipatory responses where the initial challenge simultaneously activates pre-emptive protection against the second impending challenge. The accumulation of anticipatory responses in domesticated yeasts, which have been termed 'adaptive prediction', has led to the emergence of 'core stress responses' that provide stress cross-protection. Protective anticipatory responses also seem to be common in fungal pathogens of humans. These responses reflect the selective pressures that these fungi have faced relatively recently in their evolutionary history. Consequently, some pathogens have evolved 'core environmental responses' which exploit host signals to trigger immune evasion strategies that protect them against imminent immune attack.
Collapse
Affiliation(s)
- Arnab Pradhan
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Qinxi Ma
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Leandro J de Assis
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Ian Leaves
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Daniel E Larcombe
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alejandra V Rodriguez Rondon
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Olga A Nev
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Geoffrey Pope Building, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
12
|
Candida albicans promotes tooth decay by inducing oral microbial dysbiosis. THE ISME JOURNAL 2021; 15:894-908. [PMID: 33149208 PMCID: PMC8026629 DOI: 10.1038/s41396-020-00823-8] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 02/05/2023]
Abstract
Candida albicans has been detected in root carious lesions. The current study aimed to explore the action of this fungal species on the microbial ecology and the pathogenesis of root caries. Here, by analyzing C. albicans in supragingival dental plaque collected from root carious lesions and sound root surfaces of root-caries subjects as well as caries-free individuals, we observed significantly increased colonization of C. albicans in root carious lesions. Further in vitro and animal studies showed that C. albicans colonization increased the cariogenicity of oral biofilm by altering its microbial ecology, leading to a polymicrobial biofilm with enhanced acidogenicity, and consequently exacerbated tooth demineralization and carious lesion severity. More importantly, we demonstrated that the cariogenicity-promoting activity of C. albicans was dependent on PHR2. Deletion of PHR2 restored microbial equilibrium and led to a less cariogenic biofilm as demonstrated by in vitro artificial caries model or in vivo root-caries rat model. Our data indicate the critical role of C. albicans infection in the occurrence of root caries. PHR2 is the major factor that determines the ecological impact and caries-promoting activity of C. albicans in a mixed microbial consortium.
Collapse
|
13
|
Evolutionary Overview of Molecular Interactions and Enzymatic Activities in the Yeast Cell Walls. Int J Mol Sci 2020; 21:ijms21238996. [PMID: 33256216 PMCID: PMC7730094 DOI: 10.3390/ijms21238996] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/25/2022] Open
Abstract
Fungal cell walls are composed of a polysaccharide network that serves as a scaffold in which different glycoproteins are embedded. Investigation of fungal cell walls, besides simple identification and characterization of the main cell wall building blocks, covers the pathways and regulations of synthesis of each individual component of the wall and biochemical reactions by which they are cross-linked and remodeled in response to different growth phase and environmental signals. In this review, a survey of composition and organization of so far identified and characterized cell wall components of different yeast genera including Saccharomyces, Candida, Kluyveromyces, Yarrowia, and Schizosaccharomyces are presented with the focus on their cell wall proteomes.
Collapse
|
14
|
Abstract
Candida auris is an enigmatic yeast that provides substantial global risk in health care facilities and intensive care units. A unique phenotype exhibited by certain isolates of C. auris is their ability to form small clusters of cells known as aggregates, which have been to a limited extent described in the context of pathogenic traits. In this study, we screened several nonaggregative and aggregative C. auris isolates for biofilm formation, where we observed a level of heterogeneity among the different phenotypes. Next, we utilized an RNA sequencing approach to investigate the transcriptional responses during biofilm formation of a nonaggregative and aggregative isolate of the initial pool. Observations from these analyses indicate unique transcriptional profiles in the two isolates, with several genes identified relating to proteins involved in adhesion and invasion of the host in other fungal species. From these findings, we investigated for the first time the fungal recognition and inflammatory responses of a three-dimensional skin epithelial model to these isolates. In these models, a wound was induced to mimic a portal of entry for C. auris We show that both phenotypes elicited minimal response in the model minus induction of the wound, yet in the wounded tissue, both phenotypes induced a greater response, with the aggregative isolate more proinflammatory. This capacity of aggregative C. auris biofilms to generate such responses in the wounded skin highlights how this opportunistic yeast is a high risk within the intensive care environment where susceptible patients have multiple indwelling lines.IMPORTANCE Candida auris has recently emerged as an important cause of concern within health care environments due to its ability to persist and tolerate commonly used antiseptics and disinfectants, particularly when attached to a surface (biofilms). This yeast is able to colonize and subsequently infect patients, particularly those that are critically ill or immunosuppressed, which may result in death. We have undertaken analysis on two different phenotypic types of this yeast, using molecular and immunological tools to determine whether either of these has a greater ability to cause serious infections. We describe that both isolates exhibit largely different transcriptional profiles during biofilm development. Finally, we show that the inability to form small aggregates (or clusters) of cells has an adverse effect on the organism's immunostimulatory properties, suggesting that the nonaggregative phenotype may exhibit a certain level of immune evasion.
Collapse
|
15
|
Gómez-Gaviria M, Mora-Montes HM. Current Aspects in the Biology, Pathogeny, and Treatment of Candida krusei, a Neglected Fungal Pathogen. Infect Drug Resist 2020; 13:1673-1689. [PMID: 32606818 PMCID: PMC7293913 DOI: 10.2147/idr.s247944] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 05/28/2020] [Indexed: 12/22/2022] Open
Abstract
Fungal infections represent a constant and growing menace to human health, because of the emergence of new species as causative agents of diseases and the increment of antifungal drug resistance. Candidiasis is one of the most common fungal infections in humans and is associated with a high mortality rate when the fungi infect deep-seated organs. Candida krusei belongs to the group of candidiasis etiological agents, and although it is not isolated as frequently as other Candida species, the infections caused by this organism are of special relevance in the clinical setting because of its intrinsic resistance to fluconazole. Here, we offer a thorough revision of the current literature dealing with this organism and the caused disease, focusing on its biological aspects, the host-fungus interaction, the diagnosis, and the infection treatment. Of particular relevance, we provide the most recent genomic information, including the gene prediction of some putative virulence factors, like proteases, adhesins, regulators of biofilm formation and dimorphism. Moreover, C. krusei veterinary aspects and the exploration of natural products with anti-C. krusei activity are also included.
Collapse
Affiliation(s)
- Manuela Gómez-Gaviria
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| | - Héctor M Mora-Montes
- Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Guanajuato, Gto, México
| |
Collapse
|
16
|
Dimethylaminododecyl methacrylate inhibits Candida albicans and oropharyngeal candidiasis in a pH-dependent manner. Appl Microbiol Biotechnol 2020; 104:3585-3595. [PMID: 32125481 DOI: 10.1007/s00253-020-10496-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 01/28/2020] [Accepted: 02/20/2020] [Indexed: 02/05/2023]
Abstract
The prevalence of stomatitis, especially that caused by Candida albicans, has highlighted the need for new antifungal agents. We previously found that a type of quaternary ammonium salts, dimethylaminododecyl methacrylate (DMADDM), incorporated in dental materials inhibited the growth and hyphal development of C. albicans. However, how the quaternary ammonium salts inhibited the fungal pathogens and whether the oral condition, such as salivary pH variation under different diseases, can affect the antimicrobial capacity of quaternary ammonium salts is unknown. This study evaluated the antifungal effects of DMADDM at different pH in vitro and in vivo. A pH-dependent antifungal effect of DMADDM was observed in planktonic and biofilm growth. DMADDM enhanced antifungal activity at alkaline pH. Two pH-regulated genes (PHR1/PHR2) of C. albicans were correlated with the pH-dependent antifungal effects of DMADDM. The PHR1/PHR2 genes and pH values regulated the zeta potential of C. albicans, which then influenced the binding between C. albicans cells and DMADDM. The pH-dependent antifungal activity of DMADDM was then substantiated in a murine oropharyngeal candidiasis model. We directly demonstrated that the antifungal abilities of quaternary ammonium salts relied on the cell zeta potential which affected the binding between fungal cells and quaternary ammonium salts. These findings suggest a new antifungal mechanism of quaternary ammonium under different pH and that DMADDM can be a potential antifungal agent applied in dental materials and stomatitis therapy.Key Points • DMADDM has stronger antifungal activity in alkaline than in acidic pH conditions. • The pH values and pH-regulated genes can affect the zeta potential of fungal cells. • Zeta potential of fungal cells directly affect the binding between DMADDM and cells. Graphical abstract Schematic diagram of the antifungal activities of DMADDM at different pH values.
