1
|
Ratman MF, Oogai Y, Matsumoto A, Nakata M. The ArcAB two-component system is associated with the susceptibility of Aggregatibacter actinomycetemcomitans to superoxide and hydrogen peroxide. mSphere 2025; 10:e0001925. [PMID: 40237472 DOI: 10.1128/msphere.00019-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/13/2025] [Indexed: 04/18/2025] Open
Abstract
Aggregatibacter actinomycetemcomitans is a Gram-negative facultative anaerobe and is associated with periodontal disease. This bacterium is exposed to environmental stresses, such as osmotic pressure, temperature shifts, pH shifts, and antimicrobial substances, including reactive oxygen species (ROS), in the human oral cavity. The bacterial two-component system ArcAB modulates gene expression in response to environmental changes, primarily by sensing oxygen pressure in several pathogens belonging to the γ-proteobacteria. It is also known to provide adaptation to ROS stress; however, its function in A. actinomycetemcomitans remains unclear. In this study, we found that the expression of sod, which encodes superoxide dismutase, was increased in the inactivated mutant of arcA, which encodes a response regulator. The mutant exhibited reduced susceptibility to superoxide and hydrogen peroxide (H2O2). Additionally, this strain showed reduced susceptibility to H2O2 from Streptococcus sanguinis and increased survival in macrophages. Since ArcB is the cognate histidine kinase of ArcA, the inactivated mutant of arcB was analyzed for its phenotypes. The arcB mutant exhibited reduced susceptibility to superoxide and H2O2. Compared to wild type, the phosphorylation level of ArcA in the arcB mutant was decreased. These results suggest that the ArcA response regulator receives phosphate groups from ArcB histidine kinase and negatively regulates the expression of sod, thereby affecting bacterial survival in response to ROS produced by oral commensals and host immune cells.IMPORTANCEAggregatibacter actinomycetemcomitans is an oral pathogen that is known to be a highly virulent periodontal pathogen, showing strong adherence to periodontal tissue and toxin production, which leads to aggressive periodontitis. This bacterium is associated not only with oral infections but also with systemic infections, such as infective endocarditis and brain abscesses. Therefore, elucidating the adaptation mechanisms of this bacterium is important for human health. Bacterial two-component systems (TCSs) have been studied as attractive targets for elucidating bacterial fitness and pathogenicity in the host. This study characterized a TCS in A. actinomycetemcomitans, ArcAB, which is associated with susceptibility to ROS produced by host cells or oral commensals. Our findings provide insights into the bacterial adaptation mechanism against oxidative stress, which is crucial for understanding the survival strategies of the periodontal pathogen.
Collapse
Affiliation(s)
- Mohammad Farid Ratman
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
- Department of Oral and Maxillofacial Surgery, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Yuichi Oogai
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Airi Matsumoto
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| | - Masanobu Nakata
- Department of Oral Microbiology, Kagoshima University Graduate School of Medical and Dental Sciences, Kagoshima, Japan
| |
Collapse
|
2
|
He P, Hu S, Zhang Y, Xiang Z, Zhu A, Chen S. Transcription factor AbrB regulates ROS generation and clearance in Bacillus licheniformis. Microbiol Res 2024; 287:127843. [PMID: 39024796 DOI: 10.1016/j.micres.2024.127843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Oxidative damage caused by the accumulation of reactive oxygen species (ROS) is one of the main obstacles to the improvement of microbial cell growth and fermentation characteristics under adverse environments. And the antioxidant capacity of cells will increase with the cell growth. Here, we found that a transition state transcription factor AbrB related to changes in cell growth status could regulate the accumulation of ROS and antioxidant capacity in Bacillus licheniformis. The results showed that the accumulation of intracellular ROS was reduced by 23.91 % and the cell survival rates were increased by 1.77-fold under 0.5 mM H2O2 when AbrB was knocked out. We further mapped regulatory target genes of AbrB related to ROS generation or clearance based on our previously analyzed transcriptome sequencing. It proved that AbrB could promote ROS generation via upregulating the synthesis of oxidase and siderophores, and negatively regulating the synthesis of iron chelators (pulcherriminic acid, and H2S). Additionally, AbrB could inhibit ROS clearance by negatively regulating the synthesis of antioxidase (superoxide dismutase, catalase, peroxidase, thioredoxin, thioredoxin reductase) and cysteine. Those results illustrated that the inactivation of AbrB during the stationary phase, along with its control over ROS generation and clearance, might represent a vital self-protection mechanism during cell evolution. Overall, the systematic investigation of the multi-pathway regulation network of ROS generation and clearance highlights the important function of AbrB in maintaining intracellular redox balance.
Collapse
Affiliation(s)
- Penghui He
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shiying Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yongjia Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Zhengwei Xiang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Anting Zhu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan 430062, China; Key Laboratory of Green Chemical Technology of Fujian Province University, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, China.
| |
Collapse
|
3
|
Senthil Kumar S, Johnson MDL, Wilson JE. Insights into the enigma of oral streptococci in carcinogenesis. Microbiol Mol Biol Rev 2024; 88:e0009523. [PMID: 38506551 PMCID: PMC11338076 DOI: 10.1128/mmbr.00095-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
SUMMARYThe genus Streptococcus consists of a taxonomically diverse group of Gram-positive bacteria that have earned significant scientific interest due to their physiological and pathogenic characteristics. Within the genus Streptococcus, viridans group streptococci (VGS) play a significant role in the oral ecosystem, constituting approximately 80% of the oral biofilm. Their primary role as pioneering colonizers in the oral cavity with multifaceted interactions like adherence, metabolic signaling, and quorum sensing contributes significantly to the complex dynamics of the oral biofilm, thus shaping oral health and disease outcomes. Perturbations in oral streptococci composition drive oral dysbiosis and therefore impact host-pathogen interactions, resulting in oral inflammation and representing VGS as an opportunistic pathogen. The association of oral streptococci in tumors across distant organs, spanning the esophagus, stomach, pancreas, and colon, illuminates a potential association between oral streptococci, inflammation, and tumorigenesis. This finding emphasizes the need for further investigations into the role of oral streptococci in mucosal homeostasis and their involvement in carcinogenesis. Hence, here, we review the significance of oral streptococci in biofilm dynamics and how the perturbation may impact mucosal immunopathogenesis in the context of cancer, with a vision of exploiting oral streptococci for cancer intervention and for the development of non-invasive cancer diagnosis.
Collapse
Affiliation(s)
- Sangeetha Senthil Kumar
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| | - Michael D. L. Johnson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- Valley Fever Center
for Excellence, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
- BIO5 Institute, The
University of Arizona College of
Medicine, Tucson,
Arizona, USA
- Asthma and Airway
Disease Research Center, The University of Arizona College of
Medicine, Tucson,
Arizona, USA
| | - Justin E. Wilson
- Department of
Immunobiology, The University of
Arizona, Tucson,
Arizona, USA
- The University of
Arizona Cancer Center,
Tucson, Arizona, USA
| |
Collapse
|
4
|
Beattie RE. Probiotics for oral health: a critical evaluation of bacterial strains. Front Microbiol 2024; 15:1430810. [PMID: 38979537 PMCID: PMC11228166 DOI: 10.3389/fmicb.2024.1430810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/11/2024] [Indexed: 07/10/2024] Open
Abstract
Oral health is critical for total body health and well-being; however, little improvement in oral health status has occurred in the U.S. over the past 20 years. Tooth decay and gum disease remain highly prevalent, with more than 90% and 50% of adults suffering from these conditions, respectively. To combat this lack of improvement, alternative approaches to dental care are now being suggested. One such alternative therapy is probiotics for oral care. In the oral cavity, probiotic strains have been shown to reduce levels of oral pathogens, inhibit the formation of dental caries, and reduce the levels of bacteria that cause halitosis. However, as the oral care probiotic market expands, many products contain bacterial species and strains with no documented health benefits leading to confusion and mistrust among consumers and clinicians. This confusion is enhanced by the regulatory status of probiotic products which puts the onus of safety and efficacy on the manufacturer rather than a central regulatory body. The overarching goal of this review is to provide consumers and clinicians with documented evidence supporting (or refuting) the health benefits of oral care probiotics marketed for sale in the United States. This includes defining what constitutes an oral care probiotic product and a strain level analysis of candidate probiotics from the genera Streptococcus, Lactobacillus, Bifidobacterium, and Bacillus. Additionally, prebiotics and postbiotics will be discussed. Finally, a set of considerations for consumers and clinicians is provided to empower probiotic product decision making. Together, this review will improve understanding of oral care probiotics marketed in the US for dental professionals and consumers.
