1
|
Hetta HF, Alanazi FE, Ali MAS, Alatawi AD, Aljohani HM, Ahmed R, Alansari NA, Alkhathami FM, Albogmi A, Alharbi BM, Alanzi HS, Alaqyli AB, Ramadan YN. Hypervirulent Klebsiella pneumoniae: Insights into Virulence, Antibiotic Resistance, and Fight Strategies Against a Superbug. Pharmaceuticals (Basel) 2025; 18:724. [PMID: 40430542 PMCID: PMC12115101 DOI: 10.3390/ph18050724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/29/2025] Open
Abstract
Community-acquired infections caused by Klebsiella pneumoniae (K. pneumoniae) have become a significant global health concern, particularly with the emergence of hypervirulent strains (hvKP). These strains are associated with severe infections, such as pyogenic liver abscesses, even in otherwise healthy individuals. Initially reported in Taiwan in the 1980s, hvKP has now spread worldwide. The pathogenicity of hvKP is attributed to an array of virulence factors that enhance its ability to colonize and evade host immune defenses. Additionally, the convergence of hypervirulence with antibiotic resistance has further complicated treatment strategies. As a member of the ESKAPE group of pathogens, K. pneumoniae exhibits high resistance to multiple antibiotics, posing a challenge for healthcare settings. This review provides a comprehensive overview of hvKP, highlighting its structural and pathogenic differences from classical K. pneumoniae strains, key virulence factors, mechanisms of antibiotic resistance, and the increasing threat of multidrug-resistant hvKP. Lastly, we discuss current treatment guidelines and emerging therapeutic strategies to combat this formidable pathogen.
Collapse
Affiliation(s)
- Helal F. Hetta
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Fawaz E. Alanazi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Mostafa A. Sayed Ali
- Department of Pharmacy Practice, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Ahmed D. Alatawi
- Department of Clinical Pharmacy, College of Pharmacy, Jouf University, Sakaka 72388, Saudi Arabia;
| | - Hashim M. Aljohani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taibah University, Madina 41477, Saudi Arabia;
- Department of Pathology and Laboratory Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Rehab Ahmed
- Division of Microbiology, Immunology and Biotechnology, Department of Natural Products and Alternative Medicine, Faculty of Pharmacy, University of Tabuk, Tabuk 71491, Saudi Arabia;
| | - Nuha A. Alansari
- Laboratory Medicine, College of Applied Medical Sciences, Umm Al-Qura University, Jeddah 22231, Saudi Arabia;
| | - Fahad M. Alkhathami
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Alaa Albogmi
- Medical Laboratory Technology, King Abdulaziz University, Jeddah 80216, Saudi Arabia;
| | - Bander M. Alharbi
- Medical Laboratory Technology, College of Applied Medical Sciences, University of Tabuk, Tabuk 47524, Saudi Arabia;
| | - Hanadi S. Alanzi
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Amirah B. Alaqyli
- College of Applied Medical Sciences, University of Tabuk, Tabuk 47315, Saudi Arabia; (F.M.A.); (H.S.A.); (A.B.A.)
| | - Yasmin N. Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Assiut University, Assiut 71515, Egypt;
| |
Collapse
|
2
|
Alishvandi A, Barancheshemeh M, Firuzpour F, Aram C, Kamali MJ, Keikha M. Decoding virulence and resistance in Klebsiella pneumoniae: Pharmacological insights, immunological dynamics, and in silico therapeutic strategies. Microb Pathog 2025; 205:107691. [PMID: 40355055 DOI: 10.1016/j.micpath.2025.107691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 05/07/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
Klebsiella pneumoniae (K. pneumoniae) has become a serious global health concern due to its rising virulence and antibiotic resistance. As one of the leading members of ESKAPE pathogens, it plays a major role in a wide range of infections that cause pneumonia, urinary tract infections, and bacteremia, especially in immunocompromised and hospitalized patients. The recent increase in multidrug-resistant (MDR) and hypervirulent (hvKP) strains due to the production of extended-spectrum beta-lactamases (ESBLs) and carbapenemases, has greatly limited therapeutic options that highlights the need for novel approaches to combat the pathogen. This review outlines the virulence mechanisms, profiles of antibiotic resistance, and immune evasion strategies in K. pneumoniae. Also, it points out the role of capsular polysaccharides, lipopolysaccharides, and fimbriae in host colonization and immune evasion. Additionally, the review discusses the emerging therapeutic strategies of vaccine development, computational drug discovery, and the use of artificial intelligence (AI). The progress achieved in reverse vaccinology and structural biology enables the identification of new drug and vaccine targets, whereas AI and machine learning (ML) stand out as powerful candidates for high-throughput screening and drug design. However, challenges with antigenic variability, safety, and the need to collaborate globally still exist. This review focuses on the need for interdisciplinary approaches involving molecular biology and immunology with computational sciences to address K. pneumoniae infections and provide appropriate therapies in the era of antibiotic resistance.
Collapse
Affiliation(s)
- Ali Alishvandi
- Student Research Committee, Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Immunology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran
| | | | - Faezeh Firuzpour
- Research Committee, Babol University of Medical Sciences, Babol, Iran; Cancer Research Center, Babol University of Medical Sciences, Babol, Iran
| | - Cena Aram
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Mohammad Javad Kamali
- Department of Medical Genetics, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Masoud Keikha
- Tropical and Communicable Diseases Research Center, Iranshahr University of Medical Sciences, Iranshahr, Iran; Department of Medical Microbiology, School of Medicine, Iranshahr University of Medical Sciences, Iranshahr, Iran.
| |
Collapse
|
3
|
Liu B, Gu Y, Ou Y, Liu L, Wang W, Zhou J, Wang Y, Du Y, Xie J, Liu Y, Zhang R, Zuo Q, Wang B. Protection conferred by mucosal novel bivalent Klebsiella pneumoniae vaccine immunization associates with presence of lung CD4 + T RM. Microbes Infect 2025:105483. [PMID: 40081566 DOI: 10.1016/j.micinf.2025.105483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/26/2025] [Accepted: 02/26/2025] [Indexed: 03/16/2025]
Abstract
Klebsiella pneumoniae is the principal cause of hospital-acquired infection with a high morbidity and mortality in immunocompromised individuals, yet no vaccine is approved. Here, we developed a novel bivalent subunit vaccine for the prevention of K. pneumoniae infection based on the outer membrane protein GlnH and the fimbriae protein FimA. The survival rate of immunized mice was significantly increased compared to that of unimmunized mice, while the bacterial burden, weight loss, and lung pathology were drastically reduced. Furthermore, vaccine-elicited CD4+ TRM cells were observed in lung tissues and appeared to play a critical role in vaccine efficacy. Transcriptomic analysis of total lung tissues from mice treated by FTY720 (S1PR1 inhibitor that blocks lymphocyte egress from secondary lymphoid structures) showed that cell activation, cytokine secretion and enhancement of the killing ability of neutrophils were related to the mechanism of protection against K. pneumoniae infection. These findings indicate that GlnH and FimA are effective candidate bivalent vaccine to fight K. pneumoniae infection.
Collapse
Affiliation(s)
- BiXia Liu
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China
| | - YaRu Gu
- College of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 401320, PR China
| | - YangXue Ou
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - LuXuan Liu
- Affiliated Dongfeng Hospital, Hubei University of Medicine, Shiyan, 442000, PR China
| | - WenHao Wang
- College of Pharmacy, Henan University, Kaifeng, 475001, PR China
| | - JinRui Zhou
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China
| | - Ying Wang
- 953rd Hospital, Shigatse Branch, Xinqiao Hospital, Army Medical University, Shigatse, 857000, PR China
| | - YeXiang Du
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China
| | - Jing Xie
- Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China
| | - Yuan Liu
- Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China
| | - Rui Zhang
- College of Medicine, Southwest Jiaotong University, Chengdu, 610083, PR China; Clinical Laboratory, Chengdu Military General Hospital, Chengdu, 610083, PR China.
| | - QianFei Zuo
- Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Army Medical University, Chongqing, 400038, PR China.
| | - Bin Wang
- Department of Respiratory Medicine, Second Affiliated Hospital, Army Medical University, Chongqing, 400038, PR China.
| |
Collapse
|
4
|
Flores C, Rohn JL. Bacterial adhesion strategies and countermeasures in urinary tract infection. Nat Microbiol 2025; 10:627-645. [PMID: 39929975 DOI: 10.1038/s41564-025-01926-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/07/2025] [Indexed: 03/06/2025]
Abstract
Urinary tract infections (UTIs) are compounded by antimicrobial resistance, which increases the risk of UTI recurrence and antibiotic treatment failure. This also intensifies the burden of disease upon healthcare systems worldwide, and of morbidity and mortality. Uropathogen adhesion is a critical step in the pathogenic process, as has been mainly shown for Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, Streptococcus agalactiae, Proteus, Enterococcus and Staphylococcus species. Although many bacterial adhesion molecules from these uropathogens have been described, our understanding of their contributions to UTIs is limited. Here we explore knowledge gaps in the UTI field, as we discuss the broader repertoire of uropathogen adhesins, including their role beyond initial attachment and the counter-responses of the host immune system. Finally, we describe the development of therapeutic approaches that target uropathogenic adhesion strategies and provide potential alternatives to antibiotics.
Collapse
Affiliation(s)
- Carlos Flores
- Biozentrum, University of Basel, Basel, Switzerland.
| | - Jennifer L Rohn
- Centre for Urological Biology, Division of Medicine, University College London, London, UK.
| |
Collapse
|
5
|
Monteiro ADSS, Cordeiro SM, Reis JN. Virulence Factors in Klebsiella pneumoniae: A Literature Review. Indian J Microbiol 2024; 64:389-401. [PMID: 39011017 PMCID: PMC11246375 DOI: 10.1007/s12088-024-01247-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/28/2024] [Indexed: 07/17/2024] Open
Abstract
Klebsiella pneumoniae, a member of the autochthonous human gut microbiota, utilizes a variety of virulence factors for survival and pathogenesis. Consequently, it is responsible for several human infections, including urinary tract infections, respiratory tract infections, liver abscess, meningitis, bloodstream infections, and medical device-associated infections. The main studied virulence factors in K. pneumoniae are capsule-associated, fimbriae, siderophores, Klebsiella ferric iron uptake, and the ability to metabolize allantoin. They are crucial for virulence and were associated with specific infections in the mice infection model. Notably, these factors are also prevalent in strains from the same infections in humans. However, the type and quantity of virulence factors may vary between strains, which defines the degree of pathogenicity. In this review, we summarize the main virulence factors investigated in K. pneumoniae from different human infections. We also cover the specific identification genes and their prevalence in K. pneumoniae, especially in hypervirulent strains.