Collapse
|
17
|
Zangl I, Pap IJ, Aspöck C, Schüller C. The role of Lactobacillus species in the control of Candida via biotrophic interactions. MICROBIAL CELL 2019; 7:1-14. [PMID: 31921929 PMCID: PMC6946018 DOI: 10.15698/mic2020.01.702] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Microbial communities have an important role in health and disease. Candida spp. are ubiquitous commensals and sometimes opportunistic fungal pathogens of humans, colonizing mucosal surfaces of the genital, urinary, respiratory and gastrointestinal tracts and the oral cavity. They mainly cause local mucosal infections in immune competent individuals. However, in the case of an ineffective immune defense, Candida infections may become a serious threat. Lactobacillus spp. are part of the human microbiome and are natural competitors of Candida in the vaginal environment. Lactic acid, low pH and other secreted metabolites are environmental signals sensed by fungal species present in the microbiome. This review briefly discusses the ternary interaction between host, Lactobacillus species and Candida with regard to fungal infections and the potential antifungal and fungistatic effect of Lactobacillus species. Our understanding of these interactions is incomplete due to the variability of the involved species and isolates and the complexity of the human host.
Collapse
Affiliation(s)
- Isabella Zangl
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology (DAGZ), Tulln, Austria
| | - Ildiko-Julia Pap
- University Hospital of St. Pölten, Institute for Hygiene and Microbiology, St Pölten, Austria
| | - Christoph Aspöck
- University Hospital of St. Pölten, Institute for Hygiene and Microbiology, St Pölten, Austria
| | - Christoph Schüller
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Applied Genetics and Cell Biology (DAGZ), Tulln, Austria.,Bioactive Microbial Metabolites (BiMM), BOKU, Tulln, Austria
| |
Collapse
|
18
|
Ikezaki S, Cho T, Nagao JI, Tasaki S, Yamaguchi M, Arita-Morioka KI, Yasumatsu K, Chibana H, Ikebe T, Tanaka Y. Mild Heat Stress Affects on the Cell Wall Structure in Candida albicans Biofilm. Med Mycol J 2019; 60:29-37. [PMID: 31155569 DOI: 10.3314/mmj.19-00001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
We previously reported that Candida albicans responded to mild heat stress in a range of temperature elevations simulating fever, and concluded that mild heat stress increases susceptibility to antifungal drugs. In this study, we show that mild heat stress causes a morphological change in hyphae during the process of biofilm formation. We found that mild heat stress extended the period of hyphal stage maintenance in C. albicans biofilm. Although the rate of hyphal change from yeast form to hyphal form reached the maximum within 3 hr, later, almost every cell quickly reverted to the yeast growth phase within 6 hr at 37°C but not at 39°C, or under mild heat stress. Electron microscopy using a smart specimen preparation technique revealed that mild heat stress significantly increased the thickness of the inner cell wall accompanied by a decrease in density of the outer cell wall in the hyphae of C. albicans biofilm. To identify the gene responsible for the morphological changes associated with mild heat stress, we performed microarray gene expression analysis. Eleven genes were upregulated and 17 genes were downregulated under mild heat stress in biofilm cells. The increased PHR1 gene expression in response to mild heat stress was confirmed in quantitative RT-PCR analysis. The mutant upregulated PHR1 expression showed the same sensitivity against antifungal drug micafungin as dependent on mild heat stress. Our findings point to possible therapeutic effects of hyperthermia as well as to the effect of fever during infections.
Collapse
Affiliation(s)
- Shojiro Ikezaki
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College.,Section of Oral Surgery, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College
| | - Tamaki Cho
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College
| | - Jun-Ichi Nagao
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College
| | - Sonoko Tasaki
- Section of Dentistry for the Disabled, Department of Oral Growth and Development, Fukuoka Dental College
| | | | - Ken-Ichi Arita-Morioka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College
| | - Kanae Yasumatsu
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College
| | | | - Tetsuro Ikebe
- Section of Oral Surgery, Department of Oral and Maxillofacial Surgery, Fukuoka Dental College
| | - Yoshihiko Tanaka
- Section of Infection Biology, Department of Functional Bioscience, Fukuoka Dental College
| |
Collapse
|
19
|
Patel PK, Free SJ. The Genetics and Biochemistry of Cell Wall Structure and Synthesis in Neurospora crassa, a Model Filamentous Fungus. Front Microbiol 2019; 10:2294. [PMID: 31649638 PMCID: PMC6796803 DOI: 10.3389/fmicb.2019.02294] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/20/2019] [Indexed: 01/25/2023] Open
Abstract
This review discusses the wealth of information available for the N. crassa cell wall. The basic organization and structure of the cell wall is presented and how the wall changes during the N. crassa life cycle is discussed. Over forty cell wall glycoproteins have been identified by proteomic analyses. Genetic and biochemical studies have identified many of the key enzymes needed for cell wall biogenesis, and the roles these enzymes play in cell wall biogenesis are discussed. The review includes a discussion of how the major cell wall components (chitin, β-1,3-glucan, mixed β-1,3-/ β-1,4- glucans, glycoproteins, and melanin) are synthesized and incorporated into the cell wall. We present a four-step model for how cell wall glycoproteins are covalently incorporated into the cell wall. In N. crassa, the covalent incorporation of cell wall glycoproteins into the wall occurs through a glycosidic linkage between lichenin (a mixed β-1,3-/β-1,4- glucan) and a "processed" galactomannan that has been attached to the glycoprotein N-linked oligosaccharides. The first step is the addition of the galactomannan to the N-linked oligosaccharide. Mutants affected in galactomannan formation are unable to incorporate glycoproteins into their cell walls. The second step is carried out by the enzymes from the GH76 family of α-1,6-mannanases, which cleave the galactomannan to generate a processed galactomannan. The model suggests that the third and fourth steps are carried out by members of the GH72 family of glucanosyltransferases. In the third step the glucanosyltransferases cleave lichenin and generate enzyme/substrate intermediates in which the lichenin is covalently attached to the active site of the glucanosyltransferases. In the final step, the glucanosyltransferases attach the lichenin onto the processed galactomannans, which creates new glycosidic bonds and effectively incorporates the glycoproteins into the cross-linked cell wall glucan/chitin matrix.
Collapse
Affiliation(s)
| | - Stephen J. Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
20
|
Martins MP, Martinez-Rossi NM, Sanches PR, Gomes EV, Bertolini MC, Pedersoli WR, Silva RN, Rossi A. The pH Signaling Transcription Factor PAC-3 Regulates Metabolic and Developmental Processes in Pathogenic Fungi. Front Microbiol 2019; 10:2076. [PMID: 31551996 PMCID: PMC6738131 DOI: 10.3389/fmicb.2019.02076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 08/22/2019] [Indexed: 01/22/2023] Open
Abstract
The zinc finger transcription factor PAC-3/RIM101/PacC has a defined role in the secretion of enzymes and proteins in response to ambient pH, and also contributes to the virulence of species. Herein we evaluated the role of PAC-3 in the regulation of Neurospora crassa genes, in a model that examined the plant-fungi interactions. N. crassa is a model fungal species capable of exhibiting dynamic responses to its environment by employing endophytic or phytopathogenic behavior according to a given circumstance. Since plant growth and productivity are highly affected by pH and phosphorus (P) acquisition, we sought to verify the impact that induction of a Δpac-3 mutation would have under limited and sufficient Pi availability, while ensuring that the targeted physiological adjustments mimicked ambient pH and nutritional conditions required for efficient fungal growth and development. Our results suggest direct regulatory functions for PAC-3 in cell wall biosynthesis, homeostasis, oxidation-reduction processes, hydrolase activity, transmembrane transport, and modulation of genes associated with fungal virulence. Pi-dependent modulation was observed mainly in genes encoding for transporter proteins or related to cell wall development, thereby advancing the current understanding regarding colonization and adaptation processes in response to challenging environments. We have also provided comprehensive evidence that suggests a role for PAC-3 as a global regulator in plant pathogenic fungi, thus presenting results that have the potential to be applied to various types of microbes, with diverse survival mechanisms.