Collapse
|
5
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
6
|
Shearer HL, Pace PE, Smith LM, Fineran PC, Matthews AJ, Camilli A, Dickerhof N, Hampton MB. Identification of Streptococcus pneumoniae genes associated with hypothiocyanous acid tolerance through genome-wide screening. J Bacteriol 2023; 205:e0020823. [PMID: 37791755 PMCID: PMC10601753 DOI: 10.1128/jb.00208-23] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 10/05/2023] Open
Abstract
Streptococcus pneumoniae is a commensal bacterium and invasive pathogen that causes millions of deaths worldwide. The pneumococcal vaccine offers limited protection, and the rise of antimicrobial resistance will make treatment increasingly challenging, emphasizing the need for new antipneumococcal strategies. One possibility is to target antioxidant defenses to render S. pneumoniae more susceptible to oxidants produced by the immune system. Human peroxidase enzymes will convert bacterial-derived hydrogen peroxide to hypothiocyanous acid (HOSCN) at sites of colonization and infection. Here, we used saturation transposon mutagenesis and deep sequencing to identify genes that enable S. pneumoniae to tolerate HOSCN. We identified 37 genes associated with S. pneumoniae HOSCN tolerance, including genes involved in metabolism, membrane transport, DNA repair, and oxidant detoxification. Single-gene deletion mutants of the identified antioxidant defense genes sodA, spxB, trxA, and ahpD were generated and their ability to survive HOSCN was assessed. With the exception of ΔahpD, all deletion mutants showed significantly greater sensitivity to HOSCN, validating the result of the genome-wide screen. The activity of hypothiocyanous acid reductase or glutathione reductase, known to be important for S. pneumoniae tolerance of HOSCN, was increased in three of the mutants, highlighting the compensatory potential of antioxidant systems. Double deletion of the gene encoding glutathione reductase and sodA sensitized the bacteria significantly more than single deletion. The HOSCN defense systems identified in this study may be viable targets for novel therapeutics against this deadly pathogen. IMPORTANCE Streptococcus pneumoniae is a human pathogen that causes pneumonia, bacteremia, and meningitis. Vaccination provides protection only against a quarter of the known S. pneumoniae serotypes, and the bacterium is rapidly becoming resistant to antibiotics. As such, new treatments are required. One strategy is to sensitize the bacteria to killing by the immune system. In this study, we performed a genome-wide screen to identify genes that help this bacterium resist oxidative stress exerted by the host at sites of colonization and infection. By identifying a number of critical pneumococcal defense mechanisms, our work provides novel targets for antimicrobial therapy.
Collapse
Affiliation(s)
- Heather L. Shearer
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| | - Paul E. Pace
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
| | - Leah M. Smith
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Peter C. Fineran
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
- Genetics Otago, University of Otago, Dunedin, New Zealand
- Bioprotection Aotearoa, University of Otago, Dunedin, New Zealand
| | - Allison J. Matthews
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Nina Dickerhof
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| | - Mark B. Hampton
- Department of Pathology and Biomedical Science, Mātai Hāora - Centre for Redox Biology and Medicine, University of Otago Christchurch, Christchurch, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Otago, Otago, New Zealand
| |
Collapse
|
7
|
Pezzotti G, Ofuji S, Imamura H, Adachi T, Yamamoto T, Kanamura N, Ohgitani E, Marin E, Zhu W, Mazda O, Togo A, Kimura S, Iwata T, Shiba H, Ouhara K, Aoki T, Kawai T. In Situ Raman Analysis of Biofilm Exopolysaccharides Formed in Streptococcus mutans and Streptococcus sanguinis Commensal Cultures. Int J Mol Sci 2023; 24:ijms24076694. [PMID: 37047667 PMCID: PMC10095091 DOI: 10.3390/ijms24076694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
This study probed in vitro the mechanisms of competition/coexistence between Streptococcus sanguinis (known for being correlated with health in the oral cavity) and Streptococcus mutans (responsible for aciduric oral environment and formation of caries) by means of quantitative Raman spectroscopy and imaging. In situ Raman assessments of live bacterial culture/coculture focusing on biofilm exopolysaccharides supported the hypothesis that both species engaged in antagonistic interactions. Experiments of simultaneous colonization always resulted in coexistence, but they also revealed fundamental alterations of the biofilm with respect to their water-insoluble glucan structure. Raman spectra (collected at fixed time but different bacterial ratios) showed clear changes in chemical bonds in glucans, which pointed to an action by Streptococcus sanguinis to discontinue the impermeability of the biofilm constructed by Streptococcus mutans. The concurrent effects of glycosidic bond cleavage in water-insoluble α - 1,3-glucan and oxidation at various sites in glucans' molecular chains supported the hypothesis that secretion of oxygen radicals was the main "chemical weapon" used by Streptococcus sanguinis in coculture.
Collapse
Affiliation(s)
- Giuseppe Pezzotti
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
- Department of Orthopedic Surgery, Tokyo Medical University, 6-7-1 Nishi-Shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy
- Department of Molecular Science and Nanosystems, Ca' Foscari University of Venice, Via Torino 155, 30172 Venice, Italy
| | - Satomi Ofuji
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Hayata Imamura
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Tetsuya Adachi
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Toshiro Yamamoto
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Narisato Kanamura
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Eriko Ohgitani
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Elia Marin
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
- Department of Dental Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Wenliang Zhu
- Ceramic Physics Laboratory, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Osam Mazda
- Department of Immunology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, 465 Kajii-cho, Kyoto 602-8566, Japan
| | - Azusa Togo
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Satoshi Kimura
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Tadahisa Iwata
- Department of Biomaterial Sciences, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hideki Shiba
- Department of Biological Endodontics, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Kazuhisa Ouhara
- Department of Periodontal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima 734-8553, Japan
| | - Takashi Aoki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, Sakyo-ku, Matsugasaki, Kyoto 606-8585, Japan
| | - Toshihisa Kawai
- Department of Oral Science and Translational Research, College of Dental Medicine, Nova Southeastern University, 3301 College Ave, Fort Lauderdale, FL 33314, USA
| |
Collapse
|
8
|
Zhang Y, Li Z, Xu X, Peng X. Transposon mutagenesis in oral streptococcus. J Oral Microbiol 2022; 14:2104951. [PMID: 35903085 PMCID: PMC9318214 DOI: 10.1080/20002297.2022.2104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Oral streptococci are gram-positive facultative anaerobic bacteria that are normal inhabitants of the human oral cavity and play an important role in maintaining oral microecological balance and pathogenesis. Transposon mutagenesis is an effective genetic manipulation strategy for studying the function of genomic features. In order to study cariogenic related genes and crucial biological element genes of oral Streptococcus, transposon mutagenesis was widely used to identify functional genes. With the advent of next-generation sequencing (NGS) technology and the development of transposon random mutation library construction methods, transposon insertion sequencing (TIS) came into being. Benefiting from high-throughput advances in NGS, TIS was able to evaluate the fitness contribution and essentiality of genetic features in the bacterial genome. The application of transposon mutagenesis, including TIS, to oral streptococci provided a massive amount of valuable detailed linkage data between genetic fitness and genetic backgrounds, further clarify the processes of colonization, virulence, and persistence and provides a more reliable basis for investigating relationships with host ecology and disease status. This review focuses on transposon mutagenesis, including TIS, and its applicability in oral streptococci.
Collapse
Affiliation(s)
- Yixin Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Zhengyi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
- Department of Cariology and Endodontics, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Xian Peng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Zhou P, Manoil D, Belibasakis GN, Kotsakis GA. Veillonellae: Beyond Bridging Species in Oral Biofilm Ecology. FRONTIERS IN ORAL HEALTH 2022; 2:774115. [PMID: 35048073 PMCID: PMC8757872 DOI: 10.3389/froh.2021.774115] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/05/2021] [Indexed: 12/28/2022] Open
Abstract
The genus Veillonella comprises 16 characterized species, among which eight are commonly found in the human oral cavity. The high abundance of Veillonella species in the microbiome of both supra- and sub-gingival biofilms, and their interdependent relationship with a multitude of other bacterial species, suggest veillonellae to play an important role in oral biofilm ecology. Development of oral biofilms relies on an incremental coaggregation process between early, bridging and later bacterial colonizers, ultimately forming multispecies communities. As early colonizer and bridging species, veillonellae are critical in guiding the development of multispecies communities in the human oral microenvironment. Their ability to establish mutualistic relationships with other members of the oral microbiome has emerged as a crucial factor that may contribute to health equilibrium. Here, we review the general characteristics, taxonomy, physiology, genomic and genetics of veillonellae, as well as their bridging role in the development of oral biofilms. We further discuss the role of Veillonella spp. as potential “accessory pathogens” in the human oral cavity, capable of supporting colonization by other, more pathogenic species. The relationship between Veillonella spp. and dental caries, periodontitis, and peri-implantitis is also recapitulated in this review. We finally highlight areas of future research required to better understand the intergeneric signaling employed by veillonellae during their bridging activities and interspecies mutualism. With the recent discoveries of large species and strain-specific variation within the genus in biological and virulence characteristics, the study of Veillonella as an example of highly adaptive microorganisms that indirectly participates in dysbiosis holds great promise for broadening our understanding of polymicrobial disease pathogenesis.
Collapse
Affiliation(s)
- Peng Zhou
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| | - Daniel Manoil
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios N Belibasakis
- Division of Oral Diseases, Department of Dental Medicine, Karolinska Institute, Huddinge, Sweden
| | - Georgios A Kotsakis
- Translational Periodontal Research Lab, Department of Periodontics, School of Dentistry, UT Health San Antonio, San Antonio, TX, United States
| |
Collapse
|
10
|
Tang YL, Sim TS, Tan KS. Oral streptococci subvert the host innate immune response through hydrogen peroxide. Sci Rep 2022; 12:656. [PMID: 35027607 PMCID: PMC8758666 DOI: 10.1038/s41598-021-04562-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/22/2021] [Indexed: 12/29/2022] Open
Abstract
In periodontal health, oral streptococci constitute up to 80% of the plaque biofilm. Yet, destructive inflammatory events of the periodontium are rare. This observation suggests that oral streptococci may possess mechanisms to co-exist with the host. However, the mechanisms employed by oral streptococci to modulate the innate immune response have not been well studied. One of the key virulence factors produced by oral streptococci is hydrogen peroxide (H2O2). In mammalian cells, H2O2 triggers the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), a key pathway mediating antioxidant defence. This study aimed to determine (1) if H2O2 producing oral streptococci activated the Nrf2 pathway in macrophages, and (2) if the activation of Nrf2 influenced the innate immune response. We found that oral streptococci downregulated the innate immune response in a H2O2 dependent manner through the activation of the Nrf2. The activation of the Nrf2 signalling pathway led to the inhibition of nuclear factor kappa-light-chain-enhancer of activated B cells (NFĸB), the key transcription factor regulating pro-inflammatory response. This study showed for the first time that oral streptococci are unlikely passive bystanders but could play an active role in the maintenance of periodontal health by preventing overt inflammation.