Collapse
Affiliation(s)
- Adriano de Souza Santos Monteiro
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
| | | | - Joice Neves Reis
- Laboratory of Pathology and Molecular Biology (LPBM), Gonçalo Moniz Research Institute, Oswaldo Cruz Foundation (FIOCRUZ), Salvador, Bahia Brazil
- Faculty of Pharmacy, Federal University of Bahia, Salvador, Bahia Brazil
| |
Collapse
|
6
|
Abbas R, Chakkour M, Zein El Dine H, Obaseki EF, Obeid ST, Jezzini A, Ghssein G, Ezzeddine Z. General Overview of Klebsiella pneumonia: Epidemiology and the Role of Siderophores in Its Pathogenicity. BIOLOGY 2024; 13:78. [PMID: 38392297 PMCID: PMC10886558 DOI: 10.3390/biology13020078] [Citation(s) in RCA: 35] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 02/24/2024]
Abstract
The opportunistic pathogen Klebsiella pneumoniae (K. pneumoniae) can colonize mucosal surfaces and spread from mucosae to other tissues, causing fatal infections. Medical equipment and the healthcare setting can become colonized by Klebsiella species, which are widely distributed in nature and can be found in water, soil, and animals. Moreover, a substantial number of community-acquired illnesses are also caused by this organism worldwide. These infections are characterized by a high rate of morbidity and mortality as well as the capacity to spread metastatically. Hypervirulent Klebsiella strains are thought to be connected to these infections. Four components are critical to this bacterium's pathogenicity-the capsule, lipopolysaccharide, fimbriae, and siderophores. Siderophores are secondary metabolites that allow iron to sequester from the surrounding medium and transport it to the intracellular compartment of the bacteria. A number of variables may lead to K. pneumoniae colonization in a specific area. Risk factors for infection include local healthcare practices, antibiotic use and misuse, infection control procedures, nutrition, gender, and age.
Collapse
Affiliation(s)
- Rim Abbas
- Faculty of Health Sciences, Beirut Arab University, Beirut P.O. Box 11-5020, Lebanon
| | - Mohamed Chakkour
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | - Hiba Zein El Dine
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, 1205 Geneva, Switzerland
| | | | - Soumaya T Obeid
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Aya Jezzini
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Ghassan Ghssein
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| | - Zeinab Ezzeddine
- Laboratory Sciences Department, Faculty of Public Health, Islamic University of Lebanon (IUL), Khalde P.O. Box 30014, Lebanon
| |
Collapse
|
7
|
Pu D, Zhao J, Chang K, Zhuo X, Cao B. "Superbugs" with hypervirulence and carbapenem resistance in Klebsiella pneumoniae: the rise of such emerging nosocomial pathogens in China. Sci Bull (Beijing) 2023; 68:2658-2670. [PMID: 37821268 DOI: 10.1016/j.scib.2023.09.040] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023]
Abstract
Although hypervirulent Klebsiella pneumoniae (hvKP) can produce community-acquired infections that are fatal in young and adult hosts, such as pyogenic liver abscess, endophthalmitis, and meningitis, it has historically been susceptible to antibiotics. Carbapenem-resistant K. pneumoniae (CRKP) is usually associated with urinary tract infections acquired in hospitals, pneumonia, septicemias, and soft tissue infections. Outbreaks and quick spread of CRKP in hospitals have become a major challenge in public health due to the lack of effective antibacterial treatments. In the early stages of K. pneumoniae development, HvKP and CRKP first appear as distinct routes. However, the lines dividing the two pathotypes are vanishing currently, and the advent of carbapenem-resistant hypervirulent K. pneumoniae (CR-hvKP) is devastating as it is simultaneously multidrug-resistant, hypervirulent, and highly transmissible. Most CR-hvKP cases have been reported in Asian clinical settings, particularly in China. Typically, CR-hvKP develops when hvKP or CRKP acquires plasmids that carry either the carbapenem-resistance gene or the virulence gene. Alternatively, classic K. pneumoniae (cKP) may acquire a hybrid plasmid carrying both genes. In this review, we provide an overview of the key antimicrobial resistance mechanisms, virulence factors, clinical presentations, and outcomes associated with CR-hvKP infection. Additionally, we discuss the possible evolutionary processes and prevalence of CR-hvKP in China. Given the wide occurrence of CR-hvKP, continued surveillance and control measures of such organisms should be assigned a higher priority.
Collapse
Affiliation(s)
- Danni Pu
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Jiankang Zhao
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Kang Chang
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China
| | - Xianxia Zhuo
- Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Cao
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; Laboratory of Clinical Microbiology and Infectious Diseases, Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, National Clinical Research Center for Respiratory Diseases, National Center for Respiratory Medicine, China-Japan Friendship Hospital, Beijing 100029, China; Institute of Respiratory Medicine, Chinese Academy of Medical Sciences, Beijing 100029, China; Department of Pulmonary and Critical Care Medicine, Capital Medical University, Beijing 100069, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100084, China.
| |
Collapse
|
8
|
Li Y, Ni M. Regulation of biofilm formation in Klebsiella pneumoniae. Front Microbiol 2023; 14:1238482. [PMID: 37744914 PMCID: PMC10513181 DOI: 10.3389/fmicb.2023.1238482] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 08/23/2023] [Indexed: 09/26/2023] Open
Abstract
Klebsiella pneumoniae is an important Gram-negative opportunistic pathogen that is responsible for a variety of nosocomial and community-acquired infections. Klebsiella pneumoniae has become a major public health issue owing to the rapid global spread of extensively-drug resistant (XDR) and hypervirulent strains. Biofilm formation is an important virulence trait of K. pneumoniae. A biofilm is an aggregate of microorganisms attached to an inert or living surface by a self-produced exo-polymeric matrix that includes proteins, polysaccharides and extracellular DNA. Bacteria within the biofilm are shielded from antibiotics treatments and host immune responses, making it more difficult to eradicate K. pneumoniae-induced infection. However, the detailed mechanisms of biofilm formation in K. pneumoniae are still not clear. Here, we review the factors involved in the biofilm formation of K. pneumoniae, which might provide new clues to address this clinical challenge.
Collapse
Affiliation(s)
| | - Ming Ni
- Department and Institute of Infectious Disease, Tongji Hospital, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Disease, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
9
|
Huang M, He P, He P, Wu Y, Munir S, He Y. Novel Virulence Factors Deciphering Klebsiella pneumoniae KpC4 Infect Maize as a Crossing-Kingdom Pathogen: An Emerging Environmental Threat. Int J Mol Sci 2022; 23:ijms232416005. [PMID: 36555647 PMCID: PMC9785288 DOI: 10.3390/ijms232416005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
Klebsiella pneumoniae is not only a human and animal opportunistic pathogen, but a food-borne pathogen. Cross-kingdom infection has been focused on since K. pneumoniae was identified as the pathogen of maize, banana, and pomegranate. Although the pathogenicity of K. pneumoniae strains (from ditch water, maize, and human) on plant and mice has been confirmed, there are no reports to explain the molecular mechanisms of the pathogen. This study uncovered the K. pneumoniae KpC4 isolated from maize top rot for the determination of various virulence genes and resistance genes. At least thirteen plant disease-causing genes are found to be involved in the disruption of plant defense. Among them, rcsB is responsible for causing disease in both plants and animals. The novel sequence types provide solid evidence that the pathogen invades plant and has robust ecological adaptability. It is imperative to perform further studies on the verification of these KpC4 genes’ functions to understand the molecular mechanisms involved in plant−pathogen interactions.
Collapse
Affiliation(s)
- Min Huang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy and Life Sciences and Engineering Research Center for Urban Modern Agriculture of Higher Education in Yunnan Province, Kunming University, Kunming 650214, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming 650201, China
- Correspondence: (S.M.); (Y.H.)
| |
Collapse
|
10
|
Hudson AW, Barnes AJ, Bray AS, Ornelles DA, Zafar MA. Klebsiella pneumoniae l-Fucose Metabolism Promotes Gastrointestinal Colonization and Modulates Its Virulence Determinants. Infect Immun 2022; 90:e0020622. [PMID: 36129299 PMCID: PMC9584338 DOI: 10.1128/iai.00206-22] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Colonization of the gastrointestinal (GI) tract by Klebsiella pneumoniae is generally considered asymptomatic. However, gut colonization allows K. pneumoniae to either translocate to sterile site within the same host or transmit through the fecal-oral route to another host. K. pneumoniae gut colonization is poorly understood, but knowledge of this first step toward infection and spread is critical for combatting its disease manifestations. K. pneumoniae must overcome colonization resistance (CR) provided by the host microbiota to establish itself within the gut. One such mechanism of CR is through nutrient competition. Pathogens that metabolize a broad range of substrates have the ability to bypass nutrient competition and overcome CR. Herein, we demonstrate that in response to mucin-derived fucose, the conserved fucose metabolism operon (fuc) of K. pneumoniae is upregulated in the murine gut, and we subsequently show that fucose metabolism promotes robust gut colonization. Growth studies using cecal filtrate as a proxy for the gut lumen illustrate the growth advantage that the fuc operon provides K. pneumoniae. We further show that fucose metabolism allows K. pneumoniae to be competitive with a commensal Escherichia coli isolate (Nissle). However, Nissle is eventually able to outcompete K. pneumoniae, suggesting that it can be utilized to enhance CR. Finally, we observed that fucose metabolism positively modulates hypermucoviscosity, autoaggregation, and biofilm formation but not capsule biogenesis. Together, these insights enhance our understanding of the role of alternative carbon sources in K. pneumoniae gut colonization and the complex relationship between metabolism and virulence in this species.
Collapse
Affiliation(s)
- Andrew W. Hudson
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew J. Barnes
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - Andrew S. Bray
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - David A. Ornelles
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| | - M. Ammar Zafar
- Department of Microbiology and Immunology, Wake Forest School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
11
|
Guerra MES, Destro G, Vieira B, Lima AS, Ferraz LFC, Hakansson AP, Darrieux M, Converso TR. Klebsiella pneumoniae Biofilms and Their Role in Disease Pathogenesis. Front Cell Infect Microbiol 2022; 12:877995. [PMID: 35646720 PMCID: PMC9132050 DOI: 10.3389/fcimb.2022.877995] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/13/2022] [Indexed: 12/17/2022] Open
Abstract
The ability to form biofilms is a crucial virulence trait for several microorganisms, including Klebsiella pneumoniae - a Gram-negative encapsulated bacterium often associated with nosocomial infections. It is estimated that 65-80% of bacterial infections are biofilm related. Biofilms are complex bacterial communities composed of one or more species encased in an extracellular matrix made of proteins, carbohydrates and genetic material derived from the bacteria themselves as well as from the host. Bacteria in the biofilm are shielded from immune responses and antibiotics. The present review discusses the characteristics of K. pneumoniae biofilms, factors affecting biofilm development, and their contribution to infections. We also explore different model systems designed to study biofilm formation in this species. A great number of factors contribute to biofilm establishment and maintenance in K. pneumoniae, which highlights the importance of this mechanism for the bacterial fitness. Some of these molecules could be used in future vaccines against this bacterium. However, there is still a lack of in vivo models to evaluate the contribution of biofilm development to disease pathogenesis. With that in mind, the combination of different methodologies has great potential to provide a more detailed scenario that more accurately reflects the steps and progression of natural infection.