Collapse
Affiliation(s)
- Maíra Pompeu Martins
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Nilce M Martinez-Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Pablo R Sanches
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Maria Célia Bertolini
- Department of Biochemistry and Technological Chemistry, São Paulo State University, UNESP, Institute of Chemistry, Araraquara, Brazil
| | - Wellington R Pedersoli
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Roberto Nascimento Silva
- Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Antonio Rossi
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
21
|
Da W, Shao J, Li Q, Shi G, Wang T, Wu D, Wang C. Physical Interaction of Sodium Houttuyfonate With β-1,3-Glucan Evokes Candida albicans Cell Wall Remodeling. Front Microbiol 2019; 10:34. [PMID: 30740095 PMCID: PMC6357593 DOI: 10.3389/fmicb.2019.00034] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 01/10/2019] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is a commonly isolated opportunistic yeast and can endanger immune-compromised human health. As increasingly isolated strains present resistance to currently used antifungals, it is necessary to develop novel antimycotics. In a previous study, sodium houttuyfonate (SH) alone or in combination with fluconazole revealed relatively strong antifungal potential against C. albicans, and the underlying mechanism might be likely to be associated with β-glucan synthesis and transportation (Shao et al., 2017). In the present experiment, we used a standard C. albicans isolate and a phr1 mutant (phr1−/−) to investigate the interaction of SH with β-glucan, one of the critical components in cell wall and biofilm matrix. We showed that lyticase was the most effective enzyme that could significantly increase the antifungal inhibition of SH at 64 μg/mL in C. albicans SC5314 but became futile in phr1−/−. Although the minimum inhibitory concentrations (MICs) of SH were comparable in the two Candida strains used, phr1−/− appeared to be more susceptible to SH compared with C. albicans SC5314 in biofilms (64 versus 512 μg/mL). The peak areas of SH decreased markedly by 71.6, 38.2, and 62.6% in C. albicans SC5314 and by 70% and 53.2% in phr1−/− by ultra-performance liquid chromatography (UPLC) analysis after co-incubation of SH with laminarin, extracellular matrix (EM) and cell wall. The chitin appeared to not interact with SH. We further demonstrated that sub-MIC SH (8 μg/mL) was able to induce cell wall remodeling by unmasking β-1,3-glucan and chitin in both C. albicans SC5314 and phr1−/−. Based on these findings, we propose that β-1,3-glucan can block the entrance of SH through non-specific absorption, and then the fungus senses the interaction of SH with β-1,3-glucan and exposes more β-1,3-glucan that contributes to SH blocking in turn.
Collapse
Affiliation(s)
- Wenyue Da
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Jing Shao
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Qianqian Li
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Gaoxiang Shi
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Tianming Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Daqiang Wu
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| | - Changzhong Wang
- Department of Pathogenic Biology and Immunology, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Hefei, China
| |
Collapse
|
22
|
Kar B, Patel P, Ao J, Free SJ. Neurospora crassa family GH72 glucanosyltransferases function to crosslink cell wall glycoprotein N-linked galactomannan to cell wall lichenin. Fungal Genet Biol 2018; 123:60-69. [PMID: 30503329 DOI: 10.1016/j.fgb.2018.11.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 10/05/2018] [Accepted: 11/28/2018] [Indexed: 11/24/2022]
Abstract
The formation of a glucan/chitin/glycoprotein cell wall matrix is vital for fungal survival, growth, and morphogenesis. The cell wall proteins are important cell wall components and function in adhesion, signal transduction, and as cell wall structural elements. In this report we demonstrate that Neurospora crassa GH72 glucan transferases function to crosslink cell wall glycoproteins into the cell wall. With an in vitro assay, we show that the glucan transferases are able to attach lichenin, a cell wall glucan with a repeating β-1,4-glucose-β-1,4-glucose-β-1,3-glucose structure, to cell wall glycoproteins. We propose that the pathway for attachment of lichenin to the glycoprotein has four steps. First, N-linked oligosaccharides present on the glycoproteins are modified by the addition of a galactomannan. As part of our report we have characterized the structure of the galactomannan, which consists of an α-1,6-mannose backbone with galactofuranose side chains. In the second step, the galactomannan is processed by members of the GH76 α-1,6-mannanases. In the third step, the glucan transferases cleave the lichenin and create substrate-enzyme intermediates. In the final step, the transferases transfer the lichenin to the processed galactomannan. We demonstrate that the N. crassa glucan transferases have demonstrate specificity for the processed galactomannan and for lichenin. The energy from the cleaved glycosidic bond in lichenin is retained in the substrate-enzyme intermediate and used to create a new glycosidic bond between the lichenin and the processed galactomannan. The pathway effectively crosslinks glycoproteins into the fungal cell wall.
Collapse
Affiliation(s)
- Bibekananda Kar
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Pavan Patel
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Jie Ao
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA
| | - Stephen J Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, USA.
| |
Collapse
|
23
|
Edens MH, Carpenter MD, Napeñas JJ, Brennan MT. Impact of salivary hypofunction on incidence of orofungal infections with use of topical steroids for management of oral lichen planus and xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol 2018; 126:501-505. [PMID: 30309830 DOI: 10.1016/j.oooo.2018.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 01/20/2023]
Abstract
OBJECTIVES The aim of this study was to determine if salivary hypofunction increases the incidence of oral fungal infections (OFIs) after topical steroid use for the management of oral lichen planus (OLP). STUDY DESIGN Patients with a diagnosis of OLP, treated for at least 2 weeks with topical steroids, had baseline salivary flow evaluations completed, and had a follow-up visit within 5 weeks of steroids being prescribed were assessed. Patients were evaluated for clinical signs of fungal infection at follow-up visits. RESULTS Forty-Seven patients (91% female) met the inclusion criteria, with 21.3% developing an OFI after topical steroid use. Demographic characteristics, type of OLP, steroid used, and antifungal used did not impact the development of an OFI. The mean stimulated salivary flow was significantly lower in the group that developed an OFI compared with the group that did not develop an OFI (8.31 mL/15 min vs 15.4 mL/15 min, respectively; P = 0.0006). A higher incidence of OFIs occurred in the low stimulated flow group versus the normal flow group (39% vs 4%, respectively). Most patients in the OFI group received a preventative antifungal (90%). CONCLUSIONS OFIs increased after steroid treatment in patients with OLP who had low stimulated salivary flows. Antifungals (90%) were not effective in preventing OFIs in patients with OLP who had salivary hypofunction and were treated with topical steroids.
Collapse
Affiliation(s)
- Mary Hil Edens
- Oral Medicine Resident, Department of Oral Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Michael D Carpenter
- Research Assistant, Department of Oral Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Joel J Napeñas
- Associate Professor, Oral Medicine Residency Director, Department of Oral Medicine, Carolinas Medical Center, Charlotte, NC, USA
| | - Michael T Brennan
- Professor and Department Chair, Department of Oral Medicine, Carolinas Medical Center, Charlotte, NC, USA.
| |
Collapse
|
24
|
Luo Z, Zhang T, Liu P, Bai Y, Chen Q, Zhang Y, Keyhani NO. The Beauveria bassiana Gas3 β-Glucanosyltransferase Contributes to Fungal Adaptation to Extreme Alkaline Conditions. Appl Environ Microbiol 2018; 84:e01086-18. [PMID: 29802184 PMCID: PMC6052264 DOI: 10.1128/aem.01086-18] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 05/17/2018] [Indexed: 12/20/2022] Open
Abstract
Fungal β-1,3-glucanosyltransferases are cell wall-remodeling enzymes implicated in stress response, cell wall integrity, and virulence, with most fungal genomes containing multiple members. The insect-pathogenic fungus Beauveria bassiana displays robust growth over a wide pH range (pH 4 to 10). A random insertion mutant library screening for increased sensitivity to alkaline (pH 10) growth conditions resulted in the identification and mapping of a mutant to a β-1,3-glucanosyltransferase gene (Bbgas3). Bbgas3 expression was pH dependent and regulated by the PacC transcription factor, which activates genes in response to neutral/alkaline growth conditions. Targeted gene knockout of Bbgas3 resulted in reduced growth under alkaline conditions, with only minor effects of increased sensitivity to cell wall stress (Congo red and calcofluor white) and no significant effects on fungal sensitivity to oxidative or osmotic stress. The cell walls of ΔBbgas3 aerial conidia were thinner than those of the wild-type and complemented strains in response to alkaline conditions, and β-1,3-glucan antibody and lectin staining revealed alterations in cell surface carbohydrate epitopes. The ΔBbgas3 mutant displayed alterations in cell wall chitin and carbohydrate content in response to alkaline pH. Insect bioassays revealed impaired virulence for the ΔBbgas3 mutant depending upon the pH of the media on which the conidia were grown and harvested. Unexpectedly, a decreased median lethal time to kill (LT50, i.e., increased virulence) was seen for the mutant using intrahemocoel injection assays using conidia grown at acidic pH (5.6). These data show that BbGas3 acts as a pH-responsive cell wall-remodeling enzyme involved in resistance to extreme pH (>9).IMPORTANCE Little is known about adaptations required for growth at high (>9) pH. Here, we show that a specific fungal membrane-remodeling β-1,3-glucanosyltransferase gene (Bbgas3) regulated by the pH-responsive PacC transcription factor forms a critical aspect of the ability of the insect-pathogenic fungus Beauveria bassiana to grow at extreme pH. The loss of Bbgas3 resulted in a unique decreased ability to grow at high pH, with little to no effects seen with respect to other stress conditions, i.e., cell wall integrity and osmotic and oxidative stress. However, pH-dependent alternations in cell wall properties and virulence were noted for the ΔBbgas3 mutant. These data provide a mechanistic insight into the importance of the specific cell wall structure required to stabilize the cell at high pH and link it to the PacC/Pal/Rim pH-sensing and regulatory system.