Collapse
Affiliation(s)
- Yi Ling Tang
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore
| | - Tiow Suan Sim
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai Soo Tan
- Faculty of Dentistry, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
11
|
Magacz M, Oszajca M, Nawrot-Hadzik I, Drożdż R, Jurczak A, Hadzik J, Smakosz A, Krzyściak W. Phenolic Compounds of Reynoutria sp. as Modulators of Oral Cavity Lactoperoxidase System. Antioxidants (Basel) 2021; 10:antiox10050676. [PMID: 33926051 PMCID: PMC8146912 DOI: 10.3390/antiox10050676] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/15/2021] [Accepted: 04/24/2021] [Indexed: 11/16/2022] Open
Abstract
Lactoperoxidase (LPO) together with its (pseudo)halogenation cycle substrates, H2O2 and thiocyanate ions oxidized to hypothiocyanite ions, form one of the main systems involved in antimicrobial defense within the oral cavity. In bacterial diseases such as dental caries, lactoperoxidase is oxidized to a form known as Compound II, which is characterized by its inability to oxidize SCN–, resulting in a decreased generation of antimicrobial products. Reynoutria sp. rizome extracts, due to their high polyphenol content, have been tested as a source of compounds able to regenerate the antimicrobial activity of lactoperoxidase through converting the Compound II to the native LPO state. In the presented study, acetone extracts of R. japonica, R. sachalinensis, and R. x bohemica, together with their five fractions and four selected polyphenols dominating in the studied in extracts, were tested toward lactoperoxidase reactivating potential. For this purpose, IC50, EC50, and activation percentage were determined by Ellman’s method. Furthermore, the rate constants for the conversion of Compound I–Compound II and Compound II–native-LPO in the presence of extracts, extracts fractions, and selected polyphenols were determined. Finally, the ability to enhance the antimicrobial properties of the lactoperoxidase system was tested against Streptococcus mutans. We proved that Reynoutria sp. rhizome is the source of lactoperoxidase peroxidation cycle substrates, which can act as activators and inhibitors of the antimicrobial properties of that system. The presented study shows that the reactivation of lactoperoxidase could become a potential therapeutic target in prevention and treatment support in some infectious oral diseases.
Collapse
Affiliation(s)
- Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.M.); (R.D.)
- Doctoral School of Health and Medical Sciences, Jagiellonian University Medical College, 31-008 Krakow, Poland
| | - Maria Oszajca
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Krakow, Poland
- Correspondence: (M.O.); (W.K.); Tel.: +48-12-62-05-760 (W.K.)
| | - Izabela Nawrot-Hadzik
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.N.-H.); (A.S.)
| | - Ryszard Drożdż
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.M.); (R.D.)
| | - Anna Jurczak
- Department of Pediatric Dentistry, Institute of Dentistry, Jagiellonian University Medical College, 31-155 Krakow, Poland;
| | - Jakub Hadzik
- Department of Dental Surgery, Wroclaw Medical University, Krakowska 26, 50-425 Wroclaw, Poland;
| | - Aleksander Smakosz
- Department of Pharmaceutical Biology and Biotechnology, Wroclaw Medical University, 50-367 Wroclaw, Poland; (I.N.-H.); (A.S.)
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Krakow, Poland; (M.M.); (R.D.)
- Correspondence: (M.O.); (W.K.); Tel.: +48-12-62-05-760 (W.K.)
| |
Collapse
|
12
|
Puccio T, Kunka KS, Zhu B, Xu P, Kitten T. Manganese Depletion Leads to Multisystem Changes in the Transcriptome of the Opportunistic Pathogen Streptococcus sanguinis. Front Microbiol 2020; 11:592615. [PMID: 33250881 PMCID: PMC7674665 DOI: 10.3389/fmicb.2020.592615] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/07/2020] [Indexed: 12/13/2022] Open
Abstract
Streptococcus sanguinis is a primary colonizer of teeth and is typically considered beneficial due to its antagonistic relationship with the cariogenic pathogen Streptococcus mutans. However, S. sanguinis can also act as an opportunistic pathogen should it enter the bloodstream and colonize a damaged heart valve, leading to infective endocarditis. Studies have implicated manganese acquisition as an important virulence determinant in streptococcal endocarditis. A knockout mutant lacking the primary manganese import system in S. sanguinis, SsaACB, is severely attenuated for virulence in an in vivo rabbit model. Manganese is a known cofactor for several important enzymes in S. sanguinis, including superoxide dismutase, SodA, and the aerobic ribonucleotide reductase, NrdEF. To determine the effect of manganese depletion on S. sanguinis, we performed transcriptomic analysis on a ΔssaACB mutant grown in aerobic fermentor conditions after the addition of the metal chelator EDTA. Despite the broad specificity of EDTA, analysis of cellular metal content revealed a decrease in manganese, but not in other metals, that coincided with a drop in growth rate. Subsequent supplementation with manganese, but not iron, zinc, or magnesium, restored growth in the fermentor post-EDTA. Reduced activity of Mn-dependent SodA and NrdEF likely contributed to the decreased growth rate post-EDTA, but did not appear entirely responsible. With the exception of the Dps-like peroxide resistance gene, dpr, manganese depletion did not induce stress response systems. By comparing the transcriptome of ΔssaACB cells pre- and post-EDTA, we determined that manganese deprivation led to altered expression of diverse systems. Manganese depletion also led to an apparent induction of carbon catabolite repression in a glucose-independent manner. The combined results suggest that manganese limitation produces effects in S. sanguinis that are diverse and complex, with no single protein or system appearing entirely responsible for the observed growth rate decrease. This study provides further evidence for the importance of this trace element in streptococcal biology. Future studies will focus on determining mechanisms for regulation, as the multitude of changes observed in this study indicate that multiple regulators may respond to manganese levels.
Collapse
Affiliation(s)
| | | | | | | | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
13
|
Pyruvate secretion by oral streptococci modulates hydrogen peroxide dependent antagonism. THE ISME JOURNAL 2020; 14:1074-1088. [PMID: 31988475 PMCID: PMC7174352 DOI: 10.1038/s41396-020-0592-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 01/14/2020] [Accepted: 01/16/2020] [Indexed: 01/28/2023]
Abstract
Many commensal oral streptococci generate H2O2 via pyruvate oxidase (SpxB) to inhibit the growth of competing bacteria like Streptococcus mutans, a major cariogenic species. In Streptococcus sanguinis SK36 (SK36) and Streptococcus gordonii DL1 (DL1), spxB expression and H2O2 release are subject to carbon catabolite repression by the catabolite control protein A (CcpA). Surprisingly, ccpA deletion mutants of SK36 and DL1 fail to inhibit S. mutans despite their production of otherwise inhibitory levels of H2O2. Using H2O2-deficient spxB deletion mutants of SK36 and DL1, it was subsequently discovered that both strains confer protection in trans to other bacteria when H2O2 is added exogenously. This protective effect depends on the direct detoxification of H2O2 by the release of pyruvate. The pyruvate dependent protective effect is also present in other spxB-encoding streptococci, such as the pneumococcus, but is missing from spxB-negative species like S. mutans. Targeted and transposon-based mutagenesis revealed Nox (putative H2O-forming NADH dehydrogenase) as an essential component required for pyruvate release and oxidative protection, while other genes such as sodA and dps play minor roles. Furthermore, pyruvate secretion is only detectable in aerobic growth conditions at biofilm-like cell densities and is responsive to CcpA-dependent catabolite control. This ability of spxB-encoding streptococci reveals a new facet of the competitive interactions between oral commensals and pathobionts and provides a mechanistic basis for the variable levels of inhibitory potential observed among H2O2-producing strains of commensal oral streptococci.