Collapse
Affiliation(s)
- Maria Eduarda Souza Guerra
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Giulia Destro
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Brenda Vieira
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Alice S. Lima
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lucio Fabio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Anders P. Hakansson
- Division of Experimental Infection Medicine, Department of Translational Medicine, Lund University, Malmo, Sweden
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thiago Rojas Converso
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
12
|
Tutelyan AV, Shlykova DS, Voskanyan SL, Gaponov AM, Pisarev VM. Molecular Epidemiology of Hypervirulent K. pneumoniae and Problems of Health-Care Associated Infections. Bull Exp Biol Med 2022; 172:507-522. [PMID: 35352244 PMCID: PMC8964242 DOI: 10.1007/s10517-022-05424-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Indexed: 12/25/2022]
Abstract
The review describes virulence factors of hypervirulent K. pneumoniae (hvKp) including genes determining its virulence and discusses their role in the development of health-care associated infections. The contribution of individual virulence factors and their combination to the development of the hypervirulence and the prospects of using these factors as biomarkers and therapeutic targets are described. Virulence factors of hvKp and "classical" K. pneumoniae strains (cKp) with no hypervirulence genes were compared. The mechanisms of biofilm formation by hvKp and high incidence of its antibiotic resistance are of particular importance for in health care institutions. Therefore, the development of methods for hvKp identification allowing early prevention of severe hvKp infection and novel approaches to abrogate its spreading are new challenges for epidemiology, infection diseases, and critical care medicine. New technologies including bacteriological and molecular studies make it possible to develop innovative strategies to diagnose and treat infection caused by hvKp. These include monitoring of both genetic biomarkers of hvKp and resistance plasmid that carry of virulence genes and antibiotic resistance genes, creation of immunological agents for the prevention and therapy of hvKp (vaccines, monoclonal antibodies) as well as personalized hvKp-specific phage therapies and pharmaceuticals enhancing the effect of antibiotics. A variety of approaches can reliably prepare our medicine for a new challenge: spreading of life-threatening health-care associated infections caused by antibiotic-resistant hvKp strains.
Collapse
Affiliation(s)
- A V Tutelyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - D S Shlykova
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - Sh L Voskanyan
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
| | - A M Gaponov
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia
| | - V M Pisarev
- Central Research Institute of Epidemiology, Federal Service for Surveillance on Consumer Rights Protection and Human Wellbeing, Moscow, Russia.
- Federal Research Clinical Center of Intensive Care Medicine and Rehabilitology, Moscow, Russia.
| |
Collapse
|
13
|
Shen L, Zhang J, Xue J, Du L, Yuan L, Nie H, Dai S, Yu Q, Li Y. Regulation of ECP fimbriae-related genes by the transcriptional regulator RcsAB in Klebsiella pneumoniae NTUH-K2044. J Basic Microbiol 2022; 62:593-603. [PMID: 35132658 DOI: 10.1002/jobm.202100595] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/06/2022] [Accepted: 01/15/2022] [Indexed: 11/11/2022]
Abstract
Klebsiella pneumoniae is one of the major pathogens causing nosocomial infections. The regulator of capsule synthesis (Rcs) system is a complex signal transduction pathway that is involved in the regulation of virulence factors of K. pneumoniae as an important transcriptional regulator. The RcsAB box-like sequence was found to be present in the promoter-proximal regions of ykgK, one of the ECP fimbriae-related genes, which suggested the expression of ECP fimbriae may be regulated by RcsAB. The ykgK gene in K. pneumoniae has 86% similarity to the ecpR gene in Escherichia coli. Nucleotide sequence alignment revealed a similar ECP fimbriae gene cluster including six genes in K. pneumoniae, which was proved to be on the same operon in this study. The electrophoretic mobility shift assay and DNase I assay, relative fluorescence expression, β-galactosidase activity, and relative gene expression of ykgK in the wild-type and mutant strains were performed to determine the transcriptional regulation mechanism of RcsAB on ECP fimbriae. The mutant ΔykgK and complementary strain ΔykgK/cΔykgK were constructed to complete the Galleria mellonella larvae infection experiment and biofilm formation assay. This study showed that RcsAB binds directly to the promoter region of the ykgK gene to positively regulate ECP fimbriae-related gene clusters, and then positively affect the biofilm formation.
Collapse
Affiliation(s)
- Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jiaxue Zhang
- Chongqing Jiangbei District Center for Disease Control and Prevention, Chongqing, China
| | - Jian Xue
- Zunyi Medical and Pharmaceutical College, Zunyi, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Hao Nie
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Sue Dai
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Qian Yu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
14
|
Arato V, Raso MM, Gasperini G, Berlanda Scorza F, Micoli F. Prophylaxis and Treatment against Klebsiella pneumoniae: Current Insights on This Emerging Anti-Microbial Resistant Global Threat. Int J Mol Sci 2021; 22:4042. [PMID: 33919847 PMCID: PMC8070759 DOI: 10.3390/ijms22084042] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/06/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023] Open
Abstract
Klebsiella pneumoniae (Kp) is an opportunistic pathogen and the leading cause of healthcare-associated infections, mostly affecting subjects with compromised immune systems or suffering from concurrent bacterial infections. However, the dramatic increase in hypervirulent strains and the emergence of new multidrug-resistant clones resulted in Kp occurrence among previously healthy people and in increased morbidity and mortality, including neonatal sepsis and death across low- and middle-income countries. As a consequence, carbapenem-resistant and extended spectrum β-lactamase-producing Kp have been prioritized as a critical anti-microbial resistance threat by the World Health Organization and this has renewed the interest of the scientific community in developing a vaccine as well as treatments alternative to the now ineffective antibiotics. Capsule polysaccharide is the most important virulence factor of Kp and plays major roles in the pathogenesis but its high variability (more than 100 different types have been reported) makes the identification of a universal treatment or prevention strategy very challenging. However, less variable virulence factors such as the O-Antigen, outer membrane proteins as fimbriae and siderophores might also be key players in the fight against Kp infections. Here, we review elements of the current status of the epidemiology and the molecular pathogenesis of Kp and explore specific bacterial antigens as potential targets for both prophylactic and therapeutic solutions.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy; (V.A.); (M.M.R.); (G.G.); (F.B.S.)
| |
Collapse
|
15
|
Zhu J, Wang T, Chen L, Du H. Virulence Factors in Hypervirulent Klebsiella pneumoniae. Front Microbiol 2021; 12:642484. [PMID: 33897652 PMCID: PMC8060575 DOI: 10.3389/fmicb.2021.642484] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/11/2021] [Indexed: 12/25/2022] Open
Abstract
Hypervirulent Klebsiella pneumoniae (hvKP) has spread globally since first described in the Asian Pacific Rim. It is an invasive variant that differs from the classical K. pneumoniae (cKP), with hypermucoviscosity and hypervirulence, causing community-acquired infections, including pyogenic liver abscess, pneumonia, meningitis, and endophthalmitis. It utilizes a battery of virulence factors for survival and pathogenesis, such as capsule, siderophores, lipopolysaccharide, fimbriae, outer membrane proteins, and type 6 secretion system, of which the former two are dominant. This review summarizes these hvKP-associated virulence factors in order to understand its molecular pathogenesis and shed light on new strategies to improve the prevention, diagnosis, and treatment of hvKP-causing infection.
Collapse
Affiliation(s)
- Jie Zhu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Tao Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Liang Chen
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, NJ, United States.,Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, NJ, United States
| | - Hong Du
- Department of Clinical Laboratory, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
16
|
Gomes AÉI, Pacheco T, Dos Santos CDS, Pereira JA, Ribeiro ML, Darrieux M, Ferraz LFC. Functional Insights From KpfR, a New Transcriptional Regulator of Fimbrial Expression That Is Crucial for Klebsiella pneumoniae Pathogenicity. Front Microbiol 2021; 11:601921. [PMID: 33552015 PMCID: PMC7861041 DOI: 10.3389/fmicb.2020.601921] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 12/03/2020] [Indexed: 12/17/2022] Open
Abstract
Although originally known as an opportunistic pathogen, Klebsiella pneumoniae has been considered a worldwide health threat nowadays due to the emergence of hypervirulent and antibiotic-resistant strains capable of causing severe infections not only on immunocompromised patients but also on healthy individuals. Fimbriae is an essential virulence factor for K. pneumoniae, especially in urinary tract infections (UTIs), because it allows the pathogen to adhere and invade urothelial cells and to form biofilms on biotic and abiotic surfaces. The importance of fimbriae for K. pneumoniae pathogenicity is highlighted by the large number of fimbrial gene clusters on the bacterium genome, which requires a coordinated and finely adjusted system to control the synthesis of these structures. In this work, we describe KpfR as a new transcriptional repressor of fimbrial expression in K. pneumoniae and discuss its role in the bacterium pathogenicity. K. pneumoniae with disrupted kpfR gene exhibited a hyperfimbriated phenotype with enhanced biofilm formation and greater adhesion to and replication within epithelial host cells. Nonetheless, the mutant strain was attenuated for colonization of the bladder in a murine model of urinary tract infection. These results indicate that KpfR is an important transcriptional repressor that, by negatively controlling the expression of fimbriae, prevents K. pneumoniae from having a hyperfimbriated phenotype and from being recognized and eliminated by the host immune system.
Collapse
Affiliation(s)
- Ana Érika Inácio Gomes
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Thaisy Pacheco
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | | | - José Aires Pereira
- Laboratório de Biologia Molecular e Celular de Tumores, Universidade São Francisco, Bragança Paulista, Brazil
| | - Marcelo Lima Ribeiro
- Laboratório de Imunofarmacologia e Biologia Molecular, Universidade São Francisco, Bragança Paulista, Brazil
| | - Michelle Darrieux
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| | - Lúcio Fábio Caldas Ferraz
- Laboratório de Biologia Molecular de Microrganismos, Universidade São Francisco, Bragança Paulista, Brazil
| |
Collapse
|
17
|
Hu Y, Anes J, Devineau S, Fanning S. Klebsiella pneumoniae: Prevalence, Reservoirs, Antimicrobial Resistance, Pathogenicity, and Infection: A Hitherto Unrecognized Zoonotic Bacterium. Foodborne Pathog Dis 2020; 18:63-84. [PMID: 33124929 DOI: 10.1089/fpd.2020.2847] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Klebsiella pneumoniae is considered an opportunistic pathogen, constituting an ongoing health concern for immunocompromised patients, the elderly, and neonates. Reports on the isolation of K. pneumoniae from other sources are increasing, many of which express multidrug-resistant (MDR) phenotypes. Three phylogroups were identified based on nucleotide differences. Niche environments, including plants, animals, and humans appear to be colonized by different phylogroups, among which KpI (K. pneumoniae) is commonly associated with human infection. Infections with K. pneumoniae can be transmitted through contaminated food or water and can be associated with community-acquired infections or between persons and animals involved in hospital-acquired infections. Increasing reports are describing detections along the food chain, suggesting the possibility exists that this could be a hitherto unexplored reservoir for this opportunistic bacterial pathogen. Expression of MDR phenotypes elaborated by these bacteria is due to the nature of various plasmids carrying antimicrobial resistance (AMR)-encoding genes, and is a challenge to animal, environmental, and human health alike. Raman spectroscopy has the potential to provide for the rapid identification and screening of antimicrobial susceptibility of Klebsiella isolates. Moreover, hypervirulent isolates linked with extraintestinal infections express phenotypes that may support their niche adaptation. In this review, the prevalence, reservoirs, AMR, Raman spectroscopy detection, and pathogenicity of K. pneumoniae are summarized and various extraintestinal infection pathways are further narrated to extend our understanding of its adaptation and survival ability in reservoirs, and associated disease risks.