Collapse
Affiliation(s)
- Zhibing Luo
- Academy of Agricultural Sciences, Southwest University, Chongqing, People's Republic of China
- Biotechnology Research Center, Southwest University, Chongqing, People's Republic of China
| | - Tongbing Zhang
- Academy of Agricultural Sciences, Southwest University, Chongqing, People's Republic of China
- Biotechnology Research Center, Southwest University, Chongqing, People's Republic of China
| | - Pengfei Liu
- Academy of Agricultural Sciences, Southwest University, Chongqing, People's Republic of China
- Biotechnology Research Center, Southwest University, Chongqing, People's Republic of China
| | - Yuting Bai
- Academy of Agricultural Sciences, Southwest University, Chongqing, People's Republic of China
- Biotechnology Research Center, Southwest University, Chongqing, People's Republic of China
| | - Qiyan Chen
- Academy of Agricultural Sciences, Southwest University, Chongqing, People's Republic of China
- Biotechnology Research Center, Southwest University, Chongqing, People's Republic of China
| | - Yongjun Zhang
- Academy of Agricultural Sciences, Southwest University, Chongqing, People's Republic of China
- Biotechnology Research Center, Southwest University, Chongqing, People's Republic of China
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
25
|
Richardson JP, Moyes DL, Ho J, Naglik JR. Candida innate immunity at the mucosa. Semin Cell Dev Biol 2018; 89:58-70. [PMID: 29501618 DOI: 10.1016/j.semcdb.2018.02.026] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 02/27/2018] [Indexed: 12/17/2022]
Abstract
The tremendous diversity in microbial species that colonise the mucosal surfaces of the human body is only now beginning to be fully appreciated. Distinguishing between the behaviour of commensal microbes and harmful pathogens that reside at mucosal sites in the body is a complex, and exquisitely fine-tuned process central to mucosal health. The fungal pathobiont Candida albicans is frequently isolated from mucosal surfaces with an asymptomatic carriage rate of approximately 60% in the human population. While normally a benign member of the microbiota, overgrowth of C. albicans often results in localised mucosal infection causing morbidity in otherwise healthy individuals, and invasive infection that often causes death in the absence of effective immune defence. C. albicans triggers numerous innate immune responses at mucosal surfaces, and detection of C. albicans hyphae in particular, stimulates the production of antimicrobial peptides, danger-associated molecular patterns and cytokines that function to reduce fungal burdens during infection. This review will summarise our current understanding of innate immune responses to C. albicans at mucosal surfaces.
Collapse
Affiliation(s)
| | - David L Moyes
- Centre for Host-Microbiome Interactions, Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Jemima Ho
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, UK.
| |
Collapse
|
26
|
Targeting Candida spp. to develop antifungal agents. Drug Discov Today 2018; 23:802-814. [PMID: 29353694 DOI: 10.1016/j.drudis.2018.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/09/2017] [Accepted: 01/04/2018] [Indexed: 01/15/2023]
Abstract
Invasive fungal infections are a complex challenge throughout the world because of their high incidence, mainly in critically ill patients, and high mortality rates. The antifungal agents currently available are limited; thus, there is a need for the rapid development of new drugs. In silico methods are a modern strategy to explore interactions between new compounds and specific fungal targets, but they depend on precise genetic information. Here, we discuss the main Candida spp. target genes, including information about null mutants, virulence, cytolocalization, co-regulatory genes, and compounds that are related to protein expression. These data will provide a basis for the future in silico development of antifungal drugs.
Collapse
|
27
|
The PHR Family: The Role of Extracellular Transglycosylases in Shaping Candida albicans Cells. J Fungi (Basel) 2017; 3:jof3040059. [PMID: 29371575 PMCID: PMC5753161 DOI: 10.3390/jof3040059] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 10/19/2017] [Accepted: 10/24/2017] [Indexed: 01/25/2023] Open
Abstract
Candida albicans is an opportunistic microorganism that can become a pathogen causing mild superficial mycosis or more severe invasive infections that can be life-threatening for debilitated patients. In the etiology of invasive infections, key factors are the adaptability of C. albicans to the different niches of the human body and the transition from a yeast form to hypha. Hyphal morphology confers high adhesiveness to the host cells, as well as the ability to penetrate into organs. The cell wall plays a crucial role in the morphological changes C. albicans undergoes in response to specific environmental cues. Among the different categories of enzymes involved in the formation of the fungal cell wall, the GH72 family of transglycosylases plays an important assembly role. These enzymes cut and religate β-(1,3)-glucan, the major determinant of cell shape. In C. albicans, the PHR family encodes GH72 enzymes, some of which work in specific environmental conditions. In this review, we will summarize the work from the initial discovery of PHR genes to the study of the pH-dependent expression of PHR1 and PHR2, from the characterization of the gene products to the recent findings concerning the stress response generated by the lack of GH72 activity in C. albicans hyphae.
Collapse
|
28
|
Zuza-Alves DL, Silva-Rocha WP, Chaves GM. An Update on Candida tropicalis Based on Basic and Clinical Approaches. Front Microbiol 2017; 8:1927. [PMID: 29081766 PMCID: PMC5645804 DOI: 10.3389/fmicb.2017.01927] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 09/21/2017] [Indexed: 01/12/2023] Open
Abstract
Candida tropicalis has emerged as one of the most important Candida species. It has been widely considered the second most virulent Candida species, only preceded by C. albicans. Besides, this species has been recognized as a very strong biofilm producer, surpassing C. albicans in most of the studies. In addition, it produces a wide range of other virulence factors, including: adhesion to buccal epithelial and endothelial cells; the secretion of lytic enzymes, such as proteinases, phospholipases, and hemolysins, bud-to-hyphae transition (also called morphogenesis) and the phenomenon called phenotypic switching. This is a species very closely related to C. albicans and has been easily identified with both phenotypic and molecular methods. In addition, no cryptic sibling species were yet described in the literature, what is contradictory to some other medically important Candida species. C. tropicalis is a clinically relevant species and may be the second or third etiological agent of candidemia, specifically in Latin American countries and Asia. Antifungal resistance to the azoles, polyenes, and echinocandins has already been described. Apart from all these characteristics, C. tropicalis has been considered an osmotolerant microorganism and this ability to survive to high salt concentration may be important for fungal persistence in saline environments. This physiological characteristic makes this species suitable for use in biotechnology processes. Here we describe an update of C. tropicalis, focusing on all these previously mentioned subjects.