Collapse
|
14
|
Okahashi N, Nakata M, Hirose Y, Morisaki H, Kataoka H, Kuwata H, Kawabata S. Streptococcal H2O2 inhibits IgE-triggered degranulation of RBL-2H3 mast cell/basophil cell line by inducing cell death. PLoS One 2020; 15:e0231101. [PMID: 32302339 PMCID: PMC7164662 DOI: 10.1371/journal.pone.0231101] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 03/16/2020] [Indexed: 12/04/2022] Open
Abstract
Mast cells and basophils are central players in allergic reactions triggered by immunoglobulin E (IgE). They have intracellular granules containing allergic mediators (e.g., histamine, serotonin, inflammatory cytokines, proteases and β-hexosaminidase), and stimulation by IgE-allergen complex leads to the release of such allergic mediators from the granules, that is, degranulation. Mast cells are residents of mucosal surfaces, including those of nasal and oral cavities, and play an important role in the innate defense system. Members of the mitis group streptococci such as Streptococcus oralis, are primary colonizers of the human oral cavity. They produce hydrogen peroxide (H2O2) as a by-product of sugar metabolism. In this study, we investigated the effects of streptococcal infection on RBL-2H3 mast cell/basophil cell line. Infection by oral streptococci did not induce degranulation of the cells. Stimulation of the RBL-2H3 cells with anti-dinitrophenol (DNP) IgE and DNP-conjugated human serum albumin triggers degranulation with the release of β-hexosaminidase. We found that S. oralis and other mitis group streptococci inhibited the IgE-triggered degranulation of RBL-2H3 cells. Since mitis group streptococci produce H2O2, we examined the effect of S. oralis mutant strain deficient in producing H2O2, and found that they lost the ability to suppress the degranulation. Moreover, H2O2 alone inhibited the IgE-induced degranulation. Subsequent analysis suggested that the inhibition of degranulation was related to the cytotoxicity of streptococcal H2O2. Activated RBL-2H3 cells produce interleukin-4 (IL-4); however, IL-4 production was not induced by streptococcal H2O2. Furthermore, an in vivo study using the murine pollen-induced allergic rhinitis model suggested that the streptococcal H2O2 reduces nasal allergic reaction. These findings reveal that H2O2 produced by oral mitis group streptococci inhibits IgE-stimulated degranulation by inducing cell death. Consequently, streptococcal H2O2 can be considered to modulate the allergic reaction in mucosal surfaces.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Yujiro Hirose
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| | - Hirobumi Morisaki
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Hideo Kataoka
- Department of Oral Microbiology, Asahi University School of Dentistry, Mizuho, Gifu, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, School of Dentistry, Showa University, Shinagawa, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita, Osaka, Japan
| |
Collapse
|
15
|
Interspecies Inhibition of Porphyromonas gingivalis by Yogurt-Derived Lactobacillus delbrueckii Requires Active Pyruvate Oxidase. Appl Environ Microbiol 2019; 85:AEM.01271-19. [PMID: 31285191 DOI: 10.1128/aem.01271-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 07/01/2019] [Indexed: 12/24/2022] Open
Abstract
Despite a growing interest in using probiotic microorganisms to prevent disease, the mechanisms by which probiotics exert their action require further investigation. Porphyromonas gingivalis is an important pathogen implicated in the development of periodontitis. We isolated several strains of Lactobacillus delbrueckii from dairy products and examined their ability to inhibit P. gingivalis growth in vitro We observed strain-specific inhibition of P. gingivalis growth in vitro Whole-genome sequencing of inhibitory and noninhibitory strains of L. delbrueckii revealed significant genetic differences supporting the strain specificity of the interaction. Extracts of the L. delbrueckii STYM1 inhibitory strain contain inhibitory activity that is abolished by treatment with heat, proteinase K, catalase, and sodium sulfite. We purified the inhibitory protein(s) from L. delbrueckii STYM1 extracts using ammonium sulfate precipitation, anion-exchange chromatography, and gel filtration chromatography. Pyruvate oxidase was highly enriched in the purified samples. Lastly, we showed that purified, catalytically active, recombinant pyruvate oxidase is sufficient to inhibit P. gingivalis growth in vitro without the addition of cofactors. Further, using a saturated transposon library, we isolated transposon mutants of P. gingivalis in the feoB2 (PG_1294) gene that are resistant to killing by inhibitory L. delbrueckii, consistent with a mechanism of hydrogen peroxide production by pyruvate oxidase. Our results support the current understanding of the importance of strain selection, not simply species selection, in microbial interactions. Specific L. delbrueckii strains or their products may be effective in the treatment and prevention of P. gingivalis-associated periodontal disease.IMPORTANCE P. gingivalis is implicated in the onset and progression of periodontal disease and associated with some systemic diseases. Probiotic bacteria represent an attractive preventative therapy for periodontal disease. However, the efficacy of probiotic bacteria can be variable between studies. Our data support the known importance of selecting particular strains of bacteria for probiotic use, not simply a single species. Specifically, in the context of probiotic intervention of periodontitis, our data suggest that high-level expression of pyruvate oxidase with hydrogen peroxide production in L. delbrueckii could be an important characteristic for the design of a probiotic supplement or a microbial therapeutic.
Collapse
|
16
|
Magacz M, Kędziora K, Sapa J, Krzyściak W. The Significance of Lactoperoxidase System in Oral Health: Application and Efficacy in Oral Hygiene Products. Int J Mol Sci 2019; 20:ijms20061443. [PMID: 30901933 PMCID: PMC6472183 DOI: 10.3390/ijms20061443] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/13/2022] Open
Abstract
Lactoperoxidase (LPO) present in saliva are an important element of the nonspecific immune response involved in maintaining oral health. The main role of this enzyme is to oxidize salivary thiocyanate ions (SCN-) in the presence of hydrogen peroxide (H₂O₂) to products that exhibit antimicrobial activity. LPO derived from bovine milk has found an application in food, cosmetics, and medical industries due to its structural and functional similarity to the human enzyme. Oral hygiene products enriched with the LPO system constitute an alternative to the classic fluoride caries prophylaxis. This review describes the physiological role of human salivary lactoperoxidase and compares the results of clinical trials and in vitro studies of LPO alone and complex dentifrices enriched with bovine LPO. The role of reactivators and inhibitors of LPO is discussed together with the possibility of using nanoparticles to increase the stabilization and activity of this enzyme.
Collapse
Affiliation(s)
- Marcin Magacz
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Karolina Kędziora
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Jacek Sapa
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| | - Wirginia Krzyściak
- Department of Medical Diagnostics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland.
| |
Collapse
|
17
|
Aggregatibacter actinomycetemcomitans mediates protection of Porphyromonas gingivalis from Streptococcus sanguinis hydrogen peroxide production in multi-species biofilms. Sci Rep 2019; 9:4944. [PMID: 30894650 PMCID: PMC6426879 DOI: 10.1038/s41598-019-41467-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 03/06/2019] [Indexed: 01/10/2023] Open
Abstract
Mixed species biofilms are shaped and influenced by interactions between species. In the oral cavity, dysbiosis of the microbiome leads to diseases such as periodontitis. Porphyromonas gingivalis is a keystone pathogen of periodontitis. In this study, we showed that polymicrobial biofilm formation promoted the tolerance of Porphyromonas gingivalis to oxidative stress under micro-aerobic conditions. The presence of Streptococcus sanguinis, an oral commensal bacterium, inhibited the survival of P. gingivalis in dual-species biofilms via the secretion of hydrogen peroxide (H2O2). Interestingly, this repression could be attenuated by the presence of Aggregatibacter actinomycetemcomitans in tri-species biofilms. It was also shown that the katA gene, encoding a cytoplasmic catalase in A. actinomycetemcomitans, was responsible for the reduction of H2O2 produced by S. sanguinis, which consequently increased the biomass of P. gingivalis in tri-species biofilms. Collectively, these findings reveal that polymicrobial interactions play important roles in shaping bacterial community in biofilm. The existence of catalase producers may support the colonization of pathogens vulnerable to H2O2, in the oral cavity. The catalase may be a potential drug target to aid in the prevention of periodontitis.
Collapse
|
18
|
Abstract
Technological advances in DNA sequencing have provided unprecedented insights into the composition of the oral microbiome in health and disease, and RNA-sequencing and metabolomics-related technologies are beginning to yield information on the activities of these organisms. Importantly, progress in this area has brought the scientific community closer to an understanding of what constitutes a health-associated microbiome and is supporting the notion that the microbiota in healthy sites assumes an active role in promoting health and suppressing the acquisition, persistence, and activities of overt and opportunistic pathogens. It is also becoming clear that a significant impediment to developing a conclusive body of evidence that defines a healthy microbiome and the mechanisms by which beneficial bacteria promote health is that an inherent characteristic of the most abundant members of the oral flora, those that potentially play the greatest roles in health and disease, is intraspecies genomic diversity. In particular, individual isolates of abundant commensal and pathogenic streptococci show tremendous variability in gene content, and this variability manifests in tremendous phenotypic heterogeneity. Analysis of the consequences of this diversity has been complicated by the exquisite sensitivity these bacteria have evolved to environmental inputs, inducing rapid and substantial fluctuations in behaviors, and often only within subpopulations of the organisms. Thus, the conditions under which the oral microbiota is studied can produce widely different results within and between species. Fortunately, continually diminishing costs and ongoing refinements in sequencing and metabolomics are making it practical to study the oral microbiome at a level that will create a sufficiently robust understanding of the functions of individual organisms and reveal the complex interrelationships of these microbes ("the known unknowns") in a way that researchers will be able to engage in the rational design of reliable and economical risk assessments and preventive therapies.
Collapse
Affiliation(s)
- R A Burne
- 1 Department of Oral Biology, University of Florida, Gainesville, FL, USA
| |
Collapse
|
19
|
Redanz S, Cheng X, Giacaman RA, Pfeifer CS, Merritt J, Kreth J. Live and let die: Hydrogen peroxide production by the commensal flora and its role in maintaining a symbiotic microbiome. Mol Oral Microbiol 2018; 33:337-352. [PMID: 29897662 DOI: 10.1111/omi.12231] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2018] [Indexed: 02/05/2023]
Abstract
The majority of commensal oral streptococci are able to generate hydrogen peroxide (H2 O2 ) during aerobic growth, which can diffuse through the cell membrane and inhibit competing species in close proximity. Competing H2 O2 production is mainly dependent upon the pyruvate oxidase SpxB, and to a lesser extent the lactate oxidase LctO, both of which are important for energy generation in aerobic environments. Several studies point to a broad impact of H2 O2 production in the oral environment, including a potential role in biofilm homeostasis, signaling, and interspecies interactions. Here, we summarize the current research regarding oral streptococcal H2 O2 generation, resistance mechanisms, and the ecological impact of H2 O2 production. We also discuss the potential therapeutic utility of H2 O2 for the prevention/treatment of dysbiotic diseases as well as its potential role as a biomarker of oral health.