Collapse
Affiliation(s)
- Yujie Hu
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China
| | - João Anes
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland
| | | | - Séamus Fanning
- UCD-Centre for Food Safety, UCD School of Public Health, Physiotherapy and Sports Science, Science Centre South, College of Health and Agricultural Sciences, University College Dublin (UCD), Dublin, Ireland.,Key Laboratory of Food Safety Risk Assessment, Ministry of Health, China National Center for Food Safety Risk Assessment, Beijing, China.,Institute for Global Food Security, Queen's University Belfast, Belfast, United Kingdom
| |
Collapse
|
18
|
Sarshar M, Behzadi P, Ambrosi C, Zagaglia C, Palamara AT, Scribano D. FimH and Anti-Adhesive Therapeutics: A Disarming Strategy Against Uropathogens. Antibiotics (Basel) 2020; 9:E397. [PMID: 32664222 PMCID: PMC7400442 DOI: 10.3390/antibiotics9070397] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 02/06/2023] Open
Abstract
Chaperone-usher fimbrial adhesins are powerful weapons against the uropathogens that allow the establishment of urinary tract infections (UTIs). As the antibiotic therapeutic strategy has become less effective in the treatment of uropathogen-related UTIs, the anti-adhesive molecules active against fimbrial adhesins, key determinants of urovirulence, are attractive alternatives. The best-characterized bacterial adhesin is FimH, produced by uropathogenic Escherichia coli (UPEC). Hence, a number of high-affinity mono- and polyvalent mannose-based FimH antagonists, characterized by different bioavailabilities, have been reported. Given that antagonist affinities are firmly associated with the functional heterogeneities of different FimH variants, several FimH inhibitors have been developed using ligand-drug discovery strategies to generate high-affinity molecules for successful anti-adhesion therapy. As clinical trials have shown d-mannose's efficacy in UTIs prevention, it is supposed that mannosides could be a first-in-class strategy not only for UTIs, but also to combat other Gram-negative bacterial infections. Therefore, the current review discusses valuable and effective FimH anti-adhesive molecules active against UTIs, from design and synthesis to in vitro and in vivo evaluations.
Collapse
Affiliation(s)
- Meysam Sarshar
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, 00146 Rome, Italy
- Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Payam Behzadi
- Department of Microbiology, College of Basic Sciences, Shahr-e-Qods Branch, Islamic Azad University, Tehran 37541-374, Iran
| | - Cecilia Ambrosi
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Carlo Zagaglia
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
| | - Anna Teresa Palamara
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, Laboratory affiliated to Institute Pasteur Italia- Cenci Bolognetti Foundation, 00185 Rome, Italy
- IRCCS San Raffaele Pisana, Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, 00166 Rome, Italy
| | - Daniela Scribano
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy
- Dani Di Giò Foundation-Onlus, 00193 Rome, Italy
| |
Collapse
|
19
|
Kpi, a chaperone-usher pili system associated with the worldwide-disseminated high-risk clone Klebsiella pneumoniae ST-15. Proc Natl Acad Sci U S A 2020; 117:17249-17259. [PMID: 32641516 PMCID: PMC7382220 DOI: 10.1073/pnas.1921393117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Control of infections caused by carbapenem-resistant Klebsiella pneumoniae continues to be challenging. The success of this pathogen is favored by its ability to acquire antimicrobial resistance and to spread and persist in both the environment and in humans. The emergence of clinically important clones, such as sequence types 11, 15, 101, and 258, has been reported worldwide. However, the mechanisms promoting the dissemination of such high-risk clones are unknown. Unraveling the factors that play a role in the pathobiology and epidemicity of K. pneumoniae is therefore important for managing infections. To address this issue, we studied a carbapenem-resistant ST-15 K. pneumoniae isolate (Kp3380) that displayed a remarkable adherent phenotype with abundant pilus-like structures. Genome sequencing enabled us to identify a chaperone-usher pili system (Kpi) in Kp3380. Analysis of a large K. pneumoniae population from 32 European countries showed that the Kpi system is associated with the ST-15 clone. Phylogenetic analysis of the operon revealed that Kpi belongs to the little-characterized γ2-fimbrial clade. We demonstrate that Kpi contributes positively to the ability of K. pneumoniae to form biofilms and adhere to different host tissues. Moreover, the in vivo intestinal colonizing capacity of the Kpi-defective mutant was significantly reduced, as was its ability to infect Galleria mellonella The findings provide information about the pathobiology and epidemicity of Kpi+ K. pneumoniae and indicate that the presence of Kpi may explain the success of the ST-15 clone. Disrupting bacterial adherence to the intestinal surface could potentially target gastrointestinal colonization.
Collapse
|
20
|
Yuan L, Li X, Du L, Su K, Zhang J, Liu P, He Q, Zhang Z, Peng D, Shen L, Qiu J, Li Y. RcsAB and Fur Coregulate the Iron-Acquisition System via entC in Klebsiella pneumoniae NTUH-K2044 in Response to Iron Availability. Front Cell Infect Microbiol 2020; 10:282. [PMID: 32587833 PMCID: PMC7298118 DOI: 10.3389/fcimb.2020.00282] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 05/12/2020] [Indexed: 01/21/2023] Open
Abstract
The iron acquisition system is an essential virulence factor for human infection and is under tight regulatory control in a variety of pathogens. Ferric-uptake regulator (Fur) is one of Fe2+-responsive transcription factor that maintains iron homeostasis, and the regulator of capsule synthesis (Rcs) is known to regulate exopolysaccharide biosynthesis. We speculate the Rcs may involve in iron-acquisition given the identified regulator box in the upstream of entC that participated in the biosynthesis of enterobactin. To study the coregulation by RcsAB and Fur of entC, we measured the β-galactosidase activity and relative mRNA expression of entC in WT and mutant strains. The RcsAB- and Fur-protected regions were identified by an electrophoretic mobility shift assay (EMSA) and a DNase I footprinting assay. A regulatory cascade was identified with which Fur repressed rcsA expression and reduced RcsAB and entC expression. Our study demonstrated that entC was coregulated by two different transcriptional regulators, namely, RcsAB and Fur, in response to iron availability in Klebsiella pneumoniae.
Collapse
Affiliation(s)
- Lingyue Yuan
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ling Du
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- Hangzhou Hospital for the Prevention and Treatment of Occupational Disease, Hangzhou, China
| | - Jiaxue Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- Nanjing Center for Disease Control and Prevention, Nanjing, China
| | - Qiang He
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Zhongshuang Zhang
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Dan Peng
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Lifei Shen
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
M Campos JC, Antunes LCM, Ferreira RBR. Global priority pathogens: virulence, antimicrobial resistance and prospective treatment options. Future Microbiol 2020; 15:649-677. [DOI: 10.2217/fmb-2019-0333] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, Enterobacter spp. and Salmonella spp. are part of a group of pathogens that pose a major threat to human health due to the emergence of multidrug-resistant strains. Moreover, these bacteria have several virulence factors that allow them to successfully colonize their hosts, such as toxins and the ability to produce biofilms, resulting in an urgent need to develop new strategies to fight these pathogens. In this review, we compile the most up-to-date information on the epidemiology, virulence and resistance of these clinically important microorganisms. Additionally, we address new therapeutic alternatives, with a focus on molecules with antivirulence activity, which are considered promising to combat multidrug-resistant bacteria.
Collapse
Affiliation(s)
- Juliana C de M Campos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luis CM Antunes
- Escola Nacional de Saúde Pública Sergio Arouca, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Instituto Nacional de Ciência e Tecnologia de Inovação em Doenças de Populações Negligenciadas, Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Rosana BR Ferreira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Abstract
Klebsiella pneumoniae is a common cause of antimicrobial-resistant opportunistic infections in hospitalized patients. The species is naturally resistant to penicillins, and members of the population often carry acquired resistance to multiple antimicrobials. However, knowledge of K. pneumoniae ecology, population structure or pathogenicity is relatively limited. Over the past decade, K. pneumoniae has emerged as a major clinical and public health threat owing to increasing prevalence of healthcare-associated infections caused by multidrug-resistant strains producing extended-spectrum β-lactamases and/or carbapenemases. A parallel phenomenon of severe community-acquired infections caused by 'hypervirulent' K. pneumoniae has also emerged, associated with strains expressing acquired virulence factors. These distinct clinical concerns have stimulated renewed interest in K. pneumoniae research and particularly the application of genomics. In this Review, we discuss how genomics approaches have advanced our understanding of K. pneumoniae taxonomy, ecology and evolution as well as the diversity and distribution of clinically relevant determinants of pathogenicity and antimicrobial resistance. A deeper understanding of K. pneumoniae population structure and diversity will be important for the proper design and interpretation of experimental studies, for interpreting clinical and public health surveillance data and for the design and implementation of novel control strategies against this important pathogen.
Collapse
|
23
|
ISOLATION, IDENTIFICATION, AND GENOME ANALYSIS OF LUNG PATHOGENIC KLEBSIELLA PNEUMONIAE (LPKP) IN FOREST MUSK DEER. J Zoo Wildl Med 2019; 48:1039-1048. [PMID: 29297821 DOI: 10.1638/2016-0241.1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Klebsiella pneumoniae is an important pathogen commonly associated with opportunistic infections. In this study, lung pathogenic K. pneumoniae (LPKP) was isolated and identified from suppurative pneumoniae in forest musk deer by conventional methods and by 16S ribosomal RNA sequence analysis. Median lethal dose and histopathologic analysis were used to demonstrate pathogenicity of the organism in mice. Furthermore, a draft genome of LPKP was sequenced, and its virulence genes were detected. One hundred and twenty-two virulence genes encoded determinant of capsule polysaccharide (CPS), lipopolysaccharide, fimbriae, outer membrane proteins, iron acquisition, and urease. In particular, 20 CPS-related genes were highly conserved in LPKP, K. pneumoniae U, K. pneumoniae NTUH-KP35, and K. pneumoniae KP-1. All of the strains were identified as capsular type K54. This is the first report of capsular type K54 K. pneumoniae causing suppurative pneumonia in an animal. The results of this study provided the basis for understanding the pathogenicity of LPKP and laid a foundation for the development of vaccines for the capsular type K54 K. pneumoniae disease.