Collapse
Affiliation(s)
| | | | - Guilherme M. Chaves
- Laboratory of Medical and Molecular Mycology, Department of Clinical and Toxicological Analyses, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
29
|
Ao J, Free SJ. Genetic and biochemical characterization of the GH72 family of cell wall transglycosylases in Neurospora crassa. Fungal Genet Biol 2017; 101:46-54. [PMID: 28285007 DOI: 10.1016/j.fgb.2017.03.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 11/18/2022]
Abstract
The Neurospora crassa genome encodes five GH72 family transglycosylases, and four of these enzymes (GEL-1, GEL-2, GEL-3 and GEL-5) have been found to be present in the cell wall proteome. We carried out an extensive genetic analysis on the role of these four transglycosylases in cell wall biogenesis and demonstrated that the transglycosylases are required for the formation of a normal cell wall. As suggested by the proteomic analysis, we found that multiple transglycosylases were being expressed in N. crassa cells and that different combinations of the enzymes are required in different cell types. The combination of GEL-1, GEL-2 and GEL-5 is required for the growth of vegetative hyphae, while the GEL-1, GEL-2, GEL-3 combination is needed for the production of aerial hyphae and conidia. Our data demonstrates that the enzymes are redundant with partially overlapping enzymatic activities, which provides the fungus with a robust cell wall biosynthetic system. Characterization of the transglycosylase-deficient mutants demonstrated that the incorporation of cell wall proteins was severely compromised. Interestingly, we found that the transglycosylase-deficient mutant cell walls contained more β-1,3-glucan than the wild type cell wall. Our results demonstrate that the GH72 transglycosylases are not needed for the incorporation of β-1,3-glucan into the cell wall, but they are required for the incorporation of cell wall glycoprotein into the cell wall.
Collapse
Affiliation(s)
- Jie Ao
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States
| | - Stephen J Free
- Department of Biological Sciences, SUNY University at Buffalo, Buffalo, NY 14260, United States.
| |
Collapse
|
30
|
Poyntner C, Blasi B, Arcalis E, Mirastschijski U, Sterflinger K, Tafer H. The Transcriptome of Exophiala dermatitidis during Ex-vivo Skin Model Infection. Front Cell Infect Microbiol 2016; 6:136. [PMID: 27822460 PMCID: PMC5075926 DOI: 10.3389/fcimb.2016.00136] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/06/2016] [Indexed: 12/12/2022] Open
Abstract
The black yeast Exophiala dermatitidis is a widespread polyextremophile and human pathogen, that is found in extreme natural habitats and man-made environments such as dishwashers. It can cause various diseases ranging from phaeohyphomycosis and systemic infections, with fatality rates reaching 40%. While the number of cases in immunocompromised patients are increasing, knowledge of the infections, virulence factors and host response is still scarce. In this study, for the first time, an artificial infection of an ex-vivo skin model with Exophiala dermatitidis was monitored microscopically and transcriptomically. Results show that Exophiala dermatitidis is able to actively grow and penetrate the skin. The analysis of the genomic and RNA-sequencing data delivers a rich and complex transcriptome where circular RNAs, fusion transcripts, long non-coding RNAs and antisense transcripts are found. Changes in transcription strongly affect pathways related to nutrients acquisition, energy metabolism, cell wall, morphological switch, and known virulence factors. The L-Tyrosine melanin pathway is specifically upregulated during infection. Moreover the production of secondary metabolites, especially alkaloids, is increased. Our study is the first that gives an insight into the complexity of the transcriptome of Exophiala dermatitidis during artificial skin infections and reveals new virulence factors.
Collapse
Affiliation(s)
- Caroline Poyntner
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences Vienna, Austria
| | - Barbara Blasi
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences Vienna, Austria
| | - Elsa Arcalis
- Department for Applied Genetics and Cell Biology, Molecular Plant Physiology and Crop Biotechnology, University of Natural Resources and Life Sciences Vienna, Austria
| | - Ursula Mirastschijski
- Klinikum Bremen-Mitte, Department of Plastic, Reconstructive and Aesthetic Surgery, Faculty of Biology and Chemistry, Center for Biomolecular Interactions Bremen, University Bremen Bremen, Germany
| | - Katja Sterflinger
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences Vienna, Austria
| | - Hakim Tafer
- Department of Biotechnology, VIBT EQ Extremophile Center, University of Natural Resources and Life Sciences Vienna, Austria
| |
Collapse
|
31
|
Chen X, Zhang R, Takada A, Iwatani S, Oka C, Kitamoto T, Kajiwara S. The role of Bgl2p in the transition to filamentous cells during biofilm formation by Candida albicans. Mycoses 2016; 60:96-103. [PMID: 27597232 DOI: 10.1111/myc.12554] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 08/05/2016] [Accepted: 08/08/2016] [Indexed: 11/29/2022]
Abstract
The fungal pathogen Candida albicans undergoes a transition from yeast cells to filamentous cells that is related to its pathogenicity. The complex multicellular processes involved in biofilm formation by this fungus also include this transition. In this work, we investigated the morphological role of the Bgl2 protein (Bgl2p) in the transition to filamentous cells during biofilm formation by C. albicans. Bgl2p has been identified as a β-1, 3-glucosyltransferase, and transcription of the CaBGL2 gene is upregulated during biofilm formation. We used scanning electron microscopy to observe the microstructure of a bgl2 null mutant during biofilm formation and found a delay in the transition to filamentous cells in the premature phase (24 hours) of biofilm formation. Deletion of the CaBGL2 gene led to a decrease in the expression of CPH2 and TEC1, which encode transcription factors required for the transition to the filamentous form. These findings indicate that Bgl2p plays a role in the transition to filamentous cells during biofilm formation by C. albicans.
Collapse
Affiliation(s)
- Xinyue Chen
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ruoyu Zhang
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Ayako Takada
- Biomaterials Analysis Division, Technical Department, Tokyo Institute of Technology, Yokohama, Japan
| | - Shun Iwatani
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Chiemi Oka
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshitaka Kitamoto
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Susumu Kajiwara
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| |
Collapse
|
32
|
Validation of Reference Genes for Robust qRT-PCR Gene Expression Analysis in the Rice Blast Fungus Magnaporthe oryzae. PLoS One 2016; 11:e0160637. [PMID: 27560664 PMCID: PMC4999194 DOI: 10.1371/journal.pone.0160637] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Accepted: 07/23/2016] [Indexed: 11/19/2022] Open
Abstract
The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG_Ef1, which demonstrated low M values across heterogeneous tissues. By contrast, metabolic pathway genes MGG_Fad (FAD binding domain-containing protein) and MGG_Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) performed poorly, due to their lack of expression stability across samples.
Collapse
|
33
|
Degani G, Ragni E, Botias P, Ravasio D, Calderon J, Pianezzola E, Rodriguez-Peña JM, Vanoni MA, Arroyo J, Fonzi WA, Popolo L. Genomic and functional analyses unveil the response to hyphal wall stress in Candida albicans cells lacking β(1,3)-glucan remodeling. BMC Genomics 2016; 17:482. [PMID: 27411447 PMCID: PMC4942948 DOI: 10.1186/s12864-016-2853-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/21/2016] [Indexed: 11/17/2022] Open
Abstract
Background The cell wall is essential for the yeast to hypha (Y-H) transition that enables Candida albicans to invade human tissues and evade the immune system. The main constituent, β(1,3)-glucan, is remodeled by glucanosyltransferases of the GH72 family. Phr1p is responsible of glucan remodeling at neutral-alkaline pH and is essential for morphogenesis and virulence. Due to the pH-regulated expression of PHR1, the phr1Δ phenotype is manifested at pH > 6 and its severity increases with the rise in pH. We exploited the pH-conditional nature of a PHR1 null mutant to analyze the impact of glucan remodeling on the hyphal transcriptional program and the role of chitin synthases in the hyphal wall stress (HWS) response. Results In hyphal growth inducing conditions, phr1Δ germ tubes are defective in elongation, accumulate chitin, and constitutively activate the signaling pathways mediated by the MAP kinases Mkc1p, Cek1p and Hog1p. The transcriptional profiles revealed an increase of transcript levels for genes involved in cell wall formation (CHS2 and CHS8, CRH11, PGA23, orf19.750, RBR1, RBT4, ECM331, PGA6, PGA13), protein N-glycosylation and sorting in the ER (CWH8 and CHS7), signaling (CPP1, SSK2), ion transport (FLC2, YVC1), stress response and metabolism and a reduced expression of adhesins. A transient up-regulation of DNA replication genes associated with entry into S-phase occurred whereas cell-cycle regulating genes (PCL1, PCL2, CCN1, GIN4, DUN1, CDC28) were persistently up-regulated. To test the physiological relevance of altered CHS gene expression, phr1Δ chsxΔ (x = 2,3,8) mutant phenotypes were analyzed during the Y-H transition. PHR1 deletion was synthetic lethal with CHS3 loss on solid M199 medium-pH 7.5 and with CHS8 deletion on solid M199-pH 8. On Spider medium, PHR1 was synthetic lethal with CHS3 or CHS8 at pH 8. Conclusions The absence of Phr1p triggers an adaptive response aimed to reinforce the hyphal cell wall and restore homeostasis. Chs3p is essential in preserving phr1Δ cell integrity during the Y-H transition. Our findings also unveiled an unanticipated essential role of Chs8p during filamentation on solid media. These results highlight the flexibility of fungal cells in maintaining cell wall integrity and contribute to assessments of glucan remodeling as a target for therapy. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2853-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Genny Degani
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Enrico Ragni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Unit of Cell therapy and Cryobiology, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milano, Italy
| | - Pedro Botias
- Unidad de Genómica, CAI de Genómica y Proteómica, UCM, Madrid, Spain
| | - Davide Ravasio
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Evolva, Basel, Switzerland
| | - Julia Calderon
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.,Present address: Instituto de Biología Funcional y Genómica, Salamanca, Spain
| | - Elena Pianezzola
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Jose Manuel Rodriguez-Peña
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - Maria Antonietta Vanoni
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy
| | - Javier Arroyo
- Departamento de Microbiologia II, Facultad de Farmacia, Universidad Complutense de Madrid, Madrid, Spain
| | - William A Fonzi
- Department of Microbiology and Immunology, Georgetown University, Washington, D.C, USA
| | - Laura Popolo
- Dipartimento di Bioscienze, Università degli Studi di Milano, Via Celoria 26, 20133, Milano, Italy.