Collapse
Affiliation(s)
- Sylvio Redanz
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Xingqun Cheng
- The State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,The Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Rodrigo A Giacaman
- Cariology Unit, Department of Oral Rehabilitation and Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), University of Talca, Talca, Chile
| | - Carmen S Pfeifer
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Justin Merritt
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| | - Jens Kreth
- Department of Restorative Dentistry, Oregon Health and Science University, Portland, Oregon
| |
Collapse
|
20
|
Zhu B, Macleod LC, Kitten T, Xu P. Streptococcus sanguinis biofilm formation & interaction with oral pathogens. Future Microbiol 2018; 13:915-932. [PMID: 29882414 PMCID: PMC6060398 DOI: 10.2217/fmb-2018-0043] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Caries and periodontitis are the two most common human dental diseases and are caused by dysbiosis of oral flora. Although commensal microorganisms have been demonstrated to protect against pathogens and promote oral health, most previous studies have addressed pathogenesis rather than commensalism. Streptococcus sanguinis is a commensal bacterium that is abundant in the oral biofilm and whose presence is correlated with health. Here, we focus on the mechanism of biofilm formation in S. sanguinis and the interaction of S. sanguinis with caries- and periodontitis-associated pathogens. In addition, since S. sanguinis is well known as a cause of infective endocarditis, we discuss the relationship between S. sanguinis biofilm formation and its pathogenicity in endocarditis.
Collapse
Affiliation(s)
- Bin Zhu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Lorna C Macleod
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Todd Kitten
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Ping Xu
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA 23298, USA.,Department of Microbiology & Immunology, Virginia Commonwealth University, Richmond, VA 23298, USA.,Center for the Study of Biological Complexity, Virginia Commonwealth University, Richmond, VA 23298, USA
| |
Collapse
|
21
|
Novel Two-Component System of Streptococcus sanguinis Affecting Functions Associated with Viability in Saliva and Biofilm Formation. Infect Immun 2018; 86:IAI.00942-17. [PMID: 29339459 DOI: 10.1128/iai.00942-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 01/08/2018] [Indexed: 02/07/2023] Open
Abstract
Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptRSs (SKsptR) and sptSSs (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptRSs and sptSSs mutants showed increased biofilm formation associated with higher levels of production of H2O2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H2O2 production (2.5- to 15-fold upregulation of spxB, spxR, vicR, tpk, and ackA in sptRSs and sptSSs mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA, pcsB, cwdP, iga, and nt5e). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR, spxR, comE, comX, and mecA in the sptRSs and sptSSs mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H2O2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity.
Collapse
|
22
|
Veillonella Catalase Protects the Growth of Fusobacterium nucleatum in Microaerophilic and Streptococcus gordonii-Resident Environments. Appl Environ Microbiol 2017; 83:AEM.01079-17. [PMID: 28778894 DOI: 10.1128/aem.01079-17] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022] Open
Abstract
The oral biofilm is a multispecies community in which antagonism and mutualism coexist among friends and foes to keep an ecological balance of community members. The pioneer colonizers, such as Streptococcus gordonii, produce H2O2 to inhibit the growth of competitors, like the mutans streptococci, as well as strict anaerobic middle and later colonizers of the dental biofilm. Interestingly, Veillonella species, as early colonizers, physically interact (coaggregate) with S. gordonii A putative catalase gene (catA) is found in most sequenced Veillonella species; however, the function of this gene is unknown. In this study, we characterized the ecological function of catA from Veillonella parvula PK1910 by integrating it into the only transformable strain, Veillonella atypica OK5, which is catA negative. The strain (OK5-catA) became more resistant to H2O2 Further studies demonstrated that the catA gene expression is induced by the addition of H2O2 or coculture with S. gordonii Mixed-culture experiments further revealed that the transgenic OK5-catA strain not only enhanced the growth of Fusobacterium nucleatum, a strict anaerobic periodontopathogen, under microaerophilic conditions, but it also rescued F. nucleatum from killing by S. gordonii A potential role of catalase in veillonellae in biofilm ecology and pathogenesis is discussed here.IMPORTANCEVeillonella species, as early colonizers, can coaggregate with many bacteria, including the initial colonizer Streptococcus gordonii and periodontal pathogen Fusobacterium nucleatum, during various stages of oral biofilm formation. In addition to providing binding sites for many microbes, our previous study also showed that Veillonella produces nutrients for the survival and growth of periodontal pathogens. These findings indicate that Veillonella plays an important "bridging" role in the development of oral biofilms and the ecology of the human oral cavity. In this study, we demonstrated that the reducing activity of Veillonella can rescue the growth of Fusobacterium nucleatum not only under microaerophilic conditions, but also in an environment in which Streptococcus gordonii is present. Thus, this study will provide a new insight for future studies on the mechanisms of human oral biofilm formation and the control of periodontal diseases.
Collapse
|
23
|
Keke Z, Xuedong Z, Xin X. [The origin of hydrogen peroxide in oral cavity and its role in oral microecology balance]. HUA XI KOU QIANG YI XUE ZA ZHI = HUAXI KOUQIANG YIXUE ZAZHI = WEST CHINA JOURNAL OF STOMATOLOGY 2017; 35:215-220. [PMID: 28682556 DOI: 10.7518/hxkq.2017.02.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Hydrogen peroxide, an important antimicrobial agent in oral cavity, plays a significant role in the balance of oral microecology. At the early stage of biofilm formation, about 80% of the detected initial colonizers belong to the genus Streptococcus. These oral streptococci use different oxidase to produce hydrogen peroxide. Recent studies showed that the produced hydrogen peroxide plays a critical role in modulating oral microecology. Hydrogen peroxide modulates biofilm development attributed to its growth inhibitory nature. Hydrogen peroxide production is closely associated with extracellular DNA(eDNA) release from microbe and the development of its competent cell which are critical for biofilm development and also serves as source for horizontal gene transfer. Microbe also can reduce the damage to themselves through several detoxification mechanisms. Moreover, hydrogen peroxide is also involved in the regulation of interactions between oral microorganisms and host. Taken together, hydrogen peroxide is an imperative ecological factor that contributes to the microbial equilibrium in the oral cavity. Here we will give a brief review of both the origin and the function in the oral microecology balance of hydrogen peroxide.
Collapse
Affiliation(s)
- Zhang Keke
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Zhou Xuedong
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xu Xin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
24
|
Takada A, Matsushita K, Horioka S, Furuichi Y, Sumi Y. Bactericidal effects of 310 nm ultraviolet light-emitting diode irradiation on oral bacteria. BMC Oral Health 2017; 17:96. [PMID: 28587675 PMCID: PMC5461700 DOI: 10.1186/s12903-017-0382-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 05/23/2017] [Indexed: 02/08/2023] Open
Abstract
Background Ultraviolet (UV) light is used for phototherapy in dermatology, and UVB light (around 310 nm) is effective for treatment of psoriasis and atopic dermatitis. In addition, it is known that UVC light (around 265 nm) has a bactericidal effect, but little is known about the bactericidal effect of UVB light. In this study, we examined the bactericidal effects of UVB-light emitting diode (LED) irradiation on oral bacteria to explore the possibility of using a 310 nm UVB-LED irradiation device for treatment of oral infectious diseases. Methods We prepared a UVB (310 nm) LED device for intraoral use to examine bactericidal effects on Streptococcus mutans, Streptococcus sauguinis, Porphyromonas gingivalis, and Fusobacterium nucleatum and also to examine the cytotoxicity to a human oral epithelial cell line (Ca9–22). We also examined the production of nitric oxide and hydrogen peroxide from Ca9–22 cells after irradiation with UVB-LED light. Results Irradiation with the 310 nm UVB-LED at 105 mJ/cm2 showed 30–50% bactericidal activity to oral bacteria, though 17.1 mJ/cm2 irradiation with the 265 nm UVC-LED completely killed the bacteria. Ca9–22 cells were strongly injured by irradiation with the 265 nm UVC-LED but were not harmed by irradiation with the 310 nm UVB-LED. Nitric oxide and hydrogen peroxide were produced by Ca9–22 cells with irradiation using the 310 nm UVB-LED. P. gingivalis was killed by applying small amounts of those reactive oxygen species (ROS) in culture, but other bacteria showed low sensitivity to the ROS. Conclusions Narrowband UVB-LED irradiation exhibited a weak bactericidal effect on oral bacteria but showed low toxicity to gingival epithelial cells. Its irradiation also induces the production of ROS from oral epithelial cells and may enhance bactericidal activity to specific periodontopathic bacteria. It may be useful as a new adjunctive therapy for periodontitis. Electronic supplementary material The online version of this article (doi:10.1186/s12903-017-0382-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ayuko Takada
- Division of Periodontology and Endodontology Department of Oral Rehabilitation, School of Health Sciences University of Hokkaido, Tobestu, Hokkaido, Japan.,Department of Oral Disease Research, National Center of Geriatrics and Gerontology, Obu, 747-8511, Aichi, Japan
| | - Kenji Matsushita
- Department of Oral Disease Research, National Center of Geriatrics and Gerontology, Obu, 747-8511, Aichi, Japan.