Collapse
|
24
|
Dantur KI, Chalfoun NR, Claps MP, Tórtora ML, Silva C, Jure Á, Porcel N, Bianco MI, Vojnov A, Castagnaro AP, Welin B. The Endophytic Strain Klebsiella michiganensis Kd70 Lacks Pathogenic Island-Like Regions in Its Genome and Is Incapable of Infecting the Urinary Tract in Mice. Front Microbiol 2018; 9:1548. [PMID: 30061870 PMCID: PMC6054940 DOI: 10.3389/fmicb.2018.01548] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/21/2018] [Indexed: 01/14/2023] Open
Abstract
Klebsiella spp. have been isolated from many different environmental habitats but have mainly been associated with nosocomial acquired diseases in humans. Although there are many recently published sequenced genomes of members of this genus, there are very few studies on whole genome comparisons between clinical and non-clinical isolates, and it is therefore still an open question if a strain found in nature is capable of infecting humans/animals. Klebsiella michiganensis Kd70 was isolated from the intestine of larvae of Diatraea saccharalis but genome analysis revealed multiple genes associated with colonization and growth promotion in plants suggesting an endophytic lifestyle. Kd70 cells labeled with gfp confirmed capability of root colonization and soil application of Kd70 promoted growth in greenhouse grown sugarcane. Further genomic analysis showed that the Kd70 genome harbored fewer mammalian virulence factors and no pathogen island-like regions when compared to clinical isolates of this species, suggesting attenuated animal/human pathogenicity. This postulation was corroborated by in vivo experiments in which it was demonstrated that Kd70 was unable to infect the mouse urinary tract. This is to the best of our knowledge the first experimental example of a member of a pathogenic Klebsiella spp. unable to infect a mammalian organism. A proteomic comparison deduced from the genomic sequence between Kd70 and several other K. michiganensis strains showed a high similarity with isolates from many different environments including clinical strains, and demonstrated the existence of conserved genetic lineages within this species harboring members from different ecological niches and geographical locations. Furthermore, most genetic differences were found to be associated with genomic islands of clinical isolates, suggesting that evolutionary adaptation of animal pathogenicity to a large extent has depended on horizontal gene transfer. In conclusion our results demonstrate the importance of conducting thorough in vivo pathogenicity studies before presupposing animal/human virulence of non-clinical bacterial isolates.
Collapse
Affiliation(s)
- Karina I. Dantur
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres – Consejo Nacional de Investigaciones Científicas y Técnicas, Las Talitas, Argentina
| | - Nadia R. Chalfoun
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres – Consejo Nacional de Investigaciones Científicas y Técnicas, Las Talitas, Argentina
| | - Maria P. Claps
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres – Consejo Nacional de Investigaciones Científicas y Técnicas, Las Talitas, Argentina
| | - Maria L. Tórtora
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres – Consejo Nacional de Investigaciones Científicas y Técnicas, Las Talitas, Argentina
| | - Clara Silva
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Ángela Jure
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Norma Porcel
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Tucumán, Argentina
| | - Maria I. Bianco
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Adrián Vojnov
- Instituto de Ciencia y Tecnología Dr. César Milstein, Fundación Pablo Cassará – Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Atilio P. Castagnaro
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres – Consejo Nacional de Investigaciones Científicas y Técnicas, Las Talitas, Argentina
| | - Björn Welin
- Instituto de Tecnología Agroindustrial del Noroeste Argentino, Estación Experimental Agroindustrial Obispo Colombres – Consejo Nacional de Investigaciones Científicas y Técnicas, Las Talitas, Argentina
| |
Collapse
|
25
|
Lam MMC, Wyres KL, Duchêne S, Wick RR, Judd LM, Gan YH, Hoh CH, Archuleta S, Molton JS, Kalimuddin S, Koh TH, Passet V, Brisse S, Holt KE. Population genomics of hypervirulent Klebsiella pneumoniae clonal-group 23 reveals early emergence and rapid global dissemination. Nat Commun 2018; 9:2703. [PMID: 30006589 PMCID: PMC6045662 DOI: 10.1038/s41467-018-05114-7] [Citation(s) in RCA: 195] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/31/2018] [Indexed: 01/14/2023] Open
Abstract
Severe liver abscess infections caused by hypervirulent clonal-group CG23 Klebsiella pneumoniae have been increasingly reported since the mid-1980s. Strains typically possess several virulence factors including an integrative, conjugative element ICEKp encoding the siderophore yersiniabactin and genotoxin colibactin. Here we investigate CG23's evolutionary history, showing several deep-branching sublineages associated with distinct ICEKp acquisitions. Over 80% of liver abscess isolates belong to sublineage CG23-I, which emerged in ~1928 following acquisition of ICEKp10 (encoding yersiniabactin and colibactin), and then disseminated globally within the human population. CG23-I's distinguishing feature is the colibactin synthesis locus, which reportedly promotes gut colonisation and metastatic infection in murine models. These data show circulation of CG23 K. pneumoniae decades before the liver abscess epidemic was first recognised, and provide a framework for future epidemiological and experimental studies of hypervirulent K. pneumoniae. To support such studies we present an open access, completely sequenced CG23-I human liver abscess isolate, SGH10.
Collapse
Affiliation(s)
- Margaret M C Lam
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Kelly L Wyres
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Sebastian Duchêne
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Ryan R Wick
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Louise M Judd
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia
| | - Yunn-Hwen Gan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Chu-Han Hoh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Sophia Archuleta
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - James S Molton
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119228, Singapore
| | - Shirin Kalimuddin
- Department of Infectious Diseases, Singapore General Hospital, Singapore, 169608, Singapore
| | - Tse Hsien Koh
- Department of Microbiology, Singapore General Hospital, Singapore, 169608, Singapore
| | - Virginie Passet
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, 75015, Paris, France
| | - Sylvain Brisse
- Institut Pasteur, Biodiversity and Epidemiology of Bacterial Pathogens, 75015, Paris, France
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, 3010, Australia.
- The London School of Hygiene and Tropical Medicine, London, WC1E 7HT, United Kingdom.
| |
Collapse
|
26
|
Martin RM, Bachman MA. Colonization, Infection, and the Accessory Genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 2018; 8:4. [PMID: 29404282 PMCID: PMC5786545 DOI: 10.3389/fcimb.2018.00004] [Citation(s) in RCA: 566] [Impact Index Per Article: 80.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 01/05/2018] [Indexed: 12/22/2022] Open
Abstract
Klebsiella pneumoniae is a Gram-negative pathogen that has a large accessory genome of plasmids and chromosomal gene loci. This accessory genome divides K. pneumoniae strains into opportunistic, hypervirulent, and multidrug-resistant groups and separates K. pneumoniae from two closely related species, Klebsiella variicola and Klebsiella quasipneumoniae. Some strains of K. pneumoniae act as opportunistic pathogens, infecting critically ill and immunocompromised patients. These K. pneumoniae are a common cause of health-care associated infections including pneumonia, urinary tract infections (UTIs), and bloodstream infections. K. variicola and K. quasipneumoniae are often clinically indistinguishable from opportunistic K. pneumoniae. Other strains of K. pneumoniae are hypervirulent, infecting healthy people in community settings and causing severe infections including pyogenic liver abscess, endophthalmitis, and meningitis. A third group of K. pneumoniae encode carbapenemases, making them highly antibiotic-resistant. These strains act as opportunists but are exceedingly difficult to treat. All of these groups of K. pneumoniae and related species can colonize the gastrointestinal tract, and the accessory genome may determine if a colonizing strain remains asymptomatic or progresses to cause disease. This review will explore the associations between colonization and infection with opportunistic, antibiotic-resistant, and hypervirulent K. pneumoniae strains and the role of the accessory genome in distinguishing these groups and related species. As K. pneumoniae infections become progressively more difficult to treat in the face of antibiotic resistance and hypervirulent strains, an increased understanding of the epidemiology and pathogenesis of these bacteria is vital.
Collapse
Affiliation(s)
| | - Michael A. Bachman
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
27
|
Luo M, Yang S, Li X, Liu P, Xue J, Zhou X, Su K, Xu X, Qing Y, Qiu J, Li Y. The KP1_4563 gene is regulated by the cAMP receptor protein and controls type 3 fimbrial function in Klebsiella pneumoniae NTUH-K2044. PLoS One 2017; 12:e0180666. [PMID: 28732013 PMCID: PMC5521740 DOI: 10.1371/journal.pone.0180666] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 06/19/2017] [Indexed: 11/28/2022] Open
Abstract
Klebsiella pneumoniae (K. pneumoniae) is an opportunistic pathogen that can adhere to host cells or extracellular matrix via type 1 and type 3 fimbriae. KP1_4563 is a gene encoding a hypothetical protein in K. pneumoniae NTUH-K2044. KP1_4563 is located between the type 1 and type 3 fimbrial gene clusters and is likely associated with fimbrial function given its putative conserved domains of unknown function (DUF1471). Cyclic AMP receptor protein (CRP) regulates virulence-related gene expression and is a crucial transcriptional regulator in many bacteria. The predicted DNA recognition motif of CRP is present in the KP1_4563 promoter region. This study aimed to investigate the function of KP1_4563 in fimbriae and its transcriptional regulation mechanism by CRP. We generated Kp-Δ4563 mutant and complementation strains. We utilized phenotype and adhesion assays to evaluate the role of KP1_4563 in fimbriae. We conducted quantitative RT-PCR (qRT-PCR), LacZ fusion, electrophoretic mobility shift, and DNase I footprinting assays to study the transcriptional regulation of KP1_4563 gene by CRP. We found that KP1_4563 negatively regulates the function of type 3 fimbriae. Compared with NTUH-K2044, the absence of KP1_4563 enhanced the ability of Kp-Δ4563 to adhere to A549 cells. CRP negatively regulates KP1_4563 by directly binding to its promoter region. KP1_4563 plays an important role in type 3 fimbrial function. This novel insight will assist in the development of strategies for preventing K. pneumoniae infection.
Collapse
Affiliation(s)
- Mei Luo
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Shiya Yang
- Dianjiang center for disease control and prevention, Chongqing, China
| | - Xuan Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Pin Liu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jian Xue
- Zunyi Medical and Pharmaceutical College, Zunyi City, China
| | - Xipeng Zhou
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Kewen Su
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Xuan Xu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Ying Qing
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- * E-mail: (JQ); (YL)
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Chongqing, China
- * E-mail: (JQ); (YL)
| |
Collapse
|
28
|
Abstract
Strains of Klebsiella pneumoniae are frequently opportunistic pathogens implicated in urinary tract and catheter-associated urinary-tract infections of hospitalized patients and compromised individuals. Infections are particularly difficult to treat since most clinical isolates exhibit resistance to several antibiotics leading to treatment failure and the possibility of systemic dissemination. Infections of medical devices such as urinary catheters is a major site of K. pneumoniae infections and has been suggested to involve the formation of biofilms on these surfaces. Over the last decade there has been an increase in research activity designed to investigate the pathogenesis of K. pneumoniae in the urinary tract. These investigations have begun to define the bacterial factors that contribute to growth and biofilm formation. Several virulence factors have been demonstrated to mediate K. pneumoniae infectivity and include, but are most likely not limited to, adherence factors, capsule production, lipopolysaccharide presence, and siderophore activity. The development of both in vitro and in vivo models of infection will lead to further elucidation of the molecular pathogenesis of K. pneumoniae. As for most opportunistic infections, the role of host factors as well as bacterial traits are crucial in determining the outcome of infections. In addition, multidrug-resistant strains of these bacteria have become a serious problem in the treatment of Klebsiella infections and novel strategies to prevent and inhibit bacterial growth need to be developed. Overall, the frequency, significance, and morbidity associated with K. pneumoniae urinary tract infections have increased over many years. The emergence of these bacteria as sources of antibiotic resistance and pathogens of the urinary tract present a challenging problem for the clinician in terms of management and treatment of individuals.