| |
Collapse
|
34
|
Two Variants of a High-Throughput Fluorescent Microplate Assay of Polysaccharide Endotransglycosylases. Appl Biochem Biotechnol 2016; 178:1652-65. [DOI: 10.1007/s12010-015-1973-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 12/28/2015] [Indexed: 10/22/2022]
|
35
|
Kováčová K, Degani G, Stratilová E, Farkaš V, Popolo L. Catalytic properties of Phr family members of cell wall glucan remodeling enzymes: implications for the adaptation of Candida albicans to ambient pH. FEMS Yeast Res 2015; 15:fou011. [DOI: 10.1093/femsyr/fou011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
36
|
Huang W, Shang Y, Chen P, Cen K, Wang C. Basic leucine zipper (bZIP) domain transcription factor MBZ1 regulates cell wall integrity, spore adherence, and virulence in Metarhizium robertsii. J Biol Chem 2015; 290:8218-31. [PMID: 25673695 DOI: 10.1074/jbc.m114.630939] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Transcription factors (TFs) containing the basic leucine zipper (bZIP) domain are widely distributed in eukaryotes and display an array of distinct functions. In this study, a bZIP-type TF gene (MBZ1) was deleted and functionally characterized in the insect pathogenic fungus Metarhizium robertsii. The deletion mutant (ΔMBZ1) showed defects in cell wall integrity, adhesion to hydrophobic surfaces, and topical infection of insects. Relative to the WT, ΔMBZ1 was also impaired in growth and conidiogenesis. Examination of putative target gene expression indicated that the genes involved in chitin biosynthesis were differentially transcribed in ΔMBZ1 compared with the WT, which led to the accumulation of a higher level of chitin in mutant cell walls. MBZ1 exhibited negative regulation of subtilisin proteases, but positive control of an adhesin gene, which is consistent with the observation of effects on cell autolysis and a reduction in spore adherence to hydrophobic surfaces in ΔMBZ1. Promoter binding assays indicated that MBZ1 can bind to different target genes and suggested the possibility of heterodimer formation to increase the diversity of the MBZ1 regulatory network. The results of this study advance our understanding of the divergence of bZIP-type TFs at both intra- and interspecific levels.
Collapse
Affiliation(s)
- Wei Huang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yanfang Shang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Peilin Chen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Kai Cen
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Chengshu Wang
- From the Key Laboratory of Insect Developmental and Evolutionary Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
37
|
Zohbi R, Wex B, Khalaf RA. Comparative proteomic analysis of a Candida albicans DSE1 mutant under filamentous and non-filamentous conditions. Yeast 2014; 31:441-8. [PMID: 25231799 DOI: 10.1002/yea.3039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 04/24/2014] [Accepted: 09/11/2014] [Indexed: 11/06/2022] Open
Abstract
Candida albicans is a common opportunistic pathogen that causes a variety of diseases in immunocompromised hosts. In a pathogen, cell wall proteins are important virulence factors. We previously characterized Dse1 as a cell wall protein necessary for virulence and resistance to cell surface-disrupting agents, such as Calcofluor white, chitin deposition, proper adhesion and biofilm formation. In the absence of decomplexation, our objectives were to investigate differential proteomic expression of a DSE1 mutant strain compared to the wild-type strain. The strains were grown under filamentous and non-filamentous conditions. The extracted cell proteome was subjected to tryptic digest, followed by generation of peptide profiles using MALDI-TOF MS. Generated peptide profiles were analysed and unique peaks for each strain and growth condition mined against a Candida database, allowing protein identification. The DSE1 mutant was shown to lack the chitin biosynthesis protein Chs5, explaining the previously observed decrease in chitin biosynthesis. The wild-type strain expressed Pra1, involved in pH response and zinc acquisition, Atg15, a lipase involved in virulence, and Sod1, required for oxidative stress tolerance, in addition to proteins involved in protein biosynthesis, explaining the increase in total protein content observed compared to the mutants strain. The mutant, on the other hand, expressed glucoamylase 1, a cell wall glycoprotein involved in carbohydrate metabolism cell wall degradation and biofilm formation. As such, MALDI-TOF MS is a reliable technique in identifying mutant-specific protein expression in C. albicans.
Collapse
Affiliation(s)
- Rasha Zohbi
- Department of Natural Sciences, Lebanese American University, Byblos, Lebanon
| | | | | |
Collapse
|
38
|
A novel fluorescence assay and catalytic properties of Crh1 and Crh2 yeast cell wall transglycosylases. Biochem J 2013; 455:307-18. [DOI: 10.1042/bj20130354] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
A fluorescence assay was devised for the determination of transglycosylating activities of Crh1 and Crh2 yeast cell wall mannoproteins. Both proteins use chitin derivatives as donors and oligosaccharides derived from chitin, β-(1,3)-glucan and β-(1,6)-glucan as acceptors in vitro and in vivo.
Collapse
|
39
|
Fan Y, He H, Dong Y, Pan H. Hyphae-specific genes HGC1, ALS3, HWP1, and ECE1 and relevant signaling pathways in Candida albicans. Mycopathologia 2013; 176:329-35. [PMID: 24002103 DOI: 10.1007/s11046-013-9684-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2012] [Accepted: 07/22/2013] [Indexed: 10/26/2022]
Abstract
Fungal virulence mechanisms include adhesion to epithelia, morphogenesis, production of secretory hydrolytic enzymes, and phenotype switching, all of which contribute to the process of pathogenesis. A striking feature of the biology of Candida albicans is its ability to grow in yeast, pseudohyphal, and hyphal forms. The hyphal form plays an important role in causing disease, by invading epithelial cells and causing tissue damage. In this review, we illustrate some of the main hyphae-specific genes, namely HGC1, UME6, ALS3, HWP1, and ECE1, and their relevant and reversed signal transduction pathways in reactions stimulated by environmental factors, including pH, CO2, and serum.
Collapse
Affiliation(s)
- Yan Fan
- Affiliated Stomatology Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | | | | | | |
Collapse
|
40
|
Sillo F, Gissi C, Chignoli D, Ragni E, Popolo L, Balestrini R. Expression and phylogenetic analyses of the Gel/Gas proteins of Tuber melanosporum provide insights into the function and evolution of glucan remodeling enzymes in fungi. Fungal Genet Biol 2013; 53:10-21. [PMID: 23454547 DOI: 10.1016/j.fgb.2013.01.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 01/08/2013] [Accepted: 01/31/2013] [Indexed: 11/29/2022]
Abstract
The β(1,3)-glucanosyltransferases of the GH72 family are redundant enzymes that are essential for the formation and dynamic remodeling of the fungal wall during different stages of the life cycle. Four putative genes encoding glycosylphosphatidylinositol (GPI)-anchored β(1,3)-glucanosyltransferases, designated TmelGEL1, TmelGEL2, TmelGEL4 and TmelGAS4, have been annotated in the genome of Tuber melanosporum, an ectomycorrhizal fungus that also produces a hypogeous fruiting body (FB) of great commercial value (black truffle). This work focuses on the characterization and expression of this multigene family by taking advantage of a laser microdissection (LMD) technology that has been used to separate two distinct compartments in the FB, the hyphae and the asci containing the ascospores. Of the four genes, TmelGEL1 was the most up-regulated in the FB compared to the free-living mycelium. Inside the FB, the expression of TmelGEL1 was restricted to the hyphal compartment. A phylogenetic analysis of the Gel/Gas protein family of T. melanosporum was also carried out. A total of 237 GH72 proteins from 51 Ascomycotina and 3 Basidiomycota (outgroup) species were analyzed. The resulting tree provides insight into the evolution of the T. melanosporum proteins and identifies new GH72 paralogs/subfamilies. Moreover, it represents a starting point to formulate new hypotheses on the significance of the striking GH72 gene redundancy in fungal biology.