| | | | - Yasushi Furuichi
- Division of Periodontology and Endodontology Department of Oral Rehabilitation, School of Health Sciences University of Hokkaido, Tobestu, Hokkaido, Japan
| | - Yasunori Sumi
- Department of Center for Development of Advanced Medicine for Dental Diseases, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| |
Collapse
|
25
|
Sumioka R, Nakata M, Okahashi N, Li Y, Wada S, Yamaguchi M, Sumitomo T, Hayashi M, Kawabata S. Streptococcus sanguinis induces neutrophil cell death by production of hydrogen peroxide. PLoS One 2017; 12:e0172223. [PMID: 28222125 PMCID: PMC5319702 DOI: 10.1371/journal.pone.0172223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Accepted: 02/01/2017] [Indexed: 11/18/2022] Open
Abstract
Streptococcus is the dominant bacterial genus in the human oral cavity and a leading cause of infective endocarditis. Streptococcus sanguinis belongs to the mitis group of streptococci and produces hydrogen peroxide (H2O2) by the action of SpxB, a pyruvate oxidase. In this study, we investigated the involvement of SpxB in survival of S. sanguinis in human blood and whether bacterial H2O2 exhibits cytotoxicity against human neutrophils. Results of a bactericidal test with human whole blood revealed that the spxB mutation in S. sanguinis is detrimental to its survival in blood. When S. sanguinis strains were exposed to isolated neutrophils, the bacterial survival rate was significantly decreased by spxB deletion. Furthermore, human neutrophils exposed to the S. sanguinis wild-type strain, in contrast to those exposed to an spxB mutant strain, underwent cell death with chromatin de-condensation and release of web-like extracellular DNA, reflecting induction of neutrophil extracellular traps (NETs). Since reactive oxygen species-mediated NET induction requires citrullination of arginine residues in histone proteins and subsequent chromatin de-condensation, we examined citrullination levels of histone in infected neutrophils. It is important to note that the citrullinated histone H3 was readily detected in neutrophils infected with the wild-type strain, as compared to infection with the spxB mutant strain. Moreover, decomposition of streptococcal H2O2 with catalase reduced NET induction. These results suggest that H2O2 produced by S. sanguinis provokes cell death of neutrophils and NET formation, thus potentially affecting bacterial survival in the bloodstream.
Collapse
Affiliation(s)
- Ryuichi Sumioka
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
- * E-mail:
| | - Nobuo Okahashi
- Center for Frontier Oral Science, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Yixuan Li
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Satoshi Wada
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masaya Yamaguchi
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Mikako Hayashi
- Department of Restorative Dentistry and Endodontology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
26
|
Involvement of NADH Oxidase in Competition and Endocarditis Virulence in Streptococcus sanguinis. Infect Immun 2016; 84:1470-1477. [PMID: 26930704 PMCID: PMC4862721 DOI: 10.1128/iai.01203-15] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 02/20/2016] [Indexed: 11/20/2022] Open
Abstract
Here, we report for the first time that the Streptococcus sanguinis nox gene encoding NADH oxidase is involved in both competition with Streptococcus mutans and virulence for infective endocarditis. An S. sanguinis nox mutant was found to fail to inhibit the growth of Streptococcus mutans under microaerobic conditions. In the presence of oxygen, the recombinant Nox protein of S. sanguinis could reduce oxygen to water and oxidize NADH to NAD(+) The oxidation of NADH to NAD(+) was diminished in the nox mutant. The nox mutant exhibited decreased levels of extracellular H2O2; however, the intracellular level of H2O2 in the mutant was increased. Furthermore, the virulence of the nox mutant was attenuated in a rabbit endocarditis model. The nox mutant also was shown to be more sensitive to blood killing, oxidative and acid stresses, and reduced growth in serum. Thus, NADH oxidase contributes to multiple phenotypes related to competitiveness in the oral cavity and systemic virulence.
Collapse
|
27
|
Transcription of Oxidative Stress Genes Is Directly Activated by SpxA1 and, to a Lesser Extent, by SpxA2 in Streptococcus mutans. J Bacteriol 2015; 197:2160-2170. [PMID: 25897032 DOI: 10.1128/jb.00118-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 04/14/2015] [Indexed: 12/29/2022] Open
Abstract
UNLABELLED The SpxA1 and SpxA2 (formerly SpxA and SpxB) transcriptional regulators of Streptococcus mutans are members of a highly conserved family of proteins found in Firmicutes, and they were previously shown to activate oxidative stress responses. In this study, we showed that SpxA1 exerts substantial positive regulatory influence over oxidative stress genes following exposure to H2O2, while SpxA2 appears to have a secondary regulatory role. In vitro transcription (IVT) assays using purified SpxA1 and/or SpxA2 showed that SpxA1 and, less often, SpxA2 directly activate transcription of some of the major oxidative stress genes. Addition of equimolar concentrations of SpxA1 and SpxA2 to the IVT reactions neither enhanced transcription of the tested genes nor disrupted the dominant role of SpxA1. Substitution of a conserved glycine residue (G52) present in both Spx proteins by arginine (SpxG52R) resulted in strains that phenocopied the Δspx strains. Moreover, addition of purified SpxA1G52R completely failed to activate transcription of ahpC, sodA, and tpx, further confirming that the G52 residue is critical for Spx functionality. IMPORTANCE Streptococcus mutans is a pathogen associated with the formation of dental caries in humans. Within the oral cavity, S. mutans routinely encounters oxidative stress. Our previous data revealed that two regulatory proteins, SpxA1 and SpxA2 (formerly SpxA and SpxB), bear high homology to the Spx regulator that has been characterized as a critical activator of oxidative stress genes in Bacillus subtilis. In this report, we prove that Spx proteins of S. mutans directly activate transcription of genes involved in the oxidative stress response, though SpxA1 appears to have a more dominant role than SpxA2. Therefore, the Spx regulators play a critical role in the ability of S. mutans to thrive within the oral cavity.
Collapse
|
28
|
Two-component system VicRK regulates functions associated with establishment of Streptococcus sanguinis in biofilms. Infect Immun 2014; 82:4941-51. [PMID: 25183732 DOI: 10.1128/iai.01850-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.
Collapse
|
29
|
Shah G, Zielonka J, Chen F, Zhang G, Cao Y, Kalyanaraman B, See W. H2O2 generation by bacillus Calmette-Guérin induces the cellular oxidative stress response required for bacillus Calmette-Guérin direct effects on urothelial carcinoma biology. J Urol 2014; 192:1238-48. [PMID: 24928267 DOI: 10.1016/j.juro.2014.05.115] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/27/2014] [Indexed: 01/17/2023]
Abstract
PURPOSE Exposure of urothelial carcinoma cells to bacillus Calmette-Guérin affects cellular redox status and tumor cell biology but the mechanism(s) remain unclear. We examined free radical production by bacillus Calmette-Guérin in tumor cells in response to the bacillus using global profiling of reactive oxygen species/reactive nitrogen species. The relationship between free radical generation and downstream cellular events was evaluated. MATERIALS AND METHODS Using fluorescent probes we performed global profiling of reactive oxygen species/reactive nitrogen species in heat killed and viable bacillus Calmette-Guérin, and in the 253J and T24 urothelial carcinoma cell lines after exposure to the bacillus. Inhibition of bacillus Calmette-Guérin internalization and H2O2 pharmacological scavenging were studied for their effect on cellular reactive oxygen species/reactive nitrogen species generation and various physiological end points. RESULTS Viable bacillus Calmette-Guérin produced H2O2 and O2(-) but nitric oxide was not generated. Loss of viability decreased H2O2 production by 50% compared to viable bacillus. Bacillus Calmette-Guérin internalization was necessary for the bacillus to induce reactive oxygen species/reactive nitrogen species generation in urothelial carcinoma cells. Pharmacological H2O2 scavenging reversed reactive oxygen species/reactive nitrogen species mediated signaling in urothelial carcinoma cells. Bacillus Calmette-Guérin dependent alterations in tumor biology, including intracellular signaling, gene expression and cytotoxicity, depended on free radical generation. CONCLUSIONS This study demonstrates the importance of free radical generation by bacillus Calmette-Guérin and intracellular generation of cellular oxidative stress on the urothelial carcinoma cell response to the bacillus. Manipulating the cellular oxidative stress induced by bacillus Calmette-Guérin represents a potential target to increase the efficacy of the bacillus.
Collapse
Affiliation(s)
- Gopitkumar Shah
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Jacek Zielonka
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Fanghong Chen
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Guangjian Zhang
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - YanLi Cao
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Balaraman Kalyanaraman
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| | - William See
- Departments of Urology and Biophysics (JZ, BK), Medical College of Wisconsin, Milwaukee, Wisconsin
| |
Collapse
|
30
|
Crump KE, Bainbridge B, Brusko S, Turner LS, Ge X, Stone V, Xu P, Kitten T. The relationship of the lipoprotein SsaB, manganese and superoxide dismutase in Streptococcus sanguinis virulence for endocarditis. Mol Microbiol 2014; 92:1243-59. [PMID: 24750294 DOI: 10.1111/mmi.12625] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/20/2014] [Indexed: 01/16/2023]
Abstract
Streptococcus sanguinis colonizes teeth and is an important cause of infective endocarditis. Our prior work showed that the lipoprotein SsaB is critical for S. sanguinis virulence for endocarditis and belongs to the LraI family of conserved metal transporters. In this study, we demonstrated that an ssaB mutant accumulates less manganese and iron than its parent. A mutant lacking the manganese-dependent superoxide dismutase, SodA, was significantly less virulent than wild-type in a rabbit model of endocarditis, but significantly more virulent than the ssaB mutant. Neither the ssaB nor the sodA mutation affected sensitivity to phagocytic killing or efficiency of heart valve colonization. Animal virulence results for all strains could be reproduced by growing bacteria in serum under physiological levels of O(2). SodA activity was reduced, but not eliminated in the ssaB mutant in serum and in rabbits. Growth of the ssaB mutant in serum was restored upon addition of Mn(2+) or removal of O(2). Antioxidant supplementation experiments suggested that superoxide and hydroxyl radicals were together responsible for the ssaB mutant's growth defect. We conclude that manganese accumulation mediated by the SsaB transport system imparts virulence by enabling cell growth in oxygen through SodA-dependent and independent mechanisms.