Collapse
|
29
|
Ye M, Tu J, Jiang J, Bi Y, You W, Zhang Y, Ren J, Zhu T, Cao Z, Yu Z, Shao C, Shen Z, Ding B, Yuan J, Zhao X, Guo Q, Xu X, Huang J, Wang M. Clinical and Genomic Analysis of Liver Abscess-Causing Klebsiella pneumoniae Identifies New Liver Abscess-Associated Virulence Genes. Front Cell Infect Microbiol 2016; 6:165. [PMID: 27965935 PMCID: PMC5126061 DOI: 10.3389/fcimb.2016.00165] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 11/15/2016] [Indexed: 12/03/2022] Open
Abstract
Hypervirulent variants of Klebsiella pneumoniae (hvKp) that cause invasive community-acquired pyogenic liver abscess (PLA) have emerged globally. Little is known about the virulence determinants associated with hvKp, except for the virulence genes rmpA/A2 and siderophores (iroBCD/iucABCD) carried by the pK2044-like large virulence plasmid. Here, we collected most recent clinical isolates of hvKp from PLA samples in China, and performed clinical, molecular, and genomic sequencing analyses. We found that 90.9% (40/44) of the pathogens causing PLA were K. pneumoniae. Among the 40 LA-Kp, K1 (62.5%), and K2 (17.5%) were the dominant serotypes, and ST23 (47.5%) was the major sequence type. S1-PFGE analyses demonstrated that although 77.5% (31/40) of the LA-Kp isolates harbored a single large virulence plasmid varied in size, 5 (12.5%) isolates had no plasmid and 4 (10%) had two or three plasmids. Whole genome sequencing and comparative analysis of 3 LA-Kp and 3 non-LA-Kp identified 133 genes present only in LA-Kp. Further, large scale screening of the 133 genes in 45 LA-Kp and 103 non-LA-Kp genome sequences from public databases identified 30 genes that were highly associated with LA-Kp, including iroBCD, iucABCD and rmpA/A2 and 21 new genes. Then, these 21 new genes were analyzed in 40 LA-Kp and 86 non-LA-Kp clinical isolates collected in this study by PCR, showing that new genes were present 80–100% among LA-Kp isolates while 2–11% in K. pneumoniae isolates from sputum and urine. Several of the 21 genes have been proposed as virulence factors in other bacteria, such as the gene encoding SAM-dependent methyltransferase and pagO which protects bacteria from phagocytosis. Taken together, these genes are likely new virulence factors contributing to the hypervirulence phenotype of hvKp, and may deepen our understanding of virulence mechanism of hvKp.
Collapse
Affiliation(s)
- Meiping Ye
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Jianfei Tu
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Jianping Jiang
- Department of Bioinformatics, SJTU-Yale Joint Center for Biostatistics, Shanghai Jiaotong University Shanghai, China
| | - Yingmin Bi
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Weibo You
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Yanliang Zhang
- Nanjing First Hospital, Nanjing Medical University Nanjing, China
| | - Jianmin Ren
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Taohui Zhu
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Zhuo Cao
- Sixth Hospital of Wenzhou Medical University Lishui, China
| | - Zuochun Yu
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Chuxiao Shao
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Zhen Shen
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Baixing Ding
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Jinyi Yuan
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Xu Zhao
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Qinglan Guo
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Xiaogang Xu
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| | - Jinwei Huang
- Fifth Affiliated Hospital of Wenzhou Medical University Lishui, China
| | - Minggui Wang
- Institute of Antibiotics, Huashan Hospital, Fudan University Shanghai, China
| |
Collapse
|
30
|
Chung PY. The emerging problems of Klebsiella pneumoniae infections: carbapenem resistance and biofilm formation. FEMS Microbiol Lett 2016; 363:fnw219. [PMID: 27664057 DOI: 10.1093/femsle/fnw219] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2016] [Indexed: 12/14/2022] Open
Abstract
Klebsiella pneumoniae is an opportunistic pathogen that commonly causes nosocomial infections in the urinary tract, respiratory tract, lung, wound sites and blood in individuals with debilitating diseases. Klebsiella pneumoniae is still a cause of severe pneumonia in alcoholics in Africa and Asia, and the predominant primary pathogen of primary liver abscess in Taiwan and Southeast Asia, particularly in Asian and Hispanic patients, and individuals with diabetes mellitus. In the United States and Europe, K. pneumoniae infections are most frequently associated with nosocomial infections. The emergence of antibiotic-resistant strains of K. pneumoniae worldwide has become a cause of concern where extended-spectrum β-lactamases (ESBLs) and carbapenemase-producing strains have been isolated with increasing frequency. The pathogen's ability to form biofilms on inserted devices such as urinary catheter has been proposed as one of the important mechanisms in nosocomially acquired and persistent infections, adding to the increased resistance to currently used antibiotics. In this review, infections caused by K. pneumoniae, antibiotic resistance and formation of biofilm will be discussed.
Collapse
Affiliation(s)
- Pooi Yin Chung
- Department of Pathology, School of Medicine, International Medical University, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
31
|
Xue J, Tan B, Yang S, Luo M, Xia H, Zhang X, Zhou X, Yang X, Yang R, Li Y, Qiu J. Influence of cAMP receptor protein (CRP) on bacterial virulence and transcriptional regulation of allS by CRP in Klebsiella pneumoniae. Gene 2016; 593:28-33. [PMID: 27502416 DOI: 10.1016/j.gene.2016.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 08/01/2016] [Accepted: 08/04/2016] [Indexed: 01/23/2023]
Abstract
cAMP receptor protein (CRP) is one of the most important transcriptional regulators, which can regulate large quantities of operons in different bacteria. The gene allS was well-known as allantoin-utilizing capability and involving in bacterial virulence in Klebsiella pneumoniae (K. pneumoniae). The specific DNA recognition motif of transcription regulator CRP was found in allS promoter region. Therefore, this study is aimed to investigate the function of CRP on virulence and its transcriptional regulation mechanism to gene allS in K. pneumoniae. The wild-type (WT) K. pneumoniae NTUH-2044, crp knockout (Kp-Δcrp) and the complemented knockout (KpC-Δcrp) strains were used to determine the function of crp gene. The lacZ fusion, qRT-PCR, electrophoretic mobility shift and DNase I footprinting assays were performed to study the transcriptional regulation of CRP on allS. The result showed a decreased virulence in crp knockout strain. Complement through supplementing crp fragment in expression plasmid partially restore virulence of knockout bacteria. The CRP could bind to the allS promoter-proximal region and the binding site was further refined to be located from 60bp to 94bp upstream of the allS promoter. Based on these results, we proposed that CRP is an essential virulence regulator and knock out of crp gene will result in reduced virulence in K. pneumoniae. In the meantime, the transcription of gene allS is positively regulated by CRP via directly binding to upstream of allS promoter.
Collapse
Affiliation(s)
- Jian Xue
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Bin Tan
- Yubei District Center for Disease Control and Prevention, Chongqing 401120, China
| | - Shiya Yang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Mei Luo
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Huiming Xia
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Xian Zhang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Xipeng Zhou
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Xianxian Yang
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yingli Li
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| | - Jingfu Qiu
- School of Public Health and Management, Chongqing Medical University, Research Center for Medicine and Social Development, Innovation Center for Social Risk Governance in Health, Chongqing 400016, China.
| |
Collapse
|
32
|
Ribeiro SM, Cardoso MH, Cândido EDS, Franco OL. Understanding, preventing and eradicating Klebsiella pneumoniae biofilms. Future Microbiol 2016; 11:527-38. [PMID: 27064296 DOI: 10.2217/fmb.16.7] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The ability of pathogenic bacteria to aggregate and form biofilm represents a great problem for public health, since they present extracellular components that encase these micro-organisms, making them more resistant to antibiotics and host immune attack. This may become worse when antibiotic-resistant bacterial strains form biofilms. However, antibiofilm screens with different compounds may reveal potential therapies to prevent/treat biofilm infections. Here, we focused on Klebsiella pneumoniae, an opportunistic bacterium that causes different types of infections, including in the bloodstream, meninges, lungs, urinary system and at surgical sites. We also highlight aspects involved in the formation and maintenance of K. pneumoniae biofilms, as well as resistance and the emergence of new trends to combat this health challenge.
Collapse
Affiliation(s)
- Suzana Meira Ribeiro
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande- MS, Brazil
| | - Marlon Henrique Cardoso
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande- MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, Brazil
| | - Elizabete de Souza Cândido
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande- MS, Brazil
| | - Octávio Luiz Franco
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília-DF, Brazil.,S-Inova, Pós-Graduação em Biotecnologia, Universidade Católica Dom Bosco, Campo Grande- MS, Brazil.,Programa de Pós-Graduação em Patologia Molecular, Faculdade de Medicina, Universidade de Brasília, Brasília-DF, Brazil
| |
Collapse
|
33
|
Abstract
UNLABELLED Highly invasive, community-acquired Klebsiella pneumoniae infections have recently emerged, resulting in pyogenic liver abscesses. These infections are caused by hypervirulent K. pneumoniae (hvKP) isolates primarily of capsule serotype K1 or K2. Hypervirulent K1 isolates belong to clonal complex 23 (CC23), indicating that this clonal lineage has a specific genetic background conferring hypervirulence. Here, we apply whole-genome sequencing to a collection of K. pneumoniae isolates to characterize the phylogenetic background of hvKP isolates with an emphasis on CC23. Most of the hvKP isolates belonged to CC23 and grouped into a distinct monophyletic clade, revealing that CC23 is a unique clonal lineage, clearly distinct from nonhypervirulent strains. Separate phylogenetic analyses of the CC23 isolates indicated that the CC23 lineage evolved recently by clonal expansion from a single common ancestor. Limited grouping according to geographical origin was observed, suggesting that CC23 has spread globally through multiple international transmissions. Conversely, hypervirulent K2 strains clustered in genetically unrelated groups. Strikingly, homologues of a large virulence plasmid were detected in all hvKP clonal lineages, indicating a key role in K. pneumoniae hypervirulence. The plasmid encodes two siderophores, aerobactin and salmochelin, and RmpA (regulator of the mucoid phenotype); all these factors were found to be restricted to hvKP isolates. Genomic comparisons revealed additional factors specifically associated with CC23. These included a distinct variant of a genomic island encoding yersiniabactin, colibactin, and microcin E492. Furthermore, additional novel genomic regions unique to CC23 were revealed which may also be involved in the increased virulence of this important clonal lineage. IMPORTANCE During the last 3 decades, hypervirulent Klebsiella pneumoniae (hvKP) isolates have emerged, causing severe community-acquired infections primarily in the form of pyogenic liver abscesses. This syndrome has so far primarily been found in Southeast Asia, but increasing numbers of cases are being reported worldwide, indicating that the syndrome is turning into a globally emerging disease. We applied whole-genome sequencing to a collection of K. pneumoniae clinical isolates to reveal the phylogenetic background of hvKP and to identify genetic factors associated with the increased virulence. The hvKP isolates primarily belonged to clonal complex 23 (CC23), and this clonal lineage was revealed to be clearly distinct from nonhypervirulent strains. A specific virulence plasmid was found to be associated with hypervirulence, and novel genetic determinants uniquely associated with CC23 were identified. Our findings extend the understanding of the genetic background of the emergence of hvKP clones.