Collapse
Affiliation(s)
- Fabiano Sillo
- Dipartimento di Scienze della Vita e Biologia dei Sistemi, Università degli Studi di Torino, Viale Mattioli 25, 10125 Torino, Italy.
| | | | | | | | | | | |
Collapse
|
41
|
Abstract
The composition and organization of the cell walls from Saccharomyces cerevisiae, Candida albicans, Aspergillus fumigatus, Schizosaccharomyces pombe, Neurospora crassa, and Cryptococcus neoformans are compared and contrasted. These cell walls contain chitin, chitosan, β-1,3-glucan, β-1,6-glucan, mixed β-1,3-/β-1,4-glucan, α-1,3-glucan, melanin, and glycoproteins as major constituents. A comparison of these cell walls shows that there is a great deal of variability in fungal cell wall composition and organization. However, in all cases, the cell wall components are cross-linked together to generate a cell wall matrix. The biosynthesis and properties of each of the major cell wall components are discussed. The chitin and glucans are synthesized and extruded into the cell wall space by plasma membrane-associated chitin synthases and glucan synthases. The glycoproteins are synthesized by ER-associated ribosomes and pass through the canonical secretory pathway. Over half of the major cell wall proteins are modified by the addition of a glycosylphosphatidylinositol anchor. The cell wall glycoproteins are also modified by the addition of O-linked oligosaccharides, and their N-linked oligosaccharides are extensively modified during their passage through the secretory pathway. These cell wall glycoprotein posttranslational modifications are essential for cross-linking the proteins into the cell wall matrix. Cross-linking the cell wall components together is essential for cell wall integrity. The activities of four groups of cross-linking enzymes are discussed. Cell wall proteins function as cross-linking enzymes, structural elements, adhesins, and environmental stress sensors and protect the cell from environmental changes.
Collapse
Affiliation(s)
- Stephen J Free
- Department of Biological Sciences, SUNY, University at Buffalo, Buffalo, New York, USA.
| |
Collapse
|
42
|
Ene IV, Heilmann CJ, Sorgo AG, Walker LA, de Koster CG, Munro CA, Klis FM, Brown AJP. Carbon source-induced reprogramming of the cell wall proteome and secretome modulates the adherence and drug resistance of the fungal pathogen Candida albicans. Proteomics 2012; 12:3164-79. [PMID: 22997008 PMCID: PMC3569869 DOI: 10.1002/pmic.201200228] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/19/2012] [Indexed: 01/12/2023]
Abstract
The major fungal pathogen Candida albicans can occupy diverse microenvironments in its human host. During colonization of the gastrointestinal or urogenital tracts, mucosal surfaces, bloodstream, and internal organs, C. albicans thrives in niches that differ with respect to available nutrients and local environmental stresses. Although most studies are performed on glucose-grown cells, changes in carbon source dramatically affect cell wall architecture, stress responses, and drug resistance. We show that growth on the physiologically relevant carboxylic acid, lactate, has a significant impact on the C. albicans cell wall proteome and secretome. The regulation of cell wall structural proteins (e.g. Cht1, Phr1, Phr2, Pir1) correlated with extensive cell wall remodeling in lactate-grown cells and with their increased resistance to stresses and antifungal drugs, compared with glucose-grown cells. Moreover, changes in other proteins (e.g. Als2, Gca1, Phr1, Sap9) correlated with the increased adherence and biofilm formation of lactate-grown cells. We identified mating and pheromone-regulated proteins that were exclusive to lactate-grown cells (e.g. Op4, Pga31, Pry1, Scw4, Yps7) as well as mucosa-specific and other niche-specific factors such as Lip4, Pga4, Plb5, and Sap7. The analysis of the corresponding null mutants confirmed that many of these proteins contribute to C. albicans adherence, stress, and antifungal drug resistance. Therefore, the cell wall proteome and secretome display considerable plasticity in response to carbon source. This plasticity influences important fitness and virulence attributes known to modulate the behavior of C. albicans in different host microenvironments during infection.
Collapse
Affiliation(s)
- Iuliana V Ene
- Aberdeen Fungal Group, School of Medical Sciences, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
43
|
|
44
|
Kantún-Moreno N, Vázquez-Euán R, Tzec-Simá M, Peraza-Echeverría L, Grijalva-Arango R, Rodríguez-García C, James AC, Ramírez-Prado J, Islas-Flores I, Canto-Canché B. Genome-wide in silico identification of GPI proteins in Mycosphaerella fijiensis and transcriptional analysis of two GPI-anchored β-1,3-glucanosyltransferases. Mycologia 2012; 105:285-96. [PMID: 22962348 DOI: 10.3852/12-103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The hemibiotrophic fungus Mycosphaerella fijiensis is the causal agent of black Sigatoka (BS), the most devastating foliar disease in banana (Musa spp.) worldwide. Little is known about genes that are important during M. fijiensis-Musa sp. interaction. The fungal cell wall is an attractive area of study because it is essential for maintenance of cellular homeostasis and it is the most external structure in the fungal cell and therefore mediates the interaction of the pathogen with the host. In this manuscript we describe the in silico identification of glycosyl phosphatidylinositol-protein (GPI) family in M. fijiensis, and the analysis of two β-1,3-glucanosyltrans-ferases (Gas), selected by homology with fungal pathogenicity factors. Potential roles in pathogenesis were evaluated through analyzing expression during different stages of black Sigatoka disease, comparing expression data with BS symptoms and fungal biomass inside leaves. Real-time quantitative RT-PCR showed nearly constant expression of MfGAS1 with slightly increases (about threefold) in conidia and at speck-necrotrophic stage during banana-pathogen interaction. Conversely, MfGAS2 expression was increased during biotrophy (about seven times) and reached a maximum at speck (about 23 times) followed by a progressive decrease in next stages, suggesting an active role in M. fijiensis pathogenesis.
Collapse
Affiliation(s)
- Nuvia Kantún-Moreno
- Unidad de biotecnología, Centro de Investigación Científica de Yucatán, Calle 43, No. 130, Colonia Chuburná de Hidalgo, Mérida, Yucatán, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Taff HT, Nett JE, Zarnowski R, Ross KM, Sanchez H, Cain MT, Hamaker J, Mitchell AP, Andes DR. A Candida biofilm-induced pathway for matrix glucan delivery: implications for drug resistance. PLoS Pathog 2012; 8:e1002848. [PMID: 22876186 PMCID: PMC3410897 DOI: 10.1371/journal.ppat.1002848] [Citation(s) in RCA: 218] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 06/22/2012] [Indexed: 01/10/2023] Open
Abstract
Extracellular polysaccharides are key constituents of the biofilm matrix of many microorganisms. One critical carbohydrate component of Candida albicans biofilms, β-1,3 glucan, has been linked to biofilm protection from antifungal agents. In this study, we identify three glucan modification enzymes that function to deliver glucan from the cell to the extracellular matrix. These enzymes include two predicted glucan transferases and an exo-glucanase, encoded by BGL2, PHR1, and XOG1, respectively. We show that the enzymes are crucial for both delivery of β-1,3 glucan to the biofilm matrix and for accumulation of mature matrix biomass. The enzymes do not appear to impact cell wall glucan content of biofilm cells, nor are they necessary for filamentation or biofilm formation. We demonstrate that mutants lacking these genes exhibit enhanced susceptibility to the commonly used antifungal, fluconazole, during biofilm growth only. Transcriptional analysis and biofilm phenotypes of strains with multiple mutations suggest that these enzymes act in a complementary fashion to distribute matrix downstream of the primary β-1,3 glucan synthase encoded by FKS1. Furthermore, our observations suggest that this matrix delivery pathway works independently from the C. albicans ZAP1 matrix formation regulatory pathway. These glucan modification enzymes appear to play a biofilm-specific role in mediating the delivery and organization of mature biofilm matrix. We propose that the discovery of inhibitors for these enzymes would provide promising anti-biofilm therapeutics.