Collapse
Affiliation(s)
- Katie E Crump
- Philips Institute for Oral Health Research, Virginia Commonwealth University, Richmond, VA, 23298, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Xu P, Gunsolley J. Application of metagenomics in understanding oral health and disease. Virulence 2014; 5:424-32. [PMID: 24642489 DOI: 10.4161/viru.28532] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Oral diseases including periodontal disease and caries are some of the most prevalent infectious diseases in humans. Different microbial species cohabitate and form a polymicrobial biofilm called dental plaque in the oral cavity. Metagenomics using next generation sequencing technologies has produced bacterial profiles and genomic profiles to study the relationships between microbial diversity, genetic variation, and oral diseases. Several oral metagenomic studies have examined the oral microbiome of periodontal disease and caries. Gene annotations in these studies support the association of specific genes or metabolic pathways with oral health and with specific diseases. The roles of pathogenic species and functions of specific genes in oral disease development have been recognized by metagenomic analysis. A model is proposed in which three levels of interactions occur in the oral microbiome that determines oral health or disease.
Collapse
Affiliation(s)
- Ping Xu
- VCU Philips Institute; Virginia Commonwealth University; Richmond, VA USA; Center for the Study of Biological Complexity; Virginia Commonwealth University; Richmond, VA USA; Department of Microbiology and Immunology; Virginia Commonwealth University; Richmond, VA USA
| | - John Gunsolley
- Periodontics Department; Virginia Commonwealth University; Richmond, VA USA
| |
Collapse
|
32
|
Okahashi N, Sumitomo T, Nakata M, Sakurai A, Kuwata H, Kawabata S. Hydrogen peroxide contributes to the epithelial cell death induced by the oral mitis group of streptococci. PLoS One 2014; 9:e88136. [PMID: 24498253 PMCID: PMC3909332 DOI: 10.1371/journal.pone.0088136] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Accepted: 01/08/2014] [Indexed: 01/22/2023] Open
Abstract
Members of the mitis group of streptococci are normal inhabitants of the commensal flora of the oral cavity and upper respiratory tract of humans. Some mitis group species, such as Streptococcus oralis and Streptococcus sanguinis, are primary colonizers of the human oral cavity. Recently, we found that hydrogen peroxide (H2O2) produced by S. oralis is cytotoxic to human macrophages, suggesting that streptococcus-derived H2O2 may act as a cytotoxin. Since epithelial cells provide a physical barrier against pathogenic microbes, we investigated their susceptibility to infection by H2O2-producing streptococci in this study. Infection by S. oralis and S. sanguinis was found to stimulate cell death of Detroit 562, Calu-3 and HeLa epithelial cell lines at a multiplicity of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited S. oralis cytotoxicity, and H2O2 alone was capable of eliciting epithelial cell death. Moreover, S. oralis mutants lacking the spxB gene encoding pyruvate oxidase, which are deficient in H2O2 production, exhibited reduced cytotoxicity toward Detroit 562 epithelial cells. In addition, enzyme-linked immunosorbent assays revealed that both S. oralis and H2O2 induced interleukin-6 production in Detroit 562 epithelial cells. These results suggest that streptococcal H2O2 is cytotoxic to epithelial cells, and promotes bacterial evasion of the host defense systems in the oral cavity and upper respiratory tracts.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
- * E-mail:
| | - Tomoko Sumitomo
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Masanobu Nakata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | - Atsuo Sakurai
- Department of Pediatric Dentistry and Oral Health Science Center hrc8, Tokyo Dental College, Chiba, Japan
| | - Hirotaka Kuwata
- Department of Oral Microbiology and Immunology, Showa University School of Dentistry, Tokyo, Japan
| | - Shigetada Kawabata
- Department of Oral and Molecular Microbiology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| |
Collapse
|
33
|
Jakubovics NS, Yassin SA, Rickard AH. Community interactions of oral streptococci. ADVANCES IN APPLIED MICROBIOLOGY 2014; 87:43-110. [PMID: 24581389 DOI: 10.1016/b978-0-12-800261-2.00002-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
It is now clear that the most common oral diseases, dental caries and periodontitis, are caused by mixed-species communities rather than by individual pathogens working in isolation. Oral streptococci are central to these disease processes since they are frequently the first microorganisms to colonize oral surfaces and they are numerically the dominant microorganisms in the human mouth. Numerous interactions between oral streptococci and other bacteria have been documented. These are thought to be critical for the development of mixed-species oral microbial communities and for the transition from oral health to disease. Recent metagenomic studies are beginning to shed light on the co-occurrence patterns of streptococci with other oral bacteria. Refinements in microscopy techniques and biofilm models are providing detailed insights into the spatial distribution of streptococci in oral biofilms. Targeted genetic manipulation is increasingly being applied for the analysis of specific genes and networks that modulate interspecies interactions. From this work, it is clear that streptococci produce a range of extracellular factors that promote their integration into mixed-species communities and enable them to form social networks with neighboring taxa. These "community integration factors" include coaggregation-mediating adhesins and receptors, small signaling molecules such as peptides or autoinducer-2, bacteriocins, by-products of metabolism including hydrogen peroxide and lactic acid, and a range of extracellular enzymes. Here, we provide an overview of various types of community interactions between oral streptococci and other microorganisms, and we consider the possibilities for the development of new technologies to interfere with these interactions to help control oral biofilms.
Collapse
Affiliation(s)
- Nicholas S Jakubovics
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom.
| | - Sufian A Yassin
- Oral Biology, School of Dental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Alexander H Rickard
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Makhlynets O, Boal AK, Rhodes DV, Kitten T, Rosenzweig AC, Stubbe J. Streptococcus sanguinis class Ib ribonucleotide reductase: high activity with both iron and manganese cofactors and structural insights. J Biol Chem 2013; 289:6259-72. [PMID: 24381172 DOI: 10.1074/jbc.m113.533554] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Streptococcus sanguinis is a causative agent of infective endocarditis. Deletion of SsaB, a manganese transporter, drastically reduces S. sanguinis virulence. Many pathogenic organisms require class Ib ribonucleotide reductase (RNR) to catalyze the conversion of nucleotides to deoxynucleotides under aerobic conditions, and recent studies demonstrate that this enzyme uses a dimanganese-tyrosyl radical (Mn(III)2-Y(•)) cofactor in vivo. The proteins required for S. sanguinis ribonucleotide reduction (NrdE and NrdF, α and β subunits of RNR; NrdH and TrxR, a glutaredoxin-like thioredoxin and a thioredoxin reductase; and NrdI, a flavodoxin essential for assembly of the RNR metallo-cofactor) have been identified and characterized. Apo-NrdF with Fe(II) and O2 can self-assemble a diferric-tyrosyl radical (Fe(III)2-Y(•)) cofactor (1.2 Y(•)/β2) and with the help of NrdI can assemble a Mn(III)2-Y(•) cofactor (0.9 Y(•)/β2). The activity of RNR with its endogenous reductants, NrdH and TrxR, is 5,000 and 1,500 units/mg for the Mn- and Fe-NrdFs (Fe-loaded NrdF), respectively. X-ray structures of S. sanguinis NrdIox and Mn(II)2-NrdF are reported and provide a possible rationale for the weak affinity (2.9 μM) between them. These streptococcal proteins form a structurally distinct subclass relative to other Ib proteins with unique features likely important in cluster assembly, including a long and negatively charged loop near the NrdI flavin and a bulky residue (Thr) at a constriction in the oxidant channel to the NrdI interface. These studies set the stage for identifying the active form of S. sanguinis class Ib RNR in an animal model for infective endocarditis and establishing whether the manganese requirement for pathogenesis is associated with RNR.
Collapse
|
35
|
Evans K, Stone V, Chen L, Ge X, Xu P. Systematic study of genes influencing cellular chain length in Streptococcus sanguinis. MICROBIOLOGY-SGM 2013; 160:307-315. [PMID: 24295823 PMCID: PMC3919539 DOI: 10.1099/mic.0.071688-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus sanguinis is a Gram-positive bacterium that is indigenous to the oral cavity. S. sanguinis, a primary colonizer of the oral cavity, serves as a tether for the attachment of other oral pathogens. The colonization of microbes on the tooth surface forms dental plaque, which can lead to the onset of periodontal disease. We examined a comprehensive mutant library to identify genes related to cellular chain length and morphology using phase-contrast microscopy. A number of hypothetical genes related to the cellular chain length were identified in this study. Genes related to the cellular chain length were analysed along with clusters of orthologous groups (COG) for gene functions. It was discovered that the highest proportion of COG functions related to cellular chain length was 'cell division and chromosome separation'. However, different COG functions were also found to be related with altered cellular chain length. This suggested that different genes related with multiple mechanisms contribute to the cellular chain length in S. sanguinis SK36.