Collapse
|
34
|
Li B, Zhao Y, Liu C, Chen Z, Zhou D. Molecular pathogenesis of Klebsiella pneumoniae. Future Microbiol 2015; 9:1071-81. [PMID: 25340836 DOI: 10.2217/fmb.14.48] [Citation(s) in RCA: 230] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Typical Klebsiella pneumoniae is an opportunistic pathogen, which mostly affects those with weakened immune systems and tends to cause nosocomial infections. A subset of hypervirulent K. pneumoniae serotypes with elevated production of capsule polysaccharide can affect previously healthy persons and cause life-threatening community-acquired infections, such as pyogenic liver abscess, meningitis, necrotizing fasciitis, endophthalmitis and severe pneumonia. K. pneumoniae utilizes a variety of virulence factors, especially capsule polysaccharide, lipopolysaccharide, fimbriae, outer membrane proteins and determinants for iron acquisition and nitrogen source utilization, for survival and immune evasion during infection. This article aims to present the state-of-the-art understanding of the molecular pathogenesis of K. pneumoniae.
Collapse
Affiliation(s)
- Bei Li
- Department of Dermatology, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | | | | | | | | |
Collapse
|
35
|
Khater F, Balestrino D, Charbonnel N, Dufayard JF, Brisse S, Forestier C. In silico analysis of usher encoding genes in Klebsiella pneumoniae and characterization of their role in adhesion and colonization. PLoS One 2015; 10:e0116215. [PMID: 25751658 PMCID: PMC4353729 DOI: 10.1371/journal.pone.0116215] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 12/05/2014] [Indexed: 12/21/2022] Open
Abstract
Chaperone/usher (CU) assembly pathway is used by a wide range of Enterobacteriaceae to assemble adhesive surface structures called pili or fimbriae that play a role in bacteria-host cell interactions. In silico analysis revealed that the genome of Klebsiella pneumoniae LM21 harbors eight chromosomal CU loci belonging to γκп and ϭ clusters. Of these, only two correspond to previously described operons, namely type 1 and type 3-encoding operons. Isogenic usher deletion mutants of K. pneumoniae LM21 were constructed for each locus and their role in adhesion to animal (Intestine 407) and plant (Arabidopsis thaliana) cells, biofilm formation and murine intestinal colonization was investigated. Type 3 pili usher deleted mutant was impaired in all assays, whereas type 1 pili usher deleted mutant only showed attenuation in adhesion to plant cells and in intestinal colonization. The LM21ΔkpjC mutant was impaired in its capacity to adhere to Arabidopsis cells and to colonize the murine intestine, either alone or in co-inoculation experiments. Deletion of LM21kpgC induced a significant decrease in biofilm formation, in adhesion to animal cells and in colonization of the mice intestine. The LM21∆kpaC and LM21∆kpeC mutants were only attenuated in biofilm formation and the adhesion abilities to Arabidopsis cells, respectively. No clear in vitro or in vivo effect was observed for LM21∆kpbC and LM21∆kpdC mutants. The multiplicity of CU loci in K. pneumoniae genome and their specific adhesion pattern probably reflect the ability of the bacteria to adhere to different substrates in its diverse ecological niches.
Collapse
Affiliation(s)
- Fida Khater
- LMGE—UMR CNRS 6023- Clermont Ferrand, 63000, France
| | | | | | | | - Sylvain Brisse
- Institut Pasteur, Microbial Evolutionary Genomics, 75015 Paris, France
- CNRS, UMR 3525, Paris, France
| | | |
Collapse
|
36
|
Ramos PIP, Picão RC, Almeida LGPD, Lima NCB, Girardello R, Vivan ACP, Xavier DE, Barcellos FG, Pelisson M, Vespero EC, Médigue C, Vasconcelos ATRD, Gales AC, Nicolás MF. Comparative analysis of the complete genome of KPC-2-producing Klebsiella pneumoniae Kp13 reveals remarkable genome plasticity and a wide repertoire of virulence and resistance mechanisms. BMC Genomics 2014; 15:54. [PMID: 24450656 PMCID: PMC3904158 DOI: 10.1186/1471-2164-15-54] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 12/26/2013] [Indexed: 11/24/2022] Open
Abstract
Background Klebsiella pneumoniae is an important opportunistic pathogen associated with nosocomial and community-acquired infections. A wide repertoire of virulence and antimicrobial resistance genes is present in K. pneumoniae genomes, which can constitute extra challenges in the treatment of infections caused by some strains. K. pneumoniae Kp13 is a multidrug-resistant strain responsible for causing a large nosocomial outbreak in a teaching hospital located in Southern Brazil. Kp13 produces K. pneumoniae carbapenemase (KPC-2) but is unrelated to isolates belonging to ST 258 and ST 11, the main clusters associated with the worldwide dissemination of KPC-producing K. pneumoniae. In this report, we perform a genomic comparison between Kp13 and each of the following three K. pneumoniae genomes: MGH 78578, NTUH-K2044 and 342. Results We have completely determined the genome of K. pneumoniae Kp13, which comprises one chromosome (5.3 Mbp) and six plasmids (0.43 Mbp). Several virulence and resistance determinants were identified in strain Kp13. Specifically, we detected genes coding for six beta-lactamases (SHV-12, OXA-9, TEM-1, CTX-M-2, SHV-110 and KPC-2), eight adhesin-related gene clusters, including regions coding for types 1 (fim) and 3 (mrk) fimbrial adhesins. The rmtG plasmidial 16S rRNA methyltransferase gene was also detected, as well as efflux pumps belonging to five different families. Mutations upstream the OmpK35 porin-encoding gene were evidenced, possibly affecting its expression. SNPs analysis relative to the compared strains revealed 141 mutations falling within CDSs related to drug resistance which could also influence the Kp13 lifestyle. Finally, the genetic apparatus for synthesis of the yersiniabactin siderophore was identified within a plasticity region. Chromosomal architectural analysis allowed for the detection of 13 regions of difference in Kp13 relative to the compared strains. Conclusions Our results indicate that the plasticity occurring at many hierarchical levels (from whole genomic segments to individual nucleotide bases) may play a role on the lifestyle of K. pneumoniae Kp13 and underlie the importance of whole-genome sequencing to study bacterial pathogens. The general chromosomal structure was somewhat conserved among the compared bacteria, and recombination events with consequent gain/loss of genomic segments appears to be driving the evolution of these strains.
Collapse
|
37
|
Role of Klebsiella pneumoniae type 1 and type 3 fimbriae in colonizing silicone tubes implanted into the bladders of mice as a model of catheter-associated urinary tract infections. Infect Immun 2013; 81:3009-17. [PMID: 23753626 DOI: 10.1128/iai.00348-13] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Catheter-associated urinary tract infections are biofilm-mediated infections that cause a significant economic and health burden in nosocomial environments. Using a newly developed murine model of this type of infection, we investigated the role of fimbriae in implant-associated urinary tract infections by the Gram-negative bacterium Klebsiella pneumoniae, which is a proficient biofilm former and a commonly isolated nosocomial pathogen. Studies have shown that type 1 and type 3 fimbriae are involved in attachment and biofilm formation in vitro, and these fimbrial types are suspected to be important virulence factors during infection. To test this hypothesis, the virulence of fimbrial mutants was assessed in independent challenges in which mouse bladders were inoculated with the wild type or a fimbrial mutant and in coinfection studies in which the wild type and fimbrial mutants were inoculated together to assess the results of a direct competition in the urinary tract. Using these experiments, we were able to show that both fimbrial types serve to enhance colonization and persistence. Additionally, a double mutant had an additive colonization defect under some conditions, indicating that both fimbrial types have unique roles in the attachment and persistence in the bladder and on the implant itself. All of these mutants were outcompeted by the wild type in coinfection experiments. Using these methods, we are able to show that type 1 and type 3 fimbriae are important colonization factors in the murine urinary tract when an implanted silicone tube is present.
Collapse
|
38
|
Wang ZC, Huang CJ, Huang YJ, Wu CC, Peng HL. FimK regulation on the expression of type 1 fimbriae in Klebsiella pneumoniae CG43S3. MICROBIOLOGY-SGM 2013; 159:1402-1415. [PMID: 23704787 DOI: 10.1099/mic.0.067793-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Klebsiella pneumoniae CG43, a heavy encapsulated liver abscess isolate, mainly expresses type 3 fimbriae. Type 1 fimbriae expression was only apparent in CG43S3ΔmrkA (the type 3 fimbriae-deficient strain). The expression of type 1 fimbriae in CG43S3ΔmrkA was reduced by deleting the fimK gene, but was unaffected by removing the 3' end of fimK encoding the C-terminal EIL domain (EILfimK). Quantitative RT-PCR and promoter activity analysis showed that the putative DNA-binding region at the N terminus, but not the C-terminal EIL domain, of FimK positively affects transcription of the type 1 fimbrial major subunit, fimA. An electrophoretic mobility shift assay demonstrated that the recombinant FimK could specifically bind to fimS, which is located upstream of fimA and contains a vegetative promoter for the fim operon, also reflecting possible transcriptional regulation. EILfimK was shown to encode a functional phosphodiesterase (PDE) via enhancing motility in Escherichia coli JM109 and in vitro using PDE activity assays. Moreover, EILfimK exhibited higher PDE activity than FimK, implying that the N-terminal DNA-binding domain may negatively affect the PDE activity of FimK. FimA expression was detected in CG43S3 expressing EILfimK or AILfimK, suggesting that FimA expression is not directly influenced by the c-di-GMP level. In summary, FimK influences type 1 fimbriation by binding to fimS at the N-terminal domain, and thereafter, the altered protein structure may activate C-terminal PDE activity to reduce the intracellular c-di-GMP level.
Collapse
Affiliation(s)
- Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Ching-Jou Huang
- Institute of Molecular Medicine and Bioengineering, School of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Ying-Jung Huang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Chien-Chen Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Bioengineering, School of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China.,Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, Republic of China
| |
Collapse
|
39
|
Murphy CN, Clegg S. Klebsiella pneumoniae and type 3 fimbriae: nosocomial infection, regulation and biofilm formation. Future Microbiol 2013; 7:991-1002. [PMID: 22913357 DOI: 10.2217/fmb.12.74] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The Gram-negative opportunistic pathogen Klebsiella pneumoniae is responsible for causing a spectrum of nosocomial and community-acquired infections. Globally, K. pneumoniae is a frequently encountered hospital-acquired opportunistic pathogen that typically infects patients with indwelling medical devices. Biofilm formation on these devices is important in the pathogenesis of these bacteria, and in K. pneumoniae, type 3 fimbriae have been identified as appendages mediating the formation of biofilms on biotic and abiotic surfaces. The factors influencing the regulation of type 3 fimbrial gene expression are largely unknown but recent investigations have indicated that gene expression is regulated, at least in part, by the intracellular levels of cyclic di-GMP. In this review, we have highlighted the recent studies that have worked to elucidate the mechanism by which type 3 fimbrial expression is controlled and the studies that have established the importance of type 3 fimbriae for biofilm formation and nosocomial infection by K. pneumoniae.