Collapse
Affiliation(s)
- Heather T. Taff
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| | - Jeniel E. Nett
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| | - Robert Zarnowski
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| | - Kelly M. Ross
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| | - Hiram Sanchez
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| | - Mike T. Cain
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| | - Jessica Hamaker
- Department of Microbiology, Columbia University, New York, New York
| | - Aaron P. Mitchell
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - David R. Andes
- Departments of Medicine and Medical Microbiology and Immunology, University of Wisconsin, Madison, Wisconsin
| |
Collapse
|
46
|
Sousa Lima P, Bailão EFLC, Silva MG, Castro NDS, Báo SN, Orlandi I, Vai M, Almeida Soares CM. Characterization of the Paracoccidioides beta-1,3-glucanosyltransferase family. FEMS Yeast Res 2012; 12:685-702. [DOI: 10.1111/j.1567-1364.2012.00819.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Revised: 05/29/2012] [Accepted: 06/06/2012] [Indexed: 11/24/2022] Open
Affiliation(s)
- Patrícia Sousa Lima
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| | | | - Mirelle Garcia Silva
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| | - Nadya da Silva Castro
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| | - Sônia Nair Báo
- Laboratório de Microscopia Eletrônica; Universidade de Brasília; Brasília; Brazil
| | - Ivan Orlandi
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milan; Italy
| | - Marina Vai
- Dipartimento di Biotecnologie e Bioscienze; Università degli Studi di Milano-Bicocca; Milan; Italy
| | - Célia Maria Almeida Soares
- Laboratório de Biologia Molecular; Instituto de Ciências Biológicas; Universidade Federal de Goiás; Goiás; Brazil
| |
Collapse
|
47
|
Probiotic interference of Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 with the opportunistic fungal pathogen Candida albicans. Infect Dis Obstet Gynecol 2012; 2012:636474. [PMID: 22811591 PMCID: PMC3395238 DOI: 10.1155/2012/636474] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2011] [Revised: 02/16/2012] [Accepted: 02/21/2012] [Indexed: 11/17/2022] Open
Abstract
Candida albicans is the most important Candida species causing vulvovaginal candidiasis (VVC). VVC has significant medical and economical impact on women's health and wellbeing. While current antifungal treatment is reasonably effective, supportive and preventive measures such as application of probiotics are required to reduce the incidence of VVC. We investigated the potential of the probiotics Lactobacillus rhamnosus GR-1 and Lactobacillus reuteri RC-14 towards control of C. albicans. In vitro experiments demonstrated that lactic acid at low pH plays a major role in suppressing fungal growth. Viability staining following cocultures with lactobacilli revealed that C. albicans cells lost metabolic activity and eventually were killed. Transcriptome analyses showed increased expression of stress-related genes and lower expression of genes involved in fluconazole resistance, which might explain the increased eradication of Candida in a previous clinical study on conjoint probiotic therapy. Our results provide insights on the impact of probiotics on C. albicans survival.
Collapse
|
48
|
Pga13 in Candida albicans is localized in the cell wall and influences cell surface properties, morphogenesis and virulence. Fungal Genet Biol 2012; 49:322-31. [DOI: 10.1016/j.fgb.2012.01.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/20/2012] [Accepted: 01/31/2012] [Indexed: 01/09/2023]
|
49
|
Romanowski K, Zaborin A, Valuckaite V, Rolfes RJ, Babrowski T, Bethel C, Olivas A, Zaborina O, Alverdy JC. Candida albicans isolates from the gut of critically ill patients respond to phosphate limitation by expressing filaments and a lethal phenotype. PLoS One 2012; 7:e30119. [PMID: 22253901 PMCID: PMC3258262 DOI: 10.1371/journal.pone.0030119] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 12/09/2011] [Indexed: 12/29/2022] Open
Abstract
Candida albicans is an opportunistic pathogen that proliferates in the intestinal tract of critically ill patients where it continues to be a major cause of infectious-related mortality. The precise cues that shift intestinal C. albicans from its ubiquitous indolent colonizing yeast form to an invasive and lethal filamentous form remain unknown. We have previously shown that severe phosphate depletion develops in the intestinal tract during extreme physiologic stress and plays a major role in shifting intestinal Pseudomonas aeruginosa to express a lethal phenotype via conserved phosphosensory-phosphoregulatory systems. Here we studied whether phosphate dependent virulence expression could be similarly demonstrated for C. albicans. C. albicans isolates from the stool of critically ill patients and laboratory prototype strains (SC5314, BWP17, SN152) were evaluated for morphotype transformation and lethality against C. elegans and mice during exposure to phosphate limitation. Isolates ICU1 and ICU12 were able to filament and kill C. elegans in a phosphate dependent manner. In a mouse model of intestinal phosphate depletion (30% hepatectomy), direct intestinal inoculation of C. albicans caused mortality that was prevented by oral phosphate supplementation. Prototype strains displayed limited responses to phosphate limitation; however, the pho4Δ mutant displayed extensive filamentation during low phosphate conditions compared to its isogenic parent strain SN152, suggesting that mutation in the transcriptional factor Pho4p may sensitize C. albicans to phosphate limitation. Extensive filamentation was also observed in strain ICU12 suggesting that this strain is also sensitized to phosphate limitation. Analysis of the sequence of PHO4 in strain ICU12, its transcriptional response to phosphate limitation, and phosphatase assays confirmed that ICU12 demonstrates a profound response to phosphate limitation. The emergence of strains of C. albicans with marked responsiveness to phosphate limitation may represent a fitness adaptation to the complex and nutrient scarce environment typical of the gut of a critically ill patient.
Collapse
Affiliation(s)
- Kathleen Romanowski
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Alexander Zaborin
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Vesta Valuckaite
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Ronda J. Rolfes
- Department of Biology, Georgetown University, Washington, D. C., United States of America
| | - Trissa Babrowski
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Cindy Bethel
- Clinical Microbiology/Immunology Laboratories, University of Chicago, Chicago, Illinois, United States of America
| | - Andrea Olivas
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - Olga Zaborina
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
| | - John C. Alverdy
- Department of Surgery, University of Chicago, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
50
|
Freitas JS, Silva EM, Leal J, Gras DE, Martinez-Rossi NM, dos Santos LD, Palma MS, Rossi A. Transcription of the Hsp30, Hsp70, and Hsp90 heat shock protein genes is modulated by the PalA protein in response to acid pH-sensing in the fungus Aspergillus nidulans. Cell Stress Chaperones 2011; 16:565-72. [PMID: 21553327 PMCID: PMC3156257 DOI: 10.1007/s12192-011-0267-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 03/30/2011] [Accepted: 04/22/2011] [Indexed: 01/09/2023] Open
Abstract
Heat shock proteins are molecular chaperones linked to a myriad of physiological functions in both prokaryotes and eukaryotes. In this study, we show that the Aspergillus nidulans hsp30 (ANID_03555.1), hsp70 (ANID_05129.1), and hsp90 (ANID_08269.1) genes are preferentially expressed in an acidic milieu, whose expression is dependent on the palA (+) background under optimal temperature for fungal growth. Heat shock induction of these three hsp genes showed different patterns in response to extracellular pH changes in the palA(+) background. However, their accumulation upon heating for 2 h was almost unaffected by ambient pH changes in the palA (-) background. The PalA protein is a member of a conserved signaling cascade that is involved in the pH-mediated regulation of gene expression. Moreover, we identified several genes whose expression at pH 5.0 is also dependent on the palA (+) background. These results reveal novel aspects of the heat- and pH-sensing networks of A. nidulans.
Collapse
Affiliation(s)
- Janaína S. Freitas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Emiliana M. Silva
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Juliana Leal
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Diana E. Gras
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Nilce M. Martinez-Rossi
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| | - Lucilene Delazari dos Santos
- Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, 13506–900 Rio Claro, São Paulo Brazil
| | - Mario S. Palma
- Centro de Estudos de Insetos Sociais, Departamento de Biologia, Instituto de Biociências, Universidade Estadual Paulista, 13506–900 Rio Claro, São Paulo Brazil
| | - Antonio Rossi
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, 14049–900 Ribeirão Preto, São Paulo Brazil
| |
Collapse
|