Collapse
Affiliation(s)
- Karra Evans
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Victoria Stone
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Lei Chen
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Xiuchun Ge
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
| | - Ping Xu
- VCU Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, VA 23298-0566, USA
- Center for the Study of Biological Complexity of Virginia Commonwealth University, Richmond, VA, USA
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
36
|
Hydrogen peroxide produced by oral Streptococci induces macrophage cell death. PLoS One 2013; 8:e62563. [PMID: 23658745 PMCID: PMC3643943 DOI: 10.1371/journal.pone.0062563] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Accepted: 03/22/2013] [Indexed: 02/07/2023] Open
Abstract
Hydrogen peroxide (H2O2) produced by members of the mitis group of oral streptococci plays important roles in microbial communities such as oral biofilms. Although the cytotoxicity of H2O2 has been widely recognized, the effects of H2O2 produced by oral streptococci on host defense systems remain unknown. In the present study, we investigated the effect of H2O2 produced by Streptococcus oralis on human macrophage cell death. Infection by S. oralis was found to stimulate cell death of a THP-1 human macrophage cell line at multiplicities of infection greater than 100. Catalase, an enzyme that catalyzes the decomposition of H2O2, inhibited the cytotoxic effect of S. oralis. S. oralis deletion mutants lacking the spxB gene, which encodes pyruvate oxidase, and are therefore deficient in H2O2 production, showed reduced cytotoxicity toward THP-1 macrophages. Furthermore, H2O2 alone was capable of inducing cell death. The cytotoxic effect seemed to be independent of inflammatory responses, because H2O2 was not a potent stimulator of tumor necrosis factor-α production in macrophages. These results indicate that streptococcal H2O2 plays a role as a cytotoxin, and is implicated in the cell death of infected human macrophages.
Collapse
|
37
|
Enterococcus faecalis enhances cell proliferation through hydrogen peroxide-mediated epidermal growth factor receptor activation. Infect Immun 2012; 80:3545-58. [PMID: 22851748 DOI: 10.1128/iai.00479-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enterococcus faecalis is a member of the intestinal and oral microbiota that may affect the etiology of colorectal and oral cancers. The mechanisms by which E. faecalis may contribute to the initiation and progression of these cancers remain uncertain. Epidermal growth factor receptor (EGFR) signaling is postulated to play a crucial role in oral carcinogenesis. A link between E. faecalis and EGFR signaling in oral cancer has not been elucidated. The present study aimed to evaluate the association between E. faecalis and oral cancer and to determine the underlying mechanisms that link E. faecalis to EGFR signaling. We report the high frequency of E. faecalis infection in oral tumors and the clinical association with EGFR activation. Using human oral cancer cells, we support the clinical findings and demonstrate that E. faecalis can induce EGFR activation and cell proliferation. E. faecalis activates EGFR through production of H(2)O(2), a signaling molecule that activates several signaling pathways. Inhibitors of H(2)O(2) (catalase) and EGFR (gefitinib) significantly blocked E. faecalis-induced EGFR activation and cell proliferation. Therefore, E. faecalis infection of oral tumor tissues suggests a possible association between E. faecalis infection and oral carcinogenesis. Interaction of E. faecalis with host cells and production of H(2)O(2) increase EGFR activation, thereby contributing to cell proliferation.
Collapse
|
38
|
The role of hydrogen peroxide in environmental adaptation of oral microbial communities. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2012; 2012:717843. [PMID: 22848782 PMCID: PMC3405655 DOI: 10.1155/2012/717843] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Accepted: 05/11/2012] [Indexed: 11/17/2022]
Abstract
Oral streptococci are able to produce growth-inhibiting amounts of hydrogen peroxide (H(2)O(2)) as byproduct of aerobic metabolism. Several recent studies showed that the produced H(2)O(2) is not a simple byproduct of metabolism but functions in several aspects of oral bacterial biofilm ecology. First, the release of DNA from cells is closely associated to the production of H(2)O(2) in Streptococcus sanguinis and Streptococcus gordonii. Extracellular DNA is crucial for biofilm development and stabilization and can also serve as source for horizontal gene transfer between oral streptococci. Second, due to the growth inhibiting nature of H(2)O(2), H(2)O(2) compatible species associate with the producers. H(2)O(2) production therefore might help in structuring the initial biofilm development. On the other hand, the oral environment harbors salivary peroxidases that are potent in H(2)O(2) scavenging. Therefore, the effects of biofilm intrinsic H(2)O(2) production might be locally confined. However, taking into account that 80% of initial oral biofilm constituents are streptococci, the influence of H(2)O(2) on biofilm development and environmental adaptation might be under appreciated in current research.
Collapse
|
39
|
Chen L, Ge X, Wang X, Patel JR, Xu P. SpxA1 involved in hydrogen peroxide production, stress tolerance and endocarditis virulence in Streptococcus sanguinis. PLoS One 2012; 7:e40034. [PMID: 22768210 PMCID: PMC3386922 DOI: 10.1371/journal.pone.0040034] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 06/04/2012] [Indexed: 11/25/2022] Open
Abstract
Streptococcus sanguinis is one of the most common agents of infective endocarditis. Spx proteins are a group of global regulators that negatively or positively control global transcription initiation. In this study, we characterized the spxA1 gene in S. sanguinis SK36. The spxA1 null mutant displayed opaque colony morphology, reduced hydrogen peroxide (H2O2) production, and reduced antagonistic activity against Streptococcus mutans UA159 relative to the wild type strain. The ΔspxA1 mutant also demonstrated decreased tolerance to high temperature, acidic and oxidative stresses. Further analysis revealed that ΔspxA1 also exhibited a ∼5-fold reduction in competitiveness in an animal model of endocarditis. Microarray studies indicated that expression of several oxidative stress genes was downregulated in the ΔspxA1 mutant. The expression of spxB and nox was significantly decreased in the ΔspxA1 mutant compared with the wild type. These results indicate that spxA1 plays a major role in H2O2 production, stress tolerance and endocarditis virulence in S. sanguinis SK36. The second spx gene, spxA2, was also found in S. sanguinis SK36. The spxA2 null mutant was found to be defective for growth under normal conditions and showed sensitivity to high temperature, acidic and oxidative stresses.
Collapse
Affiliation(s)
- Lei Chen
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiuchun Ge
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Xiaojing Wang
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Jenishkumar R. Patel
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Ping Xu
- The Philips Institute of Oral and Craniofacial Molecular Biology, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
40
|
Okahashi N, Okinaga T, Sakurai A, Terao Y, Nakata M, Nakashima K, Shintani S, Kawabata S, Ooshima T, Nishihara T. Streptococcus sanguinis induces foam cell formation and cell death of macrophages in association with production of reactive oxygen species. FEMS Microbiol Lett 2011; 323:164-70. [PMID: 22092716 DOI: 10.1111/j.1574-6968.2011.02375.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Revised: 06/24/2011] [Accepted: 07/26/2011] [Indexed: 02/03/2023] Open
Abstract
Streptococcus sanguinis, a normal inhabitant of the human oral cavity, is a common streptococcal species implicated in infective endocarditis. Herein, we investigated the effects of infection with S. sanguinis on foam cell formation and cell death of macrophages. Infection with S. sanguinis stimulated foam cell formation of THP-1, a human macrophage cell line. At a multiplicity of infection >100, S. sanguinis-induced cell death of the macrophages. Viable bacterial infection was required to trigger cell death because heat-inactivated S. sanguinis did not induce cell death. The production of cytokines interleukin-1β and tumor necrosis factor-α from macrophages was also stimulated during bacterial infection. Inhibition of the production of reactive oxygen species (ROS) resulted in reduced cell death, suggesting an association of ROS with cell death. Furthermore, S. sanguinis-induced cell death appeared to be independent of activation of inflammasomes, because cleavage of procaspase-1 was not evident in infected macrophages.
Collapse
Affiliation(s)
- Nobuo Okahashi
- Department of Oral Frontier Biology, Osaka University Graduate School of Dentistry, Suita-Osaka, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Zheng L, Chen Z, Itzek A, Ashby M, Kreth J. Catabolite control protein A controls hydrogen peroxide production and cell death in Streptococcus sanguinis. J Bacteriol 2011; 193:516-26. [PMID: 21036992 PMCID: PMC3019840 DOI: 10.1128/jb.01131-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 10/21/2010] [Indexed: 02/07/2023] Open
Abstract
Streptococcus sanguinis is a commensal oral bacterium producing hydrogen peroxide (H₂O₂) that is dependent on pyruvate oxidase (Spx) activity. In addition to its well-known role in bacterial antagonism during interspecies competition, H₂O₂ causes cell death in about 10% of the S. sanguinis population. As a consequence of H₂O₂-induced cell death, largely intact chromosomal DNA is released into the environment. This extracellular DNA (eDNA) contributes to the self-aggregation phenotype under aerobic conditions. To further investigate the regulation of spx gene expression, we assessed the role of catabolite control protein A (CcpA) in spx expression control. We report here that CcpA represses spx expression. An isogenic ΔccpA mutant showed elevated spx expression, increased Spx abundance, and H₂O₂ production, whereas the wild type did not respond with altered spx expression in the presence of glucose and other carbohydrates. Since H₂O₂ is directly involved in the release of eDNA and bacterial cell death, the presented data suggest that CcpA is a central control element in this important developmental process in S. sanguinis.
Collapse
Affiliation(s)
- Lanyan Zheng
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, China Medical University, Department of Microbiology and Parasitology, Shenyang City 110001, Liaoning Province, People's Republic of China, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Zhijun Chen
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, China Medical University, Department of Microbiology and Parasitology, Shenyang City 110001, Liaoning Province, People's Republic of China, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Andreas Itzek
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, China Medical University, Department of Microbiology and Parasitology, Shenyang City 110001, Liaoning Province, People's Republic of China, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Michael Ashby
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, China Medical University, Department of Microbiology and Parasitology, Shenyang City 110001, Liaoning Province, People's Republic of China, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| | - Jens Kreth
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, China Medical University, Department of Microbiology and Parasitology, Shenyang City 110001, Liaoning Province, People's Republic of China, Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, College of Dentistry, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104
| |
Collapse
|