Collapse
Affiliation(s)
- Caitlin N Murphy
- Department of Microbiology, University of Iowa College of Medicine, Iowa City, IA 52242, USA
| | | |
Collapse
|
40
|
Kim D, Hong JSJ, Qiu Y, Nagarajan H, Seo JH, Cho BK, Tsai SF, Palsson BØ. Comparative analysis of regulatory elements between Escherichia coli and Klebsiella pneumoniae by genome-wide transcription start site profiling. PLoS Genet 2012; 8:e1002867. [PMID: 22912590 PMCID: PMC3415461 DOI: 10.1371/journal.pgen.1002867] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Accepted: 06/14/2012] [Indexed: 01/08/2023] Open
Abstract
Genome-wide transcription start site (TSS) profiles of the enterobacteria Escherichia coli and Klebsiella pneumoniae were experimentally determined through modified 5′ RACE followed by deep sequencing of intact primary mRNA. This identified 3,746 and 3,143 TSSs for E. coli and K. pneumoniae, respectively. Experimentally determined TSSs were then used to define promoter regions and 5′ UTRs upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence, reflecting conserved gene expression apparatuses between the two species. In both species, over 70% of primary transcripts were expressed from operons having orthologous genes during exponential growth. However, expressed orthologous genes in E. coli and K. pneumoniae showed a strikingly different organization of upstream regulatory regions with only 20% identical promoters with TSSs in both species. Over 40% of promoters had TSSs identified in only one species, despite conserved promoter sequences existing in the other species. 662 conserved promoters having TSSs in both species resulted in the same number of comparable 5′ UTR pairs, and that regulatory element was found to be the most variant region in sequence among promoter, 5′ UTR, and ORF. In K. pneumoniae, 48 sRNAs were predicted and 36 of them were expressed during exponential growth. Among them, 34 orthologous sRNAs between two species were analyzed in depth, and the analysis showed that many sRNAs of K. pneumoniae, including pleiotropic sRNAs such as rprA, arcZ, and sgrS, may work in the same way as in E. coli. These results reveal a new dimension of comparative genomics such that a comparison of two genomes needs to be comprehensive over all levels of genome organization. In order to investigate similarities and differences of closely related species, most of the comparative genomics studies focus on comparing the gene contents either shared or specific for each genome. However, it is also important to investigate the differences in non-coding regulatory elements because they influence the transcriptional and post-transcriptional processes. Thus, we performed a genome-wide profiling of transcription start sites (TSSs) in two species, E. coli K-12 MG1655 and K. pneumoniae MGH78578. Experimental identification of TSSs is important for precise definition of promoter regions and 5′ untranslated regions upstream of coding genes. Comparative analysis of these regulatory elements revealed the use of multiple TSSs, identical sequence motifs of promoter and Shine-Dalgarno sequence. However, we observed that the upstream regulatory regions of the majority of operons having orthologous genes were organized with different usage of promoters and TSSs, resulting in diverse and complex gene regulation. We also found that the 5′ UTR is the least conserved regulatory element in sequence between the two species. Moreover, 34 orthologous sRNAs between E. coli and K. pneumoniae were analyzed in depth. The analysis suggested many of K. pneumoniae sRNAs might regulate the target genes as in E. coli.
Collapse
Affiliation(s)
- Donghyuk Kim
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Jay Sung-Joong Hong
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Yu Qiu
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Harish Nagarajan
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Joo-Hyun Seo
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Byung-Kwan Cho
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
| | - Shih-Feng Tsai
- Division of Molecular and Genomic Medicine, National Health Research Institutes, Miaoli, Taiwan
| | - Bernhard Ø. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
41
|
Chan CH, Chen FJ, Huang YJ, Chen SY, Liu KL, Wang ZC, Peng HL, Yew TR, Liu CH, Liou GG, Hsu KY, Chang HY, Hsu L. Identification of protein domains on major pilin MrkA that affects the mechanical properties of Klebsiella pneumoniae type 3 fimbriae. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:7428-7435. [PMID: 22524463 DOI: 10.1021/la300224w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The Klebsiella pneumoniae type 3 fimbriae are mainly composed of MrkA pilins that assemble into a helixlike filament. This study determined the biomechanical properties of the fimbriae and analyzed 11 site-directed MrkA mutants to identify domains that are critical for the properties. Escherichia coli strains expressing type 3 fimbriae with an Ala substitution at either F34, V45, C87, G189, T196, or Y197 resulted in a significant reduction in biofilm formation. The E. coli strain expressing MrkAG189A remained capable of producing a normal number of fimbriae. Although F34A, V45A, T196A, and Y197A substitutions expressed on E. coli strains produced sparse quantities of fimbriae, no fimbriae were observed on the cells expressing MrkAC87A. Further investigations of the mechanical properties of the MrkAG189A fimbriae with optical tweezers revealed that, unlike the wild-type fimbriae, the uncoiling force for MrkAG189A fimbriae was not constant. The MrkAG189A fimbriae also exhibited a lower enthalpy in the differential scanning calorimetry analysis. Together, these findings indicate that the mutant fimbriae are less stable than the wild-type. This study has demonstrated that the C-terminal β strands of MrkA are required for the assembly and structural stability of fimbriae.
Collapse
Affiliation(s)
- Chia-Han Chan
- Institute and Department of Electrophysics, National Chiao Tung University, 1001 University Road, Hsinchu 300, Taiwan, Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
van Aartsen JJ, Stahlhut SG, Harrison EM, Crosatti M, Ou HY, Krogfelt KA, Struve C, Rajakumar K. Characterization of a novel chaperone/usher fimbrial operon present on KpGI-5, a methionine tRNA gene-associated genomic island in Klebsiella pneumoniae. BMC Microbiol 2012; 12:59. [PMID: 22520965 PMCID: PMC3419637 DOI: 10.1186/1471-2180-12-59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2011] [Accepted: 04/20/2012] [Indexed: 01/11/2023] Open
Abstract
Background Several strain-specific Klebsiella pneumoniae virulence determinants have been described, though these have almost exclusively been linked with hypervirulent liver abscess-associated strains. Through PCR interrogation of integration hotspots, chromosome walking, island-tagging and fosmid-based marker rescue we captured and sequenced KpGI-5, a novel genomic island integrated into the met56 tRNA gene of K. pneumoniae KR116, a bloodstream isolate from a patient with pneumonia and neutropenic sepsis. Results The 14.0 kb KpGI-5 island exhibited a genome-anomalous G + C content, possessed near-perfect 46 bp direct repeats, encoded a γ1-chaperone/usher fimbrial cluster (fim2) and harboured seven other predicted genes of unknown function. Transcriptional analysis demonstrated expression of three fim2 genes, and suggested that the fim2A-fim2K cluster comprised an operon. As fimbrial systems are frequently implicated in pathogenesis, we examined the role of fim2 by analysing KR2107, a streptomycin-resistant derivative of KR116, and three isogenic mutants (Δfim, Δfim2 and ΔfimΔfim2) using biofilm assays, human cell adhesion assays and pair-wise competition-based murine models of intestinal colonization, lung infection and ascending urinary tract infection. Although no statistically significant role for fim2 was demonstrable, liver and kidney CFU counts for lung and urinary tract infection models, respectively, hinted at an ordered gradation of virulence: KR2107 (most virulent), KR2107∆fim2, KR2107∆fim and KR2107∆fim∆fim2 (least virulent). Thus, despite lack of statistical evidence there was a suggestion that fim and fim2 contribute additively to virulence in these murine infection models. However, further studies would be necessary to substantiate this hypothesis. Conclusion Although fim2 was present in 13% of Klebsiella spp. strains investigated, no obvious in vitro or in vivo role for the locus was identified, although there were subtle hints of involvement in urovirulence and bacterial dissemination from the respiratory tract. Based on our findings and on parallels with other fimbrial systems, we propose that fim2 has the potential to contribute beneficially to pathogenesis and/or environmental persistence of Klebsiella strains, at least under specific yet-to-be identified conditions.
Collapse
Affiliation(s)
- Jon J van Aartsen
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Wu CC, Lin CT, Cheng WY, Huang CJ, Wang ZC, Peng HL. Fur-dependent MrkHI regulation of type 3 fimbriae in Klebsiella pneumoniae CG43. MICROBIOLOGY-SGM 2012; 158:1045-1056. [PMID: 22262101 DOI: 10.1099/mic.0.053801-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Type 3 fimbriae play a crucial role in Klebsiella pneumoniae biofilm formation, but the mechanism of the regulation of the type 3 fimbrial operon is largely unknown. In K. pneumoniae CG43, three regulatory genes, mrkH, mrkI and mrkJ, are located downstream of the type 3 fimbrial genes mrkABCDF. The production of the major pilin MrkA is abolished by the deletion of mrkH or mrkI but slightly increased by the deletion of mrkJ. Additionally, quantitative RT-PCR and a promoter-reporter assay of mrkHI verified that the transcription of mrkHI was activated by MrkI, suggesting autoactivation of mrkHI transcription. In addition, sequence analysis of the mrkH promoter region revealed a putative ferric uptake regulator (Fur) box. Deletion of fur decreased the transcription of mrkH, mrkI and mrkA. The expression of type 3 fimbriae and bacterial biofilm formation were also reduced by the deletion of fur. Moreover, a recombinant Fur was found to be able to bind both promoters, with higher affinity for P(mrkH) than P(mrkA), implying that Fur controls type 3 fimbriae expression via MrkHI. We also proved that iron availability can influence type 3 fimbriae activity.
Collapse
Affiliation(s)
- Chien-Chen Wu
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | - Ching-Ting Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan, ROC
| | - Wei-Yun Cheng
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | - Ching-Jou Huang
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | - Zhe-Chong Wang
- Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| | - Hwei-Ling Peng
- Institute of Molecular Medicine and Bioengineering, National Chiao Tung University, Hsin Chu, Taiwan, ROC.,Department of Biological Science and Technology, National Chiao Tung University, Hsin Chu, Taiwan, ROC
| |
Collapse
|
44
|
More than one way to control hair growth: regulatory mechanisms in enterobacteria that affect fimbriae assembled by the chaperone/usher pathway. J Bacteriol 2011; 193:2081-8. [PMID: 21398554 DOI: 10.1128/jb.00071-11] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Many gram-negative enterobacteria produce surface-associated fimbriae that facilitate attachment and adherence to eucaryotic cells and tissues. These organelles are believed to play an important role during infection by enabling bacteria to colonize specific niches within their hosts. One class of these fimbriae is assembled using a periplasmic chaperone and membrane-associated scaffolding protein that has been referred to as an usher because of its function in fimbrial biogenesis. The presence of multiple types of fimbriae assembled by the chaperone/usher pathway can be found both within a single bacterial species and also among different genera. One way of controlling fimbrial assembly in these bacteria is at the genetic level by positively or negatively regulating fimbrial gene expression. This minireview considers the mechanisms that have been described to control fimbrial gene expression and uses specific examples to demonstrate both unique and shared properties of such regulatory mechanisms.
Collapse
|